123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556 |
- /**
- * @preserve JavaScript implementation of
- * Algorithm for Automatically Fitting Digitized Curves
- * by Philip J. Schneider
- * "Graphics Gems", Academic Press, 1990
- *
- * The MIT License (MIT)
- *
- * https://github.com/soswow/fit-curves
- */
- /**
- * Fit one or more Bezier curves to a set of points.
- *
- * @param {Array<Array<Number>>} points - Array of digitized points, e.g. [[5,5],[5,50],[110,140],[210,160],[320,110]]
- * @param {Number} maxError - Tolerance, squared error between points and fitted curve
- * @returns {Array<Array<Array<Number>>>} Array of Bezier curves, where each element is [first-point, control-point-1, control-point-2, second-point] and points are [x, y]
- */
- function fitCurve(points, maxError, progressCallback) {
- if (!Array.isArray(points)) {
- throw new TypeError("First argument should be an array");
- }
- points.forEach((point) => {
- if(!Array.isArray(point) || point.some(item => typeof item !== 'number')
- || point.length !== points[0].length) {
- throw Error("Each point should be an array of numbers. Each point should have the same amount of numbers.");
- }
- });
- // Remove duplicate points
- points = points.filter((point, i) =>
- i === 0 || !point.every((val, j) => val === points[i-1][j])
- );
- if (points.length < 2) {
- return [];
- }
- const len = points.length;
- const leftTangent = createTangent(points[1], points[0]);
- const rightTangent = createTangent(points[len - 2], points[len - 1]);
- return fitCubic(points, leftTangent, rightTangent, maxError, progressCallback);
- }
- /**
- * Fit a Bezier curve to a (sub)set of digitized points.
- * Your code should not call this function directly. Use {@link fitCurve} instead.
- *
- * @param {Array<Array<Number>>} points - Array of digitized points, e.g. [[5,5],[5,50],[110,140],[210,160],[320,110]]
- * @param {Array<Number>} leftTangent - Unit tangent vector at start point
- * @param {Array<Number>} rightTangent - Unit tangent vector at end point
- * @param {Number} error - Tolerance, squared error between points and fitted curve
- * @returns {Array<Array<Array<Number>>>} Array of Bezier curves, where each element is [first-point, control-point-1, control-point-2, second-point] and points are [x, y]
- */
- function fitCubic(points, leftTangent, rightTangent, error, progressCallback) {
- const MaxIterations = 20; //Max times to try iterating (to find an acceptable curve)
- var bezCurve, //Control points of fitted Bezier curve
- u, //Parameter values for point
- uPrime, //Improved parameter values
- maxError, prevErr, //Maximum fitting error
- splitPoint, prevSplit, //Point to split point set at if we need more than one curve
- centerVector, toCenterTangent, fromCenterTangent, //Unit tangent vector(s) at splitPoint
- beziers, //Array of fitted Bezier curves if we need more than one curve
- dist, i;
- //console.log('fitCubic, ', points.length);
- //Use heuristic if region only has two points in it
- if (points.length === 2) {
- dist = maths.vectorLen(maths.subtract(points[0], points[1])) / 3.0;
- bezCurve = [
- points[0],
- maths.addArrays(points[0], maths.mulItems(leftTangent, dist)),
- maths.addArrays(points[1], maths.mulItems(rightTangent, dist)),
- points[1]
- ];
- return [bezCurve];
- }
- //Parameterize points, and attempt to fit curve
- u = chordLengthParameterize(points);
- [bezCurve, maxError, splitPoint] = generateAndReport(points, u, u, leftTangent, rightTangent, progressCallback)
- if ((maxError === 0) || (maxError < error)) {
- return [bezCurve];
- }
- //If error not too large, try some reparameterization and iteration
- if (maxError < (error*error)) {
- uPrime = u;
- prevErr = maxError;
- prevSplit = splitPoint;
- for (i = 0; i < MaxIterations; i++) {
- uPrime = reparameterize(bezCurve, points, uPrime);
- [bezCurve, maxError, splitPoint] = generateAndReport(points, u, uPrime, leftTangent, rightTangent, progressCallback);
- if (maxError < error) {
- return [bezCurve];
- }
- //If the development of the fitted curve grinds to a halt,
- //we abort this attempt (and try a shorter curve):
- else if(splitPoint === prevSplit) {
- let errChange = maxError/prevErr;
- if((errChange > .9999) && (errChange < 1.0001)) {
- break;
- }
- }
- prevErr = maxError;
- prevSplit = splitPoint;
- }
- }
- //Fitting failed -- split at max error point and fit recursively
- beziers = [];
- //To create a smooth transition from one curve segment to the next, we
- //calculate the line between the points directly before and after the
- //center, and use that as the tangent both to and from the center point.
