| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402 | /*	MIT License http://www.opensource.org/licenses/mit-license.php	Author Tobias Koppers @sokra*/"use strict";const AsyncDependencyToInitialChunkError = require("./AsyncDependencyToInitialChunkError");const { connectChunkGroupParentAndChild } = require("./GraphHelpers");const ModuleGraphConnection = require("./ModuleGraphConnection");const { getEntryRuntime, mergeRuntime } = require("./util/runtime");/** @typedef {import("./AsyncDependenciesBlock")} AsyncDependenciesBlock *//** @typedef {import("./Chunk")} Chunk *//** @typedef {import("./ChunkGroup")} ChunkGroup *//** @typedef {import("./Compilation")} Compilation *//** @typedef {import("./DependenciesBlock")} DependenciesBlock *//** @typedef {import("./Dependency")} Dependency *//** @typedef {import("./Entrypoint")} Entrypoint *//** @typedef {import("./Module")} Module *//** @typedef {import("./ModuleGraph")} ModuleGraph *//** @typedef {import("./ModuleGraphConnection").ConnectionState} ConnectionState *//** @typedef {import("./logging/Logger").Logger} Logger *//** @typedef {import("./util/runtime").RuntimeSpec} RuntimeSpec *//** * @typedef {Object} QueueItem * @property {number} action * @property {DependenciesBlock} block * @property {Module} module * @property {Chunk} chunk * @property {ChunkGroup} chunkGroup * @property {ChunkGroupInfo} chunkGroupInfo *//** @typedef {Set<Module> & { plus: Set<Module> }} ModuleSetPlus *//** * @typedef {Object} ChunkGroupInfo * @property {ChunkGroup} chunkGroup the chunk group * @property {RuntimeSpec} runtime the runtimes * @property {ModuleSetPlus} minAvailableModules current minimal set of modules available at this point * @property {boolean} minAvailableModulesOwned true, if minAvailableModules is owned and can be modified * @property {ModuleSetPlus[]} availableModulesToBeMerged enqueued updates to the minimal set of available modules * @property {Set<Module>=} skippedItems modules that were skipped because module is already available in parent chunks (need to reconsider when minAvailableModules is shrinking) * @property {Set<[Module, ConnectionState]>=} skippedModuleConnections referenced modules that where skipped because they were not active in this runtime * @property {ModuleSetPlus} resultingAvailableModules set of modules available including modules from this chunk group * @property {Set<ChunkGroupInfo>} children set of children chunk groups, that will be revisited when availableModules shrink * @property {Set<ChunkGroupInfo>} availableSources set of chunk groups that are the source for minAvailableModules * @property {Set<ChunkGroupInfo>} availableChildren set of chunk groups which depend on the this chunk group as availableSource * @property {number} preOrderIndex next pre order index * @property {number} postOrderIndex next post order index * @property {boolean} chunkLoading has a chunk loading mechanism * @property {boolean} asyncChunks create async chunks *//** * @typedef {Object} BlockChunkGroupConnection * @property {ChunkGroupInfo} originChunkGroupInfo origin chunk group * @property {ChunkGroup} chunkGroup referenced chunk group */const EMPTY_SET = /** @type {ModuleSetPlus} */ (new Set());EMPTY_SET.plus = EMPTY_SET;/** * @param {ModuleSetPlus} a first set * @param {ModuleSetPlus} b second set * @returns {number} cmp */const bySetSize = (a, b) => {	return b.size + b.plus.size - a.size - a.plus.size;};const extractBlockModules = (module, moduleGraph, runtime, blockModulesMap) => {	let blockCache;	let modules;	const arrays = [];	const queue = [module];	while (queue.length > 0) {		const block = queue.pop();		const arr = [];		arrays.push(arr);		blockModulesMap.set(block, arr);		for (const b of block.blocks) {			queue.push(b);		}	}	for (const connection of moduleGraph.getOutgoingConnections(module)) {		const d = connection.dependency;		// We skip connections without dependency		if (!d) continue;		const m = connection.module;		// We skip connections without Module pointer		if (!m) continue;		// We skip weak connections		if (connection.weak) continue;		const state = connection.getActiveState(runtime);		// We skip inactive connections		if (state === false) continue;		const block = moduleGraph.getParentBlock(d);		let index = moduleGraph.getParentBlockIndex(d);		// deprecated fallback		if (index < 0) {			index = block.dependencies.indexOf(d);		}		if (blockCache !== block) {			modules = blockModulesMap.get((blockCache = block));		}		const i = index << 2;		modules[i] = m;		modules[i + 1] = state;	}	for (const modules of arrays) {		if (modules.length === 0) continue;		let indexMap;		let length = 0;		outer: for (let j = 0; j < modules.length; j += 2) {			const m = modules[j];			if (m === undefined) continue;			const state = modules[j + 1];			if (indexMap === undefined) {				let i = 0;				for (; i < length; i += 2) {					if (modules[i] === m) {						const merged = modules[i + 1];						if (merged === true) continue outer;						modules[i + 1] = ModuleGraphConnection.addConnectionStates(							merged,							state						);					}				}				modules[length] = m;				length++;				modules[length] = state;				length++;				if (length > 30) {					// To avoid worse case performance, we will use an index map for					// linear cost access, which allows to maintain O(n) complexity					// while keeping allocations down to a minimum					indexMap = new Map();					for (let i = 0; i < length; i += 2) {						indexMap.set(modules[i], i + 1);					}				}			} else {				const idx = indexMap.get(m);				if (idx !