| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888 | /* *      bignumber.js v9.0.0 *      A JavaScript library for arbitrary-precision arithmetic. *      https://github.com/MikeMcl/bignumber.js *      Copyright (c) 2019 Michael Mclaughlin <M8ch88l@gmail.com> *      MIT Licensed. * *      BigNumber.prototype methods     |  BigNumber methods *                                      | *      absoluteValue            abs    |  clone *      comparedTo                      |  config               set *      decimalPlaces            dp     |      DECIMAL_PLACES *      dividedBy                div    |      ROUNDING_MODE *      dividedToIntegerBy       idiv   |      EXPONENTIAL_AT *      exponentiatedBy          pow    |      RANGE *      integerValue                    |      CRYPTO *      isEqualTo                eq     |      MODULO_MODE *      isFinite                        |      POW_PRECISION *      isGreaterThan            gt     |      FORMAT *      isGreaterThanOrEqualTo   gte    |      ALPHABET *      isInteger                       |  isBigNumber *      isLessThan               lt     |  maximum              max *      isLessThanOrEqualTo      lte    |  minimum              min *      isNaN                           |  random *      isNegative                      |  sum *      isPositive                      | *      isZero                          | *      minus                           | *      modulo                   mod    | *      multipliedBy             times  | *      negated                         | *      plus                            | *      precision                sd     | *      shiftedBy                       | *      squareRoot               sqrt   | *      toExponential                   | *      toFixed                         | *      toFormat                        | *      toFraction                      | *      toJSON                          | *      toNumber                        | *      toPrecision                     | *      toString                        | *      valueOf                         | * */var  isNumeric = /^-?(?:\d+(?:\.\d*)?|\.\d+)(?:e[+-]?\d+)?$/i,  mathceil = Math.ceil,  mathfloor = Math.floor,  bignumberError = '[BigNumber Error] ',  tooManyDigits = bignumberError + 'Number primitive has more than 15 significant digits: ',  BASE = 1e14,  LOG_BASE = 14,  MAX_SAFE_INTEGER = 0x1fffffffffffff,         // 2^53 - 1  // MAX_INT32 = 0x7fffffff,                   // 2^31 - 1  POWS_TEN = [1, 10, 100, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, 1e10, 1e11, 1e12, 1e13],  SQRT_BASE = 1e7,  // EDITABLE  // The limit on the value of DECIMAL_PLACES, TO_EXP_NEG, TO_EXP_POS, MIN_EXP, MAX_EXP, and  // the arguments to toExponential, toFixed, toFormat, and toPrecision.  MAX = 1E9;                                   // 0 to MAX_INT32/* * Create and return a BigNumber constructor. */function clone(configObject) {  var div, convertBase, parseNumeric,    P = BigNumber.prototype = { constructor: BigNumber, toString: null, valueOf: null },    ONE = new BigNumber(1),    //----------------------------- EDITABLE CONFIG DEFAULTS -------------------------------    // The default values below must be integers within the inclusive ranges stated.    // The values can also be changed at run-time using BigNumber.set.    // The maximum number of decimal places for operations involving division.    DECIMAL_PLACES = 20,                     // 0 to MAX    // The rounding mode used when rounding to the above decimal places, and when using    // toExponential, toFixed, toFormat and toPrecision, and round (default value).    // UP         0 Away from zero.    // DOWN       1 Towards zero.    // CEIL       2 Towards +Infinity.    // FLOOR      3 Towards -Infinity.    // HALF_UP    4 Towards nearest neighbour. If equidistant, up.    // HALF_DOWN  5 Towards nearest neighbour. If equidistant, down.    // HALF_EVEN  6 Towards nearest neighbour. If equidistant, towards even neighbour.    // HALF_CEIL  7 Towards nearest neighbour. If equidistant, towards +Infinity.    // HALF_FLOOR 8 Towards nearest neighbour. If equidistant, towards -Infinity.    ROUNDING_MODE = 4,                       // 0 to 8    // EXPONENTIAL_AT : [TO_EXP_NEG , TO_EXP_POS]    // The exponent value at and beneath which toString returns exponential notation.    // Number type: -7    TO_EXP_NEG = -7,                         // 0 to -MAX    // The exponent value at and above which toString returns exponential notation.    // Number type: 21    TO_EXP_POS = 21,                         // 0 to MAX    // RANGE : [MIN_EXP, MAX_EXP]    // The minimum exponent value, beneath which underflow to zero occurs.    // Number type: -324  (5e-324)    MIN_EXP = -1e7,                          // -1 to -MAX    // The maximum exponent value, above which overflow to Infinity occurs.    // Number type:  308  (1.7976931348623157e+308)    // For MAX_EXP > 1e7, e.g. new BigNumber('1e100000000').plus(1) may be slow.    MAX_EXP = 1e7,                           // 1 to MAX    // Whether to use cryptographically-secure random number generation, if available.    CRYPTO = false,                          // true or false    // The modulo mode used when calculating the modulus: a mod n.    // The quotient (q = a / n) is calculated according to the corresponding rounding mode.    // The remainder (r) is calculated as: r = a - n * q.    //    // UP        0 The remainder is positive if the dividend is negative, else is negative.    // DOWN      1 The remainder has the same sign as the dividend.    //             This modulo mode is commonly known as 'truncated division' and is    //             equivalent to (a % n) in JavaScript.    // FLOOR     3 The remainder has the same sign as the divisor (Python %).    // HALF_EVEN 6 This modulo mode implements the IEEE 754 remainder function.    // EUCLID    9 Euclidian division. q = sign(n) * floor(a / abs(n)).    //             The remainder is always positive.    //    // The truncated division, floored division, Euclidian division and IEEE 754 remainder    // modes are commonly used for the modulus operation.    // Although the other rounding modes can also be used, they may not give useful results.    MODULO_MODE = 1,                         // 0 to 9    // The maximum number of significant digits of the result of the exponentiatedBy operation.    // If POW_PRECISION is 0, there will be unlimited significant digits.    POW_PRECISION = 0,                    // 0 to MAX    // The format specification used by the BigNumber.prototype.toFormat method.    FORMAT = {      prefix: '',      groupSize: 3,      secondaryGroupSize: 0,      groupSeparator: ',',      decimalSeparator: '.',      fractionGroupSize: 0,      fractionGroupSeparator: '\xA0',      // non-breaking space      suffix: ''    },    // The alphabet used for base conversion. It must be at least 2 characters long, with no '+',    // '-', '.', whitespace, or repeated character.    // '0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ$_'    ALPHABET = '0123456789abcdefghijklmnopqrstuvwxyz';  //------------------------------------------------------------------------------------------  // CONSTRUCTOR  /*   * The BigNumber constructor and exported function.   * Create and return a new instance of a BigNumber object.   *   * v {number|string|BigNumber} A numeric value.   * [b] {number} The base of v. Integer, 2 to ALPHABET.length inclusive.   */  function BigNumber(v, b) {    var alphabet, c, caseChanged, e, i, isNum, len, str,      x = this;    // Enable constructor call without `new`.    if (!(x instanceof BigNumber)) return new BigNumber(v, b);    if (b == null) {      if (v && v._isBigNumber === true) {        x.s = v.s;        if (!v.c || v.e > MAX_EXP) {          x.c = x.e = null;        } else if (v.e < MIN_EXP) {          x.c = [x.e = 0];        } else {          x.e = v.e;          x.c = v.c.slice();        }        return;      }      if ((isNum = typeof v == 'number') && v * 0 == 0) {        // Use `1 / n` to handle minus zero also.        x.s = 1 / v < 0 ? (v = -v, -1) : 1;        // Fast path for integers, where n < 2147483648 (2**31).        if (v === ~~v) {          for (e = 0, i = v; i >= 10; i /= 10, e++);          if (e > MAX_EXP) {            x.c = x.e = null;          } else {            x.e = e;            x.c = [v];          }          return;        }        str = String(v);      } else {        if (!isNumeric.test(str = String(v))) return parseNumeric(x, str, isNum);        x.s = str.charCodeAt(0) == 45 ? (str = str.slice(1), -1) : 1;      }      // Decimal point?      if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');      // Exponential form?      if ((i = str.search(/e/i)) > 0) {        // Determine exponent.        if (e < 0) e = i;        e += +str.slice(i + 1);        str = str.substring(0, i);      } else if (e < 0) {        // Integer.        e = str.length;      }    } else {      // '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'      intCheck(b, 2, ALPHABET.length, 'Base');      // Allow exponential notation to be used with base 10 argument, while      // also rounding to DECIMAL_PLACES as with other bases.      if (b == 10) {        x = new BigNumber(v);        return round(x, DECIMAL_PLACES + x.e + 1, ROUNDING_MODE);      }      str = String(v);      if (isNum = typeof v == 'number') {        // Avoid potential interpretation of Infinity and NaN as base 44+ values.        