matrix.js 8.9 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324
  1. define(function(require, exports, module) {
  2. var utils = require('../core/utils');
  3. var Box = require('./box');
  4. var mPattern = /matrix\s*\((.+)\)/i;
  5. var Point = require('./point');
  6. // 注意,合并的结果是先执行m2,再执行m1的结果
  7. function mergeMatrixData(m2, m1) {
  8. return {
  9. a: m1.a * m2.a + m1.c * m2.b,
  10. b: m1.b * m2.a + m1.d * m2.b,
  11. c: m1.a * m2.c + m1.c * m2.d,
  12. d: m1.b * m2.c + m1.d * m2.d,
  13. e: m1.a * m2.e + m1.c * m2.f + m1.e,
  14. f: m1.b * m2.e + m1.d * m2.f + m1.f
  15. };
  16. }
  17. function d2r(deg) {
  18. return deg * Math.PI / 180;
  19. }
  20. var Matrix = require('../core/class').createClass('Matrix', {
  21. constructor: function() {
  22. if (arguments.length) {
  23. this.setMatrix.apply(this, arguments);
  24. } else {
  25. this.setMatrix(1, 0, 0, 1, 0, 0);
  26. }
  27. },
  28. translate: function(x, y) {
  29. this.m = mergeMatrixData(this.m, {
  30. a: 1,
  31. c: 0,
  32. e: x,
  33. b: 0,
  34. d: 1,
  35. f: y
  36. });
  37. return this;
  38. },
  39. rotate: function(deg) {
  40. var rad = d2r(deg);
  41. var sin = Math.sin(rad),
  42. cos = Math.cos(rad);
  43. this.m = mergeMatrixData(this.m, {
  44. a: cos,
  45. c: -sin,
  46. e: 0,
  47. b: sin,
  48. d: cos,
  49. f: 0
  50. });
  51. return this;
  52. },
  53. scale: function(sx, sy) {
  54. if (sy === undefined) {
  55. sy = sx;
  56. }
  57. this.m = mergeMatrixData(this.m, {
  58. a: sx,
  59. c: 0,
  60. e: 0,
  61. b: 0,
  62. d: sy,
  63. f: 0
  64. });
  65. return this;
  66. },
  67. skew: function(degX, degY) {
  68. if (degY === undefined) {
  69. degY = degX;
  70. }
  71. var tx = Math.tan(d2r(degX)),
  72. ty = Math.tan(d2r(degY));
  73. this.m = mergeMatrixData(this.m, {
  74. a: 1,
  75. c: tx,
  76. e: 0,
  77. b: ty,
  78. d: 1,
  79. f: 0
  80. });
  81. return this;
  82. },
  83. /**
  84. * 获得反转矩阵
  85. *
  86. * 这是我解方程算出来的
  87. */
  88. inverse: function() {
  89. var m = this.m,
  90. a = m.a,
  91. b = m.b,
  92. c = m.c,
  93. d = m.d,
  94. e = m.e,
  95. f = m.f,
  96. k, aa, bb, cc, dd, ee, ff;
  97. k = a * d - b * c;
  98. aa = d / k;
  99. bb = -b / k;
  100. cc = -c / k;
  101. dd = a / k;
  102. ee = (c * f - e * d) / k;
  103. ff = (b * e - a * f) / k;
  104. return new Matrix(aa, bb, cc, dd, ee, ff);
  105. },
  106. setMatrix: function(a, b, c, d, e, f) {
  107. if (arguments.length === 1) {
  108. this.m = utils.clone(arguments[0]);
  109. } else {
  110. this.m = {
  111. a: a,
  112. b: b,
  113. c: c,
  114. d: d,
  115. e: e,
  116. f: f
  117. };
  118. }
  119. return this;
  120. },
  121. getMatrix: function() {
  122. return utils.clone(this.m);
  123. },
  124. getTranslate: function() {
  125. var m = this.m;
  126. return {
  127. x: m.e / m.a,
  128. y: m.f / m.d
  129. };
  130. },
  131. mergeMatrix: function(matrix) {
  132. return new Matrix(mergeMatrixData(this.m, matrix.m));
  133. },
  134. merge: function(matrix) {
  135. return this.mergeMatrix(matrix);
  136. },
  137. toString: function() {
  138. return this.valueOf().join(' ');
  139. },
  140. valueOf: function() {
  141. var m = this.m;
  142. return [m.a, m.b, m.c, m.d, m.e, m.f];
  143. },
  144. equals: function(matrix) {
  145. var m1 = this.m,
  146. m2 = matrix.m;
  147. return m1.a == m2.a &&
  148. m1.b == m2.b &&
  149. m1.c == m2.c &&
  150. m1.d == m2.d &&
  151. m1.e == m2.e &&
  152. m1.f == m2.f;
  153. },
  154. transformPoint: function() {
  155. return Matrix.transformPoint.apply(null, [].slice.call(arguments).concat([this.m]));
  156. },
  157. transformBox: function(box) {
  158. return Matrix.transformBox(box, this.m);
  159. },
  160. clone: function() {