== undefined) {					const merged = modules[idx];					if (merged === true) continue outer;					modules[idx] = ModuleGraphConnection.addConnectionStates(						merged,						state					);				} else {					modules[length] = m;					length++;					modules[length] = state;					indexMap.set(m, length);					length++;				}			}		}		modules.length = length;	}};/** * * @param {Logger} logger a logger * @param {Compilation} compilation the compilation * @param {Map<Entrypoint, Module[]>} inputEntrypointsAndModules chunk groups which are processed with the modules * @param {Map<ChunkGroup, ChunkGroupInfo>} chunkGroupInfoMap mapping from chunk group to available modules * @param {Map<AsyncDependenciesBlock, BlockChunkGroupConnection[]>} blockConnections connection for blocks * @param {Set<DependenciesBlock>} blocksWithNestedBlocks flag for blocks that have nested blocks * @param {Set<ChunkGroup>} allCreatedChunkGroups filled with all chunk groups that are created here */const visitModules = (	logger,	compilation,	inputEntrypointsAndModules,	chunkGroupInfoMap,	blockConnections,	blocksWithNestedBlocks,	allCreatedChunkGroups) => {	const { moduleGraph, chunkGraph, moduleMemCaches } = compilation;	const blockModulesRuntimeMap = new Map();	/** @type {RuntimeSpec | false} */	let blockModulesMapRuntime = false;	let blockModulesMap;	/**	 *	 * @param {DependenciesBlock} block block	 * @param {RuntimeSpec} runtime runtime	 * @returns {(Module | ConnectionState)[]} block modules in flatten tuples	 */	const getBlockModules = (block, runtime) => {		if (blockModulesMapRuntime !== runtime) {			blockModulesMap = blockModulesRuntimeMap.get(runtime);			if (blockModulesMap === undefined) {				blockModulesMap = new Map();				blockModulesRuntimeMap.set(runtime, blockModulesMap);			}		}		let blockModules = blockModulesMap.get(block);		if (blockModules !== undefined) return blockModules;		const module = /** @type {Module} */ (block.getRootBlock());		const memCache = moduleMemCaches && moduleMemCaches.get(module);		if (memCache !== undefined) {			const map = memCache.provide(				"bundleChunkGraph.blockModules",				runtime,				() => {					logger.time("visitModules: prepare");					const map = new Map();					extractBlockModules(module, moduleGraph, runtime, map);					logger.timeAggregate("visitModules: prepare");					return map;				}			);			for (const [block, blockModules] of map)				blockModulesMap.set(block, blockModules);			return map.get(block);		} else {			logger.time("visitModules: prepare");			extractBlockModules(module, moduleGraph, runtime, blockModulesMap);			blockModules = blockModulesMap.get(block);			logger.timeAggregate("visitModules: prepare");			return blockModules;		}	};	let statProcessedQueueItems = 0;	let statProcessedBlocks = 0;	let statConnectedChunkGroups = 0;	let statProcessedChunkGroupsForMerging = 0;	let statMergedAvailableModuleSets = 0;	let statForkedAvailableModules = 0;	let statForkedAvailableModulesCount = 0;	let statForkedAvailableModulesCountPlus = 0;	let statForkedMergedModulesCount = 0;	let statForkedMergedModulesCountPlus = 0;	let statForkedResultModulesCount = 0;	let statChunkGroupInfoUpdated = 0;	let statChildChunkGroupsReconnected = 0;	let nextChunkGroupIndex = 0;	let nextFreeModulePreOrderIndex = 0;	let nextFreeModulePostOrderIndex = 0;	/** @type {Map<DependenciesBlock, ChunkGroupInfo>} */	const blockChunkGroups = new Map();	/** @type {Map<string, ChunkGroupInfo>} */	const namedChunkGroups = new Map();	/** @type {Map<string, ChunkGroupInfo>} */	const namedAsyncEntrypoints = new Map();	const ADD_AND_ENTER_ENTRY_MODULE = 0;	const ADD_AND_ENTER_MODULE = 1;	const ENTER_MODULE = 2;	const PROCESS_BLOCK = 3;	const PROCESS_ENTRY_BLOCK = 4;	const LEAVE_MODULE = 5;	/** @type {QueueItem[]} */	let queue = [];	/** @type {Map<ChunkGroupInfo, Set<ChunkGroupInfo>>} */	const queueConnect = new Map();	/** @type {Set<ChunkGroupInfo>} */	const chunkGroupsForCombining = new Set();	// Fill queue with entrypoint modules	// Create ChunkGroupInfo for entrypoints	for (const [chunkGroup, modules] of inputEntrypointsAndModules) {		const runtime = getEntryRuntime(			compilation,			chunkGroup.name,			chunkGroup.options		);		/** @type {ChunkGroupInfo} */		const chunkGroupInfo = {			chunkGroup,			runtime,			minAvailableModules: undefined,			minAvailableModulesOwned: false,			availableModulesToBeMerged: [],			skippedItems: undefined,			resultingAvailableModules: undefined,			children: undefined,			availableSources: undefined,			availableChildren: undefined,			preOrderIndex: 0,			postOrderIndex: 0,			chunkLoading:				chunkGroup.options.chunkLoading !== undefined					? chunkGroup.options.chunkLoading !== false					: compilation.outputOptions.chunkLoading !== false,			asyncChunks:				chunkGroup.options.asyncChunks !== undefined					? chunkGroup.options.asyncChunks					: compilation.outputOptions.asyncChunks !== false		};		chunkGroup.index = nextChunkGroupIndex++;		if (chunkGroup.getNumberOfParents() > 0) {			// minAvailableModules for child entrypoints are unknown yet, set to undefined.			