- centerVector = maths.subtract(points[splitPoint-1], points[splitPoint+1]);
- //However, this won't work if they're the same point, because the line we
- //want to use as a tangent would be 0. Instead, we calculate the line from
- //that "double-point" to the center point, and use its tangent.
- if(centerVector.every(val => val === 0)) {
- //[x,y] -> [-y,x]: http://stackoverflow.com/a/4780141/1869660
- centerVector = maths.subtract(points[splitPoint-1], points[splitPoint]);
- [centerVector[0],centerVector[1]] = [-centerVector[1],centerVector[0]];
- }
- toCenterTangent = maths.normalize(centerVector);
- //To and from need to point in opposite directions:
- fromCenterTangent = maths.mulItems(toCenterTangent, -1);
- /*
- Note: An alternative to this "divide and conquer" recursion could be to always
- let new curve segments start by trying to go all the way to the end,
- instead of only to the end of the current subdivided polyline.
- That might let many segments fit a few points more, reducing the number of total segments.
- However, a few tests have shown that the segment reduction is insignificant
- (240 pts, 100 err: 25 curves vs 27 curves. 140 pts, 100 err: 17 curves on both),
- and the results take twice as many steps and milliseconds to finish,
- without looking any better than what we already have.
- */
- beziers = beziers.concat(fitCubic(points.slice(0, splitPoint + 1), leftTangent, toCenterTangent, error, progressCallback));
- beziers = beziers.concat(fitCubic(points.slice(splitPoint), fromCenterTangent, rightTangent, error, progressCallback));
- return beziers;
- };
- function generateAndReport(points, paramsOrig, paramsPrime, leftTangent, rightTangent, progressCallback) {
- var bezCurve, maxError, splitPoint;
- bezCurve = generateBezier(points, paramsPrime, leftTangent, rightTangent, progressCallback);
- //Find max deviation of points to fitted curve.
- //Here we always use the original parameters (from chordLengthParameterize()),
- //because we need to compare the current curve to the actual source polyline,
- //and not the currently iterated parameters which reparameterize() & generateBezier() use,
- //as those have probably drifted far away and may no longer be in ascending order.
- [maxError, splitPoint] = computeMaxError(points, bezCurve, paramsOrig);
- if(progressCallback) {
- progressCallback({
- bez: bezCurve,
- points: points,
- params: paramsOrig,
- maxErr: maxError,
- maxPoint: splitPoint,
- });
- }
- return [bezCurve, maxError, splitPoint];
- }
- /**
- * Use least-squares method to find Bezier control points for region.
- *
- * @param {Array<Array<Number>>} points - Array of digitized points
- * @param {Array<Number>} parameters - Parameter values for region
- * @param {Array<Number>} leftTangent - Unit tangent vector at start point
- * @param {Array<Number>} rightTangent - Unit tangent vector at end point
- * @returns {Array<Array<Number>>} Approximated Bezier curve: [first-point, control-point-1, control-point-2, second-point] where points are [x, y]
- */
- function generateBezier(points, parameters, leftTangent, rightTangent) {
- var bezCurve, //Bezier curve ctl pts
- A, a, //Precomputed rhs for eqn
- C, X, //Matrices C & X
- det_C0_C1, det_C0_X, det_X_C1, //Determinants of matrices
- alpha_l, alpha_r, //Alpha values, left and right
- epsilon, segLength,
- i, len, tmp, u, ux,
- firstPoint = points[0],
- lastPoint = points[points.length-1];
- bezCurve = [firstPoint, null, null, lastPoint];
- //console.log('gb', parameters.length);
- //Compute the A's
- A = maths.zeros_Xx2x2(parameters.length);
- for (i = 0, len = parameters.length; i < len; i++) {
- u = parameters[i];
- ux = 1 - u;
- a = A[i];
- a[0] = maths.mulItems(leftTangent, 3 * u * (ux*ux));
- a[1] = maths.mulItems(rightTangent, 3 * ux * (u*u));
- }
- //Create the C and X matrices
- C = [[0,0], [0,0]];
- X = [0,0];
- for (i = 0, len = points.length; i < len; i++) {
- u = parameters[i];
- a = A[i];
- C[0][0] += maths.dot(a[0], a[0]);
- C[0][1] += maths.dot(a[0], a[1]);
- C[1][0] += maths.dot(a[0], a[1]);
- C[1][1] += maths.dot(a[1], a[1]);
- tmp = maths.subtract(points[i], bezier.q([firstPoint, firstPoint, lastPoint, lastPoint], u));
- X[0] += maths.dot(a[0], tmp);
- X[1] += maths.dot(a[1], tmp);
- }
- //Compute the determinants of C and X
- det_C0_C1 = (C[0][0] * C[1][1]) - (C[1][0] * C[0][1]);
- det_C0_X = (C[0][0] * X[1] ) - (C[1][0] * X[0] );
- det_X_C1 = (X[0] * C[1][1]) - (X[1] * C[0][1]);
- //Finally, derive alpha values
- alpha_l = det_C0_C1 === 0 ? 0 : det_X_C1 / det_C0_C1;
- alpha_r = det_C0_C1 === 0 ? 0 : det_C0_X / det_C0_C1;
- //If alpha negative, use the Wu/Barsky heuristic (see text).
