123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354 |
- /* sin.c
- *
- * Circular sine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, sin();
- *
- * y = sin( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the sine is approximated by
- * x + x**3 P(x**2).
- * Between pi/4 and pi/2 the cosine is represented as
- * 1 - x**2 Q(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0, 10 150000 3.0e-17 7.8e-18
- * IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * sin total loss x > 1.073741824e9 0.0
- *
- * Partial loss of accuracy begins to occur at x = 2**30
- * = 1.074e9. The loss is not gradual, but jumps suddenly to
- * about 1 part in 10e7. Results may be meaningless for
- * x > 2**49 = 5.6e14. The routine as implemented flags a
- * TLOSS error for x > 2**30 and returns 0.0.
- */
- /* cos.c
- *
- * Circular cosine
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, cos();
- *
- * y = cos( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Range reduction is into intervals of pi/4. The reduction
- * error is nearly eliminated by contriving an extended precision
- * modular arithmetic.
- *
- * Two polynomial approximating functions are employed.
- * Between 0 and pi/4 the cosine is approximated by
- * 1 - x**2 Q(x**2).
- * Between pi/4 and pi/2 the sine is represented as
- * x + x**3 P(x**2).
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * IEEE -1.07e9,+1.07e9 130000 2.1e-16 5.4e-17
- * DEC 0,+1.07e9 17000 3.0e-17 7.2e-18
- */
- /* sin.c */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1985, 1995, 2000 by Stephen L. Moshier
- */
- #include "mconf.h"
- #ifdef UNK
- static double sincof[] = {
- 1.58962301576546568060E-10, -2.50507477628578072866E-8,
- 2.75573136213857245213E-6, -1.98412698295895385996E-4,
- 8.33333333332211858878E-3, -1.66666666666666307295E-1,
- };
- static double coscof[6] = {
- -1.13585365213876817300E-11, 2.08757008419747316778E-9,
- -2.75573141792967388112E-7, 2.48015872888517045348E-5,
- -1.38888888888730564116E-3, 4.16666666666665929218E-2,
- };
- static double DP1 = 7.85398125648498535156E-1;
- static double DP2 = 3.77489470793079817668E-8;
- static double DP3 = 2.69515142907905952645E-15;
- /* static double lossth = 1.073741824e9; */
- #endif
- #ifdef DEC
- static unsigned short sincof[] = {
- 0030056, 0143750, 0177214, 0163153, 0131727, 0027455, 0044510, 0175352,
- 0033470, 0167432, 0131752, 0042414, 0135120, 0006400, 0146776, 0174027,
- 0036410, 0104210, 0104207, 0137202, 0137452, 0125252, 0125252, 0125103,
- };
- static unsigned short coscof[24] = {
- 0127107, 0151115, 0002060, 0152325, 0031017, 0072353, 0155161, 0174053,
- 0132623, 0171173, 0172542, 0057056, 0034320, 0006400, 0147102, 0023652,
- 0135666, 0005540, 0133012, 0076213, 0037052, 0125252, 0125252, 0125126,
- };
- /* 7.853981629014015197753906250000E-1 */
- static unsigned short P1[] = {
- 0040111,
- 0007732,
- 0120000,
- 0000000,
- };
- /* 4.960467869796758577649598009884E-10 */
- static unsigned short P2[] = {
- 0030410,
- 0055060,
- 0100000,
- 0000000,
- };
- /* 2.860594363054915898381331279295E-18 */
- static unsigned short P3[] = {
- 0021523,
- 0011431,
- 0105056,
- 0001560,
- };
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- #endif
- #ifdef IBMPC
- static unsigned short sincof[] = {
- 0x9ccd, 0x1fd1, 0xd8fd, 0x3de5, 0x1f5d, 0xa929, 0xe5e5, 0xbe5a,
- 0x48a1, 0x567d, 0x1de3, 0x3ec7, 0xdf03, 0x19bf, 0x01a0, 0xbf2a,
- 0xf7d0, 0x1110, 0x1111, 0x3f81, 0x5548, 0x5555, 0x5555, 0xbfc5,
- };
- static unsigned short coscof[24] = {
- 0x1a9b, 0xa086, 0xfa49, 0xbda8, 0x3f05, 0x7b4e, 0xee9d, 0x3e21,
- 0x4bc6, 0x7eac, 0x7e4f, 0xbe92, 0x44f5, 0x19c8, 0x01a0, 0x3efa,
- 0x4f91, 0x16c1, 0xc16c, 0xbf56, 0x554b, 0x5555, 0x5555, 0x3fa5,
- };
- /*
- 7.85398125648498535156E-1,
- 3.77489470793079817668E-8,
- 2.69515142907905952645E-15,
- */
- static unsigned short P1[] = {0x0000, 0x4000, 0x21fb, 0x3fe9};
- static unsigned short P2[] = {0x0000, 0x0000, 0x442d, 0x3e64};
