123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578 |
- /* gamma.c
- *
- * Gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, gamma();
- * extern int sgngam;
- *
- * y = gamma( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns gamma function of the argument. The result is
- * correctly signed, and the sign (+1 or -1) is also
- * returned in a global (extern) variable named sgngam.
- * This variable is also filled in by the logarithmic gamma
- * function lgam().
- *
- * Arguments |x| <= 34 are reduced by recurrence and the function
- * approximated by a rational function of degree 6/7 in the
- * interval (2,3). Large arguments are handled by Stirling's
- * formula. Large negative arguments are made positive using
- * a reflection formula.
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC -34, 34 10000 1.3e-16 2.5e-17
- * IEEE -170,-33 20000 2.3e-15 3.3e-16
- * IEEE -33, 33 20000 9.4e-16 2.2e-16
- * IEEE 33, 171.6 20000 2.3e-15 3.2e-16
- *
- * Error for arguments outside the test range will be larger
- * owing to error amplification by the exponential function.
- *
- */
- /* lgam()
- *
- * Natural logarithm of gamma function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, lgam();
- * extern int sgngam;
- *
- * y = lgam( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns the base e (2.718...) logarithm of the absolute
- * value of the gamma function of the argument.
- * The sign (+1 or -1) of the gamma function is returned in a
- * global (extern) variable named sgngam.
- *
- * For arguments greater than 13, the logarithm of the gamma
- * function is approximated by the logarithmic version of
- * Stirling's formula using a polynomial approximation of
- * degree 4. Arguments between -33 and +33 are reduced by
- * recurrence to the interval [2,3] of a rational approximation.
- * The cosecant reflection formula is employed for arguments
- * less than -33.
- *
- * Arguments greater than MAXLGM return MAXNUM and an error
- * message. MAXLGM = 2.035093e36 for DEC
- * arithmetic or 2.556348e305 for IEEE arithmetic.
- *
- *
- *
- * ACCURACY:
- *
- *
- * arithmetic domain # trials peak rms
- * DEC 0, 3 7000 5.2e-17 1.3e-17
- * DEC 2.718, 2.035e36 5000 3.9e-17 9.9e-18
- * IEEE 0, 3 28000 5.4e-16 1.1e-16
- * IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
- * The error criterion was relative when the function magnitude
- * was greater than one but absolute when it was less than one.
- *
- * The following test used the relative error criterion, though
- * at certain points the relative error could be much higher than
- * indicated.
- * IEEE -200, -4 10000 4.8e-16 1.3e-16
- *
- */
- /* gamma.c */
- /* gamma function */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 1989, 1992, 2000 by Stephen L. Moshier
- */
- #include "mconf.h"
- #ifdef UNK
- static double P[] = {1.60119522476751861407E-4, 1.19135147006586384913E-3,
- 1.04213797561761569935E-2, 4.76367800457137231464E-2,