- //If alpha is 0, you get coincident control points that lead to
- //divide by zero in any subsequent NewtonRaphsonRootFind() call.
- segLength = maths.vectorLen(maths.subtract(firstPoint, lastPoint));
- epsilon = 1.0e-6 * segLength;
- if (alpha_l < epsilon || alpha_r < epsilon) {
- //Fall back on standard (probably inaccurate) formula, and subdivide further if needed.
- bezCurve[1] = maths.addArrays(firstPoint, maths.mulItems(leftTangent, segLength / 3.0));
- bezCurve[2] = maths.addArrays(lastPoint, maths.mulItems(rightTangent, segLength / 3.0));
- } else {
- //First and last control points of the Bezier curve are
- //positioned exactly at the first and last data points
- //Control points 1 and 2 are positioned an alpha distance out
- //on the tangent vectors, left and right, respectively
- bezCurve[1] = maths.addArrays(firstPoint, maths.mulItems(leftTangent, alpha_l));
- bezCurve[2] = maths.addArrays(lastPoint, maths.mulItems(rightTangent, alpha_r));
- }
- return bezCurve;
- };
- /**
- * Given set of points and their parameterization, try to find a better parameterization.
- *
- * @param {Array<Array<Number>>} bezier - Current fitted curve
- * @param {Array<Array<Number>>} points - Array of digitized points
- * @param {Array<Number>} parameters - Current parameter values
- * @returns {Array<Number>} New parameter values
- */
- function reparameterize(bezier, points, parameters) {
- /*
- var j, len, point, results, u;
- results = [];
- for (j = 0, len = points.length; j < len; j++) {
- point = points[j], u = parameters[j];
- results.push(newtonRaphsonRootFind(bezier, point, u));
- }
- return results;
- //*/
- return parameters.map((p, i) => newtonRaphsonRootFind(bezier, points[i], p));
- };
- /**
- * Use Newton-Raphson iteration to find better root.
- *
- * @param {Array<Array<Number>>} bez - Current fitted curve
- * @param {Array<Number>} point - Digitized point
- * @param {Number} u - Parameter value for "P"
- * @returns {Number} New u
- */
- function newtonRaphsonRootFind(bez, point, u) {
- /*
- Newton's root finding algorithm calculates f(x)=0 by reiterating
- x_n+1 = x_n - f(x_n)/f'(x_n)
- We are trying to find curve parameter u for some point p that minimizes
- the distance from that point to the curve. Distance point to curve is d=q(u)-p.
- At minimum distance the point is perpendicular to the curve.
- We are solving
- f = q(u)-p * q'(u) = 0
- with
- f' = q'(u) * q'(u) + q(u)-p * q''(u)
- gives
- u_n+1 = u_n - |q(u_n)-p * q'(u_n)| / |q'(u_n)**2 + q(u_n)-p * q''(u_n)|
- */
- var d = maths.subtract(bezier.q(bez, u), point),
- qprime = bezier.qprime(bez, u),
- numerator = maths.mulMatrix(d, qprime),
- denominator = maths.sum(maths.squareItems(qprime)) + 2 * maths.mulMatrix(d, bezier.qprimeprime(bez, u));
- if (denominator === 0) {
- return u;
- } else {
- return u - (numerator/denominator);
- }
- };
- /**
- * Assign parameter values to digitized points using relative distances between points.