// This means no module is added until other sets are merged into			// this minAvailableModules (by the parent entrypoints)			const skippedItems = new Set();			for (const module of modules) {				skippedItems.add(module);			}			chunkGroupInfo.skippedItems = skippedItems;			chunkGroupsForCombining.add(chunkGroupInfo);		} else {			// The application may start here: We start with an empty list of available modules			chunkGroupInfo.minAvailableModules = EMPTY_SET;			const chunk = chunkGroup.getEntrypointChunk();			for (const module of modules) {				queue.push({					action: ADD_AND_ENTER_MODULE,					block: module,					module,					chunk,					chunkGroup,					chunkGroupInfo				});			}		}		chunkGroupInfoMap.set(chunkGroup, chunkGroupInfo);		if (chunkGroup.name) {			namedChunkGroups.set(chunkGroup.name, chunkGroupInfo);		}	}	// Fill availableSources with parent-child dependencies between entrypoints	for (const chunkGroupInfo of chunkGroupsForCombining) {		const { chunkGroup } = chunkGroupInfo;		chunkGroupInfo.availableSources = new Set();		for (const parent of chunkGroup.parentsIterable) {			const parentChunkGroupInfo = chunkGroupInfoMap.get(parent);			chunkGroupInfo.availableSources.add(parentChunkGroupInfo);			if (parentChunkGroupInfo.availableChildren === undefined) {				parentChunkGroupInfo.availableChildren = new Set();			}			parentChunkGroupInfo.availableChildren.add(chunkGroupInfo);		}	}	// pop() is used to read from the queue	// so it need to be reversed to be iterated in	// correct order	queue.reverse();	/** @type {Set<ChunkGroupInfo>} */	const outdatedChunkGroupInfo = new Set();	/** @type {Set<ChunkGroupInfo>} */	const chunkGroupsForMerging = new Set();	/** @type {QueueItem[]} */	let queueDelayed = [];	/** @type {[Module, ConnectionState][]} */	const skipConnectionBuffer = [];	/** @type {Module[]} */	const skipBuffer = [];	/** @type {QueueItem[]} */	const queueBuffer = [];	/** @type {Module} */	let module;	/** @type {Chunk} */	let chunk;	/** @type {ChunkGroup} */	let chunkGroup;	/** @type {DependenciesBlock} */	let block;	/** @type {ChunkGroupInfo} */	let chunkGroupInfo;	// For each async Block in graph	/**	 * @param {AsyncDependenciesBlock} b iterating over each Async DepBlock	 * @returns {void}	 */	const iteratorBlock = b => {		// 1. We create a chunk group with single chunk in it for this Block		// but only once (blockChunkGroups map)		let cgi = blockChunkGroups.get(b);		/** @type {ChunkGroup} */		let c;		/** @type {Entrypoint} */		let entrypoint;		const entryOptions = b.groupOptions && b.groupOptions.entryOptions;		if (cgi === undefined) {			const chunkName = (b.groupOptions && b.groupOptions.name) || b.chunkName;			if (entryOptions) {				cgi = namedAsyncEntrypoints.get(chunkName);				if (!cgi) {					entrypoint = compilation.addAsyncEntrypoint(						entryOptions,						module,						b.loc,						b.request					);					entrypoint.index = nextChunkGroupIndex++;					cgi = {						chunkGroup: entrypoint,						runtime: entrypoint.options.runtime || entrypoint.name,						minAvailableModules: EMPTY_SET,						minAvailableModulesOwned: false,						availableModulesToBeMerged: [],						skippedItems: undefined,						resultingAvailableModules: undefined,						children: undefined,						availableSources: undefined,						availableChildren: undefined,						preOrderIndex: 0,						postOrderIndex: 0,						chunkLoading:							entryOptions.chunkLoading !== undefined								? entryOptions.chunkLoading !== false								: chunkGroupInfo.chunkLoading,						asyncChunks:							entryOptions.asyncChunks !== undefined								? entryOptions.asyncChunks								: chunkGroupInfo.asyncChunks					};					chunkGroupInfoMap.set(entrypoint, cgi);					chunkGraph.connectBlockAndChunkGroup(b, entrypoint);					if (chunkName) {						namedAsyncEntrypoints.set(chunkName, cgi);					}				} else {					entrypoint = /** @type {Entrypoint} */ (cgi.chunkGroup);					// TODO merge entryOptions					entrypoint.addOrigin(module, b.loc, b.request);					chunkGraph.connectBlockAndChunkGroup(b, entrypoint);				}				// 2. We enqueue the DependenciesBlock for traversal				queueDelayed.push({					action: PROCESS_ENTRY_BLOCK,					block: b,					module: module,					chunk: entrypoint.chunks[0],					chunkGroup: entrypoint,					chunkGroupInfo: cgi				});			} else if (!chunkGroupInfo.asyncChunks || !chunkGroupInfo.chunkLoading) {				// Just queue the block into the current chunk group				queue.push({					action: PROCESS_BLOCK,					block: b,					module: module,					chunk,					chunkGroup,					chunkGroupInfo				});			} else {				cgi = chunkName && namedChunkGroups.get(chunkName);				if (!cgi) {					c = compilation.addChunkInGroup(						b.groupOptions || b.chunkName,						module,						b.loc,						b.request					);					c.index = nextChunkGroupIndex++;					cgi = {						chunkGroup: c,						runtime: chunkGroupInfo.runtime,						minAvailableModules: undefined,						minAvailableModulesOwned: undefined,						availableModulesToBeMerged: [],						skippedItems: undefined,						resultingAvailableModules: undefined,						children: undefined,						availableSources: undefined,						availableChildren: undefined,						preOrderIndex: 0,						postOrderIndex: 0,						chunkLoading: chunkGroupInfo.chunkLoading,						asyncChunks: chunkGroupInfo.asyncChunks					};					allCreatedChunkGroups.add(c);					chunkGroupInfoMap.set(c, cgi);					if (chunkName) {						namedChunkGroups.set(chunkName, cgi);					}				} else {					c = cgi.chunkGroup;					if (c.isInitial()) {						compilation.errors.push(							new AsyncDependencyToInitialChunkError(chunkName, module, b.loc)						);						c = chunkGroup;					} else {						c.addOptions(b.groupOptions);					}					c.addOrigin(module, b.loc, b.request);				}				blockConnections.set(b, []);			}			blockChunkGroups.set(b, cgi);		} else if (entryOptions) {			entrypoint = /** @type {Entrypoint} */ (cgi.chunkGroup);		} else {			c = cgi.chunkGroup;		}		if (c !