fdtr.c 5.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223
  1. /* fdtr.c
  2. *
  3. * F distribution
  4. *
  5. *
  6. *
  7. * SYNOPSIS:
  8. *
  9. * int df1, df2;
  10. * double x, y, fdtr();
  11. *
  12. * y = fdtr( df1, df2, x );
  13. *
  14. * DESCRIPTION:
  15. *
  16. * Returns the area from zero to x under the F density
  17. * function (also known as Snedcor's density or the
  18. * variance ratio density). This is the density
  19. * of x = (u1/df1)/(u2/df2), where u1 and u2 are random
  20. * variables having Chi square distributions with df1
  21. * and df2 degrees of freedom, respectively.
  22. *
  23. * The incomplete beta integral is used, according to the
  24. * formula
  25. *
  26. * P(x) = incbet( df1/2, df2/2, (df1*x/(df2 + df1*x) ).
  27. *
  28. *
  29. * The arguments a and b are greater than zero, and x is
  30. * nonnegative.
  31. *
  32. * ACCURACY:
  33. *
  34. * Tested at random points (a,b,x).
  35. *
  36. * x a,b Relative error:
  37. * arithmetic domain domain # trials peak rms
  38. * IEEE 0,1 0,100 100000 9.8e-15 1.7e-15
  39. * IEEE 1,5 0,100 100000 6.5e-15 3.5e-16
  40. * IEEE 0,1 1,10000 100000 2.2e-11 3.3e-12
  41. * IEEE 1,5 1,10000 100000 1.1e-11 1.7e-13
  42. * See also incbet.c.
  43. *
  44. *
  45. * ERROR MESSAGES:
  46. *
  47. * message condition value returned
  48. * fdtr domain a<0, b<0, x<0 0.0
  49. *
  50. */
  51. /* fdtrc()
  52. *
  53. * Complemented F distribution
  54. *
  55. *
  56. *
  57. * SYNOPSIS:
  58. *
  59. * int df1, df2;
  60. * double x, y, fdtrc();
  61. *
  62. * y = fdtrc( df1, df2, x );
  63. *
  64. * DESCRIPTION:
  65. *
  66. * Returns the area from x to infinity under the F density
  67. * function (also known as Snedcor's density or the
  68. * variance ratio density).
  69. *
  70. *
  71. * inf.
  72. * -
  73. * 1 | | a-1 b-1
  74. * 1-P(x) = ------ | t (1-t) dt
  75. * B(a,b) | |
  76. * -
  77. * x
  78. *
  79. *
  80. * The incomplete beta integral is used, according to the
  81. * formula
  82. *
  83. * P(x) = incbet( df2/2, df1/2, (df2/(df2 + df1*x) ).
  84. *
  85. *
  86. * ACCURACY:
  87. *
  88. * Tested at random points (a,b,x) in the indicated intervals.
  89. * x a,b Relative error:
  90. * arithmetic domain domain # trials peak rms
  91. * IEEE 0,1 1,100 100000 3.7e-14 5.9e-16
  92. * IEEE 1,5 1,100 100000 8.0e-15 1.6e-15
  93. * IEEE 0,1 1,10000 100000 1.8e-11 3.5e-13
  94. * IEEE 1,5 1,10000 100000 2.0e-11 3.0e-12
  95. * See also incbet.c.
  96. *
  97. * ERROR MESSAGES:
  98. *
  99. * message condition value returned
  100. * fdtrc domain a<0, b<0, x<0 0.0
  101. *
  102. */
  103. /* fdtri()
  104. *
  105. * Inverse of complemented F distribution
  106. *
  107. *
  108. *
  109. * SYNOPSIS:
  110. *
  111. * int df1, df2;
  112. * double x, p, fdtri();
  113. *
  114. * x = fdtri( df1, df2, p );
  115. *
  116. * DESCRIPTION:
  117. *
  118. * Finds the F density argument x such that the integral
  119. * from x to infinity of the F density is equal to the
  120. * given probability p.
  121. *
  122. * This is accomplished using the inverse beta integral
  123. * function and the relations
  124. *
  125. * z = incbi( df2/2, df1/2, p )
  126. * x = df2 (1-z) / (df1 z).
  127. *
  128. * Note: the following relations hold for the inverse of
  129. * the uncomplemented F distribution:
  130. *
  131. * z = incbi( df1/2, df2/2, p )
  132. * x = df2 z / (df1 (1-z)).
  133. *
  134. * ACCURACY:
  135. *
  136. * Tested at random points (a,b,p).
  137. *
  138. * a,b Relative error:
  139. * arithmetic domain # trials peak rms
  140. * For p between .001 and 1:
  141. * IEEE 1,100 100000 8.3e-15 4.7e-16
  142. * IEEE 1,10000 100000 2.1e-11 1.4e-13
  143. * For p between 10^-6 and 10^-3:
  144. * IEEE 1,100 50000 1.3e-12 8.4e-15
  145. * IEEE 1,10000 50000 3.0e-12 4.8e-14
  146. * See also fdtrc.c.
  147. *
  148. * ERROR MESSAGES:
  149. *
  150. * message condition value returned
  151. * fdtri domain p <= 0 or p > 1 0.0
  152. * v < 1
  153. *
  154. */
  155. /*
  156. Cephes Math Library Release 2.8: June, 2000
  157. Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
  158. */
  159. #include "mconf.h"
  160. #ifdef ANSIPROT
  161. extern double incbet(double, double, double);
  162. extern double incbi(double, double, double);
  163. #else
  164. double incbet(), incbi();
  165. #endif
  166. double fdtrc(ia, ib, x) int ia, ib;
  167. double x;
  168. {
  169. double a, b, w;
  170. if ((ia < 1) || (ib < 1) || (x < 0.0)) {
  171. mtherr("fdtrc", DOMAIN);
  172. return (0.0);
  173. }
  174. a = ia;
  175. b = ib;
  176. w = b / (b + a * x);
  177. return (incbet(0.5 * b, 0.5 * a, w));
  178. }
  179. double fdtr(ia, ib, x) int ia, ib;
  180. double x;
  181. {
  182. double a, b, w;
  183. if ((ia < 1) || (ib < 1) || (x < 0.0)) {
  184. mtherr("fdtr", DOMAIN);
  185. return (0.0);
  186. }
  187. a = ia;
  188. b = ib;
  189. w = a * x;
  190. w = w / (b + w);
  191. return (incbet(0.5 * a, 0.5 * b, w));
  192. }
  193. double fdtri(ia, ib, y) int ia, ib;
  194. double y;
  195. {
  196. double a, b, w, x;
  197. if ((ia < 1) || (ib < 1) || (y <= 0.0) || (y > 1.0)) {
  198. mtherr("fdtri", DOMAIN);
  199. return (0.0);
  200. }
  201. a = ia;
  202. b = ib;
  203. /* Compute probability for x = 0.5. */
  204. w = incbet(0.5 * b, 0.5 * a, 0.5);
  205. /* If that is greater than y, then the solution w < .5.
  206. Otherwise, solve at 1-y to remove cancellation in (b - b*w). */
  207. if (w > y || y < 0.001) {
  208. w = incbi(0.5 * b, 0.5 * a, y);
  209. x = (b - b * w) / (a * w);
  210. } else {
  211. w = incbi(0.5 * a, 0.5 * b, 1.0 - y);
  212. x = b * w / (a * (1.0 - w));
  213. }
  214. return (x);
  215. }