123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190 |
- /* exp.c
- *
- * Exponential function
- *
- *
- *
- * SYNOPSIS:
- *
- * double x, y, exp();
- *
- * y = exp( x );
- *
- *
- *
- * DESCRIPTION:
- *
- * Returns e (2.71828...) raised to the x power.
- *
- * Range reduction is accomplished by separating the argument
- * into an integer k and fraction f such that
- *
- * x k f
- * e = 2 e.
- *
- * A Pade' form 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- * of degree 2/3 is used to approximate exp(f) in the basic
- * interval [-0.5, 0.5].
- *
- *
- * ACCURACY:
- *
- * Relative error:
- * arithmetic domain # trials peak rms
- * DEC +- 88 50000 2.8e-17 7.0e-18
- * IEEE +- 708 40000 2.0e-16 5.6e-17
- *
- *
- * Error amplification in the exponential function can be
- * a serious matter. The error propagation involves
- * exp( X(1+delta) ) = exp(X) ( 1 + X*delta + ... ),
- * which shows that a 1 lsb error in representing X produces
- * a relative error of X times 1 lsb in the function.
- * While the routine gives an accurate result for arguments
- * that are exactly represented by a double precision
- * computer number, the result contains amplified roundoff
- * error for large arguments not exactly represented.
- *
- *
- * ERROR MESSAGES:
- *
- * message condition value returned
- * exp underflow x < MINLOG 0.0
- * exp overflow x > MAXLOG INFINITY
- *
- */
- /*
- Cephes Math Library Release 2.8: June, 2000
- Copyright 1984, 1995, 2000 by Stephen L. Moshier
- */
- /* Exponential function */
- #include "mconf.h"
- #ifdef UNK
- static double P[] = {
- 1.26177193074810590878E-4,
- 3.02994407707441961300E-2,
- 9.99999999999999999910E-1,
- };
- static double Q[] = {
- 3.00198505138664455042E-6,
- 2.52448340349684104192E-3,
- 2.27265548208155028766E-1,
- 2.00000000000000000009E0,
- };
- static double C1 = 6.93145751953125E-1;
- static double C2 = 1.42860682030941723212E-6;
- #endif
- #ifdef DEC
- static unsigned short P[] = {
- 0035004, 0047156, 0127442, 0057502, 0036770, 0033210,
- 0063121, 0061764, 0040200, 0000000, 0000000, 0000000,
- };
- static unsigned short Q[] = {
- 0033511, 0072665, 0160662, 0176377, 0036045, 0070715, 0124105, 0132777,
- 0037550, 0134114, 0142077, 0001637, 0040400, 0000000, 0000000, 0000000,
- };
- static unsigned short sc1[] = {0040061, 0071000, 0000000, 0000000};
- #define C1 (*(double *)sc1)
- static unsigned short sc2[] = {0033277, 0137216, 0075715, 0057117};
- #define C2 (*(double *)sc2)
- #endif
- #ifdef IBMPC
- static unsigned short P[] = {
- 0x4be8, 0xd5e4, 0x89cd, 0x3f20, 0x2c7e, 0x0cca,
- 0x06d1, 0x3f9f, 0x0000, 0x0000, 0x0000, 0x3ff0,
- };
- static unsigned short Q[] = {
- 0x5fa0, 0xbc36, 0x2eb6, 0x3ec9, 0xb6c0, 0xb508, 0xae39, 0x3f64,
- 0xe074, 0x9887, 0x1709, 0x3fcd, 0x0000, 0x0000, 0x0000, 0x4000,
- };
- static unsigned short sc1[] = {0x0000, 0x0000, 0x2e40, 0x3fe6};
- #define C1 (*(double *)sc1)
- static unsigned short sc2[] = {0xabca, 0xcf79, 0xf7d1, 0x3eb7};
- #define C2 (*(double *)sc2)
- #endif
- #ifdef MIEEE
- static unsigned short P[] = {
- 0x3f20, 0x89cd, 0xd5e4, 0x4be8, 0x3f9f, 0x06d1,
- 0x0cca, 0x2c7e, 0x3ff0, 0x0000, 0x0000, 0x0000,
- };
- static unsigned short Q[] = {
- 0x3ec9, 0x2eb6, 0xbc36, 0x5fa0, 0x3f64, 0xae39, 0xb508, 0xb6c0,
- 0x3fcd, 0x1709, 0x9887, 0xe074, 0x4000, 0x0000, 0x0000, 0x0000,
- };
- static unsigned short sc1[] = {0x3fe6, 0x2e40, 0x0000, 0x0000};
- #define C1 (*(double *)sc1)
- static unsigned short sc2[] = {0x3eb7, 0xf7d1, 0xcf79, 0xabca};
- #define C2 (*(double *)sc2)
- #endif
- #ifdef ANSIPROT
- extern double polevl(double, void *, int);
- extern double p1evl(double, void *, int);
- extern double floor(double);
- extern double ldexp(double, int);
- extern int isnan(double);
- extern int isfinite(double);
- #else
- double polevl(), p1evl(), floor(), ldexp();
- int isnan(), isfinite();
- #endif
- extern double LOGE2, LOG2E, MAXLOG, MINLOG, MAXNUM;
- #ifdef INFINITIES
- extern double INFINITY;
- #endif
- double exp(x) double x;
- {
- double px, xx;
- int n;
- #ifdef NANS
- if (isnan(x))
- return (x);
- #endif
- if (x > MAXLOG) {
- #ifdef INFINITIES
- return (INFINITY);
- #else
- mtherr("exp", OVERFLOW);
- return (MAXNUM);
- #endif
- }
- if (x < MINLOG) {
- #ifndef INFINITIES
- mtherr("exp", UNDERFLOW);
- #endif
- return (0.0);
- }
- /* Express e**x = e**g 2**n
- * = e**g e**( n loge(2) )
- * = e**( g + n loge(2) )
- */
- px = floor(LOG2E * x + 0.5); /* floor() truncates toward -infinity. */
- n = px;
- x -= px * C1;
- x -= px * C2;
- /* rational approximation for exponential
- * of the fractional part:
- * e**x = 1 + 2x P(x**2)/( Q(x**2) - P(x**2) )
- */
- xx = x * x;
- px = x * polevl(xx, P, 2);
- x = px / (polevl(xx, Q, 3) - px);
- x = 1.0 + 2.0 * x;
- /* multiply by power of 2 */
- x = ldexp(x, n);
- return (x);
- }
|