123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244 |
- /* bdtr.c
- *
- * Binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * double p, y, bdtr();
- *
- * y = bdtr( k, n, p );
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms 0 through k of the Binomial
- * probability density:
- *
- * k
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=0
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtr( k, n, p ) = incbet( n-k, k+1, 1-p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- * ACCURACY:
- *
- * Tested at random points (a,b,p), with p between 0 and 1.
- *
- * a,b Relative error:
- * arithmetic domain # trials peak rms
- * For p between 0.001 and 1:
- * IEEE 0,100 100000 4.3e-15 2.6e-16
- * See also incbet.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtr domain k < 0 0.0
- * n < k
- * x < 0, x > 1
- */
- /* bdtrc()
- *
- * Complemented binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * double p, y, bdtrc();
- *
- * y = bdtrc( k, n, p );
- *
- * DESCRIPTION:
- *
- * Returns the sum of the terms k+1 through n of the Binomial
- * probability density:
- *
- * n
- * -- ( n ) j n-j
- * > ( ) p (1-p)
- * -- ( j )
- * j=k+1
- *
- * The terms are not summed directly; instead the incomplete
- * beta integral is employed, according to the formula
- *
- * y = bdtrc( k, n, p ) = incbet( k+1, n-k, p ).
- *
- * The arguments must be positive, with p ranging from 0 to 1.
- *
- * ACCURACY:
- *
- * Tested at random points (a,b,p).
- *
- * a,b Relative error:
- * arithmetic domain # trials peak rms
- * For p between 0.001 and 1:
- * IEEE 0,100 100000 6.7e-15 8.2e-16
- * For p between 0 and .001:
- * IEEE 0,100 100000 1.5e-13 2.7e-15
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtrc domain x<0, x>1, n<k 0.0
- */
- /* bdtri()
- *
- * Inverse binomial distribution
- *
- *
- *
- * SYNOPSIS:
- *
- * int k, n;
- * double p, y, bdtri();
- *
- * p = bdtr( k, n, y );
- *
- * DESCRIPTION:
- *
- * Finds the event probability p such that the sum of the
- * terms 0 through k of the Binomial probability density
- * is equal to the given cumulative probability y.
- *
- * This is accomplished using the inverse beta integral
- * function and the relation
- *
- * 1 - p = incbi( n-k, k+1, y ).
- *
- * ACCURACY:
- *
- * Tested at random points (a,b,p).
- *
- * a,b Relative error:
- * arithmetic domain # trials peak rms
- * For p between 0.001 and 1:
- * IEEE 0,100 100000 2.3e-14 6.4e-16
- * IEEE 0,10000 100000 6.6e-12 1.2e-13
- * For p between 10^-6 and 0.001:
- * IEEE 0,100 100000 2.0e-12 1.3e-14
- * IEEE 0,10000 100000 1.5e-12 3.2e-14
- * See also incbi.c.
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * bdtri domain k < 0, n <= k 0.0
- * x < 0, x > 1
- */
- /* bdtr() */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 1995, 2000 by Stephen L. Moshier
- */
- #include "mconf.h"
- #ifdef ANSIPROT
- extern double incbet(double, double, double);
- extern double incbi(double, double, double);
- extern double pow(double, double);
- extern double log1p(double);
- extern double expm1(double);
- #else
- double incbet(), incbi(), pow(), log1p(), expm1();
- #endif
- double bdtrc(k, n, p) int k, n;
- double p;
- {
- double dk, dn;
- if ((p < 0.0) || (p > 1.0))
- goto domerr;
- if (k < 0)
- return (1.0);
- if (n < k) {
- domerr:
- mtherr("bdtrc", DOMAIN);
- return (0.0);
- }
- if (k == n)
- return (0.0);
- dn = n - k;
- if (k == 0) {
- if (p < .01)
- dk = -expm1(dn * log1p(-p));
- else
- dk = 1.0 - pow(1.0 - p, dn);
- } else {
- dk = k + 1;
- dk = incbet(dk, dn, p);
- }
- return (dk);
- }
- double bdtr(k, n, p) int k, n;
- double p;
- {
- double dk, dn;
- if ((p < 0.0) || (p > 1.0))
- goto domerr;
- if ((k < 0) || (n < k)) {
- domerr:
- mtherr("bdtr", DOMAIN);
- return (0.0);
- }
- if (k == n)
- return (1.0);
- dn = n - k;
- if (k == 0) {
- dk = pow(1.0 - p, dn);
- } else {
- dk = k + 1;
- dk = incbet(dn, dk, 1.0 - p);
- }
- return (dk);
- }
- double bdtri(k, n, y) int k, n;
- double y;
- {
- double dk, dn, p;
- if ((y < 0.0) || (y > 1.0))
- goto domerr;
- if ((k < 0) || (n <= k)) {
- domerr:
- mtherr("bdtri", DOMAIN);
- return (0.0);
- }
- dn = n - k;
- if (k == 0) {
- if (y > 0.8)
- p = -expm1(log1p(y - 1.0) / dn);
- else
- p = 1.0 - pow(y, 1.0 / dn);
- } else {
- dk = k + 1;
- p = incbet(dn, dk, 0.5);
- if (p > 0.5)
- p = incbi(dk, dn, 1.0 - y);
- else
- p = 1.0 - incbi(dn, dk, y);
- }
- return (p);
- }
|