  161. return new Matrix(this.m);
  162. }
  163. });
  164. Matrix.parse = function(str) {
  165. var match;
  166. var f = parseFloat;
  167. if (str instanceof Array) {
  168. return new Matrix({
  169. a: str[0],
  170. b: str[1],
  171. c: str[2],
  172. d: str[3],
  173. e: str[4],
  174. f: str[5]
  175. });
  176. }
  177. if ((match = mPattern.exec(str))) {
  178. var values = match[1].split(',');
  179. if (values.length != 6) {
  180. values = match[1].split(' '); //ie
  181. }
  182. return new Matrix({
  183. a: f(values[0]),
  184. b: f(values[1]),
  185. c: f(values[2]),
  186. d: f(values[3]),
  187. e: f(values[4]),
  188. f: f(values[5])
  189. });
  190. }
  191. return new Matrix();
  192. };
  193. Matrix.transformPoint = function(x, y, m) {
  194. if (arguments.length === 2) {
  195. m = y;
  196. y = x.y;
  197. x = x.x;
  198. }
  199. return new Point(
  200. m.a * x + m.c * y + m.e,
  201. m.b * x + m.d * y + m.f
  202. );
  203. };
  204. Matrix.transformBox = function(box, matrix) {
  205. var xMin = Number.MAX_VALUE,
  206. xMax = -Number.MAX_VALUE,
  207. yMin = Number.MAX_VALUE,
  208. yMax = -Number.MAX_VALUE;
  209. var bps = [
  210. [box.x, box.y],
  211. [box.x + box.width, box.y],
  212. [box.x, box.y + box.height],
  213. [box.x + box.width, box.y + box.height]
  214. ];
  215. var bp, rp, rps = [];
  216. while ((bp = bps.pop())) {
  217. rp = Matrix.transformPoint(bp[0], bp[1], matrix);
  218. rps.push(rp);
  219. xMin = Math.min(xMin, rp.x);
  220. xMax = Math.max(xMax, rp.x);
  221. yMin = Math.min(yMin, rp.y);
  222. yMax = Math.max(yMax, rp.y);
  223. }
  224. box = new Box({
  225. x: xMin,
  226. y: yMin,
  227. width: xMax - xMin,
  228. height: yMax - yMin
  229. });
  230. utils.extend(box, {
  231. closurePoints: rps
  232. });
  233. return box;
  234. };
  235. // 获得从 node 到 refer 的变换矩阵
  236. Matrix.getCTM = function(target, refer) {
  237. var ctm = {
  238. a: 1,
  239. b: 0,
  240. c: 0,
  241. d: 1,
  242. e: 0,
  243. f: 0
  244. };
  245. var node = target.shapeNode || target.node;
  246. refer = refer || 'parent';
  247. /**
  248. * 由于新版chrome(dev 48.0)移除了getTransformToElement这个方法可能导致报错,这里做兼容处理
  249. * @Date 2015-11-12
  250. * @Editor Naixor
  251. */
  252. function getTransformToElement(target, source) {
  253. var matrix;
  254. try {
  255. matrix = source.getScreenCTM().inverse();
  256. } catch(e) {
  257. throw new Error('Can not inverse source element\' ctm.');
  258. }
  259. return matrix.multiply(target.getScreenCTM());
  260. }
  261. // 根据参照坐标系选区的不一样,返回不同的结果
  262. switch (refer) {
  263. case "screen":
  264. // 以浏览器屏幕为参照坐标系
  265. ctm = node.getScreenCTM();
  266. break;
  267. case "doc":
  268. case "paper":
  269. // 以文档(Paper)为参照坐标系
  270. ctm = node.getCTM();
  271. break;
  272. case "view":
  273. case "top":
  274. // 以顶层绘图容器(视野)为参照坐标系
  275. if (target.getPaper()) {
  276. ctm = node.getTransformToElement !== undefined ? node.getTransformToElement(target.getPaper().shapeNode) : getTransformToElement(node, target.getPaper().shapeNode);
  277. }
  278. break;
  279. case "parent":
  280. // 以父容器为参照坐标系
  281. if (target.node.parentNode) {
  282. ctm = node.getTransformToElement !== undefined ? node.getTransformToElement(target.node.parentNode) : getTransformToElement(node, target.node.parentNode);
  283. }
  284. break;
  285. default:
  286. // 其他情况,指定参照物
  287. if (refer.node) {
  288. ctm = node.getTransformToElement !== undefined ? node.getTransformToElement(refer.shapeNode || refer.node) : getTransformToElement(node, refer.shapeNode || refer.node);
  289. }
  290. }
  291. return ctm ? new Matrix(ctm.a, ctm.b, ctm.c, ctm.d, ctm.e, ctm.f) : new Matrix();
  292. };
  293. return Matrix;
  294. });