root 3bf41bf355 update | 1 年之前 | |
---|---|---|
.. | ||
esm | 1 年之前 | |
.eslintrc.json | 1 年之前 | |
.prettierrc | 1 年之前 | |
.travis.yml | 1 年之前 | |
LICENSE.md | 1 年之前 | |
README.md | 1 年之前 | |
bench.js | 1 年之前 | |
mod.d.ts | 1 年之前 | |
mod.js | 1 年之前 | |
package.json | 1 年之前 | |
test.js | 1 年之前 | |
test.ts | 1 年之前 |
Fastest JS/TS implemenation of Levenshtein distance.
Measure the difference between two strings.
$ npm i fastest-levenshtein
const {distance, closest} = require('fastest-levenshtein')
// Print levenshtein-distance between 'fast' and 'faster'
console.log(distance('fast', 'faster'))
//=> 2
// Print string from array with lowest edit-distance to 'fast'
console.log(closest('fast', ['slow', 'faster', 'fastest']))
//=> 'faster'
import {distance, closest} from 'https://deno.land/x/fastest_levenshtein/mod.ts'
// Print levenshtein-distance between 'fast' and 'faster'
console.log(distance('fast', 'faster'))
//=> 2
// Print string from array with lowest edit-distance to 'fast'
console.log(closest('fast', ['slow', 'faster', 'fastest']))
//=> 'faster'
I generated 500 pairs of strings with length N. I measured the ops/sec each library achieves to process all the given pairs. Higher is better.
Test Target | N=4 | N=8 | N=16 | N=32 | N=64 | N=128 | N=256 | N=512 | N=1024 |
---|---|---|---|---|---|---|---|---|---|
fastest-levenshtein | 44423 | 23702 | 10764 | 4595 | 1049 | 291.5 | 86.64 | 22.24 | 5.473 |
js-levenshtein | 21261 | 10030 | 2939 | 824 | 223 | 57.62 | 14.77 | 3.717 | 0.934 |
leven | 19688 | 6884 | 1606 | 436 | 117 | 30.34 | 7.604 | 1.929 | 0.478 |
fast-levenshtein | 18577 | 6112 | 1265 | 345 | 89.41 | 22.70 | 5.676 | 1.428 | 0.348 |
levenshtein-edit-distance | 22968 | 7445 | 1493 | 409 | 109 | 28.07 | 7.095 | 1.789 | 0.445 |
This image shows the relative performance between fastest-levenshtein
and js-levenshtein
(the 2nd fastest). fastest-levenshtein
is always a lot faster. y-axis shows "times faster".
This project is licensed under the MIT License - see the LICENSE.md file for details