if (v * 0 != 0) return parseNumeric(x, str, isNum, b);        x.s = 1 / v < 0 ? (str = str.slice(1), -1) : 1;        // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'        if (BigNumber.DEBUG && str.replace(/^0\.0*|\./, '').length > 15) {          throw Error           (tooManyDigits + v);        }      } else {        x.s = str.charCodeAt(0) === 45 ? (str = str.slice(1), -1) : 1;      }      alphabet = ALPHABET.slice(0, b);      e = i = 0;      // Check that str is a valid base b number.      // Don't use RegExp, so alphabet can contain special characters.      for (len = str.length; i < len; i++) {        if (alphabet.indexOf(c = str.charAt(i)) < 0) {          if (c == '.') {            // If '.' is not the first character and it has not be found before.            if (i > e) {              e = len;              continue;            }          } else if (!caseChanged) {            // Allow e.g. hexadecimal 'FF' as well as 'ff'.            if (str == str.toUpperCase() && (str = str.toLowerCase()) ||                str == str.toLowerCase() && (str = str.toUpperCase())) {              caseChanged = true;              i = -1;              e = 0;              continue;            }          }          return parseNumeric(x, String(v), isNum, b);        }      }      // Prevent later check for length on converted number.      isNum = false;      str = convertBase(str, b, 10, x.s);      // Decimal point?      if ((e = str.indexOf('.')) > -1) str = str.replace('.', '');      else e = str.length;    }    // Determine leading zeros.    for (i = 0; str.charCodeAt(i) === 48; i++);    // Determine trailing zeros.    for (len = str.length; str.charCodeAt(--len) === 48;);    if (str = str.slice(i, ++len)) {      len -= i;      // '[BigNumber Error] Number primitive has more than 15 significant digits: {n}'      if (isNum && BigNumber.DEBUG &&        len > 15 && (v > MAX_SAFE_INTEGER || v !== mathfloor(v))) {          throw Error           (tooManyDigits + (x.s * v));      }       // Overflow?      if ((e = e - i - 1) > MAX_EXP) {        // Infinity.        x.c = x.e = null;      // Underflow?      } else if (e < MIN_EXP) {        // Zero.        x.c = [x.e = 0];      } else {        x.e = e;        x.c = [];        // Transform base        // e is the base 10 exponent.        // i is where to slice str to get the first element of the coefficient array.        i = (e + 1) % LOG_BASE;        if (e < 0) i += LOG_BASE;  // i < 1        if (i < len) {          if (i) x.c.push(+str.slice(0, i));          for (len -= LOG_BASE; i < len;) {            x.c.push(+str.slice(i, i += LOG_BASE));          }          i = LOG_BASE - (str = str.slice(i)).length;        } else {          i -= len;        }        for (; i--; str += '0');        x.c.push(+str);      }    } else {      // Zero.      x.c = [x.e = 0];    }  }  // CONSTRUCTOR PROPERTIES  BigNumber.clone = clone;  BigNumber.ROUND_UP = 0;  BigNumber.ROUND_DOWN = 1;  BigNumber.ROUND_CEIL = 2;  BigNumber.ROUND_FLOOR = 3;  BigNumber.ROUND_HALF_UP = 4;  BigNumber.ROUND_HALF_DOWN = 5;  BigNumber.ROUND_HALF_EVEN = 6;  BigNumber.ROUND_HALF_CEIL = 7;  BigNumber.ROUND_HALF_FLOOR = 8;  BigNumber.EUCLID = 9;  /*   * Configure infrequently-changing library-wide settings.   *   * Accept an object with the following optional properties (if the value of a property is   * a number, it must be an integer within the inclusive range stated):   *   *   DECIMAL_PLACES   {number}           0 to MAX   *   ROUNDING_MODE    {number}           0 to 8   *   EXPONENTIAL_AT   {number|number[]}  -MAX to MAX  or  [-MAX to 0, 0 to MAX]   *   RANGE            {number|number[]}  -MAX to MAX (not zero)  or  [-MAX to -1, 1 to MAX]   *   CRYPTO           {boolean}          true or false   *   MODULO_MODE      {number}           0 to 9   *   POW_PRECISION       {number}           0 to MAX   *   ALPHABET         {string}           A string of two or more unique characters which does   *                                     not contain '.'.   *   FORMAT           {object}           An object with some of the following properties:   *     prefix                 {string}   *     groupSize              {number}   *     secondaryGroupSize     {number}   *     groupSeparator         {string}   *     decimalSeparator       {string}   *     fractionGroupSize      {number}   *     fractionGroupSeparator {string}   *     suffix                 {string}   *   * (The values assigned to the above FORMAT object properties are not checked for validity.)   *   * E.g.   * BigNumber.config({ DECIMAL_PLACES : 20, ROUNDING_MODE : 4 })   *   * Ignore properties/parameters set to null or undefined, except for ALPHABET.   *   * Return an object with the properties current values.   */  BigNumber.config = BigNumber.set = function (obj) {    var p, v;    if (obj != null) {      if (typeof obj == 'object') {        // DECIMAL_PLACES {number} Integer, 0 to MAX inclusive.        // '[BigNumber Error] DECIMAL_PLACES {not a primitive number|not an integer|out of range}: {v}'        if (obj.hasOwnProperty(p = 'DECIMAL_PLACES')) {          v = obj[p];          intCheck(v, 0, MAX, p);          DECIMAL_PLACES = v;        }        // ROUNDING_MODE {number} Integer, 0 to 8 inclusive.        // '[BigNumber Error] ROUNDING_MODE {not a primitive number|not an integer|out of range}: {v}'        if (obj.hasOwnProperty(p = 'ROUNDING_MODE')) {          v = obj[p];          intCheck(v, 0, 8, p);          ROUNDING_MODE = v;        }        // EXPONENTIAL_AT {number|number[]}        // Integer, -MAX to MAX inclusive or        // [integer -MAX to 0 inclusive, 0 to MAX inclusive].        // '[BigNumber Error] EXPONENTIAL_AT {not a primitive number|not an integer|out of range}: {v}'        if (obj.hasOwnProperty(p = 'EXPONENTIAL_AT')) {          v = obj[p];          if (v && v.pop) {            intCheck(v[0], -MAX, 0, p);            intCheck(v[1], 0, MAX, p);            TO_EXP_NEG = v[0];            TO_EXP_POS = v[1];          } else {            intCheck(v, -MAX, MAX, p);            TO_EXP_NEG = -(TO_EXP_POS = v < 0 ? -v : v);          }        }        // RANGE {number|number[]} Non-zero integer, -MAX to MAX inclusive or        // [integer -MAX to -1 inclusive, integer 1 to MAX inclusive].        // '[BigNumber Error] RANGE {not a primitive number|not an integer|out of range|cannot be zero}: {v}'        if (obj.hasOwnProperty(p = 'RANGE')) {          v = obj[p];          if (v && v.pop) {            intCheck(v[0], -MAX, -1, p);            intCheck(v[1], 1, MAX, p);            MIN_EXP = v[0];            MAX_EXP = v[1];          } else {            intCheck(v, -MAX, MAX, p);            if (v) {              MIN_EXP = -(MAX_EXP = v < 0 ? -v : v);            } else {              throw Error               (bignumberError + p + ' cannot be zero: ' + v);            }          }        }        // CRYPTO {boolean} true or false.        // '[BigNumber Error] CRYPTO not true or false: {v}'        // '[BigNumber Error] crypto unavailable'        if (obj.hasOwnProperty(p = 'CRYPTO')) {          v = obj[p];          if (v === !!v) {            if (v) {              if (typeof crypto != 'undefined' && crypto &&               (crypto.getRandomValues || crypto.randomBytes)) {                CRYPTO = v;              } else {                CRYPTO = !v;                throw Error                 (bignumberError + 'crypto unavailable');              }            } else {              CRYPTO = v;            }          } else {            throw Error             (bignumberError + p + ' not true or false: ' + v);          }        }        // MODULO_MODE {number} Integer, 0 to 9 inclusive.        // '[BigNumber Error] MODULO_MODE {not a primitive number|not an integer|out of range}: {v}'        if (obj.hasOwnProperty(p = 'MODULO_MODE')) {          v = obj[p];          intCheck(v, 0, 9, p);          MODULO_MODE = v;        }        // POW_PRECISION {number} Integer, 0 to MAX inclusive.        // '[BigNumber Error] POW_PRECISION {not a primitive number|not an integer|out of range}: {v}'        if (obj.hasOwnProperty(p = 'POW_PRECISION')) {          v = obj[p];          intCheck(v, 0, MAX, p);          POW_PRECISION = v;        }        // FORMAT {object}        // '[BigNumber Error] FORMAT not an object: {v}'        if (obj.hasOwnProperty(p = 'FORMAT')) {          v = obj[p];          if (typeof v == 'object') FORMAT = v;          else throw Error           (bignumberError + p + ' not an object: ' + v);        }        // ALPHABET {string}        // '[BigNumber Error] ALPHABET invalid: {v}'        if (obj.hasOwnProperty(p = 'ALPHABET')) {          v = obj[p];          // Disallow if only one character,          // or if it contains '+', '-', '.', whitespace, or a repeated character.          if (typeof v == 'string' && !/^.$|[+-.\s]|(.).*\1/.test(v)) {            ALPHABET = v;          } else {            throw Error             (bignumberError + p + ' invalid: ' + v);          }        }      } else {        // '[BigNumber Error] Object expected: {v}'        throw Error         (bignumberError + 'Object expected: ' + obj);      }    }    return {      DECIMAL_PLACES: DECIMAL_PLACES,      ROUNDING_MODE: ROUNDING_MODE,      EXPONENTIAL_AT: [TO_EXP_NEG, TO_EXP_POS],      RANGE: [MIN_EXP, MAX_EXP],      CRYPTO: CRYPTO,      MODULO_MODE: MODULO_MODE,      POW_PRECISION: POW_PRECISION,      FORMAT: FORMAT,      ALPHABET: ALPHABET    };  };  /*   * Return true if v is a BigNumber instance, otherwise return false.   *   * If BigNumber.DEBUG is true, throw if a BigNumber instance is not well-formed.   *   * v {any}   *   * '[BigNumber Error] Invalid BigNumber: {v}'   */  BigNumber.isBigNumber = function (v) {    if (!v || v._isBigNumber !