- *
- * @param {Array<Array<Number>>} points - Array of digitized points
- * @returns {Array<Number>} Parameter values
- */
- function chordLengthParameterize(points) {
- var u = [], currU, prevU, prevP;
- points.forEach((p, i) => {
- currU = i ? prevU + maths.vectorLen(maths.subtract(p, prevP))
- : 0;
- u.push(currU);
- prevU = currU;
- prevP = p;
- })
- u = u.map(x => x/prevU);
- return u;
- };
- /**
- * Find the maximum squared distance of digitized points to fitted curve.
- *
- * @param {Array<Array<Number>>} points - Array of digitized points
- * @param {Array<Array<Number>>} bez - Fitted curve
- * @param {Array<Number>} parameters - Parameterization of points
- * @returns {Array<Number>} Maximum error (squared) and point of max error
- */
- function computeMaxError(points, bez, parameters) {
- var dist, //Current error
- maxDist, //Maximum error
- splitPoint, //Point of maximum error
- v, //Vector from point to curve
- i, count, point, t;
- maxDist = 0;
- splitPoint = Math.floor(points.length / 2);
- const t_distMap = mapTtoRelativeDistances(bez, 10);
- for (i = 0, count = points.length; i < count; i++) {
- point = points[i];
- //Find 't' for a point on the bez curve that's as close to 'point' as possible:
- t = find_t(bez, parameters[i], t_distMap, 10);
- v = maths.subtract(bezier.q(bez, t), point);
- dist = v[0]*v[0] + v[1]*v[1];
- if (dist > maxDist) {
- maxDist = dist;
- splitPoint = i;
- }
- }
- return [maxDist, splitPoint];
- };
- //Sample 't's and map them to relative distances along the curve:
- var mapTtoRelativeDistances = function (bez, B_parts) {
- var B_t_curr;
- var B_t_dist = [0];
- var B_t_prev = bez[0];
- var sumLen = 0;
- for (var i=1; i<=B_parts; i++) {
- B_t_curr = bezier.q(bez, i/B_parts);
- sumLen += maths.vectorLen(maths.subtract(B_t_curr, B_t_prev));
- B_t_dist.push(sumLen);
- B_t_prev = B_t_curr;
- }
- //Normalize B_length to the same interval as the parameter distances; 0 to 1:
- B_t_dist = B_t_dist.map(x => x/sumLen);
- return B_t_dist;
- };
- function find_t(bez, param, t_distMap, B_parts) {
- if(param < 0) { return 0; }
- if(param > 1) { return 1; }
- /*
- 'param' is a value between 0 and 1 telling us the relative position
- of a point on the source polyline (linearly from the start (0) to the end (1)).
- To see if a given curve - 'bez' - is a close approximation of the polyline,
- we compare such a poly-point to the point on the curve that's the same
- relative distance along the curve's length.
- But finding that curve-point takes a little work:
- There is a function "B(t)" to find points along a curve from the parametric parameter 't'
- (also relative from 0 to 1: http://stackoverflow.com/a/32841764/1869660
- http://pomax.github.io/bezierinfo/#explanation),
- but 't' isn't linear by length (http://gamedev.stackexchange.com/questions/105230).
- So, we sample some points along the curve using a handful of values for 't'.
- Then, we calculate the length between those samples via plain euclidean distance;
- B(t) concentrates the points around sharp turns, so this should give us a good-enough outline of the curve.
- Thus, for a given relative distance ('param'), we can now find an upper and lower value
- for the corresponding 't' by searching through those sampled distances.
- Finally, we just use linear interpolation to find a better value for the exact 't'.
- More info:
- http://gamedev.stackexchange.com/questions/105230/points-evenly-spaced-along-a-bezier-curve
- http://stackoverflow.com/questions/29438398/cheap-way-of-calculating-cubic-bezier-length
- http://steve.hollasch.net/cgindex/curves/cbezarclen.html
- https://github.com/retuxx/tinyspline
- */
- var lenMax, lenMin, tMax, tMin, t;
- //Find the two t-s that the current param distance lies between,
- //and then interpolate a somewhat accurate value for the exact t:
- for(var i = 1; i <= B_parts; i++) {
- if(param <= t_distMap[i]) {
- tMin = (i-1) / B_parts;
- tMax = i / B_parts;
- lenMin = t_distMap[i-1];
- lenMax = t_distMap[i];
- t = (param-lenMin)/(lenMax-lenMin) * (tMax-tMin) + tMin;
- break;
- }
- }
- return t;
- }
- /**
- * Creates a vector of length 1 which shows the direction from B to A
- */
- function createTangent(pointA, pointB) {
- return maths.normalize(maths.subtract(pointA, pointB));
- }
- /*
- Simplified versions of what we need from math.js
- Optimized for our input, which is only numbers and 1x2 arrays (i.e. [x, y] coordinates).
