| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198 | "use strict";const fs = require("fs");const ttest = require("ttest");const VALID_GROUP_BYS = ["browser", "pdf", "page", "round", "stat"];function parseOptions() {  const yargs = require("yargs")    .usage(      "Compare the results of two stats files.\n" +        "Usage:\n  $0 <BASELINE> <CURRENT> [options]"    )    .demand(2)    .string(["groupBy"])    .describe(      "groupBy",      "How statistics should grouped. Valid options: " +        VALID_GROUP_BYS.join(" ")    )    .default("groupBy", "browser,stat");  const result = yargs.argv;  result.baseline = result._[0];  result.current = result._[1];  if (result.groupBy) {    result.groupBy = result.groupBy.split(/[;, ]+/);  }  return result;}function group(stats, groupBy) {  const vals = [];  for (const curStat of stats) {    const keyArr = [];    for (const entry of groupBy) {      keyArr.push(curStat[entry]);    }    const key = keyArr.join(",");    (vals[key] ||= []).push(curStat.time);  }  return vals;}/* * Flatten the stats so that there's one row per stats entry. * Also, if results are not grouped by 'stat', keep only 'Overall' results. */function flatten(stats) {  let rows = [];  stats.forEach(function (curStat) {    curStat.stats.forEach(function (s) {      rows.push({        browser: curStat.browser,        page: curStat.page,        pdf: curStat.pdf,        round: curStat.round,        stat: s.name,        time: s.end - s.start,      });    });  });  // Use only overall results if not grouped by 'stat'  if (!options.groupBy.includes("stat")) {    rows = rows.filter(function (s) {      return s.stat === "Overall";    });  }  return rows;}function pad(s, length, dir /* default: 'right' */) {  s = "" + s;  const spaces = new Array(Math.max(0, length - s.length + 1)).join(" ");  return dir === "left" ? spaces + s : s + spaces;}function mean(array) {  function add(a, b) {    return a + b;  }  return array.reduce(add, 0) / array.length;}/* Comparator for row key sorting. */function compareRow(a, b) {  a = a.split(",");  b = b.split(",");  for (let i = 0; i < Math.min(a.length, b.length); i++) {    const intA = parseInt(a[i], 10);    const intB = parseInt(b[i], 10);    const ai = isNaN(intA) ? a[i] : intA;    const bi = isNaN(intB) ? b[i] : intB;    if (ai < bi) {      return -1;    }    if (ai > bi) {      return 1;    }  }  return 0;}/* * Dump various stats in a table to compare the baseline and current results. * T-test Refresher: * If I understand t-test correctly, p is the probability that we'll observe * another test that is as extreme as the current result assuming the null * hypothesis is true. P is NOT the probability of the null hypothesis. The null * hypothesis in this case is that the baseline and current results will be the * same. It is generally accepted that you can reject the null hypothesis if the * p-value is less than 0.05. So if p < 0.05 we can reject the results are the * same which doesn't necessarily mean the results are faster/slower but it can * be implied. */function stat(baseline, current) {  const baselineGroup = group(baseline, options.groupBy);  const currentGroup = group(current, options.groupBy);  const keys = Object.keys(baselineGroup);  keys.sort(compareRow);  const labels = options.groupBy.slice(0);  labels.push("Count", "Baseline(ms)", "Current(ms)", "+/-", "% ");  if (ttest) {    labels.push("Result(P<.05)");  }  const rows = [];  // collect rows and measure column widths  const width = labels.map(function (s) {    return s.length;  });  rows.push(labels);  for (const key of keys) {    const baselineMean = mean(baselineGroup[key]);    const currentMean = mean(currentGroup[key]);    const row = key.split(",");    row.push(      "" + baselineGroup[key].length,      "" + Math.round(baselineMean),      "" + Math.round(currentMean),      "" + Math.round(currentMean - baselineMean),      ((100 * (currentMean - baselineMean)) / baselineMean).toFixed(2)    );    if (ttest) {      const p =        baselineGroup[key].length < 2          ? 1          : ttest(baselineGroup[key], currentGroup[key]).pValue();      if (p < 0.05) {        row.push(currentMean < baselineMean ? "faster" : "slower");      } else {        row.push("");      }    }    for (let i = 0; i < row.length; i++) {      width[i] = Math.max(width[i], row[i].length);    }    rows.push(row);  }  // add horizontal line  const hline = width.map(function (w) {    return new Array(w + 1).join("-");  });  rows.splice(1, 0, hline);  // print output  console.log("-- Grouped By " + options.groupBy.join(", ") + " --");  const groupCount = options.groupBy.length;  for (const row of rows) {    for (let i = 0; i < row.length; i++) {      row[i] = pad(row[i], width[i], i < groupCount ? "right" : "left");    }    console.log(row.join(" | "));  }}function main() {  let baseline, current;  try {    const baselineFile = fs.readFileSync(options.baseline).toString();    baseline = flatten(JSON.parse(baselineFile));  } catch (e) {    console.log('Error reading file "' + options.baseline + '": ' + e);    process.exit(0);  }  try {    const currentFile = fs.readFileSync(options.current).toString();    current = flatten(JSON.parse(currentFile));  } catch (e) {    console.log('Error reading file "' + options.current + '": ' + e);    process.exit(0);  }  stat(baseline, current);}const options = parseOptions();main();
 |