| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895 | /** * @license Fraction.js v4.2.0 23/05/2021 * https://www.xarg.org/2014/03/rational-numbers-in-javascript/ * * Copyright (c) 2021, Robert Eisele (robert@xarg.org) * Dual licensed under the MIT or GPL Version 2 licenses. **//** * * This class offers the possibility to calculate fractions. * You can pass a fraction in different formats. Either as array, as double, as string or as an integer. * * Array/Object form * [ 0 => <nominator>, 1 => <denominator> ] * [ n => <nominator>, d => <denominator> ] * * Integer form * - Single integer value * * Double form * - Single double value * * String form * 123.456 - a simple double * 123/456 - a string fraction * 123.'456' - a double with repeating decimal places * 123.(456) - synonym * 123.45'6' - a double with repeating last place * 123.45(6) - synonym * * Example: * * let f = new Fraction("9.4'31'"); * f.mul([-4, 3]).div(4.9); * */(function(root) {  "use strict";  // Set Identity function to downgrade BigInt to Number if needed  if (!BigInt) BigInt = function(n) { if (isNaN(n)) throw new Error(""); return n; };  const C_ONE = BigInt(1);  const C_ZERO = BigInt(0);  const C_TEN = BigInt(10);  const C_TWO = BigInt(2);  const C_FIVE = BigInt(5);  // Maximum search depth for cyclic rational numbers. 2000 should be more than enough.  // Example: 1/7 = 0.(142857) has 6 repeating decimal places.  // If MAX_CYCLE_LEN gets reduced, long cycles will not be detected and toString() only gets the first 10 digits  const MAX_CYCLE_LEN = 2000;  // Parsed data to avoid calling "new" all the time  const P = {    "s": C_ONE,    "n": C_ZERO,    "d": C_ONE  };  function assign(n, s) {    try {      n = BigInt(n);    } catch (e) {      throw Fraction['InvalidParameter'];    }    return n * s;  }  // Creates a new Fraction internally without the need of the bulky constructor  function newFraction(n, d) {    if (d === C_ZERO) {      throw Fraction['DivisionByZero'];    }    const f = Object.create(Fraction.prototype);    f["s"] = n < C_ZERO ? -C_ONE : C_ONE;    n = n < C_ZERO ? -n : n;    const a = gcd(n, d);    f["n"] = n / a;    f["d"] = d / a;    return f;  }  function factorize(num) {    const factors = {};    let n = num;    let i = C_TWO;    let s = C_FIVE - C_ONE;    while (s <= n) {      while (n % i === C_ZERO) {        n/= i;        factors[i] = (factors[i] || C_ZERO) + C_ONE;      }      s+= C_ONE + C_TWO * i++;    }    if (n !== num) {      if (n > 1)        factors[n] = (factors[n] || C_ZERO) + C_ONE;    } else {      factors[num] = (factors[num] || C_ZERO) + C_ONE;    }    return factors;  }  const parse = function(p1, p2) {    let n = C_ZERO, d = C_ONE, s = C_ONE;    if (p1 === undefined || p1 === null) {      /* void */    } else if (p2 !== undefined) {      n = BigInt(p1);      d = BigInt(p2);      s = n * d;      if (n % C_ONE !== C_ZERO || d % C_ONE !== C_ZERO) {        throw Fraction['NonIntegerParameter'];      }    } else if (typeof p1 === "object") {      if ("d" in p1 && "n" in p1) {        n = BigInt(p1["n"]);        d = BigInt(p1["d"]);        if ("s" in p1)          n*= BigInt(p1["s"]);      } else if (0 in p1) {        n = BigInt(p1[0]);        if (1 in p1)          d = BigInt(p1[1]);      } else if (p1 instanceof BigInt) {        n = BigInt(p1);      } else {        throw Fraction['InvalidParameter'];      }      s = n * d;    } else if (typeof p1 === "bigint") {      n = p1;      s = p1;      d = BigInt(1);    } else if (typeof p1 === "number") {      if (isNaN(p1)) {        throw Fraction['InvalidParameter'];      }      if (p1 < 0) {        s = -C_ONE;        p1 = -p1;      }      if (p1 % 1 === 0) {        n = BigInt(p1);      } else if (p1 > 0) { // check for != 0, scale would become NaN (log(0)), which converges really slow        let z = 1;        let A = 0, B = 1;        let C = 1, D = 1;        let N = 10000000;        if (p1 >= 1) {          z = 10 ** Math.floor(1 + Math.log10(p1));          p1/= z;        }        // Using Farey Sequences        while (B <= N && D <= N) {          let M = (A + C) / (B + D);          if (p1 === M) {            if (B + D <= N) {              n = A + C;              d = B + D;            } else if (D > B) {              n = C;              d = D;            } else {              n = A;              d = B;            }            break;          } else {            if (p1 > M) {              A+= C;              B+= D;            } else {              C+= A;              D+= B;            }            if (B > N) {              n = C;              d = D;            } else {              n = A;              d = B;            }          }        }        n = BigInt(n) * BigInt(z);        d = BigInt(d);      }    } else if (typeof p1 === "string") {      let ndx = 0;      let v = C_ZERO, w = C_ZERO, x = C_ZERO, y = C_ONE, z = C_ONE;      let match = p1.match(/\d+|./g);      if (match === null)        throw Fraction['InvalidParameter'];      if (match[ndx] === '-') {// Check for minus sign at the beginning        s = -C_ONE;        ndx++;      } else if (match[ndx] === '+') {// Check for plus sign at the beginning        ndx++;      }      if (match.length === ndx + 1) { // Check if it's just a simple number "1234"        w = assign(match[ndx++], s);      } else if (match[ndx + 1] === '.' || match[ndx] === '.') { // Check if it's a decimal number        if (match[ndx] !== '.') { // Handle 0.5 and .5          v = assign(match[ndx++], s);        }        ndx++;        // Check for decimal places        if (ndx + 1 === match.length || match[ndx + 1] === '(' && match[ndx + 3] === ')' || match[ndx + 1] === "'" && match[ndx + 3] === "'") {          w = assign(match[ndx], s);          y = C_TEN ** BigInt(match[ndx].length);          ndx++;        }        // Check for repeating places        if (match[ndx] === '(' && match[ndx + 2] === ')' || match[ndx] === "'" && match[ndx + 2] === "'") {          x = assign(match[ndx + 1], s);          z = C_TEN ** BigInt(match[ndx + 1].length) - C_ONE;          ndx+= 3;        }      } else if (match[ndx + 1] === '/' || match[ndx + 1] === ':') { // Check for a simple fraction "123/456" or "123:456"        w = assign(match[ndx], s);        y = assign(match[ndx + 2], C_ONE);        ndx+= 3;      } else if (match[ndx + 3] === '/' && match[ndx + 1] === ' ') { // Check for a complex fraction "123 1/2"        v = assign(match[ndx], s);        w = assign(match[ndx + 2], s);        y = assign(match[ndx + 4], C_ONE);        ndx+= 5;      }      if (match.length <= ndx) { // Check for more tokens on the stack        d = y * z;        s = /* void */        n = x + d * v + z * w;      } else {        throw Fraction['InvalidParameter'];      }    } else {      throw Fraction['InvalidParameter'];    }    if (d === C_ZERO) {      throw Fraction['DivisionByZero'];    }    P["s"] = s < C_ZERO ? -C_ONE : C_ONE;    P["n"] = n < C_ZERO ? -n : n;    P["d"] = d < C_ZERO ? -d : d;  };  function modpow(b, e, m) {    let r = C_ONE;    for (; e > C_ZERO; b = (b * b) % m, e >>= C_ONE) {      if (e & C_ONE) {        r = (r * b) % m;      }    }    return r;  }  function cycleLen(n, d) {    for (; d % C_TWO === C_ZERO;      d/= C_TWO) {    }    for (; d % C_FIVE === C_ZERO;      d/= C_FIVE) {    }    if (d === C_ONE) // Catch non-cyclic numbers      return C_ZERO;    // If we would like to compute really large numbers quicker, we could make use of Fermat's little theorem:    // 10^(d-1) % d == 1    // However, we don't need such large numbers and MAX_CYCLE_LEN should be the capstone,    // as we want to translate the numbers to strings.    let rem = C_TEN % d;    let t = 1;    for (; rem !