== undefined) {			// 2. We store the connection for the block			// to connect it later if needed			blockConnections.get(b).push({				originChunkGroupInfo: chunkGroupInfo,				chunkGroup: c			});			// 3. We enqueue the chunk group info creation/updating			let connectList = queueConnect.get(chunkGroupInfo);			if (connectList === undefined) {				connectList = new Set();				queueConnect.set(chunkGroupInfo, connectList);			}			connectList.add(cgi);			// TODO check if this really need to be done for each traversal			// or if it is enough when it's queued when created			// 4. We enqueue the DependenciesBlock for traversal			queueDelayed.push({				action: PROCESS_BLOCK,				block: b,				module: module,				chunk: c.chunks[0],				chunkGroup: c,				chunkGroupInfo: cgi			});		} else if (entrypoint !== undefined) {			chunkGroupInfo.chunkGroup.addAsyncEntrypoint(entrypoint);		}	};	/**	 * @param {DependenciesBlock} block the block	 * @returns {void}	 */	const processBlock = block => {		statProcessedBlocks++;		// get prepared block info		const blockModules = getBlockModules(block, chunkGroupInfo.runtime);		if (blockModules !== undefined) {			const { minAvailableModules } = chunkGroupInfo;			// Buffer items because order need to be reversed to get indices correct			// Traverse all referenced modules			for (let i = 0; i < blockModules.length; i += 2) {				const refModule = /** @type {Module} */ (blockModules[i]);				if (chunkGraph.isModuleInChunk(refModule, chunk)) {					// skip early if already connected					continue;				}				const activeState = /** @type {ConnectionState} */ (					blockModules[i + 1]				);				if (activeState !== true) {					skipConnectionBuffer.push([refModule, activeState]);					if (activeState === false) continue;				}				if (					activeState === true &&					(minAvailableModules.has(refModule) ||						minAvailableModules.plus.has(refModule))				) {					// already in parent chunks, skip it for now					skipBuffer.push(refModule);					continue;				}				// enqueue, then add and enter to be in the correct order				// this is relevant with circular dependencies				queueBuffer.push({					action: activeState === true ? ADD_AND_ENTER_MODULE : PROCESS_BLOCK,					block: refModule,					module: refModule,					chunk,					chunkGroup,					chunkGroupInfo				});			}			// Add buffered items in reverse order			if (skipConnectionBuffer.length > 0) {				let { skippedModuleConnections } = chunkGroupInfo;				if (skippedModuleConnections === undefined) {					chunkGroupInfo.skippedModuleConnections = skippedModuleConnections =						new Set();				}				for (let i = skipConnectionBuffer.length - 1; i >= 0; i--) {					skippedModuleConnections.add(skipConnectionBuffer[i]);				}				skipConnectionBuffer.length = 0;			}			if (skipBuffer.length > 0) {				let { skippedItems } = chunkGroupInfo;				if (skippedItems === undefined) {					chunkGroupInfo.skippedItems = skippedItems = new Set();				}				for (let i = skipBuffer.length - 1; i >= 0; i--) {					skippedItems.add(skipBuffer[i]);				}				skipBuffer.length = 0;			}			if (queueBuffer.length > 0) {				for (let i = queueBuffer.length - 1; i >= 0; i--) {					queue.push(queueBuffer[i]);				}				queueBuffer.length = 0;			}		}		// Traverse all Blocks		for (const b of block.blocks) {			iteratorBlock(b);		}		if (block.blocks.length > 0 && module !== block) {			blocksWithNestedBlocks.add(block);		}	};	/**	 * @param {DependenciesBlock} block the block	 * @returns {void}	 */	const processEntryBlock = block => {		statProcessedBlocks++;		// get prepared block info		const blockModules = getBlockModules(block, chunkGroupInfo.runtime);		if (blockModules !== undefined) {			// Traverse all referenced modules			for (let i = 0; i < blockModules.length; i += 2) {				const refModule = /** @type {Module} */ (blockModules[i]);				const activeState = /** @type {ConnectionState} */ (					blockModules[i + 1]				);				// enqueue, then add and enter to be in the correct order				// this is relevant with circular dependencies				queueBuffer.push({					action:						activeState === true ? ADD_AND_ENTER_ENTRY_MODULE : PROCESS_BLOCK,					block: refModule,					module: refModule,					chunk,					chunkGroup,					chunkGroupInfo				});			}			// Add buffered items in reverse order			if (queueBuffer.length > 0) {				for (let i = queueBuffer.length - 1; i >= 0; i--) {					queue.push(queueBuffer[i]);				}				queueBuffer.length = 0;			}		}		// Traverse all Blocks		for (const b of block.blocks) {			iteratorBlock(b);		}		if (block.blocks.length > 0 && module !== block) {			blocksWithNestedBlocks.add(block);		}	};	const processQueue = () => {		while (queue.length) {			statProcessedQueueItems++;			const queueItem = queue.pop();			module = queueItem.module;			block = queueItem.block;			chunk = queueItem.chunk;			chunkGroup = queueItem.chunkGroup;			chunkGroupInfo = queueItem.chunkGroupInfo;			switch (queueItem.action) {				case ADD_AND_ENTER_ENTRY_MODULE:					chunkGraph.connectChunkAndEntryModule(						chunk,						module,						/** @type {Entrypoint} */ (chunkGroup)					);				// fallthrough				case ADD_AND_ENTER_MODULE: {					if (chunkGraph.isModuleInChunk(module, chunk)) {						// already connected, skip it						break;					}					// We connect Module and Chunk					chunkGraph.connectChunkAndModule(chunk, module);				}				// fallthrough				case ENTER_MODULE: {					const index = chunkGroup.getModulePreOrderIndex(module);					if (index === undefined) {						chunkGroup.setModulePreOrderIndex(							module,							chunkGroupInfo.preOrderIndex++						);					}					if (						moduleGraph.setPreOrderIndexIfUnset(							module,							nextFreeModulePreOrderIndex						)					) {						nextFreeModulePreOrderIndex++;					}					// reuse