Tommy Jing-Tao Liu vor 4 Jahren
Commit
226422e13d
100 geänderte Dateien mit 39958 neuen und 0 gelöschten Zeilen
  1. BIN
      .DS_Store
  2. BIN
      3rdparty/.DS_Store
  3. BIN
      3rdparty/pthreads/.DS_Store
  4. BIN
      3rdparty/pthreads/bin/pthreadGC2.dll
  5. BIN
      3rdparty/pthreads/bin/pthreadVC2.dll
  6. 1368 0
      3rdparty/pthreads/include/pthread.h
  7. 183 0
      3rdparty/pthreads/include/sched.h
  8. 169 0
      3rdparty/pthreads/include/semaphore.h
  9. BIN
      3rdparty/pthreads/lib/libpthreadGC2.a
  10. BIN
      3rdparty/pthreads/lib/pthreadVC2.lib
  11. 7187 0
      3rdparty/stb/include/stb_image.h
  12. 1458 0
      3rdparty/stb/include/stb_image_write.h
  13. 467 0
      CMakeLists.txt
  14. 45 0
      DarknetConfig.cmake.in
  15. 12 0
      LICENSE
  16. 176 0
      Makefile
  17. 752 0
      README.md
  18. 87 0
      appveyor.yml
  19. 3 0
      bad.list
  20. 224 0
      build.ps1
  21. 57 0
      build.sh
  22. 89 0
      build/darknet/YoloWrapper.cs
  23. 28 0
      build/darknet/darknet.sln
  24. 307 0
      build/darknet/darknet.vcxproj
  25. 28 0
      build/darknet/darknet_no_gpu.sln
  26. 309 0
      build/darknet/darknet_no_gpu.vcxproj
  27. 0 0
      build/darknet/x64/backup/tmp.txt
  28. 12 0
      build/darknet/x64/calc_anchors.cmd
  29. 11 0
      build/darknet/x64/calc_mAP.cmd
  30. 16 0
      build/darknet/x64/calc_mAP_coco.cmd
  31. 16 0
      build/darknet/x64/calc_mAP_voc_py.cmd
  32. 807 0
      build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg
  33. 95 0
      build/darknet/x64/cfg/alexnet.cfg
  34. 126 0
      build/darknet/x64/cfg/cifar.cfg
  35. 119 0
      build/darknet/x64/cfg/cifar.test.cfg
  36. 8 0
      build/darknet/x64/cfg/coco.data
  37. 10 0
      build/darknet/x64/cfg/combine9k.data
  38. 52 0
      build/darknet/x64/cfg/crnn.train.cfg
  39. 1048 0
      build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg
  40. 1018 0
      build/darknet/x64/cfg/csresnext50-panet-spp.cfg
  41. 111 0
      build/darknet/x64/cfg/darknet.cfg
  42. 194 0
      build/darknet/x64/cfg/darknet19.cfg
  43. 202 0
      build/darknet/x64/cfg/darknet19_448.cfg
  44. 566 0
      build/darknet/x64/cfg/darknet53.cfg
  45. 619 0
      build/darknet/x64/cfg/darknet53_448_xnor.cfg
  46. 1954 0
      build/darknet/x64/cfg/densenet201.cfg
  47. 1009 0
      build/darknet/x64/cfg/efficientnet_b0.cfg
  48. 1072 0
      build/darknet/x64/cfg/enet-coco.cfg
  49. 206 0
      build/darknet/x64/cfg/extraction.cfg
  50. 179 0
      build/darknet/x64/cfg/extraction.conv.cfg
  51. 209 0
      build/darknet/x64/cfg/extraction22k.cfg
  52. 131 0
      build/darknet/x64/cfg/go.test.cfg
  53. 34 0
      build/darknet/x64/cfg/gru.cfg
  54. 9 0
      build/darknet/x64/cfg/imagenet1k.data
  55. 8 0
      build/darknet/x64/cfg/imagenet22k.dataset
  56. 9 0
      build/darknet/x64/cfg/imagenet9k.hierarchy.dataset
  57. 118 0
      build/darknet/x64/cfg/jnet-conv.cfg
  58. 35 0
      build/darknet/x64/cfg/lstm.train.cfg
  59. 8 0
      build/darknet/x64/cfg/openimages.data
  60. 990 0
      build/darknet/x64/cfg/resnet101.cfg
  61. 1463 0
      build/darknet/x64/cfg/resnet152.cfg
  62. 2177 0
      build/darknet/x64/cfg/resnet152_trident.cfg
  63. 511 0
      build/darknet/x64/cfg/resnet50.cfg
  64. 1562 0
      build/darknet/x64/cfg/resnext152-32x4d.cfg
  65. 40 0
      build/darknet/x64/cfg/rnn.cfg
  66. 40 0
      build/darknet/x64/cfg/rnn.train.cfg
  67. 185 0
      build/darknet/x64/cfg/strided.cfg
  68. 117 0
      build/darknet/x64/cfg/t1.test.cfg
  69. 134 0
      build/darknet/x64/cfg/tiny-yolo-voc.cfg
  70. 134 0
      build/darknet/x64/cfg/tiny-yolo.cfg
  71. 148 0
      build/darknet/x64/cfg/tiny-yolo_xnor.cfg
  72. 172 0
      build/darknet/x64/cfg/tiny.cfg
  73. 153 0
      build/darknet/x64/cfg/vgg-16.cfg
  74. 123 0
      build/darknet/x64/cfg/vgg-conv.cfg
  75. 7 0
      build/darknet/x64/cfg/voc.data
  76. 41 0
      build/darknet/x64/cfg/writing.cfg
  77. 244 0
      build/darknet/x64/cfg/yolo-voc.2.0.cfg
  78. 258 0
      build/darknet/x64/cfg/yolo-voc.cfg
  79. 244 0
      build/darknet/x64/cfg/yolo.2.0.cfg
  80. 258 0
      build/darknet/x64/cfg/yolo.cfg
  81. 218 0
      build/darknet/x64/cfg/yolo9000.cfg
  82. 138 0
      build/darknet/x64/cfg/yolov2-tiny-voc.cfg
  83. 139 0
      build/darknet/x64/cfg/yolov2-tiny.cfg
  84. 258 0
      build/darknet/x64/cfg/yolov2-voc.cfg
  85. 258 0
      build/darknet/x64/cfg/yolov2.cfg
  86. 789 0
      build/darknet/x64/cfg/yolov3-openimages.cfg
  87. 822 0
      build/darknet/x64/cfg/yolov3-spp.cfg
  88. 199 0
      build/darknet/x64/cfg/yolov3-tiny-prn.cfg
  89. 182 0
      build/darknet/x64/cfg/yolov3-tiny.cfg
  90. 227 0
      build/darknet/x64/cfg/yolov3-tiny_3l.cfg
  91. 182 0
      build/darknet/x64/cfg/yolov3-tiny_obj.cfg
  92. 218 0
      build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg
  93. 197 0
      build/darknet/x64/cfg/yolov3-tiny_xnor.cfg
  94. 785 0
      build/darknet/x64/cfg/yolov3-voc.cfg
  95. 808 0
      build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg
  96. 789 0
      build/darknet/x64/cfg/yolov3.cfg
  97. 806 0
      build/darknet/x64/cfg/yolov3.coco-giou-12.cfg
  98. 968 0
      build/darknet/x64/cfg/yolov3_5l.cfg
  99. 6 0
      build/darknet/x64/classifier_densenet201.cmd
  100. 8 0
      build/darknet/x64/classifier_resnet50.cmd