== true) return false;    if (!BigNumber.DEBUG) return true;    var i, n,      c = v.c,      e = v.e,      s = v.s;    out: if ({}.toString.call(c) == '[object Array]') {      if ((s === 1 || s === -1) && e >= -MAX && e <= MAX && e === mathfloor(e)) {        // If the first element is zero, the BigNumber value must be zero.        if (c[0] === 0) {          if (e === 0 && c.length === 1) return true;          break out;        }        // Calculate number of digits that c[0] should have, based on the exponent.        i = (e + 1) % LOG_BASE;        if (i < 1) i += LOG_BASE;        // Calculate number of digits of c[0].        //if (Math.ceil(Math.log(c[0] + 1) / Math.LN10) == i) {        if (String(c[0]).length == i) {          for (i = 0; i < c.length; i++) {            n = c[i];            if (n < 0 || n >= BASE || n !== mathfloor(n)) break out;          }          // Last element cannot be zero, unless it is the only element.          if (n !== 0) return true;        }      }    // Infinity/NaN    } else if (c === null && e === null && (s === null || s === 1 || s === -1)) {      return true;    }    throw Error      (bignumberError + 'Invalid BigNumber: ' + v);  };  /*   * Return a new BigNumber whose value is the maximum of the arguments.   *   * arguments {number|string|BigNumber}   */  BigNumber.maximum = BigNumber.max = function () {    return maxOrMin(arguments, P.lt);  };  /*   * Return a new BigNumber whose value is the minimum of the arguments.   *   * arguments {number|string|BigNumber}   */  BigNumber.minimum = BigNumber.min = function () {    return maxOrMin(arguments, P.gt);  };  /*   * Return a new BigNumber with a random value equal to or greater than 0 and less than 1,   * and with dp, or DECIMAL_PLACES if dp is omitted, decimal places (or less if trailing   * zeros are produced).   *   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp}'   * '[BigNumber Error] crypto unavailable'   */  BigNumber.random = (function () {    var pow2_53 = 0x20000000000000;    // Return a 53 bit integer n, where 0 <= n < 9007199254740992.    // Check if Math.random() produces more than 32 bits of randomness.    // If it does, assume at least 53 bits are produced, otherwise assume at least 30 bits.    // 0x40000000 is 2^30, 0x800000 is 2^23, 0x1fffff is 2^21 - 1.    var random53bitInt = (Math.random() * pow2_53) & 0x1fffff     ? function () { return mathfloor(Math.random() * pow2_53); }     : function () { return ((Math.random() * 0x40000000 | 0) * 0x800000) +       (Math.random() * 0x800000 | 0); };    return function (dp) {      var a, b, e, k, v,        i = 0,        c = [],        rand = new BigNumber(ONE);      if (dp == null) dp = DECIMAL_PLACES;      else intCheck(dp, 0, MAX);      k = mathceil(dp / LOG_BASE);      if (CRYPTO) {        // Browsers supporting crypto.getRandomValues.        if (crypto.getRandomValues) {          a = crypto.getRandomValues(new Uint32Array(k *= 2));          for (; i < k;) {            // 53 bits:            // ((Math.pow(2, 32) - 1) * Math.pow(2, 21)).toString(2)            // 11111 11111111 11111111 11111111 11100000 00000000 00000000            // ((Math.pow(2, 32) - 1) >>> 11).toString(2)            //                                     11111 11111111 11111111            // 0x20000 is 2^21.            v = a[i] * 0x20000 + (a[i + 1] >>> 11);            // Rejection sampling:            // 0 <= v < 9007199254740992            // Probability that v >= 9e15, is            // 7199254740992 / 9007199254740992 ~= 0.0008, i.e. 1 in 1251            if (v >= 9e15) {              b = crypto.getRandomValues(new Uint32Array(2));              a[i] = b[0];              a[i + 1] = b[1];            } else {              // 0 <= v <= 8999999999999999              // 0 <= (v % 1e14) <= 99999999999999              c.push(v % 1e14);              i += 2;            }          }          i = k / 2;        // Node.js supporting crypto.randomBytes.        } else if (crypto.randomBytes) {          // buffer          a = crypto.randomBytes(k *= 7);          for (; i < k;) {            // 0x1000000000000 is 2^48, 0x10000000000 is 2^40            // 0x100000000 is 2^32, 0x1000000 is 2^24            // 11111 11111111 11111111 11111111 11111111 11111111 11111111            // 0 <= v < 9007199254740992            v = ((a[i] & 31) * 0x1000000000000) + (a[i + 1] * 0x10000000000) +               (a[i + 2] * 0x100000000) + (a[i + 3] * 0x1000000) +               (a[i + 4] << 16) + (a[i + 5] << 8) + a[i + 6];            if (v >= 9e15) {              crypto.randomBytes(7).copy(a, i);            } else {              // 0 <= (v % 1e14) <= 99999999999999              c.push(v % 1e14);              i += 7;            }          }          i = k / 7;        } else {          CRYPTO = false;          throw Error           (bignumberError + 'crypto unavailable');        }      }      // Use Math.random.      if (!CRYPTO) {        for (; i < k;) {          v = random53bitInt();          if (v < 9e15) c[i++] = v % 1e14;        }      }      k = c[--i];      dp %= LOG_BASE;      // Convert trailing digits to zeros according to dp.      if (k && dp) {        v = POWS_TEN[LOG_BASE - dp];        c[i] = mathfloor(k / v) * v;      }      // Remove trailing elements which are zero.      for (; c[i] === 0; c.pop(), i--);      // Zero?      if (i < 0) {        c = [e = 0];      } else {        // Remove leading elements which are zero and adjust exponent accordingly.        for (e = -1 ; c[0] === 0; c.splice(0, 1), e -= LOG_BASE);        // Count the digits of the first element of c to determine leading zeros, and...        for (i = 1, v = c[0]; v >= 10; v /= 10, i++);        // adjust the exponent accordingly.        if (i < LOG_BASE) e -= LOG_BASE - i;      }      rand.e = e;      rand.c = c;      return rand;    };  })();   /*   * Return a BigNumber whose value is the sum of the arguments.   *   * arguments {number|string|BigNumber}   */  BigNumber.sum = function () {    var i = 1,      args = arguments,      sum = new BigNumber(args[0]);    for (; i < args.length;) sum = sum.plus(args[i++]);    return sum;  };  // PRIVATE FUNCTIONS  // Called by BigNumber and BigNumber.prototype.toString.  convertBase = (function () {    var decimal = '0123456789';    /*     * Convert string of baseIn to an array of numbers of baseOut.     * Eg. toBaseOut('255', 10, 16) returns [15, 15].     * Eg. toBaseOut('ff', 16, 10) returns [2, 5, 5].     */    function toBaseOut(str, baseIn, baseOut, alphabet) {      var j,        arr = [0],        arrL,        i = 0,        len = str.length;      for (; i < len;) {        for (arrL = arr.length; arrL--; arr[arrL] *= baseIn);        arr[0] += alphabet.indexOf(str.charAt(i++));        for (j = 0; j < arr.length; j++) {          if (arr[j] > baseOut - 1) {            if (arr[j + 1] == null) arr[j + 1] = 0;            arr[j + 1] += arr[j] / baseOut | 0;            arr[j] %= baseOut;          }        }      }      return arr.reverse();    }    // Convert a numeric string of baseIn to a numeric string of baseOut.    // If the caller is toString, we are converting from base 10 to baseOut.    // If the caller is BigNumber, we are converting from baseIn to base 10.    return function (str, baseIn, baseOut, sign, callerIsToString) {      var alphabet, d, e, k, r, x, xc, y,        i = str.indexOf('.'),        dp = DECIMAL_PLACES,        rm = ROUNDING_MODE;      // Non-integer.      if (i >= 0) {        k = POW_PRECISION;        // Unlimited precision.        POW_PRECISION = 0;        str = str.replace('.', '');        y = new BigNumber(baseIn);        x = y.pow(str.length - i);        POW_PRECISION = k;        // Convert str as if an integer, then restore the fraction part by dividing the        // result by its base raised to a power.        y.c = toBaseOut(toFixedPoint(coeffToString(x.c), x.e, '0'),         10, baseOut, decimal);        y.e = y.c.length;      }      // Convert the number as integer.      xc = toBaseOut(str, baseIn, baseOut, callerIsToString       ? (alphabet = ALPHABET, decimal)       : (alphabet = decimal, ALPHABET));      // xc now represents str as an integer and converted to baseOut. e is the exponent.      e = k = xc.length;      // Remove trailing zeros.      for (; xc[--k] == 0; xc.pop());      // Zero?      if (!xc[0]) return alphabet.charAt(0);      // Does str represent an integer? If so, no need for the division.      if (i < 0) {        --e;      } else {        x.c = xc;        x.e = e;        // The sign is needed for correct rounding.        x.s = sign;        x = div(x, y, dp, rm, baseOut);        xc = x.c;        r = x.r;        e = x.e;      }      // xc now represents str converted to baseOut.      // THe index of the rounding digit.      d = e + dp + 1;      // The rounding digit: the digit to the right of the digit that may be rounded up.      i = xc[d];      // Look at the rounding digits and mode to determine whether to round up.      k = baseOut / 2;      r = r || d < 0 || xc[d + 1] != null;      r = rm < 4 ? (i != null || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))            : i > k || i == k &&(rm == 4 || r || rm == 6 && xc[d - 1] & 1 ||             rm == (x.s < 0 ? 8 : 7));      // If the index of the rounding digit is not greater than zero, or xc represents      // zero, then the result of the base conversion is zero or, if rounding up, a value      // such as 0.00001.      if (d < 1 || !xc[0]) {        // 1^-dp or 0        str = r ? toFixedPoint(alphabet.charAt(1), -dp, alphabet.charAt(0)) : alphabet.charAt(0);      } else {        // Truncate xc to the required number of decimal places.        xc.length = d;        // Round up?        if (r) {          // Rounding up may mean the previous digit has to be rounded up and so on.          for (--baseOut; ++xc[--d] > baseOut;) {            xc[d] = 0;            if (!d) {              ++e;              xc = [1].concat(xc);            }          }        }        // Determine trailing zeros.        