- 2.07448227648435975150E-1, 4.94214826801497100753E-1,
- 9.99999999999999996796E-1};
- static double Q[] = {-2.31581873324120129819E-5, 5.39605580493303397842E-4,
- -4.45641913851797240494E-3, 1.18139785222060435552E-2,
- 3.58236398605498653373E-2, -2.34591795718243348568E-1,
- 7.14304917030273074085E-2, 1.00000000000000000320E0};
- #define MAXGAM 171.624376956302725
- static double LOGPI = 1.14472988584940017414;
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0035047, 0162701, 0146301, 0005234, 0035634, 0023437, 0032065,
- 0176530, 0036452, 0137157, 0047330, 0122574, 0037103, 0017310,
- 0143041, 0017232, 0037524, 0066516, 0162563, 0164605, 0037775,
- 0004671, 0146237, 0014222, 0040200, 0000000, 0000000, 0000000};
- static unsigned short Q[] = {
- 0134302, 0041724, 0020006, 0116565, 0035415, 0072121, 0044251, 0025634,
- 0136222, 0003447, 0035205, 0121114, 0036501, 0107552, 0154335, 0104271,
- 0037022, 0135717, 0014776, 0171471, 0137560, 0034324, 0165024, 0037021,
- 0037222, 0045046, 0047151, 0161213, 0040200, 0000000, 0000000, 0000000};
- #define MAXGAM 34.84425627277176174
- static unsigned short LPI[4] = {
- 0040222,
- 0103202,
- 0043475,
- 0006750,
- };
- #define LOGPI *(double *)LPI
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {0x2153, 0x3998, 0xfcb8, 0x3f24, 0xbfab, 0xe686,
- 0x84e3, 0x3f53, 0x14b0, 0xe9db, 0x57cd, 0x3f85,
- 0x23d3, 0x18c4, 0x63d9, 0x3fa8, 0x7d31, 0xdcae,
- 0x8da9, 0x3fca, 0xe312, 0x3993, 0xa137, 0x3fdf,
- 0x0000, 0x0000, 0x0000, 0x3ff0};
- static unsigned short Q[] = {
- 0xd3af, 0x8400, 0x487a, 0xbef8, 0x2573, 0x2915, 0xae8a, 0x3f41,
- 0xb44a, 0xe750, 0x40e4, 0xbf72, 0xb117, 0x5b1b, 0x31ed, 0x3f88,
- 0xde67, 0xe33f, 0x5779, 0x3fa2, 0x87c2, 0x9d42, 0x071a, 0xbfce,
- 0x3c51, 0xc9cd, 0x4944, 0x3fb2, 0x0000, 0x0000, 0x0000, 0x3ff0};
- #define MAXGAM 171.624376956302725
- static unsigned short LPI[4] = {
- 0xa1bd,
- 0x48e7,
- 0x50d0,
- 0x3ff2,
- };
- #define LOGPI *(double *)LPI
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {0x3f24, 0xfcb8, 0x3998, 0x2153, 0x3f53, 0x84e3,
- 0xe686, 0xbfab, 0x3f85, 0x57cd, 0xe9db, 0x14b0,
- 0x3fa8, 0x63d9, 0x18c4, 0x23d3, 0x3fca, 0x8da9,
- 0xdcae, 0x7d31, 0x3fdf, 0xa137, 0x3993, 0xe312,
- 0x3ff0, 0x0000, 0x0000, 0x0000};
- static unsigned short Q[] = {
- 0xbef8, 0x487a, 0x8400, 0xd3af, 0x3f41, 0xae8a, 0x2915, 0x2573,
- 0xbf72, 0x40e4, 0xe750, 0xb44a, 0x3f88, 0x31ed, 0x5b1b, 0xb117,
- 0x3fa2, 0x5779, 0xe33f, 0xde67, 0xbfce, 0x071a, 0x9d42, 0x87c2,
- 0x3fb2, 0x4944, 0xc9cd, 0x3c51, 0x3ff0, 0x0000, 0x0000, 0x0000};
- #define MAXGAM 171.624376956302725
- static unsigned short LPI[4] = {
- 0x3ff2,
- 0x50d0,
- 0x48e7,
- 0xa1bd,
- };
- #define LOGPI *(double *)LPI
- #endif
- /* Stirling's formula for the gamma function */
- #if UNK
- static double STIR[5] = {
- 7.87311395793093628397E-4, -2.29549961613378126380E-4,
- -2.68132617805781232825E-3, 3.47222221605458667310E-3,
- 8.33333333333482257126E-2,
- };