BIN
.DS_Store


BIN
3rdparty/.DS_Store


BIN
3rdparty/pthreads/.DS_Store


BIN
3rdparty/pthreads/bin/pthreadGC2.dll


BIN
3rdparty/pthreads/bin/pthreadVC2.dll


+ 1368 - 0
3rdparty/pthreads/include/pthread.h

@@ -0,0 +1,1368 @@
+/* This is an implementation of the threads API of POSIX 1003.1-2001.
+ *
+ * --------------------------------------------------------------------------
+ *
+ *      Pthreads-win32 - POSIX Threads Library for Win32
+ *      Copyright(C) 1998 John E. Bossom
+ *      Copyright(C) 1999,2005 Pthreads-win32 contributors
+ * 
+ *      Contact Email: rpj@callisto.canberra.edu.au
+ * 
+ *      The current list of contributors is contained
+ *      in the file CONTRIBUTORS included with the source
+ *      code distribution. The list can also be seen at the
+ *      following World Wide Web location:
+ *      http://sources.redhat.com/pthreads-win32/contributors.html
+ * 
+ *      This library is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU Lesser General Public
+ *      License as published by the Free Software Foundation; either
+ *      version 2 of the License, or (at your option) any later version.
+ * 
+ *      This library is distributed in the hope that it will be useful,
+ *      but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *      Lesser General Public License for more details.
+ * 
+ *      You should have received a copy of the GNU Lesser General Public
+ *      License along with this library in the file COPYING.LIB;
+ *      if not, write to the Free Software Foundation, Inc.,
+ *      59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+
+#if !defined( PTHREAD_H )
+#define PTHREAD_H
+
+/*
+ * See the README file for an explanation of the pthreads-win32 version
+ * numbering scheme and how the DLL is named etc.
+ */
+#define PTW32_VERSION 2,9,1,0
+#define PTW32_VERSION_STRING "2, 9, 1, 0\0"
+
+/* There are three implementations of cancel cleanup.
+ * Note that pthread.h is included in both application
+ * compilation units and also internally for the library.
+ * The code here and within the library aims to work
+ * for all reasonable combinations of environments.
+ *
+ * The three implementations are:
+ *
+ *   WIN32 SEH
+ *   C
+ *   C++
+ *
+ * Please note that exiting a push/pop block via
+ * "return", "exit", "break", or "continue" will
+ * lead to different behaviour amongst applications
+ * depending upon whether the library was built
+ * using SEH, C++, or C. For example, a library built
+ * with SEH will call the cleanup routine, while both
+ * C++ and C built versions will not.
+ */
+
+/*
+ * Define defaults for cleanup code.
+ * Note: Unless the build explicitly defines one of the following, then
+ * we default to standard C style cleanup. This style uses setjmp/longjmp
+ * in the cancelation and thread exit implementations and therefore won't
+ * do stack unwinding if linked to applications that have it (e.g.
+ * C++ apps). This is currently consistent with most/all commercial Unix
+ * POSIX threads implementations.
+ */
+#if !defined( __CLEANUP_SEH ) && !defined( __CLEANUP_CXX ) && !defined( __CLEANUP_C )
+# define __CLEANUP_C
+#endif
+
+#if defined( __CLEANUP_SEH ) && ( !defined( _MSC_VER ) && !defined(PTW32_RC_MSC))
+#error ERROR [__FILE__, line __LINE__]: SEH is not supported for this compiler.
+#endif
+
+/*
+ * Stop here if we are being included by the resource compiler.
+ */
+#if !defined(RC_INVOKED)
+
+#undef PTW32_LEVEL
+
+#if defined(_POSIX_SOURCE)
+#define PTW32_LEVEL 0
+/* Early POSIX */
+#endif
+
+#if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 199309
+#undef PTW32_LEVEL
+#define PTW32_LEVEL 1
+/* Include 1b, 1c and 1d */
+#endif
+
+#if defined(INCLUDE_NP)
+#undef PTW32_LEVEL
+#define PTW32_LEVEL 2
+/* Include Non-Portable extensions */
+#endif
+
+#define PTW32_LEVEL_MAX 3
+
+#if ( defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112 )  || !defined(PTW32_LEVEL)
+#define PTW32_LEVEL PTW32_LEVEL_MAX
+/* Include everything */
+#endif
+
+#if defined(_UWIN)
+#   define HAVE_STRUCT_TIMESPEC 1
+#   define HAVE_SIGNAL_H        1
+#   undef HAVE_PTW32_CONFIG_H
+#   pragma comment(lib, "pthread")
+#endif
+
+/*
+ * -------------------------------------------------------------
+ *
+ *
+ * Module: pthread.h
+ *
+ * Purpose:
+ *      Provides an implementation of PThreads based upon the
+ *      standard:
+ *
+ *              POSIX 1003.1-2001
+ *  and
+ *    The Single Unix Specification version 3
+ *
+ *    (these two are equivalent)
+ *
+ *      in order to enhance code portability between Windows,
+ *  various commercial Unix implementations, and Linux.
+ *
+ *      See the ANNOUNCE file for a full list of conforming
+ *      routines and defined constants, and a list of missing
+ *      routines and constants not defined in this implementation.
+ *
+ * Authors:
+ *      There have been many contributors to this library.
+ *      The initial implementation was contributed by
+ *      John Bossom, and several others have provided major
+ *      sections or revisions of parts of the implementation.
+ *      Often significant effort has been contributed to
+ *      find and fix important bugs and other problems to
+ *      improve the reliability of the library, which sometimes
+ *      is not reflected in the amount of code which changed as
+ *      result.
+ *      As much as possible, the contributors are acknowledged
+ *      in the ChangeLog file in the source code distribution
+ *      where their changes are noted in detail.
+ *
+ *      Contributors are listed in the CONTRIBUTORS file.
+ *
+ *      As usual, all bouquets go to the contributors, and all
+ *      brickbats go to the project maintainer.
+ *
+ * Maintainer:
+ *      The code base for this project is coordinated and
+ *      eventually pre-tested, packaged, and made available by
+ *
+ *              Ross Johnson <rpj@callisto.canberra.edu.au>
+ *
+ * QA Testers:
+ *      Ultimately, the library is tested in the real world by
+ *      a host of competent and demanding scientists and
+ *      engineers who report bugs and/or provide solutions
+ *      which are then fixed or incorporated into subsequent
+ *      versions of the library. Each time a bug is fixed, a
+ *      test case is written to prove the fix and ensure
+ *      that later changes to the code don't reintroduce the
+ *      same error. The number of test cases is slowly growing
+ *      and therefore so is the code reliability.
+ *
+ * Compliance:
+ *      See the file ANNOUNCE for the list of implemented
+ *      and not-implemented routines and defined options.
+ *      Of course, these are all defined is this file as well.
+ *
+ * Web site:
+ *      The source code and other information about this library
+ *      are available from
+ *
+ *              http://sources.redhat.com/pthreads-win32/
+ *
+ * -------------------------------------------------------------
+ */
+
+/* Try to avoid including windows.h */
+#if (defined(__MINGW64__) || defined(__MINGW32__)) && defined(__cplusplus)
+#define PTW32_INCLUDE_WINDOWS_H
+#endif
+
+#if defined(PTW32_INCLUDE_WINDOWS_H)
+#include <windows.h>
+#endif
+
+#if defined(_MSC_VER) && _MSC_VER < 1300 || defined(__DMC__)
+/*
+ * VC++6.0 or early compiler's header has no DWORD_PTR type.
+ */
+typedef unsigned long DWORD_PTR;
+typedef unsigned long ULONG_PTR;
+#endif
+/*
+ * -----------------
+ * autoconf switches
+ * -----------------
+ */
+
+#if defined(HAVE_PTW32_CONFIG_H)
+#include "config.h"
+#endif /* HAVE_PTW32_CONFIG_H */
+
+#if !defined(NEED_FTIME)
+#include <time.h>
+#else /* NEED_FTIME */
+/* use native WIN32 time API */
+#endif /* NEED_FTIME */
+
+#if defined(HAVE_SIGNAL_H)
+#include <signal.h>
+#endif /* HAVE_SIGNAL_H */
+
+#include <limits.h>
+
+/*
+ * Boolean values to make us independent of system includes.
+ */
+enum {
+  PTW32_FALSE = 0,
+  PTW32_TRUE = (! PTW32_FALSE)
+};
+
+/*
+ * This is a duplicate of what is in the autoconf config.h,
+ * which is only used when building the pthread-win32 libraries.
+ */
+
+#if !defined(PTW32_CONFIG_H)
+#  if defined(WINCE)
+#    define NEED_ERRNO
+#    define NEED_SEM
+#  endif
+#  if defined(__MINGW64__)
+#    define HAVE_STRUCT_TIMESPEC
+#    define HAVE_MODE_T
+#  elif defined(_UWIN) || defined(__MINGW32__)
+#    define HAVE_MODE_T
+#  endif
+#endif
+
+/*
+ *
+ */
+
+#if PTW32_LEVEL >= PTW32_LEVEL_MAX
+#if defined(NEED_ERRNO)
+#include "need_errno.h"
+#else
+#include <errno.h>
+#endif
+#endif /* PTW32_LEVEL >= PTW32_LEVEL_MAX */
+
+/*
+ * Several systems don't define some error numbers.
+ */
+#if !defined(ENOTSUP)
+#  define ENOTSUP 48   /* This is the value in Solaris. */
+#endif
+
+#if !defined(ETIMEDOUT)
+#  define ETIMEDOUT 10060 /* Same as WSAETIMEDOUT */
+#endif
+
+#if !defined(ENOSYS)
+#  define ENOSYS 140     /* Semi-arbitrary value */
+#endif
+
+#if !defined(EDEADLK)
+#  if defined(EDEADLOCK)
+#    define EDEADLK EDEADLOCK
+#  else
+#    define EDEADLK 36     /* This is the value in MSVC. */
+#  endif
+#endif
+
+/* POSIX 2008 - related to robust mutexes */
+#if !defined(EOWNERDEAD)
+#  define EOWNERDEAD 43
+#endif
+#if !defined(ENOTRECOVERABLE)
+#  define ENOTRECOVERABLE 44
+#endif
+
+#include <sched.h>
+
+/*
+ * To avoid including windows.h we define only those things that we
+ * actually need from it.
+ */
+#if !defined(PTW32_INCLUDE_WINDOWS_H)
+#if !defined(HANDLE)
+# define PTW32__HANDLE_DEF
+# define HANDLE void *
+#endif
+#if !defined(DWORD)
+# define PTW32__DWORD_DEF
+# define DWORD unsigned long
+#endif
+#endif
+
+#if !defined(HAVE_STRUCT_TIMESPEC)
+#define HAVE_STRUCT_TIMESPEC
+#if !defined(_TIMESPEC_DEFINED)
+#define _TIMESPEC_DEFINED
+struct timespec {
+        time_t tv_sec;
+        long tv_nsec;
+};
+#endif /* _TIMESPEC_DEFINED */
+#endif /* HAVE_STRUCT_TIMESPEC */
+
+#if !defined(SIG_BLOCK)
+#define SIG_BLOCK 0
+#endif /* SIG_BLOCK */
+
+#if !defined(SIG_UNBLOCK)
+#define SIG_UNBLOCK 1
+#endif /* SIG_UNBLOCK */
+
+#if !defined(SIG_SETMASK)
+#define SIG_SETMASK 2
+#endif /* SIG_SETMASK */
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif                          /* __cplusplus */
+
+/*
+ * -------------------------------------------------------------
+ *
+ * POSIX 1003.1-2001 Options
+ * =========================
+ *
+ * Options are normally set in <unistd.h>, which is not provided
+ * with pthreads-win32.
+ *
+ * For conformance with the Single Unix Specification (version 3), all of the
+ * options below are defined, and have a value of either -1 (not supported)
+ * or 200112L (supported).
+ *
+ * These options can neither be left undefined nor have a value of 0, because
+ * either indicates that sysconf(), which is not implemented, may be used at
+ * runtime to check the status of the option.
+ *
+ * _POSIX_THREADS (== 200112L)
+ *                      If == 200112L, you can use threads
+ *
+ * _POSIX_THREAD_ATTR_STACKSIZE (== 200112L)
+ *                      If == 200112L, you can control the size of a thread's
+ *                      stack
+ *                              pthread_attr_getstacksize
+ *                              pthread_attr_setstacksize