for (k = xc.length; !xc[--k];);        // E.g. [4, 11, 15] becomes 4bf.        for (i = 0, str = ''; i <= k; str += alphabet.charAt(xc[i++]));        // Add leading zeros, decimal point and trailing zeros as required.        str = toFixedPoint(str, e, alphabet.charAt(0));      }      // The caller will add the sign.      return str;    };  })();  // Perform division in the specified base. Called by div and convertBase.  div = (function () {    // Assume non-zero x and k.    function multiply(x, k, base) {      var m, temp, xlo, xhi,        carry = 0,        i = x.length,        klo = k % SQRT_BASE,        khi = k / SQRT_BASE | 0;      for (x = x.slice(); i--;) {        xlo = x[i] % SQRT_BASE;        xhi = x[i] / SQRT_BASE | 0;        m = khi * xlo + xhi * klo;        temp = klo * xlo + ((m % SQRT_BASE) * SQRT_BASE) + carry;        carry = (temp / base | 0) + (m / SQRT_BASE | 0) + khi * xhi;        x[i] = temp % base;      }      if (carry) x = [carry].concat(x);      return x;    }    function compare(a, b, aL, bL) {      var i, cmp;      if (aL != bL) {        cmp = aL > bL ? 1 : -1;      } else {        for (i = cmp = 0; i < aL; i++) {          if (a[i] != b[i]) {            cmp = a[i] > b[i] ? 1 : -1;            break;          }        }      }      return cmp;    }    function subtract(a, b, aL, base) {      var i = 0;      // Subtract b from a.      for (; aL--;) {        a[aL] -= i;        i = a[aL] < b[aL] ? 1 : 0;        a[aL] = i * base + a[aL] - b[aL];      }      // Remove leading zeros.      for (; !a[0] && a.length > 1; a.splice(0, 1));    }    // x: dividend, y: divisor.    return function (x, y, dp, rm, base) {      var cmp, e, i, more, n, prod, prodL, q, qc, rem, remL, rem0, xi, xL, yc0,        yL, yz,        s = x.s == y.s ? 1 : -1,        xc = x.c,        yc = y.c;      // Either NaN, Infinity or 0?      if (!xc || !xc[0] || !yc || !yc[0]) {        return new BigNumber(         // Return NaN if either NaN, or both Infinity or 0.         !x.s || !y.s || (xc ? yc && xc[0] == yc[0] : !yc) ? NaN :          // Return ±0 if x is ±0 or y is ±Infinity, or return ±Infinity as y is ±0.          xc && xc[0] == 0 || !yc ? s * 0 : s / 0       );      }      q = new BigNumber(s);      qc = q.c = [];      e = x.e - y.e;      s = dp + e + 1;      if (!base) {        base = BASE;        e = bitFloor(x.e / LOG_BASE) - bitFloor(y.e / LOG_BASE);        s = s / LOG_BASE | 0;      }      // Result exponent may be one less then the current value of e.      // The coefficients of the BigNumbers from convertBase may have trailing zeros.      for (i = 0; yc[i] == (xc[i] || 0); i++);      if (yc[i] > (xc[i] || 0)) e--;      if (s < 0) {        qc.push(1);        more = true;      } else {        xL = xc.length;        yL = yc.length;        i = 0;        s += 2;        // Normalise xc and yc so highest order digit of yc is >= base / 2.        n = mathfloor(base / (yc[0] + 1));        // Not necessary, but to handle odd bases where yc[0] == (base / 2) - 1.        // if (n > 1 || n++ == 1 && yc[0] < base / 2) {        if (n > 1) {          yc = multiply(yc, n, base);          xc = multiply(xc, n, base);          yL = yc.length;          xL = xc.length;        }        xi = yL;        rem = xc.slice(0, yL);        remL = rem.length;        // Add zeros to make remainder as long as divisor.        for (; remL < yL; rem[remL++] = 0);        yz = yc.slice();        yz = [0].concat(yz);        yc0 = yc[0];        if (yc[1] >= base / 2) yc0++;        // Not necessary, but to prevent trial digit n > base, when using base 3.        // else if (base == 3 && yc0 == 1) yc0 = 1 + 1e-15;        do {          n = 0;          // Compare divisor and remainder.          cmp = compare(yc, rem, yL, remL);          // If divisor < remainder.          if (cmp < 0) {            // Calculate trial digit, n.            rem0 = rem[0];            if (yL != remL) rem0 = rem0 * base + (rem[1] || 0);            // n is how many times the divisor goes into the current remainder.            n = mathfloor(rem0 / yc0);            //  Algorithm:            //  product = divisor multiplied by trial digit (n).            //  Compare product and remainder.            //  If product is greater than remainder:            //    Subtract divisor from product, decrement trial digit.            //  Subtract product from remainder.            //  If product was less than remainder at the last compare:            //    Compare new remainder and divisor.            //    If remainder is greater than divisor:            //      Subtract divisor from remainder, increment trial digit.            if (n > 1) {              // n may be > base only when base is 3.              if (n >= base) n = base - 1;              // product = divisor * trial digit.              prod = multiply(yc, n, base);              prodL = prod.length;              remL = rem.length;              // Compare product and remainder.              // If product > remainder then trial digit n too high.              // n is 1 too high about 5% of the time, and is not known to have              // ever been more than 1 too high.              while (compare(prod, rem, prodL, remL) == 1) {                n--;                // Subtract divisor from product.                subtract(prod, yL < prodL ? yz : yc, prodL, base);                prodL = prod.length;                cmp = 1;              }            } else {              // n is 0 or 1, cmp is -1.              // If n is 0, there is no need to compare yc and rem again below,              // so change cmp to 1 to avoid it.              // If n is 1, leave cmp as -1, so yc and rem are compared again.              if (n == 0) {                // divisor < remainder, so n must be at least 1.                cmp = n = 1;              }              // product = divisor              prod = yc.slice();              prodL = prod.length;            }            if (prodL < remL) prod = [0].concat(prod);            // Subtract product from remainder.            subtract(rem, prod, remL, base);            remL = rem.length;             // If product was < remainder.            if (cmp == -1) {              // Compare divisor and new remainder.              // If divisor < new remainder, subtract divisor from remainder.              // Trial digit n too low.              // n is 1 too low about 5% of the time, and very rarely 2 too low.              while (compare(yc, rem, yL, remL) < 1) {                n++;                // Subtract divisor from remainder.                subtract(rem, yL < remL ? yz : yc, remL, base);                remL = rem.length;              }            }          } else if (cmp === 0) {            n++;            rem = [0];          } // else cmp === 1 and n will be 0          // Add the next digit, n, to the result array.          qc[i++] = n;          // Update the remainder.          if (rem[0]) {            rem[remL++] = xc[xi] || 0;          } else {            rem = [xc[xi]];            remL = 1;          }        } while ((xi++ < xL || rem[0] != null) && s--);        more = rem[0] != null;        // Leading zero?        if (!qc[0]) qc.splice(0, 1);      }      if (base == BASE) {        // To calculate q.e, first get the number of digits of qc[0].        for (i = 1, s = qc[0]; s >= 10; s /= 10, i++);        round(q, dp + (q.e = i + e * LOG_BASE - 1) + 1, rm, more);      // Caller is convertBase.      } else {        q.e = e;        q.r = +more;      }      return q;    };  })();  /*   * Return a string representing the value of BigNumber n in fixed-point or exponential   * notation rounded to the specified decimal places or significant digits.   *   * n: a BigNumber.   * i: the index of the last digit required (i.e. the digit that may be rounded up).   * rm: the rounding mode.   * id: 1 (toExponential) or 2 (toPrecision).   */  function format(n, i, rm, id) {    var c0, e, ne, len, str;    if (rm == null) rm = ROUNDING_MODE;    else intCheck(rm, 0, 8);    if (!n.c) return n.toString();    c0 = n.c[0];    ne = n.e;    if (i == null) {      str = coeffToString(n.c);      str = id == 1 || id == 2 && (ne <= TO_EXP_NEG || ne >= TO_EXP_POS)       ? toExponential(str, ne)       : toFixedPoint(str, ne, '0');    } else {      n = round(new BigNumber(n), i, rm);      // n.e may have changed if the value was rounded up.      e = n.e;      str = coeffToString(n.c);      len = str.length;      // toPrecision returns exponential notation if the number of significant digits      // specified is less than the number of digits necessary to represent the integer      // part of the value in fixed-point notation.      // Exponential notation.      if (id == 1 || id == 2 && (i <= e || e <= TO_EXP_NEG)) {        // Append zeros?        for (; len < i; str += '0', len++);        str = toExponential(str, e);      // Fixed-point notation.      } else {        i -= ne;        str = toFixedPoint(str, e, '0');        // Append zeros?        if (e + 1 > len) {          if (--i > 0) for (str += '.'; i--; str += '0');        } else {          i += e - len;          if (i > 0) {            if (e + 1 == len) str += '.';            for (; i--; str += '0');          }        }      }    }    return n.s < 0 && c0 ? '-' + str : str;  }  // Handle BigNumber.max and BigNumber.min.  function maxOrMin(args, method) {    var n,      i = 1,      m = new BigNumber(args[0]);    for (; i < args.length; i++) {      n = new BigNumber(args[i]);      // If any number is NaN, return NaN.      if (!n.s) {        m = n;        break;      } else if (method.call(m, n)) {        m = n;      }    }    return m;  }  /*   * Strip trailing zeros, calculate base 10 exponent and check against MIN_EXP and MAX_EXP.   * Called by minus, plus and times.   */  function normalise(n, c, e) {    var i = 1,      j = c.length;     // Remove trailing zeros.    for (; !c[--j]; c.pop());    // Calculate the base 10 exponent. First get the number of digits of c[0].    for (j = c[0]; j >= 10; j /= 10, i++);    // Overflow?    if ((e = i + e * LOG_BASE - 1) > MAX_EXP) {      // Infinity.      n.c = n.e = null;    // Underflow?    } else if (e < MIN_EXP) {      // Zero.      n.c = [n.e = 0];    } else {      n.e = e;      n.c = c;    }    return n;  }  // Handle values that fail the validity test in BigNumber.  parseNumeric = (function () {    var basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i,      dotAfter = /^([^.]+)\.$/,      dotBefore = /^\.([^.]+)$/,      isInfinityOrNaN = /^-?(Infinity|NaN)$/,      whitespaceOrPlus = /^\s*\+(?=[\w.])|^\s+|\s+$/g;    return function (x, str, isNum, b) {      var base,        s = isNum ? str : str.replace(whitespaceOrPlus, '');      // No exception on ±Infinity or NaN.      if (isInfinityOrNaN.test(s)) {        x.s = isNaN(s) ? null : s < 0 ? -1 : 1;      } else {        if (!isNum) {          // basePrefix = /^(-?)0([xbo])(?=\w[\w.]*$)/i          s = s.replace(basePrefix, function (m, p1, p2) {            base = (p2 = p2.toLowerCase()) == 'x' ? 16 : p2 == 'b' ? 2 : 8;            return !b || b == base ? p1 : m;          });          if (b) {            base = b;            // E.g. '1.' to '1', '.1' to '0.1'            s = s.replace(dotAfter, '$1').replace(dotBefore, '0.$1');          }          if (str != s) return new BigNumber(s, base);        }        // '[BigNumber Error] Not a number: {n}'        // '[BigNumber Error] Not a base {b} number: {n}'        if (BigNumber.DEBUG) {          throw Error            (bignumberError + 'Not a' + (b ? ' base ' + b : '') + ' number: ' + str);        }        // NaN        x.s = null;      }      x.c = x.e = null;    }  })();  /*   * Round x to sd significant digits using rounding mode rm. Check for over/under-flow.   * If r is truthy, it is known that there are more digits after the rounding digit.   */  function round(x, sd, rm, r) {    var d, i, j, k, n, ni, rd,      xc = x.c,      pows10 = POWS_TEN;    // if x is not Infinity or NaN...    if (xc) {      // rd is the rounding digit, i.e. the digit after the digit that may be rounded up.      // n is a base 1e14 number, the value of the element of array x.c containing rd.      // ni is the index of n within x.c.      // d is the number of digits of n.      // i is the index of rd within n including leading zeros.      // j is the actual index of rd within n (if < 0, rd is a leading zero).      out: {        // Get the number of digits of the first element of xc.        for (d = 1, k = xc[0]; k >= 10; k /= 10, d++);        i = sd - d;        // If the rounding digit is in the first element of xc...        if (i < 0) {          i += LOG_BASE;          j = sd;          n = xc[ni = 0];          // Get the rounding digit at index j of n.          rd = n / pows10[d - j - 1] % 10 | 0;        } else {          ni = mathceil((i + 1) / LOG_BASE);          if (ni >= xc.length) {            if (r) {              // Needed by sqrt.              for (; xc.length <= ni; xc.push(0));              n = rd = 0;              d = 1;              i %= LOG_BASE;              j = i - LOG_BASE + 1;            } else {              break out;            }          } else {            n = k = xc[ni];            // Get the number of digits of n.            for (d = 1; k >= 10; k /= 10, d++);            // Get the index of rd within n.            i %= LOG_BASE;            // Get the index of rd within n, adjusted for leading zeros.            // The number of leading zeros of n is given by LOG_BASE - d.            j = i - LOG_BASE + d;            // Get the rounding digit at index j of n.            rd = j < 0 ? 0 : n / pows10[d - j - 1] % 10 | 0;          }        }        r = r || sd < 0 ||        // Are there any non-zero digits after the rounding digit?        // The expression  n % pows10[d - j - 1]  returns all digits of n to the right        // of the digit at j, e.g. if n is 908714 and j is 2, the expression gives 714.         xc[ni + 1] != null || (j < 0 ? n : n % pows10[d - j - 1]);        r = rm < 4         ? (rd || r) && (rm == 0 || rm == (x.s < 0 ? 3 : 2))         : rd > 5 || rd == 5 && (rm == 4 || r || rm == 6 &&          // Check whether the digit to the left of the rounding digit is odd.          ((i > 0 ? j > 0 ? n / pows10[d - j] : 0 : xc[ni - 1]) % 10) & 1 ||           rm == (x.s < 0 ? 8 : 7));        if (sd < 1 || !xc[0]) {          xc.length = 0;          if (r) {            // Convert sd to decimal places.            sd -= x.e + 1;            // 1, 0.1, 0.01, 0.001, 0.0001 etc.            xc[0] = pows10[(LOG_BASE - sd % LOG_BASE) % LOG_BASE];            x.e = -sd || 0;          } else {            // Zero.            xc[0] = x.e = 0;          }          return x;        }        // Remove excess digits.        if (i == 0) {          xc.length = ni;          k = 1;          ni--;        } else {          xc.length = ni + 1;          k = pows10[LOG_BASE - i];          // E.g. 56700 becomes 56000 if 7 is the rounding digit.          // j > 0 means i > number of leading zeros of n.          xc[ni] = j > 0 ? mathfloor(n / pows10[d - j] % pows10[j]) * k : 0;        }        // Round up?        if (r) {          for (; ;) {            // If the digit to be rounded up is in the first element of xc...            if (ni == 0) {              // i will be the length of xc[0] before k is added.              for (i = 1, j = xc[0]; j >= 10; j /= 10, i++);              j = xc[0] += k;              for (k = 1; j >= 10; j /= 10, k++);              // if i != k the length has increased.              if (i != k) {                x.e++;                if (xc[0] == BASE) xc[0] = 1;              }              break;            } else {              xc[ni] += k;              if (xc[ni] != BASE) break;              xc[ni--] = 0;              k = 1;            }          }        }        // Remove trailing zeros.        for (i = xc.length; xc[--i] === 0; xc.pop());      }      // Overflow? Infinity.      if (x.e > MAX_EXP) {        x.c = x.e = null;      // Underflow? Zero.      } else if (x.e < MIN_EXP) {        x.c = [x.e = 0];      }    }    return x;  }  function valueOf(n) {    var str,      e = n.e;    if (e === null) return n.toString();    str = coeffToString(n.c);    str = e <= TO_EXP_NEG || e >= TO_EXP_POS      ? toExponential(str, e)      : toFixedPoint(str, e, '0');    return n.s < 0 ? '-' + str : str;  }  // PROTOTYPE/INSTANCE METHODS  /*   * Return a new BigNumber whose value is the absolute value of this BigNumber.   */  P.absoluteValue = P.abs = function () {    var x = new BigNumber(this);    if (x.s < 0) x.s = 1;    return x;  };  /*   * Return   *   1 if the value of this BigNumber is greater than the value of BigNumber(y, b),   *   -1 if the value of this BigNumber is less than the value of BigNumber(y, b),   *   0 if they have the same value,   *   or null if the value of either is NaN.   */  P.comparedTo = function (y, b) {    return compare(this, new BigNumber(y, b));  };  /*   * If dp is undefined or null or true or false, return the number of decimal places of the   * value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.   *   * Otherwise, if dp is a number, return a new BigNumber whose value is the value of this   * BigNumber rounded to a maximum of dp decimal places using rounding mode rm, or   * ROUNDING_MODE if rm is omitted.   *   * [dp] {number} Decimal places: integer, 0 to MAX inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'   */  P.decimalPlaces = P.dp = function (dp, rm) {    var c, n, v,      x = this;    if (dp != null) {      intCheck(dp, 0, MAX);      if (rm == null) rm = ROUNDING_MODE;      else intCheck(rm, 0, 8);      return round(new BigNumber(x), dp + x.e + 1, rm);    }    if (!(c = x.c)) return null;    n = ((v = c.length - 1) - bitFloor(this.e / LOG_BASE)) * LOG_BASE;    // Subtract the number of trailing zeros of the last number.    if (v = c[v]) for (; v % 10 == 0; v /= 10, n--);    if (n < 0) n = 0;    return n;  };  /*   *  n / 0 = I   *  n / N = N   *  n / I = 0   *  0 / n = 0   *  0 / 0 = N   *  0 / N = N   *  0 / I = 0   *  N / n = N   *  N / 0 = N   *  N / N = N   *  N / I = N   *  I / n = I   *  I / 0 = I   *  I / N = N   *  I / I = N   *   * Return a new BigNumber whose value is the value of this BigNumber divided by the value of   * BigNumber(y, b), rounded according to DECIMAL_PLACES and ROUNDING_MODE.   */  P.dividedBy = P.div = function (y, b) {    return div(this, new BigNumber(y, b), DECIMAL_PLACES, ROUNDING_MODE);  };  /*   * Return a new BigNumber whose value is the integer part of dividing the value of this   * BigNumber by the value of BigNumber(y, b).   */  P.dividedToIntegerBy = P.idiv = function (y, b) {    return div(this, new BigNumber(y, b), 0, 1);  };  /*   * Return a BigNumber whose value is the value of this BigNumber exponentiated by n.   *   * If m is present, return the result modulo m.   * If n is negative round according to DECIMAL_PLACES and ROUNDING_MODE.   * If POW_PRECISION is non-zero and m is not present, round to POW_PRECISION using ROUNDING_MODE.   *   * The modular power operation works efficiently when x, n, and m are integers, otherwise it   * is equivalent to calculating x.exponentiatedBy(n).modulo(m) with a POW_PRECISION of 0.   *   * n {number|string|BigNumber} The exponent. An integer.   * [m] {number|string|BigNumber} The modulus.   *   * '[BigNumber Error] Exponent not an integer: {n}'   */  P.exponentiatedBy = P.pow = function (n, m) {    var half, isModExp, i, k, more, nIsBig, nIsNeg, nIsOdd, y,      x = this;    n = new BigNumber(n);    // Allow NaN and ±Infinity, but not other non-integers.    if (n.c && !n.isInteger()) {      throw Error        (bignumberError + 'Exponent not an integer: ' + valueOf(n));    }    if (m != null) m = new BigNumber(m);    // Exponent of MAX_SAFE_INTEGER is 15.    nIsBig = n.e > 14;    // If x is NaN, ±Infinity, ±0 or ±1, or n is ±Infinity, NaN or ±0.    if (!x.c || !x.c[0] || x.c[0] == 1 && !x.e && x.c.length == 1 || !n.c || !n.c[0]) {      // The sign of the result of pow when x is negative depends on the evenness of n.      // If +n overflows to ±Infinity, the evenness of n would be not be known.      y = new BigNumber(Math.pow(+valueOf(x), nIsBig ? 2 - isOdd(n) : +valueOf(n)));      return m ? y.mod(m) : y;    }    nIsNeg = n.s < 0;    if (m) {      // x % m returns NaN if abs(m) is zero, or m is NaN.      if (m.c ? !m.c[0] : !m.s) return new BigNumber(NaN);      isModExp = !nIsNeg && x.isInteger() && m.isInteger();      if (isModExp) x = x.mod(m);    // Overflow to ±Infinity: >=2**1e10 or >=1.0000024**1e15.    // Underflow to ±0: <=0.79**1e10 or <=0.9999975**1e15.    } else if (n.e > 9 && (x.e > 0 || x.e < -1 || (x.e == 0      // [1, 240000000]      ? x.c[0] > 1 || nIsBig && x.c[1] >= 24e7      // [80000000000000]  [99999750000000]      : x.c[0] < 8e13 || nIsBig && x.c[0] <= 9999975e7))) {      // If x is negative and n is odd, k = -0, else k = 0.      k = x.s < 0 && isOdd(n) ? -0 : 0;      // If x >= 1, k = ±Infinity.      if (x.e > -1) k = 1 / k;      // If n is negative return ±0, else return ±Infinity.      return new BigNumber(nIsNeg ? 1 / k : k);    } else if (POW_PRECISION) {      // Truncating each coefficient array to a length of k after each multiplication      // equates to truncating significant digits to POW_PRECISION + [28, 41],      // i.e. there will be a minimum of 28 guard digits retained.      k = mathceil(POW_PRECISION / LOG_BASE + 2);    }    if (nIsBig) {      half = new BigNumber(0.5);      if (nIsNeg) n.s = 1;      nIsOdd = isOdd(n);    } else {      i = Math.abs(+valueOf(n));      nIsOdd = i % 2;    }    y = new BigNumber(ONE);    // Performs 54 loop iterations for n of 9007199254740991.    for (; ;) {      if (nIsOdd) {        y = y.times(x);        if (!y.c) break;        if (k) {          if (y.c.length > k) y.c.length = k;        } else if (isModExp) {          y = y.mod(m);    //y = y.minus(div(y, m, 0, MODULO_MODE).times(m));        }      }      if (i) {        i = mathfloor(i / 2);        if (i === 0) break;        nIsOdd = i % 2;      } else {        n = n.times(half);        round(n, n.e + 1, 1);        if (n.e > 14) {          nIsOdd = isOdd(n);        } else {          i = +valueOf(n);          if (i === 0) break;          nIsOdd = i % 2;        }      }      x = x.times(x);      if (k) {        if (x.c && x.c.length > k) x.c.length = k;      } else if (isModExp) {        x = x.mod(m);    //x = x.minus(div(x, m, 0, MODULO_MODE).times(m));      }    }    if (isModExp) return y;    if (nIsNeg) y = ONE.div(y);    return m ? y.mod(m) : k ? round(y, POW_PRECISION, ROUNDING_MODE, more) : y;  };  /*   * Return a new BigNumber whose value is the value of this BigNumber rounded to an integer   * using rounding mode rm, or ROUNDING_MODE if rm is omitted.   *   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {rm}'   */  P.integerValue = function (rm) {    var n = new BigNumber(this);    if (rm == null) rm = ROUNDING_MODE;    else intCheck(rm, 0, 8);    return round(n, n.e + 1, rm);  };  /*   * Return true if the value of this BigNumber is equal to the value of BigNumber(y, b),   * otherwise return false.   */  P.isEqualTo = P.eq = function (y, b) {    return compare(this, new BigNumber(y, b)) === 0;  };  /*   * Return true if the value of this BigNumber is a finite number, otherwise return false.   */  P.isFinite = function () {    return !!this.c;  };  /*   * Return true if the value of this BigNumber is greater than the value of BigNumber(y, b),   * otherwise return false.   */  P.isGreaterThan = P.gt = function (y, b) {    return compare(this, new BigNumber(y, b)) > 0;  };  /*   * Return true if the value of this BigNumber is greater than or equal to the value of   * BigNumber(y, b), otherwise return false.   */  P.isGreaterThanOrEqualTo = P.gte = function (y, b) {    return (b = compare(this, new BigNumber(y, b))) === 1 || b === 0;  };  /*   * Return true if the value of this BigNumber is an integer, otherwise return false.   */  P.isInteger = function () {    return !!this.c && bitFloor(this.e / LOG_BASE) > this.c.length - 2;  };  /*   * Return true if the value of this BigNumber is less than the value of BigNumber(y, b),   * otherwise return false.   */  P.isLessThan = P.lt = function (y, b) {    return compare(this, new BigNumber(y, b)) < 0;  };  /*   * Return true if the value of this BigNumber is less than or equal to the value of   * BigNumber(y, b), otherwise return false.   */  P.isLessThanOrEqualTo = P.lte = function (y, b) {    return (b = compare(this, new BigNumber(y, b))) === -1 || b === 0;  };  /*   * Return true if the value of this BigNumber is NaN, otherwise return false.   */  P.isNaN = function () {    return !this.s;  };  /*   * Return true if the value of this BigNumber is negative, otherwise return false.   */  P.isNegative = function () {    return this.s < 0;  };  /*   * Return true if the value of this BigNumber is positive, otherwise return false.   */  P.isPositive = function () {    return this.s > 0;  };  /*   * Return true if the value of this BigNumber is 0 or -0, otherwise return false.   */  P.isZero = function () {    return !!this.c && this.c[0] == 0;  };  /*   *  n - 0 = n   *  n - N = N   *  n - I = -I   *  0 - n = -n   *  0 - 0 = 0   *  0 - N = N   *  0 - I = -I   *  N - n = N   *  N - 0 = N   *  N - N = N   *  N - I = N   *  I - n = I   *  I - 0 = I   *  I - N = N   *  I - I = N   *   * Return a new BigNumber whose value is the value of this BigNumber minus the value of   * BigNumber(y, b).   */  P.minus = function (y, b) {    var i, j, t, xLTy,      x = this,      a = x.s;    y = new BigNumber(y, b);    b = y.s;    // Either NaN?    if (!a || !b) return new BigNumber(NaN);    // Signs differ?    if (a != b) {      y.s = -b;      return x.plus(y);    }    var xe = x.e / LOG_BASE,      ye = y.e / LOG_BASE,      xc = x.c,      yc = y.c;    if (!xe || !ye) {      // Either Infinity?      if (!xc || !yc) return xc ? (y.s = -b, y) : new BigNumber(yc ? x : NaN);      // Either zero?      if (!xc[0] || !yc[0]) {        // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.        return yc[0] ? (y.s = -b, y) : new BigNumber(xc[0] ? x :         // IEEE 754 (2008) 6.3: n - n = -0 when rounding to -Infinity         ROUNDING_MODE == 3 ? -0 : 0);      }    }    xe = bitFloor(xe);    ye = bitFloor(ye);    xc = xc.slice();    // Determine which is the bigger number.    if (a = xe - ye) {      if (xLTy = a < 0) {        a = -a;        t = xc;      } else {        ye = xe;        t = yc;      }      t.reverse();      // Prepend zeros to equalise exponents.      for (b = a; b--; t.push(0));      t.reverse();    } else {      // Exponents equal. Check digit by digit.      j = (xLTy = (a = xc.length) < (b = yc.length)) ? a : b;      for (a = b = 0; b < j; b++) {        if (xc[b] != yc[b]) {          xLTy = xc[b] < yc[b];          break;        }      }    }    // x < y? Point xc to the array of the bigger number.    if (xLTy) t = xc, xc = yc, yc = t, y.s = -y.s;    b = (j = yc.length) - (i = xc.length);    // Append zeros to xc if shorter.    // No need to add zeros to yc if shorter as subtract only needs to start at yc.length.    if (b > 0) for (; b--; xc[i++] = 0);    b = BASE - 1;    // Subtract yc from xc.    for (; j > a;) {      if (xc[--j] < yc[j]) {        for (i = j; i && !xc[--i]; xc[i] = b);        --xc[i];        xc[j] += BASE;      }      xc[j] -= yc[j];    }    // Remove leading zeros and adjust exponent accordingly.    for (; xc[0] == 0; xc.splice(0, 1), --ye);    // Zero?    if (!xc[0]) {      // Following IEEE 754 (2008) 6.3,      // n - n = +0  but  n - n = -0  when rounding towards -Infinity.      y.s = ROUNDING_MODE == 3 ? -1 : 1;      y.c = [y.e = 0];      return y;    }    // No need to check for Infinity as +x - +y != Infinity && -x - -y != Infinity    // for finite x and y.    return normalise(y, xc, ye);  };  /*   *   n % 0 =  N   *   n % N =  N   *   n % I =  n   *   0 % n =  0   *  -0 % n = -0   *   0 % 0 =  N   *   0 % N =  N   *   0 % I =  0   *   N % n =  N   *   N % 0 =  N   *   N % N =  N   *   N % I =  N   *   I % n =  N   *   I % 0 =  N   *   I % N =  N   *   I % I =  N   *   * Return a new BigNumber whose value is the value of this BigNumber modulo the value of   * BigNumber(y, b). The result depends on the value of MODULO_MODE.   */  P.modulo = P.mod = function (y, b) {    var q, s,      x = this;    y = new BigNumber(y, b);    // Return NaN if x is Infinity or NaN, or y is NaN or zero.    if (!x.c || !y.s || y.c && !y.c[0]) {      return new BigNumber(NaN);    // Return x if y is Infinity or x is zero.    } else if (!y.c || x.c && !x.c[0]) {      return new BigNumber(x);    }    if (MODULO_MODE == 9) {      // Euclidian division: q = sign(y) * floor(x / abs(y))      // r = x - qy    where  0 <= r < abs(y)      s = y.s;      y.s = 1;      q = div(x, y, 0, 3);      y.s = s;      q.s *= s;    } else {      q = div(x, y, 0, MODULO_MODE);    }    y = x.minus(q.times(y));    // To match JavaScript %, ensure sign of zero is sign of dividend.    