- static unsigned short P3[] = {0x5170, 0x98cc, 0x4698, 0x3ce8};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- #endif
- #ifdef MIEEE
- static unsigned short sincof[] = {
- 0x3de5, 0xd8fd, 0x1fd1, 0x9ccd, 0xbe5a, 0xe5e5, 0xa929, 0x1f5d,
- 0x3ec7, 0x1de3, 0x567d, 0x48a1, 0xbf2a, 0x01a0, 0x19bf, 0xdf03,
- 0x3f81, 0x1111, 0x1110, 0xf7d0, 0xbfc5, 0x5555, 0x5555, 0x5548,
- };
- static unsigned short coscof[24] = {
- 0xbda8, 0xfa49, 0xa086, 0x1a9b, 0x3e21, 0xee9d, 0x7b4e, 0x3f05,
- 0xbe92, 0x7e4f, 0x7eac, 0x4bc6, 0x3efa, 0x01a0, 0x19c8, 0x44f5,
- 0xbf56, 0xc16c, 0x16c1, 0x4f91, 0x3fa5, 0x5555, 0x5555, 0x554b,
- };
- static unsigned short P1[] = {0x3fe9, 0x21fb, 0x4000, 0x0000};
- static unsigned short P2[] = {0x3e64, 0x442d, 0x0000, 0x0000};
- static unsigned short P3[] = {0x3ce8, 0x4698, 0x98cc, 0x5170};
- #define DP1 *(double *)P1
- #define DP2 *(double *)P2
- #define DP3 *(double *)P3
- #endif
- #ifdef ANSIPROT
- extern double polevl(double, void *, int);
- extern double p1evl(double, void *, int);
- extern double floor(double);
- extern double ldexp(double, int);
- extern int isnan(double);
- extern int isfinite(double);
- #else
- double polevl(), floor(), ldexp();
- int isnan(), isfinite();
- #endif
- extern double PIO4;
- static double lossth = 1.073741824e9;
- #ifdef NANS
- extern double NAN;
- #endif
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- double sin(x) double x;
- {
- double y, z, zz;
- int j, sign;
- #ifdef MINUSZERO
- if (x == 0.0)
- return (x);
- #endif
- #ifdef NANS
- if (isnan(x))
- return (x);
- if (!isfinite(x)) {
- mtherr("sin", DOMAIN);
- return (NAN);
- }
- #endif
- /* make argument positive but save the sign */
- sign = 1;
- if (x < 0) {
- x = -x;
- sign = -1;
- }
- if (x > lossth) {
- mtherr("sin", TLOSS);
- return (0.0);
- }
- y = floor(x / PIO4); /* integer part of x/PIO4 */
- /* strip high bits of integer part to prevent integer overflow */
- z = ldexp(y, -4);
- z = floor(z); /* integer part of y/8 */
- z = y - ldexp(z, 4); /* y - 16 * (y/16) */
- j = z; /* convert to integer for tests on the phase angle */
- /* map zeros to origin */
- if (j & 1) {
- j += 1;
- y += 1.0;
- }
- j = j & 07; /* octant modulo 360 degrees */
- /* reflect in x axis */
- if (j > 3) {
- sign = -sign;
- j -= 4;
- }
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if ((j == 1) || (j == 2)) {
- y = 1.0 - ldexp(zz, -1) + zz * zz * polevl(zz, coscof, 5);
- } else {
- /* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
- y = z + z * z * z * polevl(zz, sincof, 5);
- }
- if (sign < 0)
- y = -y;
- return (y);
- }
- double cos(x) double x;
- {
- double y, z, zz;
- long i;
- int j, sign;
- #ifdef NANS
- if (isnan(x))
- return (x);
- if (!isfinite(x)) {
- mtherr("cos", DOMAIN);
- return (NAN);
- }
- #endif
- /* make argument positive */
- sign = 1;
- if (x < 0)
- x = -x;
- if (x > lossth) {
- mtherr("cos", TLOSS);
- return (0.0);
- }
- y = floor(x / PIO4);
- z = ldexp(y, -4);
- z = floor(z); /* integer part of y/8 */
- z = y - ldexp(z, 4); /* y - 16 * (y/16) */
- /* integer and fractional part modulo one octant */
- i = z;
- if (i & 1) /* map zeros to origin */
- {
- i += 1;
- y += 1.0;
- }
- j = i & 07;
- if (j > 3) {
- j -= 4;
- sign = -sign;
- }
- if (j > 1)
- sign = -sign;
- /* Extended precision modular arithmetic */
- z = ((x - y * DP1) - y * DP2) - y * DP3;
- zz = z * z;
- if ((j == 1) || (j == 2)) {
- /* y = z + z * (zz * polevl( zz, sincof, 5 ));*/
- y = z + z * z * z * polevl(zz, sincof, 5);
- } else {
- y = 1.0 - ldexp(zz, -1) + zz * zz * polevl(zz, coscof, 5);
- }
- if (sign < 0)
- y = -y;
- return (y);
- }
- /* Degrees, minutes, seconds to radians: */
- /* 1 arc second, in radians = 4.8481368110953599358991410e-5 */
- #ifdef DEC
- static unsigned short P648[] = {
- 034513,
- 054170,
- 0176773,
- 0116043,
- };
- #define P64800 *(double *)P648
- #else
- static double P64800 = 4.8481368110953599358991410e-5;
- #endif
- double radian(d, m, s) double d, m, s;
- { return (((d * 60.0 + m) * 60.0 + s) * P64800); }
|