+ *
+ * _POSIX_THREAD_ATTR_STACKADDR (== -1)
+ *                      If == 200112L, you can allocate and control a thread's
+ *                      stack. If not supported, the following functions
+ *                      will return ENOSYS, indicating they are not
+ *                      supported:
+ *                              pthread_attr_getstackaddr
+ *                              pthread_attr_setstackaddr
+ *
+ * _POSIX_THREAD_PRIORITY_SCHEDULING (== -1)
+ *                      If == 200112L, you can use realtime scheduling.
+ *                      This option indicates that the behaviour of some
+ *                      implemented functions conforms to the additional TPS
+ *                      requirements in the standard. E.g. rwlocks favour
+ *                      writers over readers when threads have equal priority.
+ *
+ * _POSIX_THREAD_PRIO_INHERIT (== -1)
+ *                      If == 200112L, you can create priority inheritance
+ *                      mutexes.
+ *                              pthread_mutexattr_getprotocol +
+ *                              pthread_mutexattr_setprotocol +
+ *
+ * _POSIX_THREAD_PRIO_PROTECT (== -1)
+ *                      If == 200112L, you can create priority ceiling mutexes
+ *                      Indicates the availability of:
+ *                              pthread_mutex_getprioceiling
+ *                              pthread_mutex_setprioceiling
+ *                              pthread_mutexattr_getprioceiling
+ *                              pthread_mutexattr_getprotocol     +
+ *                              pthread_mutexattr_setprioceiling
+ *                              pthread_mutexattr_setprotocol     +
+ *
+ * _POSIX_THREAD_PROCESS_SHARED (== -1)
+ *                      If set, you can create mutexes and condition
+ *                      variables that can be shared with another
+ *                      process.If set, indicates the availability
+ *                      of:
+ *                              pthread_mutexattr_getpshared
+ *                              pthread_mutexattr_setpshared
+ *                              pthread_condattr_getpshared
+ *                              pthread_condattr_setpshared
+ *
+ * _POSIX_THREAD_SAFE_FUNCTIONS (== 200112L)
+ *                      If == 200112L you can use the special *_r library
+ *                      functions that provide thread-safe behaviour
+ *
+ * _POSIX_READER_WRITER_LOCKS (== 200112L)
+ *                      If == 200112L, you can use read/write locks
+ *
+ * _POSIX_SPIN_LOCKS (== 200112L)
+ *                      If == 200112L, you can use spin locks
+ *
+ * _POSIX_BARRIERS (== 200112L)
+ *                      If == 200112L, you can use barriers
+ *
+ *      + These functions provide both 'inherit' and/or
+ *        'protect' protocol, based upon these macro
+ *        settings.
+ *
+ * -------------------------------------------------------------
+ */
+
+/*
+ * POSIX Options
+ */
+#undef _POSIX_THREADS
+#define _POSIX_THREADS 200809L
+
+#undef _POSIX_READER_WRITER_LOCKS
+#define _POSIX_READER_WRITER_LOCKS 200809L
+
+#undef _POSIX_SPIN_LOCKS
+#define _POSIX_SPIN_LOCKS 200809L
+
+#undef _POSIX_BARRIERS
+#define _POSIX_BARRIERS 200809L
+
+#undef _POSIX_THREAD_SAFE_FUNCTIONS
+#define _POSIX_THREAD_SAFE_FUNCTIONS 200809L
+
+#undef _POSIX_THREAD_ATTR_STACKSIZE
+#define _POSIX_THREAD_ATTR_STACKSIZE 200809L
+
+/*
+ * The following options are not supported
+ */
+#undef _POSIX_THREAD_ATTR_STACKADDR
+#define _POSIX_THREAD_ATTR_STACKADDR -1
+
+#undef _POSIX_THREAD_PRIO_INHERIT
+#define _POSIX_THREAD_PRIO_INHERIT -1
+
+#undef _POSIX_THREAD_PRIO_PROTECT
+#define _POSIX_THREAD_PRIO_PROTECT -1
+
+/* TPS is not fully supported.  */
+#undef _POSIX_THREAD_PRIORITY_SCHEDULING
+#define _POSIX_THREAD_PRIORITY_SCHEDULING -1
+
+#undef _POSIX_THREAD_PROCESS_SHARED
+#define _POSIX_THREAD_PROCESS_SHARED -1
+
+
+/*
+ * POSIX 1003.1-2001 Limits
+ * ===========================
+ *
+ * These limits are normally set in <limits.h>, which is not provided with
+ * pthreads-win32.
+ *
+ * PTHREAD_DESTRUCTOR_ITERATIONS
+ *                      Maximum number of attempts to destroy
+ *                      a thread's thread-specific data on
+ *                      termination (must be at least 4)
+ *
+ * PTHREAD_KEYS_MAX
+ *                      Maximum number of thread-specific data keys
+ *                      available per process (must be at least 128)
+ *
+ * PTHREAD_STACK_MIN
+ *                      Minimum supported stack size for a thread
+ *
+ * PTHREAD_THREADS_MAX
+ *                      Maximum number of threads supported per
+ *                      process (must be at least 64).
+ *
+ * SEM_NSEMS_MAX
+ *                      The maximum number of semaphores a process can have.
+ *                      (must be at least 256)
+ *
+ * SEM_VALUE_MAX
+ *                      The maximum value a semaphore can have.
+ *                      (must be at least 32767)
+ *
+ */
+#undef _POSIX_THREAD_DESTRUCTOR_ITERATIONS
+#define _POSIX_THREAD_DESTRUCTOR_ITERATIONS     4
+
+#undef PTHREAD_DESTRUCTOR_ITERATIONS
+#define PTHREAD_DESTRUCTOR_ITERATIONS           _POSIX_THREAD_DESTRUCTOR_ITERATIONS
+
+#undef _POSIX_THREAD_KEYS_MAX
+#define _POSIX_THREAD_KEYS_MAX                  128
+
+#undef PTHREAD_KEYS_MAX
+#define PTHREAD_KEYS_MAX                        _POSIX_THREAD_KEYS_MAX
+
+#undef PTHREAD_STACK_MIN
+#define PTHREAD_STACK_MIN                       0
+
+#undef _POSIX_THREAD_THREADS_MAX
+#define _POSIX_THREAD_THREADS_MAX               64
+
+  /* Arbitrary value */
+#undef PTHREAD_THREADS_MAX
+#define PTHREAD_THREADS_MAX                     2019
+
+#undef _POSIX_SEM_NSEMS_MAX
+#define _POSIX_SEM_NSEMS_MAX                    256
+
+  /* Arbitrary value */
+#undef SEM_NSEMS_MAX
+#define SEM_NSEMS_MAX                           1024
+
+#undef _POSIX_SEM_VALUE_MAX
+#define _POSIX_SEM_VALUE_MAX                    32767
+
+#undef SEM_VALUE_MAX
+#define SEM_VALUE_MAX                           INT_MAX
+
+
+#if defined(__GNUC__) && !defined(__declspec)
+# error Please upgrade your GNU compiler to one that supports __declspec.
+#endif
+
+/*
+ * When building the library, you should define PTW32_BUILD so that
+ * the variables/functions are exported correctly. When using the library,
+ * do NOT define PTW32_BUILD, and then the variables/functions will
+ * be imported correctly.
+ */
+#if !defined(PTW32_STATIC_LIB)
+#  if defined(PTW32_BUILD)
+#    define PTW32_DLLPORT __declspec (dllexport)
+#  else
+#    define PTW32_DLLPORT __declspec (dllimport)
+#  endif
+#else
+#  define PTW32_DLLPORT
+#endif
+
+/*
+ * The Open Watcom C/C++ compiler uses a non-standard calling convention
+ * that passes function args in registers unless __cdecl is explicitly specified
+ * in exposed function prototypes.
+ *
+ * We force all calls to cdecl even though this could slow Watcom code down
+ * slightly. If you know that the Watcom compiler will be used to build both
+ * the DLL and application, then you can probably define this as a null string.
+ * Remember that pthread.h (this file) is used for both the DLL and application builds.
+ */
+#define PTW32_CDECL __cdecl
+
+#if defined(_UWIN) && PTW32_LEVEL >= PTW32_LEVEL_MAX
+#   include     <sys/types.h>
+#else
+/*
+ * Generic handle type - intended to extend uniqueness beyond
+ * that available with a simple pointer. It should scale for either
+ * IA-32 or IA-64.
+ */
+typedef struct {
+    void * p;                   /* Pointer to actual object */
+    unsigned int x;             /* Extra information - reuse count etc */
+} ptw32_handle_t;
+
+typedef ptw32_handle_t pthread_t;
+typedef struct pthread_attr_t_ * pthread_attr_t;
+typedef struct pthread_once_t_ pthread_once_t;
+typedef struct pthread_key_t_ * pthread_key_t;
+typedef struct pthread_mutex_t_ * pthread_mutex_t;
+typedef struct pthread_mutexattr_t_ * pthread_mutexattr_t;
+typedef struct pthread_cond_t_ * pthread_cond_t;
+typedef struct pthread_condattr_t_ * pthread_condattr_t;
+#endif
+typedef struct pthread_rwlock_t_ * pthread_rwlock_t;
+typedef struct pthread_rwlockattr_t_ * pthread_rwlockattr_t;
+typedef struct pthread_spinlock_t_ * pthread_spinlock_t;
+typedef struct pthread_barrier_t_ * pthread_barrier_t;
+typedef struct pthread_barrierattr_t_ * pthread_barrierattr_t;
+
+/*
+ * ====================
+ * ====================
+ * POSIX Threads
+ * ====================
+ * ====================
+ */
+
+enum {
+/*
+ * pthread_attr_{get,set}detachstate
+ */
+  PTHREAD_CREATE_JOINABLE       = 0,  /* Default */
+  PTHREAD_CREATE_DETACHED       = 1,
+
+/*
+ * pthread_attr_{get,set}inheritsched
+ */
+  PTHREAD_INHERIT_SCHED         = 0,
+  PTHREAD_EXPLICIT_SCHED        = 1,  /* Default */
+
+/*
+ * pthread_{get,set}scope
+ */
+  PTHREAD_SCOPE_PROCESS         = 0,
+  PTHREAD_SCOPE_SYSTEM          = 1,  /* Default */
+
+/*
+ * pthread_setcancelstate paramters
+ */
+  PTHREAD_CANCEL_ENABLE         = 0,  /* Default */
+  PTHREAD_CANCEL_DISABLE        = 1,
+
+/*
+ * pthread_setcanceltype parameters
+ */
+  PTHREAD_CANCEL_ASYNCHRONOUS   = 0,
+  PTHREAD_CANCEL_DEFERRED       = 1,  /* Default */
+
+/*
+ * pthread_mutexattr_{get,set}pshared
+ * pthread_condattr_{get,set}pshared
+ */
+  PTHREAD_PROCESS_PRIVATE       = 0,
+  PTHREAD_PROCESS_SHARED        = 1,
+
+/*
+ * pthread_mutexattr_{get,set}robust
+ */
+  PTHREAD_MUTEX_STALLED         = 0,  /* Default */
+  PTHREAD_MUTEX_ROBUST          = 1,
+
+/*
+ * pthread_barrier_wait
+ */
+  PTHREAD_BARRIER_SERIAL_THREAD = -1
+};
+
+/*
+ * ====================
+ * ====================
+ * Cancelation
+ * ====================
+ * ====================
+ */
+#define PTHREAD_CANCELED       ((void *)(size_t) -1)
+
+
+/*
+ * ====================
+ * ====================
+ * Once Key
+ * ====================
+ * ====================
+ */
+#define PTHREAD_ONCE_INIT       { PTW32_FALSE, 0, 0, 0}
+
+struct pthread_once_t_
+{
+  int          done;        /* indicates if user function has been executed */
+  void *       lock;
+  int          reserved1;
+  int          reserved2;
+};
+
+
+/*
+ * ====================
+ * ====================
+ * Object initialisers
+ * ====================
+ * ====================
+ */
+#define PTHREAD_MUTEX_INITIALIZER ((pthread_mutex_t)(size_t) -1)
+#define PTHREAD_RECURSIVE_MUTEX_INITIALIZER ((pthread_mutex_t)(size_t) -2)
+#define PTHREAD_ERRORCHECK_MUTEX_INITIALIZER ((pthread_mutex_t)(size_t) -3)
+
+/*
+ * Compatibility with LinuxThreads
+ */
+#define PTHREAD_RECURSIVE_MUTEX_INITIALIZER_NP PTHREAD_RECURSIVE_MUTEX_INITIALIZER
+#define PTHREAD_ERRORCHECK_MUTEX_INITIALIZER_NP PTHREAD_ERRORCHECK_MUTEX_INITIALIZER
+
+#define PTHREAD_COND_INITIALIZER ((pthread_cond_t)(size_t) -1)
+
+#define PTHREAD_RWLOCK_INITIALIZER ((pthread_rwlock_t)(size_t) -1)
+
+#define PTHREAD_SPINLOCK_INITIALIZER ((pthread_spinlock_t)(size_t) -1)
+
+
+/*
+ * Mutex types.
+ */
+enum
+{
+  /* Compatibility with LinuxThreads */
+  PTHREAD_MUTEX_FAST_NP,
+  PTHREAD_MUTEX_RECURSIVE_NP,
+  PTHREAD_MUTEX_ERRORCHECK_NP,
+  PTHREAD_MUTEX_TIMED_NP = PTHREAD_MUTEX_FAST_NP,