queueItem					queueItem.action = LEAVE_MODULE;					queue.push(queueItem);				}				// fallthrough				case PROCESS_BLOCK: {					processBlock(block);					break;				}				case PROCESS_ENTRY_BLOCK: {					processEntryBlock(block);					break;				}				case LEAVE_MODULE: {					const index = chunkGroup.getModulePostOrderIndex(module);					if (index === undefined) {						chunkGroup.setModulePostOrderIndex(							module,							chunkGroupInfo.postOrderIndex++						);					}					if (						moduleGraph.setPostOrderIndexIfUnset(							module,							nextFreeModulePostOrderIndex						)					) {						nextFreeModulePostOrderIndex++;					}					break;				}			}		}	};	const calculateResultingAvailableModules = chunkGroupInfo => {		if (chunkGroupInfo.resultingAvailableModules)			return chunkGroupInfo.resultingAvailableModules;		const minAvailableModules = chunkGroupInfo.minAvailableModules;		// Create a new Set of available modules at this point		// We want to be as lazy as possible. There are multiple ways doing this:		// Note that resultingAvailableModules is stored as "(a) + (b)" as it's a ModuleSetPlus		// - resultingAvailableModules = (modules of chunk) + (minAvailableModules + minAvailableModules.plus)		// - resultingAvailableModules = (minAvailableModules + modules of chunk) + (minAvailableModules.plus)		// We choose one depending on the size of minAvailableModules vs minAvailableModules.plus		let resultingAvailableModules;		if (minAvailableModules.size > minAvailableModules.plus.size) {			// resultingAvailableModules = (modules of chunk) + (minAvailableModules + minAvailableModules.plus)			resultingAvailableModules =				/** @type {Set<Module> & {plus: Set<Module>}} */ (new Set());			for (const module of minAvailableModules.plus)				minAvailableModules.add(module);			minAvailableModules.plus = EMPTY_SET;			resultingAvailableModules.plus = minAvailableModules;			chunkGroupInfo.minAvailableModulesOwned = false;		} else {			// resultingAvailableModules = (minAvailableModules + modules of chunk) + (minAvailableModules.plus)			resultingAvailableModules =				/** @type {Set<Module> & {plus: Set<Module>}} */ (					new Set(minAvailableModules)				);			resultingAvailableModules.plus = minAvailableModules.plus;		}		// add the modules from the chunk group to the set		for (const chunk of chunkGroupInfo.chunkGroup.chunks) {			for (const m of chunkGraph.getChunkModulesIterable(chunk)) {				resultingAvailableModules.add(m);			}		}		return (chunkGroupInfo.resultingAvailableModules =			resultingAvailableModules);	};	const processConnectQueue = () => {		// Figure out new parents for chunk groups		// to get new available modules for these children		for (const [chunkGroupInfo, targets] of queueConnect) {			// 1. Add new targets to the list of children			if (chunkGroupInfo.children === undefined) {				chunkGroupInfo.children = targets;			} else {				for (const target of targets) {					chunkGroupInfo.children.add(target);				}			}			// 2. Calculate resulting available modules			const resultingAvailableModules =				calculateResultingAvailableModules(chunkGroupInfo);			const runtime = chunkGroupInfo.runtime;			// 3. Update chunk group info			for (const target of targets) {				target.availableModulesToBeMerged.push(resultingAvailableModules);				chunkGroupsForMerging.add(target);				const oldRuntime = target.runtime;				const newRuntime = mergeRuntime(oldRuntime, runtime);				if (oldRuntime !== newRuntime) {					target.runtime = newRuntime;					outdatedChunkGroupInfo.add(target);				}			}			statConnectedChunkGroups += targets.size;		}		queueConnect.clear();	};	const processChunkGroupsForMerging = () => {		statProcessedChunkGroupsForMerging += chunkGroupsForMerging.size;		// Execute the merge		for (const info of chunkGroupsForMerging) {			const availableModulesToBeMerged = info.availableModulesToBeMerged;			let cachedMinAvailableModules = info.minAvailableModules;			statMergedAvailableModuleSets += availableModulesToBeMerged.length;			// 1. Get minimal available modules			// It doesn't make sense to traverse a chunk again with more available modules.			// This step calculates the minimal available modules and skips traversal when			// the list didn't shrink.			if (availableModulesToBeMerged.length > 1) {				availableModulesToBeMerged.sort(bySetSize);			}			let changed = false;			merge: for (const availableModules of availableModulesToBeMerged) {				if (cachedMinAvailableModules === undefined) {					cachedMinAvailableModules = availableModules;					info.minAvailableModules = cachedMinAvailableModules;					info.minAvailableModulesOwned = false;					changed = true;				} else {					if (info.minAvailableModulesOwned) {						// We own it and can modify it						if (cachedMinAvailableModules.plus === availableModules.plus) {							for (const m of cachedMinAvailableModules) {								if (!availableModules.has(m)) {									cachedMinAvailableModules.delete(m);									changed = true;								}							}						} else {							for (const m of cachedMinAvailableModules) {								if (!availableModules.has(m) && !availableModules.plus.has(m)) {									cachedMinAvailableModules.delete(m);									changed = true;								}							}							for (const m of cachedMinAvailableModules.plus) {								if (!availableModules.has(m) && !availableModules.plus.has(m)) {									// We can't remove modules from the plus part									// so we need to merge plus into the normal part to allow modifying it									const iterator =										cachedMinAvailableModules.plus[Symbol.iterator]();									// fast forward add all modules until m									/** @type {IteratorResult<Module>} */									let it;									while (!