123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398 |
- /* ceil()
- * floor()
- * frexp()
- * ldexp()
- * signbit()
- * isnan()
- * isfinite()
- *
- * Floating point numeric utilities
- *
- *
- *
- * SYNOPSIS:
- *
- * double ceil(), floor(), frexp(), ldexp();
- * int signbit(), isnan(), isfinite();
- * double x, y;
- * int expnt, n;
- *
- * y = floor(x);
- * y = ceil(x);
- * y = frexp( x, &expnt );
- * y = ldexp( x, n );
- * n = signbit(x);
- * n = isnan(x);
- * n = isfinite(x);
- *
- *
- *
- * DESCRIPTION:
- *
- * All four routines return a double precision floating point
- * result.
- *
- * floor() returns the largest integer less than or equal to x.
- * It truncates toward minus infinity.
- *
- * ceil() returns the smallest integer greater than or equal
- * to x. It truncates toward plus infinity.
- *
- * frexp() extracts the exponent from x. It returns an integer
- * power of two to expnt and the significand between 0.5 and 1
- * to y. Thus x = y * 2**expn.
- *
- * ldexp() multiplies x by 2**n.
- *
- * signbit(x) returns 1 if the sign bit of x is 1, else 0.
- *
- * These functions are part of the standard C run time library
- * for many but not all C compilers. The ones supplied are
- * written in C for either DEC or IEEE arithmetic. They should
- * be used only if your compiler library does not already have
- * them.
- *
- * The IEEE versions assume that denormal numbers are implemented
- * in the arithmetic. Some modifications will be required if
- * the arithmetic has abrupt rather than gradual underflow.
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- #include "mconf.h"
- #ifdef UNK
- /* ceil(), floor(), frexp(), ldexp() may need to be rewritten. */
- #undef UNK
- #if BIGENDIAN
- #define MIEEE 1
- #else
- #define IBMPC 1
- #endif
- #endif
- #ifdef DEC
- #define EXPMSK 0x807f
- #define MEXP 255
- #define NBITS 56
- #endif
- #ifdef IBMPC
- #define EXPMSK 0x800f
- #define MEXP 0x7ff
- #define NBITS 53
- #endif
- #ifdef MIEEE
- #define EXPMSK 0x800f
- #define MEXP 0x7ff
- #define NBITS 53
- #endif
- extern double MAXNUM, NEGZERO;
- #ifdef ANSIPROT
- double ignore_floor(double);
- int isnan(double);
- int isfinite(double);
- double ldexp(double, int);
- #else
- double floor();
- int isnan(), isfinite();
- double ldexp();
- #endif
- double ignore_ceil(x) double x;
- {
- double y;
- #ifdef UNK
- mtherr("ceil", DOMAIN);
- return (0.0);
- #endif
- #ifdef NANS
- if (isnan(x))
- return (x);
- #endif
- #ifdef INFINITIES
- if (!isfinite(x))
- return (x);
- #endif
- y = ignore_floor(x);
- if (y < x)
- y += 1.0;
- #ifdef MINUSZERO
- if (y == 0.0 && x < 0.0)
- return (NEGZERO);
- #endif
- return (y);
- }
- /* Bit clearing masks: */
- static unsigned short bmask[] = {
- 0xffff, 0xfffe, 0xfffc, 0xfff8, 0xfff0, 0xffe0, 0xffc0, 0xff80, 0xff00,
- 0xfe00, 0xfc00, 0xf800, 0xf000, 0xe000, 0xc000, 0x8000, 0x0000,
- };
- double ignore_floor(x) double x;
- {
- union {
- double y;
- unsigned short sh[4];
- } u;
- unsigned short *p;
- int e;
- #ifdef UNK
- mtherr("floor", DOMAIN);
- return (0.0);
- #endif
- #ifdef NANS
- if (isnan(x))
- return (x);
- #endif
- #ifdef INFINITIES
- if (!isfinite(x))
- return (x);
- #endif
- #ifdef MINUSZERO
- if (x == 0.0L)
- return (x);
- #endif
- u.y = x;
- /* find the exponent (power of 2) */
- #ifdef DEC
