| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195 | /** * Biltong v0.2 * * Various geometry functions written as part of jsPlumb and perhaps useful for others. * * Copyright (c) 2014 Simon Porritt * * Permission is hereby granted, free of charge, to any person * obtaining a copy of this software and associated documentation * files (the "Software"), to deal in the Software without * restriction, including without limitation the rights to use, * copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following * conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES * OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT * HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. */;(function() {		"use strict";	var Biltong = this.Biltong = {};	var _isa = function(a) { return Object.prototype.toString.call(a) === "[object Array]"; },		_pointHelper = function(p1, p2, fn) {		    p1 = _isa(p1) ? p1 : [p1.x, p1.y];		    p2 = _isa(p2) ? p2 : [p2.x, p2.y];    		    return fn(p1, p2);		},		/**		* @name Biltong.gradient		* @function		* @desc Calculates the gradient of a line between the two points.		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Float} The gradient of a line between the two points.		*/		_gradient = Biltong.gradient = function(p1, p2) {		    return _pointHelper(p1, p2, function(_p1, _p2) { 		        if (_p2[0] == _p1[0])		            return _p2[1] > _p1[1] ? Infinity : -Infinity;		        else if (_p2[1] == _p1[1]) 		            return _p2[0] > _p1[0] ? 0 : -0;		        else 		            return (_p2[1] - _p1[1]) / (_p2[0] - _p1[0]); 		    });				},		/**		* @name Biltong.normal		* @function		* @desc Calculates the gradient of a normal to a line between the two points.		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Float} The gradient of a normal to a line between the two points.		*/		_normal = Biltong.normal = function(p1, p2) {		    return -1 / _gradient(p1, p2);		},		/**		* @name Biltong.lineLength		* @function		* @desc Calculates the length of a line between the two points.		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Float} The length of a line between the two points.		*/		_lineLength = Biltong.lineLength = function(p1, p2) {		    return _pointHelper(p1, p2, function(_p1, _p2) {		        return Math.sqrt(Math.pow(_p2[1] - _p1[1], 2) + Math.pow(_p2[0] - _p1[0], 2));					    });		},		/**		* @name Biltong.quadrant		* @function		* @desc Calculates the quadrant in which the angle between the two points lies. 		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Integer} The quadrant - 1 for upper right, 2 for lower right, 3 for lower left, 4 for upper left.		*/		_quadrant = Biltong.quadrant = function(p1, p2) {		    return _pointHelper(p1, p2, function(_p1, _p2) {		        if (_p2[0] > _p1[0]) {		            return (_p2[1] > _p1[1]) ? 2 : 1;		        }		        else if (_p2[0] == _p1[0]) {		            return _p2[1] > _p1[1] ? 2 : 1;    		        }		        else {		            return (_p2[1] > _p1[1]) ? 3 : 4;		        }		    });		},		/**		* @name Biltong.theta		* @function		* @desc Calculates the angle between the two points. 		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Float} The angle between the two points.		*/		_theta = Biltong.theta = function(p1, p2) {		    return _pointHelper(p1, p2, function(_p1, _p2) {		        var m = _gradient(_p1, _p2),		            t = Math.atan(m),		            s = _quadrant(_p1, _p2);		        if ((s == 4 || s== 3)) t += Math.PI;		        if (t < 0) t += (2 * Math.PI);		    		        return t;		    });		},		/**		* @name Biltong.intersects		* @function		* @desc Calculates whether or not the two rectangles intersect.		