(it = iterator.next()).done) {										const module = it.value;										if (module === m) break;										cachedMinAvailableModules.add(module);									}									// check the remaining modules before adding									while (!(it = iterator.next()).done) {										const module = it.value;										if (											availableModules.has(module) ||											availableModules.plus.has(module)										) {											cachedMinAvailableModules.add(module);										}									}									cachedMinAvailableModules.plus = EMPTY_SET;									changed = true;									continue merge;								}							}						}					} else if (cachedMinAvailableModules.plus === availableModules.plus) {						// Common and fast case when the plus part is shared						// We only need to care about the normal part						if (availableModules.size < cachedMinAvailableModules.size) {							// the new availableModules is smaller so it's faster to							// fork from the new availableModules							statForkedAvailableModules++;							statForkedAvailableModulesCount += availableModules.size;							statForkedMergedModulesCount += cachedMinAvailableModules.size;							// construct a new Set as intersection of cachedMinAvailableModules and availableModules							const newSet = /** @type {ModuleSetPlus} */ (new Set());							newSet.plus = availableModules.plus;							for (const m of availableModules) {								if (cachedMinAvailableModules.has(m)) {									newSet.add(m);								}							}							statForkedResultModulesCount += newSet.size;							cachedMinAvailableModules = newSet;							info.minAvailableModulesOwned = true;							info.minAvailableModules = newSet;							changed = true;							continue merge;						}						for (const m of cachedMinAvailableModules) {							if (!availableModules.has(m)) {								// cachedMinAvailableModules need to be modified								// but we don't own it								statForkedAvailableModules++;								statForkedAvailableModulesCount +=									cachedMinAvailableModules.size;								statForkedMergedModulesCount += availableModules.size;								// construct a new Set as intersection of cachedMinAvailableModules and availableModules								// as the plus part is equal we can just take over this one								const newSet = /** @type {ModuleSetPlus} */ (new Set());								newSet.plus = availableModules.plus;								const iterator = cachedMinAvailableModules[Symbol.iterator]();								// fast forward add all modules until m								/** @type {IteratorResult<Module>} */								let it;								while (!(it = iterator.next()).done) {									const module = it.value;									if (module === m) break;									newSet.add(module);								}								// check the remaining modules before adding								while (!(it = iterator.next()).done) {									const module = it.value;									if (availableModules.has(module)) {										newSet.add(module);									}								}								statForkedResultModulesCount += newSet.size;								cachedMinAvailableModules = newSet;								info.minAvailableModulesOwned = true;								info.minAvailableModules = newSet;								changed = true;								continue merge;							}						}					} else {						for (const m of cachedMinAvailableModules) {							if (!availableModules.has(m) && !availableModules.plus.has(m)) {								// cachedMinAvailableModules need to be modified								// but we don't own it								statForkedAvailableModules++;								statForkedAvailableModulesCount +=									cachedMinAvailableModules.size;								statForkedAvailableModulesCountPlus +=									cachedMinAvailableModules.plus.size;								statForkedMergedModulesCount += availableModules.size;								statForkedMergedModulesCountPlus += availableModules.plus.size;								// construct a new Set as intersection of cachedMinAvailableModules and availableModules								const newSet = /** @type {ModuleSetPlus} */ (new Set());								newSet.plus = EMPTY_SET;								const iterator = cachedMinAvailableModules[Symbol.iterator]();								// fast forward add all modules until m								/** @type {IteratorResult<Module>} */								let it;								while (!(it = iterator.next()).done) {									const module = it.value;									if (module === m) break;									newSet.add(module);								}								// check the remaining modules before adding								while (!(it = iterator.next()).done) {									const module = it.value;									if (										availableModules.has(module) ||										availableModules.plus.has(module)									) {										newSet.add(module);									}								}								// also check all modules in cachedMinAvailableModules.plus								for (const module of cachedMinAvailableModules.plus) {									if (										availableModules.has(module) ||										availableModules.plus.has(module)									) {										newSet.add(module);									}								}								statForkedResultModulesCount += newSet.size;								cachedMinAvailableModules = newSet;								info.minAvailableModulesOwned = true;								info.minAvailableModules = newSet;								changed = true;								continue merge;							}						}						for (const m of cachedMinAvailableModules.plus) {							if (!availableModules.has(m) && !availableModules.plus.has(m)) {								// cachedMinAvailableModules need to be modified								// but we don't own it								statForkedAvailableModules++;								statForkedAvailableModulesCount +=									cachedMinAvailableModules.size;								statForkedAvailableModulesCountPlus +=									cachedMinAvailableModules.plus.size;								statForkedMergedModulesCount += availableModules.size;								statForkedMergedModulesCountPlus += availableModules.plus.size;								// construct a new Set as intersection of cachedMinAvailableModules and availableModules								// we already know that all modules directly from cachedMinAvailableModules are in availableModules too								const newSet = /** @type {ModuleSetPlus} */ (									new Set(cachedMinAvailableModules)								);								newSet.plus = EMPTY_SET;								const iterator =									cachedMinAvailableModules.plus[Symbol.iterator]();								// fast forward add all modules until m								/** @type {IteratorResult<Module>} */								let it;								while (!