+  PTHREAD_MUTEX_ADAPTIVE_NP = PTHREAD_MUTEX_FAST_NP,
+  /* For compatibility with POSIX */
+  PTHREAD_MUTEX_NORMAL = PTHREAD_MUTEX_FAST_NP,
+  PTHREAD_MUTEX_RECURSIVE = PTHREAD_MUTEX_RECURSIVE_NP,
+  PTHREAD_MUTEX_ERRORCHECK = PTHREAD_MUTEX_ERRORCHECK_NP,
+  PTHREAD_MUTEX_DEFAULT = PTHREAD_MUTEX_NORMAL
+};
+
+
+typedef struct ptw32_cleanup_t ptw32_cleanup_t;
+
+#if defined(_MSC_VER)
+/* Disable MSVC 'anachronism used' warning */
+#pragma warning( disable : 4229 )
+#endif
+
+typedef void (* PTW32_CDECL ptw32_cleanup_callback_t)(void *);
+
+#if defined(_MSC_VER)
+#pragma warning( default : 4229 )
+#endif
+
+struct ptw32_cleanup_t
+{
+  ptw32_cleanup_callback_t routine;
+  void *arg;
+  struct ptw32_cleanup_t *prev;
+};
+
+#if defined(__CLEANUP_SEH)
+        /*
+         * WIN32 SEH version of cancel cleanup.
+         */
+
+#define pthread_cleanup_push( _rout, _arg ) \
+        { \
+            ptw32_cleanup_t     _cleanup; \
+            \
+        _cleanup.routine        = (ptw32_cleanup_callback_t)(_rout); \
+            _cleanup.arg        = (_arg); \
+            __try \
+              { \
+
+#define pthread_cleanup_pop( _execute ) \
+              } \
+            __finally \
+                { \
+                    if( _execute || AbnormalTermination()) \
+                      { \
+                          (*(_cleanup.routine))( _cleanup.arg ); \
+                      } \
+                } \
+        }
+
+#else /* __CLEANUP_SEH */
+
+#if defined(__CLEANUP_C)
+
+        /*
+         * C implementation of PThreads cancel cleanup
+         */
+
+#define pthread_cleanup_push( _rout, _arg ) \
+        { \
+            ptw32_cleanup_t     _cleanup; \
+            \
+            ptw32_push_cleanup( &_cleanup, (ptw32_cleanup_callback_t) (_rout), (_arg) ); \
+
+#define pthread_cleanup_pop( _execute ) \
+            (void) ptw32_pop_cleanup( _execute ); \
+        }
+
+#else /* __CLEANUP_C */
+
+#if defined(__CLEANUP_CXX)
+
+        /*
+         * C++ version of cancel cleanup.
+         * - John E. Bossom.
+         */
+
+        class PThreadCleanup {
+          /*
+           * PThreadCleanup
+           *
+           * Purpose
+           *      This class is a C++ helper class that is
+           *      used to implement pthread_cleanup_push/
+           *      pthread_cleanup_pop.
+           *      The destructor of this class automatically
+           *      pops the pushed cleanup routine regardless
+           *      of how the code exits the scope
+           *      (i.e. such as by an exception)
+           */
+      ptw32_cleanup_callback_t cleanUpRout;
+          void    *       obj;
+          int             executeIt;
+
+        public:
+          PThreadCleanup() :
+            cleanUpRout( 0 ),
+            obj( 0 ),
+            executeIt( 0 )
+            /*
+             * No cleanup performed
+             */
+            {
+            }
+
+          PThreadCleanup(
+             ptw32_cleanup_callback_t routine,
+                         void    *       arg ) :
+            cleanUpRout( routine ),
+            obj( arg ),
+            executeIt( 1 )
+            /*
+             * Registers a cleanup routine for 'arg'
+             */
+            {
+            }
+
+          ~PThreadCleanup()
+            {
+              if ( executeIt && ((void *) cleanUpRout != (void *) 0) )
+                {
+                  (void) (*cleanUpRout)( obj );
+                }
+            }
+
+          void execute( int exec )
+            {
+              executeIt = exec;
+            }
+        };
+
+        /*
+         * C++ implementation of PThreads cancel cleanup;
+         * This implementation takes advantage of a helper
+         * class who's destructor automatically calls the
+         * cleanup routine if we exit our scope weirdly
+         */
+#define pthread_cleanup_push( _rout, _arg ) \
+        { \
+            PThreadCleanup  cleanup((ptw32_cleanup_callback_t)(_rout), \
+                                    (void *) (_arg) );
+
+#define pthread_cleanup_pop( _execute ) \
+            cleanup.execute( _execute ); \
+        }
+
+#else
+
+#error ERROR [__FILE__, line __LINE__]: Cleanup type undefined.
+
+#endif /* __CLEANUP_CXX */
+
+#endif /* __CLEANUP_C */
+
+#endif /* __CLEANUP_SEH */
+
+/*
+ * ===============
+ * ===============
+ * Methods
+ * ===============
+ * ===============
+ */
+
+/*
+ * PThread Attribute Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_init (pthread_attr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_destroy (pthread_attr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getdetachstate (const pthread_attr_t * attr,
+                                         int *detachstate);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getstackaddr (const pthread_attr_t * attr,
+                                       void **stackaddr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getstacksize (const pthread_attr_t * attr,
+                                       size_t * stacksize);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setdetachstate (pthread_attr_t * attr,
+                                         int detachstate);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setstackaddr (pthread_attr_t * attr,
+                                       void *stackaddr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setstacksize (pthread_attr_t * attr,
+                                       size_t stacksize);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getschedparam (const pthread_attr_t *attr,
+                                        struct sched_param *param);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setschedparam (pthread_attr_t *attr,
+                                        const struct sched_param *param);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setschedpolicy (pthread_attr_t *,
+                                         int);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getschedpolicy (const pthread_attr_t *,
+                                         int *);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setinheritsched(pthread_attr_t * attr,
+                                         int inheritsched);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getinheritsched(const pthread_attr_t * attr,
+                                         int * inheritsched);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_setscope (pthread_attr_t *,
+                                   int);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_attr_getscope (const pthread_attr_t *,
+                                   int *);
+
+/*
+ * PThread Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_create (pthread_t * tid,
+                            const pthread_attr_t * attr,
+                            void *(PTW32_CDECL *start) (void *),
+                            void *arg);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_detach (pthread_t tid);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_equal (pthread_t t1,
+                           pthread_t t2);
+
+PTW32_DLLPORT void PTW32_CDECL pthread_exit (void *value_ptr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_join (pthread_t thread,
+                          void **value_ptr);
+
+PTW32_DLLPORT pthread_t PTW32_CDECL pthread_self (void);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_cancel (pthread_t thread);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_setcancelstate (int state,
+                                    int *oldstate);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_setcanceltype (int type,
+                                   int *oldtype);
+
+PTW32_DLLPORT void PTW32_CDECL pthread_testcancel (void);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_once (pthread_once_t * once_control,
+                          void (PTW32_CDECL *init_routine) (void));
+
+#if PTW32_LEVEL >= PTW32_LEVEL_MAX
+PTW32_DLLPORT ptw32_cleanup_t * PTW32_CDECL ptw32_pop_cleanup (int execute);
+
+PTW32_DLLPORT void PTW32_CDECL ptw32_push_cleanup (ptw32_cleanup_t * cleanup,
+                                 ptw32_cleanup_callback_t routine,
+                                 void *arg);
+#endif /* PTW32_LEVEL >= PTW32_LEVEL_MAX */
+
+/*
+ * Thread Specific Data Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_key_create (pthread_key_t * key,
+                                void (PTW32_CDECL *destructor) (void *));
+
+PTW32_DLLPORT int PTW32_CDECL pthread_key_delete (pthread_key_t key);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_setspecific (pthread_key_t key,
+                                 const void *value);
+
+PTW32_DLLPORT void * PTW32_CDECL pthread_getspecific (pthread_key_t key);
+
+
+/*
+ * Mutex Attribute Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_init (pthread_mutexattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_destroy (pthread_mutexattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_getpshared (const pthread_mutexattr_t
+                                          * attr,
+                                          int *pshared);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_setpshared (pthread_mutexattr_t * attr,
+                                          int pshared);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_settype (pthread_mutexattr_t * attr, int kind);
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_gettype (const pthread_mutexattr_t * attr, int *kind);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_setrobust(
+                                           pthread_mutexattr_t *attr,
+                                           int robust);
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_getrobust(
+                                           const pthread_mutexattr_t * attr,
+                                           int * robust);
+
+/*
+ * Barrier Attribute Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_barrierattr_init (pthread_barrierattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_barrierattr_destroy (pthread_barrierattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_barrierattr_getpshared (const pthread_barrierattr_t
+                                            * attr,
+                                            int *pshared);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_barrierattr_setpshared (pthread_barrierattr_t * attr,
+                                            int pshared);
+
+/*
+ * Mutex Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_init (pthread_mutex_t * mutex,
+                                const pthread_mutexattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_destroy (pthread_mutex_t * mutex);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_lock (pthread_mutex_t * mutex);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_timedlock(pthread_mutex_t * mutex,
+                                    const struct timespec *abstime);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_trylock (pthread_mutex_t * mutex);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_unlock (pthread_mutex_t * mutex);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_mutex_consistent (pthread_mutex_t * mutex);