- p = (unsigned short *)&u.sh[0];
- e = ((*p >> 7) & 0377) - 0201;
- p += 3;
- #endif
- #ifdef IBMPC
- p = (unsigned short *)&u.sh[3];
- e = ((*p >> 4) & 0x7ff) - 0x3ff;
- p -= 3;
- #endif
- #ifdef MIEEE
- p = (unsigned short *)&u.sh[0];
- e = ((*p >> 4) & 0x7ff) - 0x3ff;
- p += 3;
- #endif
- if (e < 0) {
- if (u.y < 0.0)
- return (-1.0);
- else
- return (0.0);
- }
- e = (NBITS - 1) - e;
- /* clean out 16 bits at a time */
- while (e >= 16) {
- #ifdef IBMPC
- *p++ = 0;
- #endif
- #ifdef DEC
- *p-- = 0;
- #endif
- #ifdef MIEEE
- *p-- = 0;
- #endif
- e -= 16;
- }
- /* clear the remaining bits */
- if (e > 0)
- *p &= bmask[e];
- if ((x < 0) && (u.y != x))
- u.y -= 1.0;
- return (u.y);
- }
- double frexp(x, pw2) double x;
- int *pw2;
- {
- union {
- double y;
- unsigned short sh[4];
- } u;
- int i;
- #ifdef DENORMAL
- int k;
- #endif
- short *q;
- u.y = x;
- #ifdef UNK
- mtherr("frexp", DOMAIN);
- return (0.0);
- #endif
- #ifdef IBMPC
- q = (short *)&u.sh[3];
- #endif
- #ifdef DEC
- q = (short *)&u.sh[0];
- #endif
- #ifdef MIEEE
- q = (short *)&u.sh[0];
- #endif
- /* find the exponent (power of 2) */
- #ifdef DEC
- i = (*q >> 7) & 0377;
- if (i == 0) {
- *pw2 = 0;
- return (0.0);
- }
- i -= 0200;
- *pw2 = i;
- *q &= 0x807f; /* strip all exponent bits */
- *q |= 040000; /* mantissa between 0.5 and 1 */
- return (u.y);
- #endif
- #ifdef IBMPC
- i = (*q >> 4) & 0x7ff;
- if (i != 0)
- goto ieeedon;
- #endif
- #ifdef MIEEE
- i = *q >> 4;
- i &= 0x7ff;
- if (i != 0)
- goto ieeedon;
- #ifdef DENORMAL
- #else
- *pw2 = 0;
- return (0.0);
- #endif
- #endif
- #ifndef DEC
- /* Number is denormal or zero */
- #ifdef DENORMAL
- if (u.y == 0.0) {
- *pw2 = 0;
- return (0.0);
- }
- /* Handle denormal number. */
- do {
- u.y *= 2.0;
- i -= 1;
- k = (*q >> 4) & 0x7ff;
- } while (k == 0);
- i = i + k;
- #endif /* DENORMAL */
- ieeedon:
- i -= 0x3fe;
- *pw2 = i;
- *q &= 0x800f;
- *q |= 0x3fe0;
- return (u.y);
- #endif
- }
- double ldexp(x, pw2) double x;
- int pw2;
- {
- union {
- double y;
- unsigned short sh[4];
- } u;
- short *q;
- int e;
- #ifdef UNK
- mtherr("ldexp", DOMAIN);
- return (0.0);
- #endif
- u.y = x;
- #ifdef DEC
- q = (short *)&u.sh[0];
- e = (*q >> 7) & 0377;
- if (e == 0)
- return (0.0);
- #else
- #ifdef IBMPC
- q = (short *)&u.sh[3];
- #endif
- #ifdef MIEEE
- q = (short *)&u.sh[0];
- #endif
- while ((e = (*q & 0x7ff0) >> 4) == 0) {
- if (u.y == 0.0) {
- return (0.0);
- }
- /* Input is denormal. */
- if (pw2 > 0) {
- u.y *= 2.0;
- pw2 -= 1;
- }
- if (pw2 < 0) {
- if (pw2 < -53)
- return (0.0);
- u.y /= 2.0;
- pw2 += 1;
- }
- if (pw2 == 0)
- return (u.y);
- }
- #endif /* not DEC */
- e += pw2;
- /* Handle overflow */
- #ifdef DEC
- if (e > MEXP)
- return (MAXNUM);
- #else
- if (e >= MEXP)
- return (2.0 * MAXNUM);
- #endif
- /* Handle denormalized results */
- if (e < 1) {
- #ifdef DENORMAL
- if (e < -53)
- return (0.0);
- *q &= 0x800f;
- *q |= 0x10;
- /* For denormals, significant bits may be lost even
- when dividing by 2. Construct 2^-(1-e) so the result
- is obtained with only one multiplication. */
- u.y *= ldexp(1.0, e - 1);
- return (u.y);
- #else
- return (0.0);
- #endif
- } else {
- #ifdef DEC
- *q &= 0x807f; /* strip all exponent bits */
- *q |= (e & 0xff) << 7;
- #else
- *q &= 0x800f;
- *q |= (e & 0x7ff) << 4;
- #endif
- return (u.y);
- }
- }
|