- #define MAXSTIR 143.01608
- static double SQTPI = 2.50662827463100050242E0;
- #endif
- #if DEC
- static unsigned short STIR[20] = {
- 0035516, 0061622, 0144553, 0112224, 0135160, 0131531, 0037460,
- 0165740, 0136057, 0134460, 0037242, 0077270, 0036143, 0107070,
- 0156306, 0027751, 0037252, 0125252, 0125252, 0146064,
- };
- #define MAXSTIR 26.77
- static unsigned short SQT[4] = {
- 0040440,
- 0066230,
- 0177661,
- 0034055,
- };
- #define SQTPI *(double *)SQT
- #endif
- #if IBMPC
- static unsigned short STIR[20] = {
- 0x7293, 0x592d, 0xcc72, 0x3f49, 0x1d7c, 0x27e6, 0x166b,
- 0xbf2e, 0x4fd7, 0x07d4, 0xf726, 0xbf65, 0xc5fd, 0x1b98,
- 0x71c7, 0x3f6c, 0x5986, 0x5555, 0x5555, 0x3fb5,
- };
- #define MAXSTIR 143.01608
- static unsigned short SQT[4] = {
- 0x2706,
- 0x1ff6,
- 0x0d93,
- 0x4004,
- };
- #define SQTPI *(double *)SQT
- #endif
- #if MIEEE
- static unsigned short STIR[20] = {
- 0x3f49, 0xcc72, 0x592d, 0x7293, 0xbf2e, 0x166b, 0x27e6,
- 0x1d7c, 0xbf65, 0xf726, 0x07d4, 0x4fd7, 0x3f6c, 0x71c7,
- 0x1b98, 0xc5fd, 0x3fb5, 0x5555, 0x5555, 0x5986,
- };
- #define MAXSTIR 143.01608
- static unsigned short SQT[4] = {
- 0x4004,
- 0x0d93,
- 0x1ff6,
- 0x2706,
- };
- #define SQTPI *(double *)SQT
- #endif
- int sgngam = 0;
- extern int sgngam;
- extern double MAXLOG, MAXNUM, PI;
- #ifdef ANSIPROT
- extern double pow(double, double);
- extern double log(double);
- extern double exp(double);
- extern double sin(double);
- extern double polevl(double, void *, int);
- extern double p1evl(double, void *, int);
- extern double floor(double);
- extern double fabs(double);
- extern int isnan(double);
- extern int isfinite(double);
- static double stirf(double);
- double lgam(double);
- #else
- double pow(), log(), exp(), sin(), polevl(), p1evl(), floor(), fabs();
- int isnan(), isfinite();
- static double stirf();
- double lgam();
- #endif
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- #ifdef NANS
- extern double NAN;
- #endif
- /* Gamma function computed by Stirling's formula.
- * The polynomial STIR is valid for 33 <= x <= 172.
- */
- static double stirf(x) double x;
- {
- double y, w, v;
- w = 1.0 / x;
- w = 1.0 + w * polevl(w, STIR, 4);
- y = exp(x);
- if (x > MAXSTIR) { /* Avoid overflow in pow() */
- v = pow(x, 0.5 * x - 0.25);
- y = v * (v / y);
- } else {
- y = pow(x, x - 0.5) / y;
- }
- y = SQTPI * y * w;
- return (y);
- }
- double gamma(x) double x;
- {
- double p, q, z;
- int i;
- sgngam = 1;
- #ifdef NANS
- if (isnan(x))
- return (x);
- #endif
- #ifdef INFINITIES
- #ifdef NANS
- if (x == INFINITY)
- return (x);
- if (x == -INFINITY)
- return (NAN);
- #else
- if (!isfinite(x))
- return (x);
- #endif
- #endif
- q = fabs(x);
- if (q > 33.0) {
- if (x < 0.0) {
- p = floor(q);
- if (p == q) {
- #ifdef NANS
- gamnan:
- mtherr("gamma", DOMAIN);
- return (NAN);
- #else
- goto goverf;
- #endif
- }
- i = p;
- if ((i & 1) == 0)
- sgngam = -1;
- z = q - p;
- if (z > 0.5) {
- p += 1.0;
- z = q - p;