+
+/*
+ * Spinlock Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_spin_init (pthread_spinlock_t * lock, int pshared);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_spin_destroy (pthread_spinlock_t * lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_spin_lock (pthread_spinlock_t * lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_spin_trylock (pthread_spinlock_t * lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_spin_unlock (pthread_spinlock_t * lock);
+
+/*
+ * Barrier Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_barrier_init (pthread_barrier_t * barrier,
+                                  const pthread_barrierattr_t * attr,
+                                  unsigned int count);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_barrier_destroy (pthread_barrier_t * barrier);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_barrier_wait (pthread_barrier_t * barrier);
+
+/*
+ * Condition Variable Attribute Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_condattr_init (pthread_condattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_condattr_destroy (pthread_condattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_condattr_getpshared (const pthread_condattr_t * attr,
+                                         int *pshared);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_condattr_setpshared (pthread_condattr_t * attr,
+                                         int pshared);
+
+/*
+ * Condition Variable Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_cond_init (pthread_cond_t * cond,
+                               const pthread_condattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_cond_destroy (pthread_cond_t * cond);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_cond_wait (pthread_cond_t * cond,
+                               pthread_mutex_t * mutex);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_cond_timedwait (pthread_cond_t * cond,
+                                    pthread_mutex_t * mutex,
+                                    const struct timespec *abstime);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_cond_signal (pthread_cond_t * cond);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_cond_broadcast (pthread_cond_t * cond);
+
+/*
+ * Scheduling
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_setschedparam (pthread_t thread,
+                                   int policy,
+                                   const struct sched_param *param);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_getschedparam (pthread_t thread,
+                                   int *policy,
+                                   struct sched_param *param);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_setconcurrency (int);
+ 
+PTW32_DLLPORT int PTW32_CDECL pthread_getconcurrency (void);
+
+/*
+ * Read-Write Lock Functions
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_init(pthread_rwlock_t *lock,
+                                const pthread_rwlockattr_t *attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_destroy(pthread_rwlock_t *lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_tryrdlock(pthread_rwlock_t *);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_trywrlock(pthread_rwlock_t *);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_rdlock(pthread_rwlock_t *lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_timedrdlock(pthread_rwlock_t *lock,
+                                       const struct timespec *abstime);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_wrlock(pthread_rwlock_t *lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_timedwrlock(pthread_rwlock_t *lock,
+                                       const struct timespec *abstime);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlock_unlock(pthread_rwlock_t *lock);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlockattr_init (pthread_rwlockattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlockattr_destroy (pthread_rwlockattr_t * attr);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlockattr_getpshared (const pthread_rwlockattr_t * attr,
+                                           int *pshared);
+
+PTW32_DLLPORT int PTW32_CDECL pthread_rwlockattr_setpshared (pthread_rwlockattr_t * attr,
+                                           int pshared);
+
+#if PTW32_LEVEL >= PTW32_LEVEL_MAX - 1
+
+/*
+ * Signal Functions. Should be defined in <signal.h> but MSVC and MinGW32
+ * already have signal.h that don't define these.
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_kill(pthread_t thread, int sig);
+
+/*
+ * Non-portable functions
+ */
+
+/*
+ * Compatibility with Linux.
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_setkind_np(pthread_mutexattr_t * attr,
+                                         int kind);
+PTW32_DLLPORT int PTW32_CDECL pthread_mutexattr_getkind_np(pthread_mutexattr_t * attr,
+                                         int *kind);
+
+/*
+ * Possibly supported by other POSIX threads implementations
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_delay_np (struct timespec * interval);
+PTW32_DLLPORT int PTW32_CDECL pthread_num_processors_np(void);
+PTW32_DLLPORT unsigned __int64 PTW32_CDECL pthread_getunique_np(pthread_t thread);
+
+/*
+ * Useful if an application wants to statically link
+ * the lib rather than load the DLL at run-time.
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_win32_process_attach_np(void);
+PTW32_DLLPORT int PTW32_CDECL pthread_win32_process_detach_np(void);
+PTW32_DLLPORT int PTW32_CDECL pthread_win32_thread_attach_np(void);
+PTW32_DLLPORT int PTW32_CDECL pthread_win32_thread_detach_np(void);
+
+/*
+ * Features that are auto-detected at load/run time.
+ */
+PTW32_DLLPORT int PTW32_CDECL pthread_win32_test_features_np(int);
+enum ptw32_features {
+  PTW32_SYSTEM_INTERLOCKED_COMPARE_EXCHANGE = 0x0001, /* System provides it. */
+  PTW32_ALERTABLE_ASYNC_CANCEL              = 0x0002  /* Can cancel blocked threads. */
+};
+
+/*
+ * Register a system time change with the library.
+ * Causes the library to perform various functions
+ * in response to the change. Should be called whenever
+ * the application's top level window receives a
+ * WM_TIMECHANGE message. It can be passed directly to
+ * pthread_create() as a new thread if desired.
+ */
+PTW32_DLLPORT void * PTW32_CDECL pthread_timechange_handler_np(void *);
+
+#endif /*PTW32_LEVEL >= PTW32_LEVEL_MAX - 1 */
+
+#if PTW32_LEVEL >= PTW32_LEVEL_MAX
+
+/*
+ * Returns the Win32 HANDLE for the POSIX thread.
+ */
+PTW32_DLLPORT HANDLE PTW32_CDECL pthread_getw32threadhandle_np(pthread_t thread);
+/*
+ * Returns the win32 thread ID for POSIX thread.
+ */
+PTW32_DLLPORT DWORD PTW32_CDECL pthread_getw32threadid_np (pthread_t thread);
+
+
+/*
+ * Protected Methods
+ *
+ * This function blocks until the given WIN32 handle
+ * is signaled or pthread_cancel had been called.
+ * This function allows the caller to hook into the
+ * PThreads cancel mechanism. It is implemented using
+ *
+ *              WaitForMultipleObjects
+ *
+ * on 'waitHandle' and a manually reset WIN32 Event
+ * used to implement pthread_cancel. The 'timeout'
+ * argument to TimedWait is simply passed to
+ * WaitForMultipleObjects.
+ */
+PTW32_DLLPORT int PTW32_CDECL pthreadCancelableWait (HANDLE waitHandle);
+PTW32_DLLPORT int PTW32_CDECL pthreadCancelableTimedWait (HANDLE waitHandle,
+                                        DWORD timeout);
+
+#endif /* PTW32_LEVEL >= PTW32_LEVEL_MAX */
+
+/*
+ * Thread-Safe C Runtime Library Mappings.
+ */
+#if !defined(_UWIN)
+#  if defined(NEED_ERRNO)
+     PTW32_DLLPORT int * PTW32_CDECL _errno( void );
+#  else
+#    if !defined(errno)
+#      if (defined(_MT) || defined(_DLL))
+         __declspec(dllimport) extern int * __cdecl _errno(void);
+#        define errno   (*_errno())
+#      endif
+#    endif
+#  endif
+#endif
+
+/*
+ * Some compiler environments don't define some things.
+ */
+#if defined(__BORLANDC__)
+#  define _ftime ftime
+#  define _timeb timeb
+#endif
+
+#if defined(__cplusplus)
+
+/*
+ * Internal exceptions
+ */
+class ptw32_exception {};
+class ptw32_exception_cancel : public ptw32_exception {};
+class ptw32_exception_exit   : public ptw32_exception {};
+
+#endif
+
+#if PTW32_LEVEL >= PTW32_LEVEL_MAX
+
+/* FIXME: This is only required if the library was built using SEH */
+/*
+ * Get internal SEH tag
+ */
+PTW32_DLLPORT DWORD PTW32_CDECL ptw32_get_exception_services_code(void);
+
+#endif /* PTW32_LEVEL >= PTW32_LEVEL_MAX */
+
+#if !defined(PTW32_BUILD)
+
+#if defined(__CLEANUP_SEH)
+
+/*
+ * Redefine the SEH __except keyword to ensure that applications
+ * propagate our internal exceptions up to the library's internal handlers.
+ */
+#define __except( E ) \
+        __except( ( GetExceptionCode() == ptw32_get_exception_services_code() ) \
+                 ? EXCEPTION_CONTINUE_SEARCH : ( E ) )
+
+#endif /* __CLEANUP_SEH */
+
+#if defined(__CLEANUP_CXX)
+
+/*
+ * Redefine the C++ catch keyword to ensure that applications
+ * propagate our internal exceptions up to the library's internal handlers.
+ */
+#if defined(_MSC_VER)
+        /*
+         * WARNING: Replace any 'catch( ... )' with 'PtW32CatchAll'
+         * if you want Pthread-Win32 cancelation and pthread_exit to work.
+         */
+
+#if !defined(PtW32NoCatchWarn)
+
+#pragma message("Specify \"/DPtW32NoCatchWarn\" compiler flag to skip this message.")
+#pragma message("------------------------------------------------------------------")
+#pragma message("When compiling applications with MSVC++ and C++ exception handling:")
+#pragma message("  Replace any 'catch( ... )' in routines called from POSIX threads")
+#pragma message("  with 'PtW32CatchAll' or 'CATCHALL' if you want POSIX thread")
+#pragma message("  cancelation and pthread_exit to work. For example:")
+#pragma message("")
+#pragma message("    #if defined(PtW32CatchAll)")
+#pragma message("      PtW32CatchAll")
+#pragma message("    #else")
+#pragma message("      catch(...)")
+#pragma message("    #endif")
+#pragma message("        {")
+#pragma message("          /* Catchall block processing */")
+#pragma message("        }")
+#pragma message("------------------------------------------------------------------")
+
+#endif
+
+#define PtW32CatchAll \
+        catch( ptw32_exception & ) { throw; } \
+        catch( ... )
+
+#else /* _MSC_VER */
+
+#define catch( E ) \
+        catch( ptw32_exception & ) { throw; } \
+        catch( E )
+
+#endif /* _MSC_VER */
+
+#endif /* __CLEANUP_CXX */
+
+#endif /* ! PTW32_BUILD */
+
+#if defined(__cplusplus)
+}                               /* End of extern "C" */
+#endif                          /* __cplusplus */
+
+#if defined(PTW32__HANDLE_DEF)
+# undef HANDLE
+#endif
+#if defined(PTW32__DWORD_DEF)
+# undef DWORD
+#endif
+
+#undef PTW32_LEVEL
+#undef PTW32_LEVEL_MAX
+
+#endif /* ! RC_INVOKED */
+
+#endif /* PTHREAD_H */