(it = iterator.next()).done) {									const module = it.value;									if (module === m) break;									newSet.add(module);								}								// check the remaining modules before adding								while (!(it = iterator.next()).done) {									const module = it.value;									if (										availableModules.has(module) ||										availableModules.plus.has(module)									) {										newSet.add(module);									}								}								statForkedResultModulesCount += newSet.size;								cachedMinAvailableModules = newSet;								info.minAvailableModulesOwned = true;								info.minAvailableModules = newSet;								changed = true;								continue merge;							}						}					}				}			}			availableModulesToBeMerged.length = 0;			if (changed) {				info.resultingAvailableModules = undefined;				outdatedChunkGroupInfo.add(info);			}		}		chunkGroupsForMerging.clear();	};	const processChunkGroupsForCombining = () => {		for (const info of chunkGroupsForCombining) {			for (const source of info.availableSources) {				if (!source.minAvailableModules) {					chunkGroupsForCombining.delete(info);					break;				}			}		}		for (const info of chunkGroupsForCombining) {			const availableModules = /** @type {ModuleSetPlus} */ (new Set());			availableModules.plus = EMPTY_SET;			const mergeSet = set => {				if (set.size > availableModules.plus.size) {					for (const item of availableModules.plus) availableModules.add(item);					availableModules.plus = set;				} else {					for (const item of set) availableModules.add(item);				}			};			// combine minAvailableModules from all resultingAvailableModules			for (const source of info.availableSources) {				const resultingAvailableModules =					calculateResultingAvailableModules(source);				mergeSet(resultingAvailableModules);				mergeSet(resultingAvailableModules.plus);			}			info.minAvailableModules = availableModules;			info.minAvailableModulesOwned = false;			info.resultingAvailableModules = undefined;			outdatedChunkGroupInfo.add(info);		}		chunkGroupsForCombining.clear();	};	const processOutdatedChunkGroupInfo = () => {		statChunkGroupInfoUpdated += outdatedChunkGroupInfo.size;		// Revisit skipped elements		for (const info of outdatedChunkGroupInfo) {			// 1. Reconsider skipped items			if (info.skippedItems !== undefined) {				const { minAvailableModules } = info;				for (const module of info.skippedItems) {					if (						!minAvailableModules.has(module) &&						!minAvailableModules.plus.has(module)					) {						queue.push({							action: ADD_AND_ENTER_MODULE,							block: module,							module,							chunk: info.chunkGroup.chunks[0],							chunkGroup: info.chunkGroup,							chunkGroupInfo: info						});						info.skippedItems.delete(module);					}				}			}			// 2. Reconsider skipped connections			if (info.skippedModuleConnections !== undefined) {				const { minAvailableModules } = info;				for (const entry of info.skippedModuleConnections) {					const [module, activeState] = entry;					if (activeState === false) continue;					if (activeState === true) {						info.skippedModuleConnections.delete(entry);					}					if (						activeState === true &&						(minAvailableModules.has(module) ||							minAvailableModules.plus.has(module))					) {						info.skippedItems.add(module);						continue;					}					queue.push({						action: activeState === true ? ADD_AND_ENTER_MODULE : PROCESS_BLOCK,						block: module,						module,						chunk: info.chunkGroup.chunks[0],						chunkGroup: info.chunkGroup,						chunkGroupInfo: info					});				}			}			// 2. Reconsider children chunk groups			if (info.children !== undefined) {				statChildChunkGroupsReconnected += info.children.size;				for (const cgi of info.children) {					let connectList = queueConnect.get(info);					if (connectList === undefined) {						connectList = new Set();						queueConnect.set(info, connectList);					}					connectList.add(cgi);				}			}			// 3. Reconsider chunk groups for combining			if (info.availableChildren !== undefined) {				for (const cgi of info.availableChildren) {					chunkGroupsForCombining.add(cgi);				}			}		}		outdatedChunkGroupInfo.clear();	};	// Iterative traversal of the Module graph	// Recursive would be simpler to write but could result in Stack Overflows	while (queue.length || queueConnect.size) {		logger.time("visitModules: visiting");		processQueue();		logger.timeAggregateEnd("visitModules: prepare");		logger.timeEnd("visitModules: visiting");		if (chunkGroupsForCombining.size > 0) {			logger.time("visitModules: combine available modules");			processChunkGroupsForCombining();			logger.timeEnd("visitModules: combine available modules");		}		if (queueConnect.size > 0) {			logger.time("visitModules: calculating available modules");			processConnectQueue();			logger.timeEnd("visitModules: calculating available modules");			if (chunkGroupsForMerging.size > 0) {				logger.time("visitModules: merging