- }
- z = q * sin(PI * z);
- if (z == 0.0) {
- #ifdef INFINITIES
- return (sgngam * INFINITY);
- #else
- goverf:
- mtherr("gamma", OVERFLOW);
- return (sgngam * MAXNUM);
- #endif
- }
- z = fabs(z);
- z = PI / (z * stirf(q));
- } else {
- z = stirf(x);
- }
- return (sgngam * z);
- }
- z = 1.0;
- while (x >= 3.0) {
- x -= 1.0;
- z *= x;
- }
- while (x < 0.0) {
- if (x > -1.E-9)
- goto small;
- z /= x;
- x += 1.0;
- }
- while (x < 2.0) {
- if (x < 1.e-9)
- goto small;
- z /= x;
- x += 1.0;
- }
- if (x == 2.0)
- return (z);
- x -= 2.0;
- p = polevl(x, P, 6);
- q = polevl(x, Q, 7);
- return (z * p / q);
- small:
- if (x == 0.0) {
- #ifdef INFINITIES
- #ifdef NANS
- goto gamnan;
- #else
- return (INFINITY);
- #endif
- #else
- mtherr("gamma", SING);
- return (MAXNUM);
- #endif
- } else
- return (z / ((1.0 + 0.5772156649015329 * x) * x));
- }
- /* A[]: Stirling's formula expansion of log gamma
- * B[], C[]: log gamma function between 2 and 3
- */
- #ifdef UNK
- static double A[] = {8.11614167470508450300E-4, -5.95061904284301438324E-4,
- 7.93650340457716943945E-4, -2.77777777730099687205E-3,
- 8.33333333333331927722E-2};
- static double B[] = {-1.37825152569120859100E3, -3.88016315134637840924E4,
- -3.31612992738871184744E5, -1.16237097492762307383E6,
- -1.72173700820839662146E6, -8.53555664245765465627E5};
- static double C[] = {
- /* 1.00000000000000000000E0, */
- -3.51815701436523470549E2, -1.70642106651881159223E4,
- -2.20528590553854454839E5, -1.13933444367982507207E6,
- -2.53252307177582951285E6, -2.01889141433532773231E6};
- /* log( sqrt( 2*pi ) ) */
- static double LS2PI = 0.91893853320467274178;
- #define MAXLGM 2.556348e305
- #endif
- #ifdef DEC
- static unsigned short A[] = {0035524, 0141201, 0034633, 0031405, 0135433,
- 0176755, 0126007, 0045030, 0035520, 0006371,
- 0003342, 0172730, 0136066, 0005540, 0132605,
- 0026407, 0037252, 0125252, 0125252, 0125132};
- static unsigned short B[] = {
- 0142654, 0044014, 0077633, 0035410, 0144027, 0110641, 0125335, 0144760,
- 0144641, 0165637, 0142204, 0047447, 0145215, 0162027, 0146246, 0155211,
- 0145322, 0026110, 0010317, 0110130, 0145120, 0061472, 0120300, 0025363};
- static unsigned short C[] = {
- /*0040200,0000000,0000000,0000000*/
- 0142257, 0164150, 0163630, 0112622, 0143605, 0050153, 0156116, 0135272,
- 0144527, 0056045, 0145642, 0062332, 0145213, 0012063, 0106250, 0001025,
- 0145432, 0111254, 0044577, 0115142, 0145366, 0071133, 0050217, 0005122};
- /* log( sqrt( 2*pi ) ) */
- static unsigned short LS2P[] = {
- 040153,
- 037616,
- 041445,
- 0172645,
- };
- #define LS2PI *(double *)LS2P
- #define MAXLGM 2.035093e36
- #endif
- #ifdef IBMPC
- static unsigned short A[] = {0x6661, 0x2733, 0x9850, 0x3f4a, 0xe943,
- 0xb580, 0x7fbd, 0xbf43, 0x5ebb, 0x20dc,
- 0x019f, 0x3f4a, 0xa5a1, 0x16b0, 0xc16c,
- 0xbf66, 0x554b, 0x5555, 0x5555, 0x3fb5};
- static unsigned short B[] = {0x6761, 0x8ff3, 0x8901, 0xc095, 0xb93e, 0x355b,
- 0xf234, 0xc0e2, 0x89e5, 0xf890, 0x3d73, 0xc114,
