123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162 |
- /* ellpj.c
- *
- * Jacobian Elliptic Functions
- *
- *
- *
- * SYNOPSIS:
- *
- * double u, m, sn, cn, dn, phi;
- * int ellpj();
- *
- * ellpj( u, m, _&sn, _&cn, _&dn, _&phi );
- *
- *
- *
- * DESCRIPTION:
- *
- *
- * Evaluates the Jacobian elliptic functions sn(u|m), cn(u|m),
- * and dn(u|m) of parameter m between 0 and 1, and real
- * argument u.
- *
- * These functions are periodic, with quarter-period on the
- * real axis equal to the complete elliptic integral
- * ellpk(1.0-m).
- *
- * Relation to incomplete elliptic integral:
- * If u = ellik(phi,m), then sn(u|m) = sin(phi),
- * and cn(u|m) = cos(phi). Phi is called the amplitude of u.
- *
- * Computation is by means of the arithmetic-geometric mean
- * algorithm, except when m is within 1e-9 of 0 or 1. In the
- * latter case with m close to 1, the approximation applies
- * only for phi < pi/2.
- *
- * ACCURACY:
- *
- * Tested at random points with u between 0 and 10, m between
- * 0 and 1.
- *
- * Absolute error (* = relative error):
- * arithmetic function # trials peak rms
- * DEC sn 1800 4.5e-16 8.7e-17
- * IEEE phi 10000 9.2e-16* 1.4e-16*
- * IEEE sn 50000 4.1e-15 4.6e-16
- * IEEE cn 40000 3.6e-15 4.4e-16
- * IEEE dn 100000 3.9e-15 1.7e-16
- *
- * Larger errors occur for m near 1.
- * Peak error observed in consistency check using addition
- * theorem for sn(u+v) was 4e-16 (absolute). Also tested by
- * the above relation to the incomplete elliptic integral.
- * Accuracy deteriorates when u is large.
- *
- */
- /* ellpj.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 2000, 2014 by Stephen L. Moshier
- */
- #include "mconf.h"
- #ifdef ANSIPROT
- extern double sqrt(double);
- extern double fabs(double);
- extern double sin(double);
- extern double cos(double);
- extern double asin(double);
- extern double tanh(double);
- extern double sinh(double);
- extern double cosh(double);
- extern double atan(double);
- extern double exp(double);
- #else
- double sqrt(), fabs(), sin(), cos(), asin(), tanh();
- double sinh(), cosh(), atan(), exp();
- #endif
- extern double PIO2, MACHEP;
- int ellpj(u, m, sn, cn, dn, ph) double u, m;
- double *sn, *cn, *dn, *ph;
- {
- double ai, b, phi, t, twon;
- double a[9], c[9];
- int i;
- /* Check for special cases */
- if (m < 0.0 || m > 1.0) {
- mtherr("ellpj", DOMAIN);
- *sn = 0.0;
- *cn = 0.0;
- *ph = 0.0;
- *dn = 0.0;
- return (-1);
- }
- if (m < 1.0e-9) {
- t = sin(u);
- b = cos(u);
- ai = 0.25 * m * (u - t * b);
- *sn = t - ai * b;
- *cn = b + ai * t;
- *ph = u - ai;
- *dn = 1.0 - 0.5 * m * t * t;
- return (0);
- }
- if (m >= 0.9999999999) {
- ai = 0.25 * (1.0 - m);
- b = cosh(u);
- t = tanh(u);
- phi = 1.0 / b;
- twon = b * sinh(u);
- *sn = t + ai * (twon - u) / (b * b);
- *ph = 2.0 * atan(exp(u)) - PIO2 + ai * (twon - u) / b;
- ai *= t * phi;
- *cn = phi - ai * (twon - u);
- *dn = phi + ai * (twon + u);
- return (0);
- }
- /* A. G. M. scale */
- a[0] = 1.0;
- b = sqrt(1.0 - m);
- c[0] = sqrt(m);
- twon = 1.0;
- i = 0;
- while (fabs(c[i] / a[i]) > MACHEP) {
- if (i > 7) {
- mtherr("ellpj", OVERFLOW);
- goto done;
- }
- ai = a[i];
- ++i;
- c[i] = (ai - b) / 2.0;
- t = sqrt(ai * b);
- a[i] = (ai + b) / 2.0;
- b = t;
- twon *= 2.0;
- }
- done:
- /* backward recurrence */
- phi = twon * a[i] * u;
- do {
- t = c[i] * sin(phi) / a[i];
- b = phi;
- phi = (asin(t) + phi) / 2.0;
- } while (--i);
- t = sin(phi);
- *sn = t;
- *cn = cos(phi);
- /* Thanks to Hartmut Henkel for reporting a bug here: */
- *dn = sqrt(1.0 - m * t * t);
- *ph = phi;
- return (0);
- }
|