available modules");				processChunkGroupsForMerging();				logger.timeEnd("visitModules: merging available modules");			}		}		if (outdatedChunkGroupInfo.size > 0) {			logger.time("visitModules: check modules for revisit");			processOutdatedChunkGroupInfo();			logger.timeEnd("visitModules: check modules for revisit");		}		// Run queueDelayed when all items of the queue are processed		// This is important to get the global indexing correct		// Async blocks should be processed after all sync blocks are processed		if (queue.length === 0) {			const tempQueue = queue;			queue = queueDelayed.reverse();			queueDelayed = tempQueue;		}	}	logger.log(		`${statProcessedQueueItems} queue items processed (${statProcessedBlocks} blocks)`	);	logger.log(`${statConnectedChunkGroups} chunk groups connected`);	logger.log(		`${statProcessedChunkGroupsForMerging} chunk groups processed for merging (${statMergedAvailableModuleSets} module sets, ${statForkedAvailableModules} forked, ${statForkedAvailableModulesCount} + ${statForkedAvailableModulesCountPlus} modules forked, ${statForkedMergedModulesCount} + ${statForkedMergedModulesCountPlus} modules merged into fork, ${statForkedResultModulesCount} resulting modules)`	);	logger.log(		`${statChunkGroupInfoUpdated} chunk group info updated (${statChildChunkGroupsReconnected} already connected chunk groups reconnected)`	);};/** * * @param {Compilation} compilation the compilation * @param {Set<DependenciesBlock>} blocksWithNestedBlocks flag for blocks that have nested blocks * @param {Map<AsyncDependenciesBlock, BlockChunkGroupConnection[]>} blockConnections connection for blocks * @param {Map<ChunkGroup, ChunkGroupInfo>} chunkGroupInfoMap mapping from chunk group to available modules */const connectChunkGroups = (	compilation,	blocksWithNestedBlocks,	blockConnections,	chunkGroupInfoMap) => {	const { chunkGraph } = compilation;	/**	 * Helper function to check if all modules of a chunk are available	 *	 * @param {ChunkGroup} chunkGroup the chunkGroup to scan	 * @param {ModuleSetPlus} availableModules the comparator set	 * @returns {boolean} return true if all modules of a chunk are available	 */	const areModulesAvailable = (chunkGroup, availableModules) => {		for (const chunk of chunkGroup.chunks) {			for (const module of chunkGraph.getChunkModulesIterable(chunk)) {				if (!availableModules.has(module) && !availableModules.plus.has(module))					return false;			}		}		return true;	};	// For each edge in the basic chunk graph	for (const [block, connections] of blockConnections) {		// 1. Check if connection is needed		// When none of the dependencies need to be connected		// we can skip all of them		// It's not possible to filter each item so it doesn't create inconsistent		// connections and modules can only create one version		// TODO maybe decide this per runtime		if (			// TODO is this needed?			!blocksWithNestedBlocks.has(block) &&			connections.every(({ chunkGroup, originChunkGroupInfo }) =>				areModulesAvailable(					chunkGroup,					originChunkGroupInfo.resultingAvailableModules				)			)		) {			continue;		}		// 2. Foreach edge		for (let i = 0; i < connections.length; i++) {			const { chunkGroup, originChunkGroupInfo } = connections[i];			// 3. Connect block with chunk			chunkGraph.connectBlockAndChunkGroup(block, chunkGroup);			// 4. Connect chunk with parent			connectChunkGroupParentAndChild(				originChunkGroupInfo.chunkGroup,				chunkGroup			);		}	}};/** * Remove all unconnected chunk groups * @param {Compilation} compilation the compilation * @param {Iterable<ChunkGroup>} allCreatedChunkGroups all chunk groups that where created before */const cleanupUnconnectedGroups = (compilation, allCreatedChunkGroups) => {	const { chunkGraph } = compilation;	for (const chunkGroup of allCreatedChunkGroups) {		if (chunkGroup.getNumberOfParents() === 0) {			for (const chunk of chunkGroup.chunks) {				compilation.chunks.delete(chunk);				chunkGraph.disconnectChunk(chunk);			}			chunkGraph.disconnectChunkGroup(chunkGroup);			chunkGroup.remove();		}	}};/** * This method creates the Chunk graph from the Module graph * @param {Compilation} compilation the compilation * @param {Map<Entrypoint, Module[]>} inputEntrypointsAndModules chunk groups which are processed with the modules * @returns {void} */const buildChunkGraph = (compilation, inputEntrypointsAndModules) => {	const logger = compilation.getLogger("webpack.buildChunkGraph");	// SHARED STATE	/** @type {Map<AsyncDependenciesBlock, BlockChunkGroupConnection[]>} */	const blockConnections = new Map();	/** @type {Set<ChunkGroup>} */	const allCreatedChunkGroups = new Set();	/** @type {Map<ChunkGroup, ChunkGroupInfo>} */	const chunkGroupInfoMap = new Map();	/** @type {Set<DependenciesBlock>} */	const blocksWithNestedBlocks = new Set();	// PART ONE	logger.time("visitModules");	visitModules(		logger,		compilation,		inputEntrypointsAndModules,		chunkGroupInfoMap,		blockConnections,		blocksWithNestedBlocks,		allCreatedChunkGroups	);	logger.timeEnd("visitModules");	// PART TWO	logger.time("connectChunkGroups");	connectChunkGroups(		compilation,		blocksWithNestedBlocks,		blockConnections,		chunkGroupInfoMap	);	logger.timeEnd("connectChunkGroups");	for (const [chunkGroup, chunkGroupInfo] of chunkGroupInfoMap) {		for (const chunk of chunkGroup.chunks)			chunk.runtime = mergeRuntime(chunk.runtime, chunkGroupInfo.runtime);	}	// Cleanup work	logger.time("cleanup");	cleanupUnconnectedGroups(compilation, allCreatedChunkGroups);	logger.timeEnd("cleanup");};module.exports = buildChunkGraph;
 |