- 0xdb51, 0xf994, 0xbc82, 0xc131, 0xf20b, 0x0219,
- 0x4589, 0xc13a, 0x055e, 0x5418, 0x0c67, 0xc12a};
- static unsigned short C[] = {
- /*0x0000,0x0000,0x0000,0x3ff0,*/
- 0x12b2, 0x1cf3, 0xfd0d, 0xc075, 0xd757, 0x7b89, 0xaa0d, 0xc0d0,
- 0x4c9b, 0xb974, 0xeb84, 0xc10a, 0x0043, 0x7195, 0x6286, 0xc131,
- 0xf34c, 0x892f, 0x5255, 0xc143, 0xe14a, 0x6a11, 0xce4b, 0xc13e};
- /* log( sqrt( 2*pi ) ) */
- static unsigned short LS2P[] = {0xbeb5, 0xc864, 0x67f1, 0x3fed};
- #define LS2PI *(double *)LS2P
- #define MAXLGM 2.556348e305
- #endif
- #ifdef MIEEE
- static unsigned short A[] = {0x3f4a, 0x9850, 0x2733, 0x6661, 0xbf43,
- 0x7fbd, 0xb580, 0xe943, 0x3f4a, 0x019f,
- 0x20dc, 0x5ebb, 0xbf66, 0xc16c, 0x16b0,
- 0xa5a1, 0x3fb5, 0x5555, 0x5555, 0x554b};
- static unsigned short B[] = {0xc095, 0x8901, 0x8ff3, 0x6761, 0xc0e2, 0xf234,
- 0x355b, 0xb93e, 0xc114, 0x3d73, 0xf890, 0x89e5,
- 0xc131, 0xbc82, 0xf994, 0xdb51, 0xc13a, 0x4589,
- 0x0219, 0xf20b, 0xc12a, 0x0c67, 0x5418, 0x055e};
- static unsigned short C[] = {0xc075, 0xfd0d, 0x1cf3, 0x12b2, 0xc0d0, 0xaa0d,
- 0x7b89, 0xd757, 0xc10a, 0xeb84, 0xb974, 0x4c9b,
- 0xc131, 0x6286, 0x7195, 0x0043, 0xc143, 0x5255,
- 0x892f, 0xf34c, 0xc13e, 0xce4b, 0x6a11, 0xe14a};
- /* log( sqrt( 2*pi ) ) */
- static unsigned short LS2P[] = {0x3fed, 0x67f1, 0xc864, 0xbeb5};
- #define LS2PI *(double *)LS2P
- #define MAXLGM 2.556348e305
- #endif
- /* Logarithm of gamma function */
- double lgam(x) double x;
- {
- double p, q, u, w, z;
- int i;
- sgngam = 1;
- #ifdef NANS
- if (isnan(x))
- return (x);
- #endif
- #ifdef INFINITIES
- if (!isfinite(x))
- return (INFINITY);
- #endif
- if (x < -34.0) {
- q = -x;
- w = lgam(q); /* note this modifies sgngam! */
- p = floor(q);
- if (p == q) {
- lgsing:
- #ifdef INFINITIES
- mtherr("lgam", SING);
- return (INFINITY);
- #else
- goto loverf;
- #endif
- }
- i = p;
- if ((i & 1) == 0)
- sgngam = -1;
- else
- sgngam = 1;
- z = q - p;
- if (z > 0.5) {
- p += 1.0;
- z = p - q;
- }
- z = q * sin(PI * z);
- if (z == 0.0)
- goto lgsing;
- /* z = log(PI) - log( z ) - w;*/
- z = LOGPI - log(z) - w;
- return (z);
- }
- if (x < 13.0) {
- z = 1.0;
- p = 0.0;
- u = x;
- while (u >= 3.0) {
- p -= 1.0;
- u = x + p;
- z *= u;
- }
- while (u < 2.0) {
- if (u == 0.0)
- goto lgsing;
- z /= u;
- p += 1.0;
- u = x + p;
- }
- if (z < 0.0) {
- sgngam = -1;
- z = -z;
- } else
- sgngam = 1;
- if (u == 2.0)
- return (log(z));
- p -= 2.0;
- x = x + p;
- p = x * polevl(x, B, 5) / p1evl(x, C, 6);
- return (log(z) + p);
- }
- if (x > MAXLGM) {
- #ifdef INFINITIES
- return (sgngam * INFINITY);
- #else
- loverf:
- mtherr("lgam", OVERFLOW);
- return (sgngam * MAXNUM);
- #endif
- }
- q = (x - 0.5) * log(x) - x + LS2PI;
- if (x > 1.0e8)
- return (q);
- p = 1.0 / (x * x);
- if (x >= 1000.0)
- q += ((7.9365079365079365079365e-4 * p - 2.7777777777777777777778e-3) * p +
- 0.0833333333333333333333) /
- x;
- else
- q += polevl(p, A, 4) / x;
- return (q);
- }
|