+ 183 - 0
3rdparty/pthreads/include/sched.h

@@ -0,0 +1,183 @@
+/*
+ * Module: sched.h
+ *
+ * Purpose:
+ *      Provides an implementation of POSIX realtime extensions
+ *      as defined in 
+ *
+ *              POSIX 1003.1b-1993      (POSIX.1b)
+ *
+ * --------------------------------------------------------------------------
+ *
+ *      Pthreads-win32 - POSIX Threads Library for Win32
+ *      Copyright(C) 1998 John E. Bossom
+ *      Copyright(C) 1999,2005 Pthreads-win32 contributors
+ * 
+ *      Contact Email: rpj@callisto.canberra.edu.au
+ * 
+ *      The current list of contributors is contained
+ *      in the file CONTRIBUTORS included with the source
+ *      code distribution. The list can also be seen at the
+ *      following World Wide Web location:
+ *      http://sources.redhat.com/pthreads-win32/contributors.html
+ * 
+ *      This library is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU Lesser General Public
+ *      License as published by the Free Software Foundation; either
+ *      version 2 of the License, or (at your option) any later version.
+ * 
+ *      This library is distributed in the hope that it will be useful,
+ *      but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *      Lesser General Public License for more details.
+ * 
+ *      You should have received a copy of the GNU Lesser General Public
+ *      License along with this library in the file COPYING.LIB;
+ *      if not, write to the Free Software Foundation, Inc.,
+ *      59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+#if !defined(_SCHED_H)
+#define _SCHED_H
+
+#undef PTW32_SCHED_LEVEL
+
+#if defined(_POSIX_SOURCE)
+#define PTW32_SCHED_LEVEL 0
+/* Early POSIX */
+#endif
+
+#if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 199309
+#undef PTW32_SCHED_LEVEL
+#define PTW32_SCHED_LEVEL 1
+/* Include 1b, 1c and 1d */
+#endif
+
+#if defined(INCLUDE_NP)
+#undef PTW32_SCHED_LEVEL
+#define PTW32_SCHED_LEVEL 2
+/* Include Non-Portable extensions */
+#endif
+
+#define PTW32_SCHED_LEVEL_MAX 3
+
+#if ( defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 200112 )  || !defined(PTW32_SCHED_LEVEL)
+#define PTW32_SCHED_LEVEL PTW32_SCHED_LEVEL_MAX
+/* Include everything */
+#endif
+
+
+#if defined(__GNUC__) && !defined(__declspec)
+# error Please upgrade your GNU compiler to one that supports __declspec.
+#endif
+
+/*
+ * When building the library, you should define PTW32_BUILD so that
+ * the variables/functions are exported correctly. When using the library,
+ * do NOT define PTW32_BUILD, and then the variables/functions will
+ * be imported correctly.
+ */
+#if !defined(PTW32_STATIC_LIB)
+#  if defined(PTW32_BUILD)
+#    define PTW32_DLLPORT __declspec (dllexport)
+#  else
+#    define PTW32_DLLPORT __declspec (dllimport)
+#  endif
+#else
+#  define PTW32_DLLPORT
+#endif
+
+/*
+ * This is a duplicate of what is in the autoconf config.h,
+ * which is only used when building the pthread-win32 libraries.
+ */
+
+#if !defined(PTW32_CONFIG_H)
+#  if defined(WINCE)
+#    define NEED_ERRNO
+#    define NEED_SEM
+#  endif
+#  if defined(__MINGW64__)
+#    define HAVE_STRUCT_TIMESPEC
+#    define HAVE_MODE_T
+#  elif defined(_UWIN) || defined(__MINGW32__)
+#    define HAVE_MODE_T
+#  endif
+#endif
+
+/*
+ *
+ */
+
+#if PTW32_SCHED_LEVEL >= PTW32_SCHED_LEVEL_MAX
+#if defined(NEED_ERRNO)
+#include "need_errno.h"
+#else
+#include <errno.h>
+#endif
+#endif /* PTW32_SCHED_LEVEL >= PTW32_SCHED_LEVEL_MAX */
+
+#if (defined(__MINGW64__) || defined(__MINGW32__)) || defined(_UWIN)
+# if PTW32_SCHED_LEVEL >= PTW32_SCHED_LEVEL_MAX
+/* For pid_t */
+#  include <sys/types.h>
+/* Required by Unix 98 */
+#  include <time.h>
+# else
+   typedef int pid_t;
+# endif
+#else
+ typedef int pid_t;
+#endif
+
+/* Thread scheduling policies */
+
+enum {
+  SCHED_OTHER = 0,
+  SCHED_FIFO,
+  SCHED_RR,
+  SCHED_MIN   = SCHED_OTHER,
+  SCHED_MAX   = SCHED_RR
+};
+
+struct sched_param {
+  int sched_priority;
+};
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif                          /* __cplusplus */
+
+PTW32_DLLPORT int __cdecl sched_yield (void);
+
+PTW32_DLLPORT int __cdecl sched_get_priority_min (int policy);
+
+PTW32_DLLPORT int __cdecl sched_get_priority_max (int policy);
+
+PTW32_DLLPORT int __cdecl sched_setscheduler (pid_t pid, int policy);
+
+PTW32_DLLPORT int __cdecl sched_getscheduler (pid_t pid);
+
+/*
+ * Note that this macro returns ENOTSUP rather than
+ * ENOSYS as might be expected. However, returning ENOSYS
+ * should mean that sched_get_priority_{min,max} are
+ * not implemented as well as sched_rr_get_interval.
+ * This is not the case, since we just don't support
+ * round-robin scheduling. Therefore I have chosen to
+ * return the same value as sched_setscheduler when
+ * SCHED_RR is passed to it.
+ */
+#define sched_rr_get_interval(_pid, _interval) \
+  ( errno = ENOTSUP, (int) -1 )
+
+
+#if defined(__cplusplus)
+}                               /* End of extern "C" */
+#endif                          /* __cplusplus */
+
+#undef PTW32_SCHED_LEVEL
+#undef PTW32_SCHED_LEVEL_MAX
+
+#endif                          /* !_SCHED_H */
+