== C_ONE; t++) {      rem = rem * C_TEN % d;      if (t > MAX_CYCLE_LEN)        return C_ZERO; // Returning 0 here means that we don't print it as a cyclic number. It's likely that the answer is `d-1`    }    return BigInt(t);  }  function cycleStart(n, d, len) {    let rem1 = C_ONE;    let rem2 = modpow(C_TEN, len, d);    for (let t = 0; t < 300; t++) { // s < ~log10(Number.MAX_VALUE)      // Solve 10^s == 10^(s+t) (mod d)      if (rem1 === rem2)        return BigInt(t);      rem1 = rem1 * C_TEN % d;      rem2 = rem2 * C_TEN % d;    }    return 0;  }  function gcd(a, b) {    if (!a)      return b;    if (!b)      return a;    while (1) {      a%= b;      if (!a)        return b;      b%= a;      if (!b)        return a;    }  }  /**   * Module constructor   *   * @constructor   * @param {number|Fraction=} a   * @param {number=} b   */  function Fraction(a, b) {    parse(a, b);    if (this instanceof Fraction) {      a = gcd(P["d"], P["n"]); // Abuse a      this["s"] = P["s"];      this["n"] = P["n"] / a;      this["d"] = P["d"] / a;    } else {      return newFraction(P['s'] * P['n'], P['d']);    }  }  Fraction['DivisionByZero'] = new Error("Division by Zero");  Fraction['InvalidParameter'] = new Error("Invalid argument");  Fraction['NonIntegerParameter'] = new Error("Parameters must be integer");  Fraction.prototype = {    "s": C_ONE,    "n": C_ZERO,    "d": C_ONE,    /**     * Calculates the absolute value     *     * Ex: new Fraction(-4).abs() => 4     **/    "abs": function() {      return newFraction(this["n"], this["d"]);    },    /**     * Inverts the sign of the current fraction     *     * Ex: new Fraction(-4).neg() => 4     **/    "neg": function() {      return newFraction(-this["s"] * this["n"], this["d"]);    },    /**     * Adds two rational numbers     *     * Ex: new Fraction({n: 2, d: 3}).add("14.9") => 467 / 30     **/    "add": function(a, b) {      parse(a, b);      return newFraction(        this["s"] * this["n"] * P["d"] + P["s"] * this["d"] * P["n"],        this["d"] * P["d"]      );    },    /**     * Subtracts two rational numbers     *     * Ex: new Fraction({n: 2, d: 3}).add("14.9") => -427 / 30     **/    "sub": function(a, b) {      parse(a, b);      return newFraction(        this["s"] * this["n"] * P["d"] - P["s"] * this["d"] * P["n"],        this["d"] * P["d"]      );    },    /**     * Multiplies two rational numbers     *     * Ex: new Fraction("-17.(345)").mul(3) => 5776 / 111     **/    "mul": function(a, b) {      parse(a, b);      return newFraction(        this["s"] * P["s"] * this["n"] * P["n"],        this["d"] * P["d"]      );    },    /**     * Divides two rational numbers     *     * Ex: new Fraction("-17.(345)").inverse().div(3)     **/    "div": function(a, b) {      parse(a, b);      return newFraction(        this["s"] * P["s"] * this["n"] * P["d"],        this["d"] * P["n"]      );    },    /**     * Clones the actual object     *     * Ex: new Fraction("-17.(345)").clone()     **/    "clone": function() {      return newFraction(this['s'] * this['n'], this['d']);    },    /**     * Calculates the modulo of two rational numbers - a more precise fmod     *     * Ex: new Fraction('4.(3)').mod([7, 8]) => (13/3) % (7/8) = (5/6)     **/    "mod": function(a, b) {      if (a === undefined) {        return newFraction(this["s"] * this["n"] % this["d"], C_ONE);      }      parse(a, b);      if (0 === P["n"] && 0 === this["d"]) {        throw Fraction['DivisionByZero'];      }      /*       * First silly attempt, kinda slow       *       return that["sub"]({       "n": num["n"] * Math.floor((this.n / this.d) / (num.n / num.d)),       "d": num["d"],       "s": this["s"]       });*/      /*       * New attempt: a1 / b1 = a2 / b2 * q + r       * => b2 * a1 = a2 * b1 * q + b1 * b2 * r       * => (b2 * a1 % a2 * b1) / (b1 * b2)       */      return newFraction(        this["s"] * (P["d"] * this["n"]) % (P["n"] * this["d"]),        P["d"] * this["d"]      );    },    /**     * Calculates the fractional gcd of two rational numbers     *     * Ex: new Fraction(5,8).gcd(3,7) => 1/56     */    "gcd": function(a, b) {      parse(a, b);      // gcd(a / b, c / d) = gcd(a, c) / lcm(b, d)      return newFraction(gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]), P["d"] * this["d"]);    },    /**     * Calculates the fractional lcm of two rational numbers     *     * Ex: new Fraction(5,8).lcm(3,7) => 15     */    "lcm": function(a, b) {      parse(a, b);      // lcm(a / b, c / d) = lcm(a, c) / gcd(b, d)      if (P["n"] === C_ZERO && this["n"] === C_ZERO) {        return newFraction(C_ZERO, C_ONE);      }      return newFraction(P["n"] * this["n"], gcd(P["n"], this["n"]) * gcd(P["d"], this["d"]));    },    /**     * Gets the inverse of the fraction, means numerator and denominator are exchanged     *     * Ex: new Fraction([-3, 4]).inverse() => -4 / 3     **/    "inverse": function() {      return newFraction(this["s"] * this["d"], this["n"]);    },    /**     * Calculates the fraction to some integer exponent     *     * Ex: new Fraction(-1,2).pow(-3) => -8     */    "pow": function(a, b) {      parse(a, b);      // Trivial case when exp is an integer      if (P['d'] === C_ONE) {        if (P['s'] < C_ZERO) {          return newFraction((this['s'] * this["d"]) ** P['n'], this["n"] ** P['n']);        } else {          return newFraction((this['s'] * this["n"]) ** P['n'], this["d"] ** P['n']);        }      }      // Negative roots become complex      //     (-a/b)^(c/d) = x      // <=> (-1)^(c/d) * (a/b)^(c/d) = x      // <=> (cos(pi) + i*sin(pi))^(c/d) * (a/b)^(c/d) = x      // <=> (cos(c*pi/d) + i*sin(c*pi/d)) * (a/b)^(c/d) = x       # DeMoivre's formula      // From which follows that only for c=0 the root is non-complex      if (this['s'] < C_ZERO) return null;      // Now prime factor n and d      let N = factorize(this['n']);      let D = factorize(this['d']);      // Exponentiate and take root for n and d individually      let n = C_ONE;      let d = C_ONE;      for (let k in N) {        if (k === '1') continue;        if (k === '0') {          n = C_ZERO;          break;        }        N[k]*= P['n'];        if (N[k] % P['d'] === C_ZERO) {          N[k]/= P['d'];        } else return null;        n*= BigInt(k) ** N[k];      }      for (let k in D) {        if (k === '1') continue;        D[k]*= P['n'];        if (D[k] % P['d'] === C_ZERO) {          D[k]/= P['d'];        } else return null;        d*= BigInt(k) ** D[k];      }      if (P['s'] < C_ZERO) {        return newFraction(d, n);      }      return newFraction(n, d);    },    /**     * Check if two rational numbers are the same     *     * Ex: new Fraction(19.6).equals([98, 5]);     **/    "equals": function(a, b) {      parse(a, b);      return this["s"] * this["n"] * P["d"] === P["s"] * P["n"] * this["d"]; // Same as compare() === 0    },    /**     * Check if two rational numbers are the same     *     * Ex: new Fraction(19.6).equals([98, 5]);     **/    "compare": function(a, b) {      parse(a, b);      let t = (this["s"] * this["n"] * P["d"] - P["s"] * P["n"] * this["d"]);      return (C_ZERO < t) - (t < C_ZERO);    },    /**     * Calculates the ceil of a rational number     *     * Ex: new Fraction('4.(3)').ceil() => (5 / 1)     **/    "ceil": function(places) {      places = C_TEN ** BigInt(places || 0);      return newFraction(this["s"] * places * this["n"] / this["d"] +        (places * this["n"] % this["d"] > C_ZERO && this["s"] >= C_ZERO ? C_ONE : C_ZERO),        places);    },    /**     * Calculates the floor of a rational number     *     * Ex: new Fraction('4.(3)').floor() => (4 / 1)     **/    "floor": function(places) {      places = C_TEN ** BigInt(places || 0);      return newFraction(this["s"] * places * this["n"] / this["d"] -        (places * this["n"] % this["d"] > C_ZERO && this["s"] < C_ZERO ? C_ONE : C_ZERO),        places);    },    /**     * Rounds a rational numbers     *     * Ex: new Fraction('4.(3)').round() => (4 / 1)     **/    "round": function(places) {      places = C_TEN ** BigInt(places || 0);      /* Derivation:      s >= 0:        round(n / d) = trunc(n / d) + (n % d) / d >= 0.5 ? 1 : 0                     = trunc(n / d) + 2(n % d) >= d ? 1 : 0      s < 0:        round(n / d) =-trunc(n / d) - (n % d) / d > 0.5 ? 1 : 0                     =-trunc(n / d) - 2(n % d) > d ? 1 : 0      =>:      round(s * n / d) = s * trunc(n / d) + s * (C + 2(n % d) > d ? 1 : 0)          where C = s >= 0 ? 1 : 0, to fix the >= for the positve case.      */      return newFraction(this["s"] * places * this["n"] / this["d"] +        this["s"] * ((this["s"] >= C_ZERO ? C_ONE : C_ZERO) + C_TWO * (places * this["n"] % this["d"]) > this["d"] ? C_ONE : C_ZERO),        places);    },    /**     * Check if two rational numbers are divisible     *     * Ex: new Fraction(19.6).divisible(1.5);     */    "divisible": function(a, b) {      parse(a, b);      return !(!(P["n"] * this["d"]) || ((this["n"] * P["d"]) % (P["n"] * this["d"])));    },    /**     * Returns a decimal representation of the fraction     *     * Ex: new Fraction("100.'91823'").valueOf() => 100.91823918239183     **/    'valueOf': function() {      // Best we can do so far      return Number(this["s"] * this["n"]) / Number(this["d"]);    },    /**     * Creates a string representation of a fraction with all digits     *     * Ex: new Fraction("100.'91823'").toString() => "100.(91823)"     **/    'toString': function(dec) {      let N = this["n"];      let D = this["d"];      dec = dec || 15; // 15 = decimal places when no repitation      let cycLen = cycleLen(N, D); // Cycle length      let cycOff = cycleStart(N, D, cycLen); // Cycle start      let str = this['s'] < C_ZERO ? "-" : "";      // Append integer part      str+= N / D;      N%= D;      N*= C_TEN;      if (N)        str+= ".";      if (cycLen) {        for (let i = cycOff; i--;) {          str+= N / D;          N%= D;          N*= C_TEN;        }        str+= "(";        for (let i = cycLen; i--;) {          str+= N / D;          N%= D;          N*= C_TEN;        }        str+= ")";      } else {        for (let i = dec; N && i--;) {          str+= N / D;          N%= D;          N*= C_TEN;        }      }      return str;    },    /**     * Returns a string-fraction representation of a Fraction object     *     * Ex: new Fraction("1.'3'").toFraction() => "4 1/3"     **/    'toFraction': function(excludeWhole) {      let n = this["n"];      let d = this["d"];      let str = this['s'] < C_ZERO ? "-" : "";      if (d === C_ONE) {        str+= n;      } else {        let whole = n / d;        if (excludeWhole && whole > C_ZERO) {          str+= whole;          str+= " ";          n%= d;        }        str+= n;        str+= '/';        str+= d;      }      return str;    },    /**     * Returns a latex representation of a Fraction object     *     * Ex: new Fraction("1.'3'").toLatex() => "\frac{4}{3}"     **/    'toLatex': function(excludeWhole) {      let n = this["n"];      let d = this["d"];      let str = this['s'] < C_ZERO ? "-" : "";      if (d === C_ONE) {        str+= n;      } else {        let whole = n / d;        if (excludeWhole && whole > C_ZERO) {          str+= whole;          n%= d;        }        str+= "\\frac{";        str+= n;        str+= '}{';        str+= d;        str+= '}';      }      return str;    },    /**     * Returns an array of continued fraction elements     *     * Ex: new Fraction("7/8").toContinued() => [0,1,7]     */    'toContinued': function() {      let a = this['n'];      let b = this['d'];      let res = [];      do {        res.push(a / b);        let t = a % b;        a = b;        b = t;      } while (a !== C_ONE);      return res;    },    "simplify": function(eps) {      eps = eps || 0.001;      const thisABS = this['abs']();      const cont = thisABS['toContinued']();      for (let i = 1; i < cont.length; i++) {        let s = newFraction(cont[i - 1], C_ONE);        for (let k = i - 2; k >= 0; k--) {          s = s['inverse']()['add'](cont[k]);        }        if (s['sub'](thisABS)['abs']().valueOf() < eps) {          return s['mul'](this['s']);        }      }      return this;    }  };  if (typeof define === "function" && define["amd"]) {    define([], function() {      return Fraction;    });  } else if (typeof exports === "object") {    Object.defineProperty(exports, "__esModule", { 'value': true });    Fraction['default'] = Fraction;    Fraction['Fraction'] = Fraction;    module['exports'] = Fraction;  } else {    root['Fraction'] = Fraction;  }})(this);
 |