- */
- class maths {
- //zeros = logAndRun(math.zeros);
- static zeros_Xx2x2(x) {
- var zs = [];
- while(x--) { zs.push([0,0]); }
- return zs
- }
- //multiply = logAndRun(math.multiply);
- static mulItems(items, multiplier) {
- return items.map(x => x*multiplier);
- }
- static mulMatrix(m1, m2) {
- //https://en.wikipedia.org/wiki/Matrix_multiplication#Matrix_product_.28two_matrices.29
- //Simplified to only handle 1-dimensional matrices (i.e. arrays) of equal length:
- return m1.reduce((sum,x1,i) => sum + (x1*m2[i]), 0);
- }
- //Only used to subract to points (or at least arrays):
- // subtract = logAndRun(math.subtract);
- static subtract(arr1, arr2) {
- return arr1.map((x1, i) => x1 - arr2[i]);
- }
- //add = logAndRun(math.add);
- static addArrays(arr1, arr2) {
- return arr1.map((x1, i) => x1 + arr2[i]);
- }
- static addItems(items, addition) {
- return items.map(x => x+addition);
- }
- //var sum = logAndRun(math.sum);
- static sum(items) {
- return items.reduce((sum,x) => sum + x);
- }
- //chain = math.chain;
- //Only used on two arrays. The dot product is equal to the matrix product in this case:
- // dot = logAndRun(math.dot);
- static dot(m1, m2) {
- return maths.mulMatrix(m1, m2);
- }
- //https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm
- // var norm = logAndRun(math.norm);
- static vectorLen(v) {
- return Math.hypot(...v);
- }
- //math.divide = logAndRun(math.divide);
- static divItems(items, divisor) {
- return items.map(x => x/divisor);
- }
- //var dotPow = logAndRun(math.dotPow);
- static squareItems(items) {
- return items.map(x => x*x);
- }
- static normalize(v) {
- return this.divItems(v, this.vectorLen(v));
- }
- //Math.pow = logAndRun(Math.pow);
- }
- class bezier {
- //Evaluates cubic bezier at t, return point
- static q(ctrlPoly, t) {
- var tx = 1.0 - t;
- var pA = maths.mulItems( ctrlPoly[0], tx * tx * tx ),
- pB = maths.mulItems( ctrlPoly[1], 3 * tx * tx * t ),
- pC = maths.mulItems( ctrlPoly[2], 3 * tx * t * t ),
- pD = maths.mulItems( ctrlPoly[3], t * t * t );
- return maths.addArrays(maths.addArrays(pA, pB), maths.addArrays(pC, pD));
- }
- //Evaluates cubic bezier first derivative at t, return point
- static qprime(ctrlPoly, t) {
- var tx = 1.0 - t;
- var pA = maths.mulItems( maths.subtract(ctrlPoly[1], ctrlPoly[0]), 3 * tx * tx ),
- pB = maths.mulItems( maths.subtract(ctrlPoly[2], ctrlPoly[1]), 6 * tx * t ),
- pC = maths.mulItems( maths.subtract(ctrlPoly[3], ctrlPoly[2]), 3 * t * t );
- return maths.addArrays(maths.addArrays(pA, pB), pC);
- }
- //Evaluates cubic bezier second derivative at t, return point
- static qprimeprime(ctrlPoly, t) {
- return maths.addArrays(maths.mulItems( maths.addArrays(maths.subtract(ctrlPoly[2], maths.mulItems(ctrlPoly[1], 2)), ctrlPoly[0]), 6 * (1.0 - t) ),
- maths.mulItems( maths.addArrays(maths.subtract(ctrlPoly[3], maths.mulItems(ctrlPoly[2], 2)), ctrlPoly[1]), 6 * t ));
- }
- }
- module.exports = fitCurve;
- module.exports.fitCubic = fitCubic;
- module.exports.createTangent = createTangent;
|