123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- /* iv.c
- *
- * Modified Bessel function of noninteger order
- *
- *
- *
- * SYNOPSIS:
- *
- * double v, x, y, iv();
- *
- * y = iv( v, x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns modified Bessel function of order v of the
- * argument. If x is negative, v must be integer valued.
- *
- * The function is defined as Iv(x) = Jv( ix ). It is
- * here computed in terms of the confluent hypergeometric
- * function, according to the formula
- *
- * v -x
- * Iv(x) = (x/2) e hyperg( v+0.5, 2v+1, 2x ) / gamma(v+1)
- *
- * If v is a negative integer, then v is replaced by -v.
- *
- *
- * ACCURACY:
- *
- * Tested at random points (v, x), with v between 0 and
- * 30, x between 0 and 28.
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC 0,30 2000 3.1e-15 5.4e-16
- * IEEE 0,30 10000 1.7e-14 2.7e-15
- *
- * Accuracy is diminished if v is near a negative integer.
- *
- * See also hyperg.c.
- *
- */
- /* iv.c */
- /* Modified Bessel function of noninteger order */
- /* If x < 0, then v must be an integer. */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1987, 1988, 2000 by Stephen L. Moshier
- */
- #include "mconf.h"
- #ifdef ANSIPROT
- extern double hyperg(double, double, double);
- extern double exp(double);
- extern double gamma(double);
- extern double log(double);
- extern double fabs(double);
- extern double floor(double);
- #else
- double hyperg(), exp(), gamma(), log(), fabs(), floor();
- #endif
- extern double MACHEP, MAXNUM;
- double iv(v, x) double v, x;
- {
- int sign;
- double t, ax;
- /* If v is a negative integer, invoke symmetry */
- t = floor(v);
- if (v < 0.0) {
- if (t == v) {
- v = -v; /* symmetry */
- t = -t;
- }
- }
- /* If x is negative, require v to be an integer */
- sign = 1;
- if (x < 0.0) {
- if (t != v) {
- mtherr("iv", DOMAIN);
- return (0.0);
- }
- if (v != 2.0 * floor(v / 2.0))
- sign = -1;
- }
- /* Avoid logarithm singularity */
- if (x == 0.0) {
- if (v == 0.0)
- return (1.0);
- if (v < 0.0) {
- mtherr("iv", OVERFLOW);
- return (MAXNUM);
- } else
- return (0.0);
- }
- ax = fabs(x);
- t = v * log(0.5 * ax) - x;
- t = sign * exp(t) / gamma(v + 1.0);
- ax = v + 0.5;
- return (t * hyperg(ax, 2.0 * ax, 2.0 * x));
- }
|