123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274 |
- /* incbi()
- *
- * Inverse of imcomplete beta integral
- *
- *
- *
- * SYNOPSIS:
- *
- * double a, b, x, y, incbi();
- *
- * x = incbi( a, b, y );
- *
- *
- *
- * DESCRIPTION:
- *
- * Given y, the function finds x such that
- *
- * incbet( a, b, x ) = y .
- *
- * The routine performs interval halving or Newton iterations to find the
- * root of incbet(a,b,x) - y = 0.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * x a,b
- * arithmetic domain domain # trials peak rms
- * IEEE 0,1 .5,10000 50000 5.8e-12 1.3e-13
- * IEEE 0,1 .25,100 100000 1.8e-13 3.9e-15
- * IEEE 0,1 0,5 50000 1.1e-12 5.5e-15
- * VAX 0,1 .5,100 25000 3.5e-14 1.1e-15
- * With a and b constrained to half-integer or integer values:
- * IEEE 0,1 .5,10000 50000 5.8e-12 1.1e-13
- * IEEE 0,1 .5,100 100000 1.7e-14 7.9e-16
- * With a = .5, b constrained to half-integer or integer values:
- * IEEE 0,1 .5,10000 10000 8.3e-11 1.0e-11
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1996, 2000 by Stephen L. Moshier
- */
- #include "mconf.h"
- extern double MACHEP, MAXNUM, MAXLOG, MINLOG;
- #ifdef ANSIPROT
- extern double ndtri(double);
- extern double exp(double);
- extern double fabs(double);
- extern double log(double);
- extern double sqrt(double);
- extern double lgam(double);
- extern double incbet(double, double, double);
- #else
- double ndtri(), exp(), fabs(), log(), sqrt(), lgam(), incbet();
- #endif
- double incbi(aa, bb, yy0) double aa, bb, yy0;
- {
- double a, b, y0, d, y, x, x0, x1, lgm, yp, di, dithresh, yl, yh, xt;
- int i, rflg, dir, nflg;
- i = 0;
- if (yy0 <= 0)
- return (0.0);
- if (yy0 >= 1.0)
- return (1.0);
- x0 = 0.0;
- yl = 0.0;
- x1 = 1.0;
- yh = 1.0;
- nflg = 0;
- if (aa <= 1.0 || bb <= 1.0) {
- dithresh = 1.0e-6;
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- x = a / (a + b);
- y = incbet(a, b, x);
- goto ihalve;
- } else {
- dithresh = 1.0e-4;
- }
- /* approximation to inverse function */
- yp = -ndtri(yy0);
- if (yy0 > 0.5) {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0 - yy0;
- yp = -yp;
- } else {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- }
- lgm = (yp * yp - 3.0) / 6.0;
- x = 2.0 / (1.0 / (2.0 * a - 1.0) + 1.0 / (2.0 * b - 1.0));
- d = yp * sqrt(x + lgm) / x - (1.0 / (2.0 * b - 1.0) - 1.0 / (2.0 * a - 1.0)) *
- (lgm + 5.0 / 6.0 - 2.0 / (3.0 * x));
- d = 2.0 * d;
- if (d < MINLOG) {
- x = 1.0;
- goto under;
- }
- x = a / (a + b * exp(d));
- y = incbet(a, b, x);
- yp = (y - y0) / y0;
- if (fabs(yp) < 0.2)
- goto newt;
- /* Resort to interval halving if not close enough. */
- ihalve:
- dir = 0;
- di = 0.5;
- for (i = 0; i < 100; i++) {
- if (i != 0) {
- x = x0 + di * (x1 - x0);
- if (x == 1.0)
- x = 1.0 - MACHEP;
- if (x == 0.0) {
- di = 0.5;
- x = x0 + di * (x1 - x0);
- if (x == 0.0)
- goto under;
- }
- y = incbet(a, b, x);
- yp = (x1 - x0) / (x1 + x0);
- if (fabs(yp) < dithresh)
- goto newt;
- yp = (y - y0) / y0;
- if (fabs(yp) < dithresh)
- goto newt;
- }
- if (y < y0) {
- x0 = x;
- yl = y;
- if (dir < 0) {
- dir = 0;
- di = 0.5;
- } else if (dir > 3)
- di = 1.0 - (1.0 - di) * (1.0 - di);
- else if (dir > 1)
- di = 0.5 * di + 0.5;
- else
- di = (y0 - y) / (yh - yl);
- dir += 1;
- if (x0 > 0.75) {
- if (rflg == 1) {
- rflg = 0;
- a = aa;
- b = bb;
- y0 = yy0;
- } else {
- rflg = 1;
- a = bb;
- b = aa;
- y0 = 1.0 - yy0;
- }
- x = 1.0 - x;
- y = incbet(a, b, x);
- x0 = 0.0;
- yl = 0.0;
- x1 = 1.0;
- yh = 1.0;
- goto ihalve;
- }
- } else {
- x1 = x;
- if (rflg == 1 && x1 < MACHEP) {
- x = 0.0;
- goto done;
- }
- yh = y;
- if (dir > 0) {
- dir = 0;
- di = 0.5;
- } else if (dir < -3)
- di = di * di;
- else if (dir < -1)
- di = 0.5 * di;
- else
- di = (y - y0) / (yh - yl);
- dir -= 1;
- }
- }
- mtherr("incbi", PLOSS);
- if (x0 >= 1.0) {
- x = 1.0 - MACHEP;
- goto done;
- }
- if (x <= 0.0) {
- under:
- mtherr("incbi", UNDERFLOW);
- x = 0.0;
- goto done;
- }
- newt:
- if (nflg)
- goto done;
- nflg = 1;
- lgm = lgam(a + b) - lgam(a) - lgam(b);
- for (i = 0; i < 8; i++) {
- /* Compute the function at this point. */
- if (i != 0)
- y = incbet(a, b, x);
- if (y < yl) {
- x = x0;
- y = yl;
- } else if (y > yh) {
- x = x1;
- y = yh;
- } else if (y < y0) {
- x0 = x;
- yl = y;
- } else {
- x1 = x;
- yh = y;
- }
- if (x == 1.0 || x == 0.0)
- break;
- /* Compute the derivative of the function at this point. */
- d = (a - 1.0) * log(x) + (b - 1.0) * log(1.0 - x) + lgm;
- if (d < MINLOG)
- goto done;
- if (d > MAXLOG)
- break;
- d = exp(d);
- /* Compute the step to the next approximation of x. */
- d = (y - y0) / d;
- xt = x - d;
- if (xt <= x0) {
- y = (x - x0) / (x1 - x0);
- xt = x0 + 0.5 * y * (x - x0);
- if (xt <= 0.0)
- break;
- }
- if (xt >= x1) {
- y = (x1 - x) / (x1 - x0);
- xt = x1 - 0.5 * y * (x1 - x);
- if (xt >= 1.0)
- break;
- }
- x = xt;
- if (fabs(d / x) < 128.0 * MACHEP)
- goto done;
- }
- /* Did not converge. */
- dithresh = 256.0 * MACHEP;
- goto ihalve;
- done:
- if (rflg) {
- if (x <= MACHEP)
- x = 1.0 - MACHEP;
- else
- x = 1.0 - x;
- }
- return (x);
- }
|