* @param {Rectangle} r1 First rectangle, as a js object in the form `{x:.., y:.., w:.., h:..}`		* @param {Rectangle} r2 Second rectangle, as a js object in the form `{x:.., y:.., w:.., h:..}`		* @return {Boolean} True if the rectangles intersect, false otherwise.		*/		_intersects = Biltong.intersects = function(r1, r2) {		    var x1 = r1.x, x2 = r1.x + r1.w, y1 = r1.y, y2 = r1.y + r1.h,		        a1 = r2.x, a2 = r2.x + r2.w, b1 = r2.y, b2 = r2.y + r2.h;					return  ( (x1 <= a1 && a1 <= x2) && (y1 <= b1 && b1 <= y2) ) ||			        ( (x1 <= a2 && a2 <= x2) && (y1 <= b1 && b1 <= y2) ) ||			        ( (x1 <= a1 && a1 <= x2) && (y1 <= b2 && b2 <= y2) ) ||			        ( (x1 <= a2 && a1 <= x2) && (y1 <= b2 && b2 <= y2) ) ||				        ( (a1 <= x1 && x1 <= a2) && (b1 <= y1 && y1 <= b2) ) ||			        ( (a1 <= x2 && x2 <= a2) && (b1 <= y1 && y1 <= b2) ) ||			        ( (a1 <= x1 && x1 <= a2) && (b1 <= y2 && y2 <= b2) ) ||			        ( (a1 <= x2 && x1 <= a2) && (b1 <= y2 && y2 <= b2) );		},		/**		* @name Biltong.encloses		* @function		* @desc Calculates whether or not r2 is completely enclosed by r1.		* @param {Rectangle} r1 First rectangle, as a js object in the form `{x:.., y:.., w:.., h:..}`		* @param {Rectangle} r2 Second rectangle, as a js object in the form `{x:.., y:.., w:.., h:..}`		* @param {Boolean} [allowSharedEdges=false] If true, the concept of enclosure allows for one or more edges to be shared by the two rectangles.		* @return {Boolean} True if r1 encloses r2, false otherwise.		*/		_encloses = Biltong.encloses = function(r1, r2, allowSharedEdges) {			var x1 = r1.x, x2 = r1.x + r1.w, y1 = r1.y, y2 = r1.y + r1.h,		        a1 = r2.x, a2 = r2.x + r2.w, b1 = r2.y, b2 = r2.y + r2.h,				c = function(v1, v2, v3, v4) { return allowSharedEdges ? v1 <= v2 && v3>= v4 : v1 < v2 && v3 > v4; };							return c(x1,a1,x2,a2) && c(y1,b1,y2,b2);		},		_segmentMultipliers = [null, [1, -1], [1, 1], [-1, 1], [-1, -1] ],		_inverseSegmentMultipliers = [null, [-1, -1], [-1, 1], [1, 1], [1, -1] ],		/**		* @name Biltong.pointOnLine		* @function		* @desc Calculates a point on the line from `fromPoint` to `toPoint` that is `distance` units along the length of the line.		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Point} Point on the line, in the form `{ x:..., y:... }`.		*/		_pointOnLine = Biltong.pointOnLine = function(fromPoint, toPoint, distance) {		    var m = _gradient(fromPoint, toPoint),		        s = _quadrant(fromPoint, toPoint),		        segmentMultiplier = distance > 0 ? _segmentMultipliers[s] : _inverseSegmentMultipliers[s],		        theta = Math.atan(m),		        y = Math.abs(distance * Math.sin(theta)) * segmentMultiplier[1],		        x =  Math.abs(distance * Math.cos(theta)) * segmentMultiplier[0];		    return { x:fromPoint.x + x, y:fromPoint.y + y };		},		/**		* @name Biltong.perpendicularLineTo		* @function		* @desc Calculates a line of length `length` that is perpendicular to the line from `fromPoint` to `toPoint` and passes through `toPoint`.		* @param {Point} p1 First point, either as a 2 entry array or object with `left` and `top` properties.		* @param {Point} p2 Second point, either as a 2 entry array or object with `left` and `top` properties.		* @return {Line} Perpendicular line, in the form `[ { x:..., y:... }, { x:..., y:... } ]`.		*/        		_perpendicularLineTo = Biltong.perpendicularLineTo = function(fromPoint, toPoint, length) {		    var m = _gradient(fromPoint, toPoint),		        theta2 = Math.atan(-1 / m),		        y =  length / 2 * Math.sin(theta2),		        x =  length / 2 * Math.cos(theta2);		    return [{x:toPoint.x + x, y:toPoint.y + y}, {x:toPoint.x - x, y:toPoint.y - y}];		};	}).call(this);
 |