+ 169 - 0
3rdparty/pthreads/include/semaphore.h

@@ -0,0 +1,169 @@
+/*
+ * Module: semaphore.h
+ *
+ * Purpose:
+ *	Semaphores aren't actually part of the PThreads standard.
+ *	They are defined by the POSIX Standard:
+ *
+ *		POSIX 1003.1b-1993	(POSIX.1b)
+ *
+ * --------------------------------------------------------------------------
+ *
+ *      Pthreads-win32 - POSIX Threads Library for Win32
+ *      Copyright(C) 1998 John E. Bossom
+ *      Copyright(C) 1999,2005 Pthreads-win32 contributors
+ * 
+ *      Contact Email: rpj@callisto.canberra.edu.au
+ * 
+ *      The current list of contributors is contained
+ *      in the file CONTRIBUTORS included with the source
+ *      code distribution. The list can also be seen at the
+ *      following World Wide Web location:
+ *      http://sources.redhat.com/pthreads-win32/contributors.html
+ * 
+ *      This library is free software; you can redistribute it and/or
+ *      modify it under the terms of the GNU Lesser General Public
+ *      License as published by the Free Software Foundation; either
+ *      version 2 of the License, or (at your option) any later version.
+ * 
+ *      This library is distributed in the hope that it will be useful,
+ *      but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *      MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
+ *      Lesser General Public License for more details.
+ * 
+ *      You should have received a copy of the GNU Lesser General Public
+ *      License along with this library in the file COPYING.LIB;
+ *      if not, write to the Free Software Foundation, Inc.,
+ *      59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
+ */
+#if !defined( SEMAPHORE_H )
+#define SEMAPHORE_H
+
+#undef PTW32_SEMAPHORE_LEVEL
+
+#if defined(_POSIX_SOURCE)
+#define PTW32_SEMAPHORE_LEVEL 0
+/* Early POSIX */
+#endif
+
+#if defined(_POSIX_C_SOURCE) && _POSIX_C_SOURCE >= 199309
+#undef PTW32_SEMAPHORE_LEVEL
+#define PTW32_SEMAPHORE_LEVEL 1
+/* Include 1b, 1c and 1d */
+#endif
+
+#if defined(INCLUDE_NP)
+#undef PTW32_SEMAPHORE_LEVEL
+#define PTW32_SEMAPHORE_LEVEL 2
+/* Include Non-Portable extensions */
+#endif
+
+#define PTW32_SEMAPHORE_LEVEL_MAX 3
+
+#if !defined(PTW32_SEMAPHORE_LEVEL)
+#define PTW32_SEMAPHORE_LEVEL PTW32_SEMAPHORE_LEVEL_MAX
+/* Include everything */
+#endif
+
+#if defined(__GNUC__) && ! defined (__declspec)
+# error Please upgrade your GNU compiler to one that supports __declspec.
+#endif
+
+/*
+ * When building the library, you should define PTW32_BUILD so that
+ * the variables/functions are exported correctly. When using the library,
+ * do NOT define PTW32_BUILD, and then the variables/functions will
+ * be imported correctly.
+ */
+#if !defined(PTW32_STATIC_LIB)
+#  if defined(PTW32_BUILD)
+#    define PTW32_DLLPORT __declspec (dllexport)
+#  else
+#    define PTW32_DLLPORT __declspec (dllimport)
+#  endif
+#else
+#  define PTW32_DLLPORT
+#endif
+
+/*
+ * This is a duplicate of what is in the autoconf config.h,
+ * which is only used when building the pthread-win32 libraries.
+ */
+
+#if !defined(PTW32_CONFIG_H)
+#  if defined(WINCE)
+#    define NEED_ERRNO
+#    define NEED_SEM
+#  endif
+#  if defined(__MINGW64__)
+#    define HAVE_STRUCT_TIMESPEC
+#    define HAVE_MODE_T
+#  elif defined(_UWIN) || defined(__MINGW32__)
+#    define HAVE_MODE_T
+#  endif
+#endif
+
+/*
+ *
+ */
+
+#if PTW32_SEMAPHORE_LEVEL >= PTW32_SEMAPHORE_LEVEL_MAX
+#if defined(NEED_ERRNO)
+#include "need_errno.h"
+#else
+#include <errno.h>
+#endif
+#endif /* PTW32_SEMAPHORE_LEVEL >= PTW32_SEMAPHORE_LEVEL_MAX */
+
+#define _POSIX_SEMAPHORES
+
+#if defined(__cplusplus)
+extern "C"
+{
+#endif				/* __cplusplus */
+
+#if !defined(HAVE_MODE_T)
+typedef unsigned int mode_t;
+#endif
+
+
+typedef struct sem_t_ * sem_t;
+
+PTW32_DLLPORT int __cdecl sem_init (sem_t * sem,
+			    int pshared,
+			    unsigned int value);
+
+PTW32_DLLPORT int __cdecl sem_destroy (sem_t * sem);
+
+PTW32_DLLPORT int __cdecl sem_trywait (sem_t * sem);
+
+PTW32_DLLPORT int __cdecl sem_wait (sem_t * sem);
+
+PTW32_DLLPORT int __cdecl sem_timedwait (sem_t * sem,
+				 const struct timespec * abstime);
+
+PTW32_DLLPORT int __cdecl sem_post (sem_t * sem);
+
+PTW32_DLLPORT int __cdecl sem_post_multiple (sem_t * sem,
+				     int count);
+
+PTW32_DLLPORT int __cdecl sem_open (const char * name,
+			    int oflag,
+			    mode_t mode,
+			    unsigned int value);
+
+PTW32_DLLPORT int __cdecl sem_close (sem_t * sem);
+
+PTW32_DLLPORT int __cdecl sem_unlink (const char * name);
+
+PTW32_DLLPORT int __cdecl sem_getvalue (sem_t * sem,
+				int * sval);
+
+#if defined(__cplusplus)
+}				/* End of extern "C" */
+#endif				/* __cplusplus */
+
+#undef PTW32_SEMAPHORE_LEVEL
+#undef PTW32_SEMAPHORE_LEVEL_MAX
+
+#endif				/* !SEMAPHORE_H */