if (!y.c[0] && MODULO_MODE == 1) y.s = x.s;    return y;  };  /*   *  n * 0 = 0   *  n * N = N   *  n * I = I   *  0 * n = 0   *  0 * 0 = 0   *  0 * N = N   *  0 * I = N   *  N * n = N   *  N * 0 = N   *  N * N = N   *  N * I = N   *  I * n = I   *  I * 0 = N   *  I * N = N   *  I * I = I   *   * Return a new BigNumber whose value is the value of this BigNumber multiplied by the value   * of BigNumber(y, b).   */  P.multipliedBy = P.times = function (y, b) {    var c, e, i, j, k, m, xcL, xlo, xhi, ycL, ylo, yhi, zc,      base, sqrtBase,      x = this,      xc = x.c,      yc = (y = new BigNumber(y, b)).c;    // Either NaN, ±Infinity or ±0?    if (!xc || !yc || !xc[0] || !yc[0]) {      // Return NaN if either is NaN, or one is 0 and the other is Infinity.      if (!x.s || !y.s || xc && !xc[0] && !yc || yc && !yc[0] && !xc) {        y.c = y.e = y.s = null;      } else {        y.s *= x.s;        // Return ±Infinity if either is ±Infinity.        if (!xc || !yc) {          y.c = y.e = null;        // Return ±0 if either is ±0.        } else {          y.c = [0];          y.e = 0;        }      }      return y;    }    e = bitFloor(x.e / LOG_BASE) + bitFloor(y.e / LOG_BASE);    y.s *= x.s;    xcL = xc.length;    ycL = yc.length;    // Ensure xc points to longer array and xcL to its length.    if (xcL < ycL) zc = xc, xc = yc, yc = zc, i = xcL, xcL = ycL, ycL = i;    // Initialise the result array with zeros.    for (i = xcL + ycL, zc = []; i--; zc.push(0));    base = BASE;    sqrtBase = SQRT_BASE;    for (i = ycL; --i >= 0;) {      c = 0;      ylo = yc[i] % sqrtBase;      yhi = yc[i] / sqrtBase | 0;      for (k = xcL, j = i + k; j > i;) {        xlo = xc[--k] % sqrtBase;        xhi = xc[k] / sqrtBase | 0;        m = yhi * xlo + xhi * ylo;        xlo = ylo * xlo + ((m % sqrtBase) * sqrtBase) + zc[j] + c;        c = (xlo / base | 0) + (m / sqrtBase | 0) + yhi * xhi;        zc[j--] = xlo % base;      }      zc[j] = c;    }    if (c) {      ++e;    } else {      zc.splice(0, 1);    }    return normalise(y, zc, e);  };  /*   * Return a new BigNumber whose value is the value of this BigNumber negated,   * i.e. multiplied by -1.   */  P.negated = function () {    var x = new BigNumber(this);    x.s = -x.s || null;    return x;  };  /*   *  n + 0 = n   *  n + N = N   *  n + I = I   *  0 + n = n   *  0 + 0 = 0   *  0 + N = N   *  0 + I = I   *  N + n = N   *  N + 0 = N   *  N + N = N   *  N + I = N   *  I + n = I   *  I + 0 = I   *  I + N = N   *  I + I = I   *   * Return a new BigNumber whose value is the value of this BigNumber plus the value of   * BigNumber(y, b).   */  P.plus = function (y, b) {    var t,      x = this,      a = x.s;    y = new BigNumber(y, b);    b = y.s;    // Either NaN?    if (!a || !b) return new BigNumber(NaN);    // Signs differ?     if (a != b) {      y.s = -b;      return x.minus(y);    }    var xe = x.e / LOG_BASE,      ye = y.e / LOG_BASE,      xc = x.c,      yc = y.c;    if (!xe || !ye) {      // Return ±Infinity if either ±Infinity.      if (!xc || !yc) return new BigNumber(a / 0);      // Either zero?      // Return y if y is non-zero, x if x is non-zero, or zero if both are zero.      if (!xc[0] || !yc[0]) return yc[0] ? y : new BigNumber(xc[0] ? x : a * 0);    }    xe = bitFloor(xe);    ye = bitFloor(ye);    xc = xc.slice();    // Prepend zeros to equalise exponents. Faster to use reverse then do unshifts.    if (a = xe - ye) {      if (a > 0) {        ye = xe;        t = yc;      } else {        a = -a;        t = xc;      }      t.reverse();      for (; a--; t.push(0));      t.reverse();    }    a = xc.length;    b = yc.length;    // Point xc to the longer array, and b to the shorter length.    if (a - b < 0) t = yc, yc = xc, xc = t, b = a;    // Only start adding at yc.length - 1 as the further digits of xc can be ignored.    for (a = 0; b;) {      a = (xc[--b] = xc[b] + yc[b] + a) / BASE | 0;      xc[b] = BASE === xc[b] ? 0 : xc[b] % BASE;    }    if (a) {      xc = [a].concat(xc);      ++ye;    }    // No need to check for zero, as +x + +y != 0 && -x + -y != 0    // ye = MAX_EXP + 1 possible    return normalise(y, xc, ye);  };  /*   * If sd is undefined or null or true or false, return the number of significant digits of   * the value of this BigNumber, or null if the value of this BigNumber is ±Infinity or NaN.   * If sd is true include integer-part trailing zeros in the count.   *   * Otherwise, if sd is a number, return a new BigNumber whose value is the value of this   * BigNumber rounded to a maximum of sd significant digits using rounding mode rm, or   * ROUNDING_MODE if rm is omitted.   *   * sd {number|boolean} number: significant digits: integer, 1 to MAX inclusive.   *                     boolean: whether to count integer-part trailing zeros: true or false.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'   */  P.precision = P.sd = function (sd, rm) {    var c, n, v,      x = this;    if (sd != null && sd !== !!sd) {      intCheck(sd, 1, MAX);      if (rm == null) rm = ROUNDING_MODE;      else intCheck(rm, 0, 8);      return round(new BigNumber(x), sd, rm);    }    if (!(c = x.c)) return null;    v = c.length - 1;    n = v * LOG_BASE + 1;    if (v = c[v]) {      // Subtract the number of trailing zeros of the last element.      for (; v % 10 == 0; v /= 10, n--);      // Add the number of digits of the first element.      for (v = c[0]; v >= 10; v /= 10, n++);    }    if (sd && x.e + 1 > n) n = x.e + 1;    return n;  };  /*   * Return a new BigNumber whose value is the value of this BigNumber shifted by k places   * (powers of 10). Shift to the right if n > 0, and to the left if n < 0.   *   * k {number} Integer, -MAX_SAFE_INTEGER to MAX_SAFE_INTEGER inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {k}'   */  P.shiftedBy = function (k) {    intCheck(k, -MAX_SAFE_INTEGER, MAX_SAFE_INTEGER);    return this.times('1e' + k);  };  /*   *  sqrt(-n) =  N   *  sqrt(N) =  N   *  sqrt(-I) =  N   *  sqrt(I) =  I   *  sqrt(0) =  0   *  sqrt(-0) = -0   *   * Return a new BigNumber whose value is the square root of the value of this BigNumber,   * rounded according to DECIMAL_PLACES and ROUNDING_MODE.   */  P.squareRoot = P.sqrt = function () {    var m, n, r, rep, t,      x = this,      c = x.c,      s = x.s,      e = x.e,      dp = DECIMAL_PLACES + 4,      half = new BigNumber('0.5');    // Negative/NaN/Infinity/zero?    if (s !== 1 || !c || !c[0]) {      return new BigNumber(!s || s < 0 && (!c || c[0]) ? NaN : c ? x : 1 / 0);    }    // Initial estimate.    s = Math.sqrt(+valueOf(x));    // Math.sqrt underflow/overflow?    // Pass x to Math.sqrt as integer, then adjust the exponent of the result.    if (s == 0 || s == 1 / 0) {      n = coeffToString(c);      if ((n.length + e) % 2 == 0) n += '0';      s = Math.sqrt(+n);      e = bitFloor((e + 1) / 2) - (e < 0 || e % 2);      if (s == 1 / 0) {        n = '1e' + e;      } else {        n = s.toExponential();        n = n.slice(0, n.indexOf('e') + 1) + e;      }      r = new BigNumber(n);    } else {      r = new BigNumber(s + '');    }    // Check for zero.    // r could be zero if MIN_EXP is changed after the this value was created.    // This would cause a division by zero (x/t) and hence Infinity below, which would cause    // coeffToString to throw.    if (r.c[0]) {      e = r.e;      s = e + dp;      if (s < 3) s = 0;      // Newton-Raphson iteration.      for (; ;) {        t = r;        r = half.times(t.plus(div(x, t, dp, 1)));        if (coeffToString(t.c).slice(0, s) === (n = coeffToString(r.c)).slice(0, s)) {          // The exponent of r may here be one less than the final result exponent,          // e.g 0.0009999 (e-4) --> 0.001 (e-3), so adjust s so the rounding digits          // are indexed correctly.          if (r.e < e) --s;          n = n.slice(s - 3, s + 1);          // The 4th rounding digit may be in error by -1 so if the 4 rounding digits          // are 9999 or 4999 (i.e. approaching a rounding boundary) continue the          // iteration.          if (n == '9999' || !rep && n == '4999') {            // On the first iteration only, check to see if rounding up gives the            // exact result as the nines may infinitely repeat.            if (!rep) {              round(t, t.e + DECIMAL_PLACES + 2, 0);              if (t.times(t).eq(x)) {                r = t;                break;              }            }            dp += 4;            s += 4;            rep = 1;          } else {            // If rounding digits are null, 0{0,4} or 50{0,3}, check for exact            // result. If not, then there are further digits and m will be truthy.            if (!+n || !+n.slice(1) && n.charAt(0) == '5') {              // Truncate to the first rounding digit.              round(r, r.e + DECIMAL_PLACES + 2, 1);              m = !r.times(r).eq(x);            }            break;          }        }      }    }    return round(r, r.e + DECIMAL_PLACES + 1, ROUNDING_MODE, m);  };  /*   * Return a string representing the value of this BigNumber in exponential notation and   * rounded using ROUNDING_MODE to dp fixed decimal places.   *   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'   */  P.toExponential = function (dp, rm) {    if (dp != null) {      intCheck(dp, 0, MAX);      dp++;    }    return format(this, dp, rm, 1);  };  /*   * Return a string representing the value of this BigNumber in fixed-point notation rounding   * to dp fixed decimal places using rounding mode rm, or ROUNDING_MODE if rm is omitted.   *   * Note: as with JavaScript's number type, (-0).toFixed(0) is '0',   * but e.g. (-0.00001).toFixed(0) is '-0'.   *   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'   */  P.toFixed = function (dp, rm) {    if (dp != null) {      intCheck(dp, 0, MAX);      dp = dp + this.e + 1;    }    return format(this, dp, rm);  };  /*   * Return a string representing the value of this BigNumber in fixed-point notation rounded   * using rm or ROUNDING_MODE to dp decimal places, and formatted according to the properties   * of the format or FORMAT object (see BigNumber.set).   *   * The formatting object may contain some or all of the properties shown below.   *   * FORMAT = {   *   prefix: '',   *   groupSize: 3,   *   secondaryGroupSize: 0,   *   groupSeparator: ',',   *   decimalSeparator: '.',   *   fractionGroupSize: 0,   *   fractionGroupSeparator: '\xA0',      // non-breaking space   *   suffix: ''   * };   *   * [dp] {number} Decimal places. Integer, 0 to MAX inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   * [format] {object} Formatting options. See FORMAT pbject above.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {dp|rm}'   * '[BigNumber Error] Argument not an object: {format}'   */  P.toFormat = function (dp, rm, format) {    var str,      x = this;    if (format == null) {      if (dp != null && rm && typeof rm == 'object') {        format = rm;        rm = null;      } else if (dp && typeof dp == 'object') {        format = dp;        dp = rm = null;      } else {        format = FORMAT;      }    } else if (typeof format != 'object') {      throw Error        (bignumberError + 'Argument not an object: ' + format);    }    str = x.toFixed(dp, rm);    if (x.c) {      var i,        arr = str.split('.'),        g1 = +format.groupSize,        g2 = +format.secondaryGroupSize,        groupSeparator = format.groupSeparator || '',        intPart = arr[0],        fractionPart = arr[1],        isNeg = x.s < 0,        intDigits = isNeg ? intPart.slice(1) : intPart,        len = intDigits.length;      if (g2) i = g1, g1 = g2, g2 = i, len -= i;      if (g1 > 0 && len > 0) {        i = len % g1 || g1;        intPart = intDigits.substr(0, i);        for (; i < len; i += g1) intPart += groupSeparator + intDigits.substr(i, g1);        if (g2 > 0) intPart += groupSeparator + intDigits.slice(i);        if (isNeg) intPart = '-' + intPart;      }      str = fractionPart       ? intPart + (format.decimalSeparator || '') + ((g2 = +format.fractionGroupSize)        ? fractionPart.replace(new RegExp('\\d{' + g2 + '}\\B', 'g'),         '$&' + (format.fractionGroupSeparator || ''))        : fractionPart)       : intPart;    }    return (format.prefix || '') + str + (format.suffix || '');  };  /*   * Return an array of two BigNumbers representing the value of this BigNumber as a simple   * fraction with an integer numerator and an integer denominator.   * The denominator will be a positive non-zero value less than or equal to the specified   * maximum denominator. If a maximum denominator is not specified, the denominator will be   * the lowest value necessary to represent the number exactly.   *   * [md] {number|string|BigNumber} Integer >= 1, or Infinity. The maximum denominator.   *   * '[BigNumber Error] Argument {not an integer|out of range} : {md}'   */  P.toFraction = function (md) {    var d, d0, d1, d2, e, exp, n, n0, n1, q, r, s,      x = this,      xc = x.c;    if (md != null) {      n = new BigNumber(md);      // Throw if md is less than one or is not an integer, unless it is Infinity.      if (!n.isInteger() && (n.c || n.s !== 1) || n.lt(ONE)) {        throw Error          (bignumberError + 'Argument ' +            (n.isInteger() ? 'out of range: ' : 'not an integer: ') + valueOf(n));      }    }    if (!xc) return new BigNumber(x);    d = new BigNumber(ONE);    n1 = d0 = new BigNumber(ONE);    d1 = n0 = new BigNumber(ONE);    s = coeffToString(xc);    // Determine initial denominator.    // d is a power of 10 and the minimum max denominator that specifies the value exactly.    e = d.e = s.length - x.e - 1;    d.c[0] = POWS_TEN[(exp = e % LOG_BASE) < 0 ? LOG_BASE + exp : exp];    md = !md || n.comparedTo(d) > 0 ? (e > 0 ? d : n1) : n;    exp = MAX_EXP;    MAX_EXP = 1 / 0;    n = new BigNumber(s);    // n0 = d1 = 0    n0.c[0] = 0;    for (; ;)  {      q = div(n, d, 0, 1);      d2 = d0.plus(q.times(d1));      if (d2.comparedTo(md) == 1) break;      d0 = d1;      d1 = d2;      n1 = n0.plus(q.times(d2 = n1));      n0 = d2;      d = n.minus(q.times(d2 = d));      n = d2;    }    d2 = div(md.minus(d0), d1, 0, 1);    n0 = n0.plus(d2.times(n1));    d0 = d0.plus(d2.times(d1));    n0.s = n1.s = x.s;    e = e * 2;    // Determine which fraction is closer to x, n0/d0 or n1/d1    r = div(n1, d1, e, ROUNDING_MODE).minus(x).abs().comparedTo(        div(n0, d0, e, ROUNDING_MODE).minus(x).abs()) < 1 ? [n1, d1] : [n0, d0];    MAX_EXP = exp;    return r;  };  /*   * Return the value of this BigNumber converted to a number primitive.   */  P.toNumber = function () {    return +valueOf(this);  };  /*   * Return a string representing the value of this BigNumber rounded to sd significant digits   * using rounding mode rm or ROUNDING_MODE. If sd is less than the number of digits   * necessary to represent the integer part of the value in fixed-point notation, then use   * exponential notation.   *   * [sd] {number} Significant digits. Integer, 1 to MAX inclusive.   * [rm] {number} Rounding mode. Integer, 0 to 8 inclusive.   *   * '[BigNumber Error] Argument {not a primitive number|not an integer|out of range}: {sd|rm}'   */  P.toPrecision = function (sd, rm) {    if (sd != null) intCheck(sd, 1, MAX);    return format(this, sd, rm, 2);  };  /*   * Return a string representing the value of this BigNumber in base b, or base 10 if b is   * omitted. If a base is specified, including base 10, round according to DECIMAL_PLACES and   * ROUNDING_MODE. If a base is not specified, and this BigNumber has a positive exponent   * that is equal to or greater than TO_EXP_POS, or a negative exponent equal to or less than   * TO_EXP_NEG, return exponential notation.   *   * [b] {number} Integer, 2 to ALPHABET.length inclusive.   *   * '[BigNumber Error] Base {not a primitive number|not an integer|out of range}: {b}'   */  P.toString = function (b) {    var str,      n = this,      s = n.s,      e = n.e;    // Infinity or NaN?    if (e === null) {      if (s) {        str = 'Infinity';        if (s < 0) str = '-' + str;      } else {        str = 'NaN';      }    } else {      if (b == null) {        str = e <= TO_EXP_NEG || e >= TO_EXP_POS         ? toExponential(coeffToString(n.c), e)         : toFixedPoint(coeffToString(n.c), e, '0');      } else if (b === 10) {        n = round(new BigNumber(n), DECIMAL_PLACES + e + 1, ROUNDING_MODE);        str = toFixedPoint(coeffToString(n.c), n.e, '0');      } else {        intCheck(b, 2, ALPHABET.length, 'Base');        str = convertBase(toFixedPoint(coeffToString(n.c), e, '0'), 10, b, s, true);      }      if (s < 0 && n.c[0]) str = '-' + str;    }    return str;  };  /*   * Return as toString, but do not accept a base argument, and include the minus sign for   * negative zero.   */  P.valueOf = P.toJSON = function () {    return valueOf(this);  };  P._isBigNumber = true;  P[Symbol.toStringTag] = 'BigNumber';  // Node.js v10.12.0+  P[Symbol.for('nodejs.util.inspect.custom')] = P.valueOf;  if (configObject != null) BigNumber.set(configObject);  return BigNumber;}// PRIVATE HELPER FUNCTIONS// These functions don't need access to variables,// e.g. DECIMAL_PLACES, in the scope of the `clone` function above.function bitFloor(n) {  var i = n | 0;  return n > 0 || n === i ? i : i - 1;}// Return a coefficient array as a string of base 10 digits.function coeffToString(a) {  var s, z,    i = 1,    j = a.length,    r = a[0] + '';  for (; i < j;) {    s = a[i++] + '';    z = LOG_BASE - s.length;    for (; z--; s = '0' + s);    r += s;  }  // Determine trailing zeros.  for (j = r.length; r.charCodeAt(--j) === 48;);  return r.slice(0, j + 1 || 1);}// Compare the value of BigNumbers x and y.function compare(x, y) {  var a, b,    xc = x.c,    yc = y.c,    i = x.s,    j = y.s,    k = x.e,    l = y.e;  // Either NaN?  if (!i || !j) return null;  a = xc && !xc[0];  b = yc && !yc[0];  // Either zero?  if (a || b) return a ? b ? 0 : -j : i;  // Signs differ?  if (i != j) return i;  a = i < 0;  b = k == l;  // Either Infinity?  if (!xc || !yc) return b ? 0 : !xc ^ a ? 1 : -1;  // Compare exponents.  if (!b) return k > l ^ a ? 1 : -1;  j = (k = xc.length) < (l = yc.length) ? k : l;  // Compare digit by digit.  for (i = 0; i < j; i++) if (xc[i] != yc[i]) return xc[i] > yc[i] ^ a ? 1 : -1;  // Compare lengths.  return k == l ? 0 : k > l ^ a ? 1 : -1;}/* * Check that n is a primitive number, an integer, and in range, otherwise throw. */function intCheck(n, min, max, name) {  if (n < min || n > max || n !== mathfloor(n)) {    throw Error     (bignumberError + (name || 'Argument') + (typeof n == 'number'       ? n < min || n > max ? ' out of range: ' : ' not an integer: '       : ' not a primitive number: ') + String(n));  }}// Assumes finite n.function isOdd(n) {  var k = n.c.length - 1;  return bitFloor(n.e / LOG_BASE) == k && n.c[k] % 2 != 0;}function toExponential(str, e) {  return (str.length > 1 ? str.charAt(0) + '.' + str.slice(1) : str) +   (e < 0 ? 'e' : 'e+') + e;}function toFixedPoint(str, e, z) {  var len, zs;  // Negative exponent?  if (e < 0) {    // Prepend zeros.    for (zs = z + '.'; ++e; zs += z);    str = zs + str;  // Positive exponent  } else {    len = str.length;    // Append zeros.    if (++e > len) {      for (zs = z, e -= len; --e; zs += z);      str += zs;    } else if (e < len) {      str = str.slice(0, e) + '.' + str.slice(e);    }  }  return str;}// EXPORTexport var BigNumber = clone();export default BigNumber;
 |