BIN
3rdparty/pthreads/lib/libpthreadGC2.a


BIN
3rdparty/pthreads/lib/pthreadVC2.lib


+ 7187 - 0
3rdparty/stb/include/stb_image.h

@@ -0,0 +1,7187 @@
+/* stb_image - v2.16 - public domain image loader - http://nothings.org/stb_image.h
+                                     no warranty implied; use at your own risk
+
+   Do this:
+      #define STB_IMAGE_IMPLEMENTATION
+   before you include this file in *one* C or C++ file to create the implementation.
+
+   // i.e. it should look like this:
+   #include ...
+   #include ...
+   #include ...
+   #define STB_IMAGE_IMPLEMENTATION
+   #include "stb_image.h"
+
+   You can #define STBI_ASSERT(x) before the #include to avoid using assert.h.
+   And #define STBI_MALLOC, STBI_REALLOC, and STBI_FREE to avoid using malloc,realloc,free
+
+
+   QUICK NOTES:
+      Primarily of interest to game developers and other people who can
+          avoid problematic images and only need the trivial interface
+
+      JPEG baseline & progressive (12 bpc/arithmetic not supported, same as stock IJG lib)
+      PNG 1/2/4/8/16-bit-per-channel
+
+      TGA (not sure what subset, if a subset)
+      BMP non-1bpp, non-RLE
+      PSD (composited view only, no extra channels, 8/16 bit-per-channel)
+
+      GIF (*comp always reports as 4-channel)
+      HDR (radiance rgbE format)
+      PIC (Softimage PIC)
+      PNM (PPM and PGM binary only)
+
+      Animated GIF still needs a proper API, but here's one way to do it:
+          http://gist.github.com/urraka/685d9a6340b26b830d49
+
+      - decode from memory or through FILE (define STBI_NO_STDIO to remove code)
+      - decode from arbitrary I/O callbacks
+      - SIMD acceleration on x86/x64 (SSE2) and ARM (NEON)
+
+   Full documentation under "DOCUMENTATION" below.
+
+
+LICENSE
+
+  See end of file for license information.
+
+RECENT REVISION HISTORY:
+
+      2.16  (2017-07-23) all functions have 16-bit variants; optimizations; bugfixes
+      2.15  (2017-03-18) fix png-1,2,4; all Imagenet JPGs; no runtime SSE detection on GCC
+      2.14  (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs
+      2.13  (2016-12-04) experimental 16-bit API, only for PNG so far; fixes
+      2.12  (2016-04-02) fix typo in 2.11 PSD fix that caused crashes
+      2.11  (2016-04-02) 16-bit PNGS; enable SSE2 in non-gcc x64
+                         RGB-format JPEG; remove white matting in PSD;
+                         allocate large structures on the stack;
+                         correct channel count for PNG & BMP
+      2.10  (2016-01-22) avoid warning introduced in 2.09
+      2.09  (2016-01-16) 16-bit TGA; comments in PNM files; STBI_REALLOC_SIZED
+
+   See end of file for full revision history.
+
+
+ ============================    Contributors    =========================
+
+ Image formats                          Extensions, features
+    Sean Barrett (jpeg, png, bmp)          Jetro Lauha (stbi_info)
+    Nicolas Schulz (hdr, psd)              Martin "SpartanJ" Golini (stbi_info)
+    Jonathan Dummer (tga)                  James "moose2000" Brown (iPhone PNG)
+    Jean-Marc Lienher (gif)                Ben "Disch" Wenger (io callbacks)
+    Tom Seddon (pic)                       Omar Cornut (1/2/4-bit PNG)
+    Thatcher Ulrich (psd)                  Nicolas Guillemot (vertical flip)
+    Ken Miller (pgm, ppm)                  Richard Mitton (16-bit PSD)
+    github:urraka (animated gif)           Junggon Kim (PNM comments)
+                                           Daniel Gibson (16-bit TGA)
+                                           socks-the-fox (16-bit PNG)
+                                           Jeremy Sawicki (handle all ImageNet JPGs)
+ Optimizations & bugfixes
+    Fabian "ryg" Giesen
+    Arseny Kapoulkine
+    John-Mark Allen
+
+ Bug & warning fixes
+    Marc LeBlanc            David Woo          Guillaume George   Martins Mozeiko
+    Christpher Lloyd        Jerry Jansson      Joseph Thomson     Phil Jordan
+    Dave Moore              Roy Eltham         Hayaki Saito       Nathan Reed
+    Won Chun                Luke Graham        Johan Duparc       Nick Verigakis
+    the Horde3D community   Thomas Ruf         Ronny Chevalier    Baldur Karlsson
+    Janez Zemva             John Bartholomew   Michal Cichon      github:rlyeh
+    Jonathan Blow           Ken Hamada         Tero Hanninen      github:romigrou
+    Laurent Gomila          Cort Stratton      Sergio Gonzalez    github:svdijk
+    Aruelien Pocheville     Thibault Reuille   Cass Everitt       github:snagar
+    Ryamond Barbiero        Paul Du Bois       Engin Manap        github:Zelex
+    Michaelangel007@github  Philipp Wiesemann  Dale Weiler        github:grim210
+    Oriol Ferrer Mesia      Josh Tobin         Matthew Gregan     github:sammyhw
+    Blazej Dariusz Roszkowski                  Gregory Mullen     github:phprus
+    Christian Floisand      Kevin Schmidt                         github:poppolopoppo
+*/
+
+#ifndef STBI_INCLUDE_STB_IMAGE_H
+#define STBI_INCLUDE_STB_IMAGE_H
+
+// DOCUMENTATION
+//
+// Limitations:
+//    - no 16-bit-per-channel PNG
+//    - no 12-bit-per-channel JPEG
+//    - no JPEGs with arithmetic coding
+//    - no 1-bit BMP
+//    - GIF always returns *comp=4
+//
+// Basic usage (see HDR discussion below for HDR usage):
+//    int x,y,n;
+//    unsigned char *data = stbi_load(filename, &x, &y, &n, 0);
+//    // ... process data if not NULL ...
+//    // ... x = width, y = height, n = # 8-bit components per pixel ...
+//    // ... replace '0' with '1'..'4' to force that many components per pixel
+//    // ... but 'n' will always be the number that it would have been if you said 0
+//    stbi_image_free(data)
+//
+// Standard parameters:
+//    int *x                 -- outputs image width in pixels
+//    int *y                 -- outputs image height in pixels
+//    int *channels_in_file  -- outputs # of image components in image file
+//    int desired_channels   -- if non-zero, # of image components requested in result
+//
+// The return value from an image loader is an 'unsigned char *' which points
+// to the pixel data, or NULL on an allocation failure or if the image is
+// corrupt or invalid. The pixel data consists of *y scanlines of *x pixels,
+// with each pixel consisting of N interleaved 8-bit components; the first
+// pixel pointed to is top-left-most in the image. There is no padding between
+// image scanlines or between pixels, regardless of format. The number of
+// components N is 'desired_channels' if desired_channels is non-zero, or
+// *channels_in_file otherwise. If desired_channels is non-zero,
+// *channels_in_file has the number of components that _would_ have been
+// output otherwise. E.g. if you set desired_channels to 4, you will always
+// get RGBA output, but you can check *channels_in_file to see if it's trivially
+// opaque because e.g. there were only 3 channels in the source image.
+//
+// An output image with N components has the following components interleaved
+// in this order in each pixel:
+//
+//     N=#comp     components
+//       1           grey
+//       2           grey, alpha
+//       3           red, green, blue
+//       4           red, green, blue, alpha
+//
+// If image loading fails for any reason, the return value will be NULL,
+// and *x, *y, *channels_in_file will be unchanged. The function
+// stbi_failure_reason() can be queried for an extremely brief, end-user
+// unfriendly explanation of why the load failed. Define STBI_NO_FAILURE_STRINGS
+// to avoid compiling these strings at all, and STBI_FAILURE_USERMSG to get slightly
+// more user-friendly ones.
+//
+// Paletted PNG, BMP, GIF, and PIC images are automatically depalettized.
+//
+// ===========================================================================
+//
+// Philosophy
+//
+// stb libraries are designed with the following priorities:
+//
+//    1. easy to use
+//    2. easy to maintain
+//    3. good performance
+//
+// Sometimes I let "good performance" creep up in priority over "easy to maintain",
+// and for best performance I may provide less-easy-to-use APIs that give higher
+// performance, in addition to the easy to use ones. Nevertheless, it's important
+// to keep in mind that from the standpoint of you, a client of this library,
+// all you care about is #1 and #3, and stb libraries DO NOT emphasize #3 above all.
+//
+// Some secondary priorities arise directly from the first two, some of which
+// make more explicit reasons why performance can't be emphasized.
+//
+//    - Portable ("ease of use")
+//    - Small source code footprint ("easy to maintain")
+//    - No dependencies ("ease of use")
+//
+// ===========================================================================
+//
+// I/O callbacks
+//
+// I/O callbacks allow you to read from arbitrary sources, like packaged
+// files or some other source. Data read from callbacks are processed
+// through a small internal buffer (currently 128 bytes) to try to reduce
+// overhead.
+//
+// The three functions you must define are "read" (reads some bytes of data),
+// "skip" (skips some bytes of data), "eof" (reports if the stream is at the end).
+//
+// ===========================================================================
+//
+// SIMD support
+//
+// The JPEG decoder will try to automatically use SIMD kernels on x86 when
+// supported by the compiler. For ARM Neon support, you must explicitly
+// request it.
+//
+// (The old do-it-yourself SIMD API is no longer supported in the current
+// code.)
+//
+// On x86, SSE2 will automatically be used when available based on a run-time
+// test; if not, the generic C versions are used as a fall-back. On ARM targets,
+// the typical path is to have separate builds for NEON and non-NEON devices
+// (at least this is true for iOS and Android). Therefore, the NEON support is
+// toggled by a build flag: define STBI_NEON to get NEON loops.
+//
+// If for some reason you do not want to use any of SIMD code, or if
+// you have issues compiling it, you can disable it entirely by
+// defining STBI_NO_SIMD.
+//
+// ===========================================================================
+//
+// HDR image support   (disable by defining STBI_NO_HDR)
+//
+// stb_image now supports loading HDR images in general, and currently
+// the Radiance .HDR file format, although the support is provided
+// generically. You can still load any file through the existing interface;
+// if you attempt to load an HDR file, it will be automatically remapped to
+// LDR, assuming gamma 2.2 and an arbitrary scale factor defaulting to 1;
+// both of these constants can be reconfigured through this interface:
+//
+//     stbi_hdr_to_ldr_gamma(2.2f);
+//     stbi_hdr_to_ldr_scale(1.0f);
+//
+// (note, do not use _inverse_ constants; stbi_image will invert them
+// appropriately).
+//
+// Additionally, there is a new, parallel interface for loading files as
+// (linear) floats to preserve the full dynamic range:
+//
+//    float *data = stbi_loadf(filename, &x, &y, &n, 0);
+//
+// If you load LDR images through this interface, those images will
+// be promoted to floating point values, run through the inverse of
+// constants corresponding to the above:
+//
+//     stbi_ldr_to_hdr_scale(1.0f);
+//     stbi_ldr_to_hdr_gamma(2.2f);
+//
+// Finally, given a filename (or an open file or memory block--see header
+// file for details) containing image data, you can query for the "most
+// appropriate" interface to use (that is, whether the image is HDR or
+// not), using:
+//
+//     stbi_is_hdr(char *filename);
+//
+// ===========================================================================
+//
+// iPhone PNG support:
+//
+// By default we convert iphone-formatted PNGs back to RGB, even though
+// they are internally encoded differently. You can disable this conversion
+// by by calling stbi_convert_iphone_png_to_rgb(0), in which case
+// you will always just get the native iphone "format" through (which
+// is BGR stored in RGB).
+//
+// Call stbi_set_unpremultiply_on_load(1) as well to force a divide per
+// pixel to remove any premultiplied alpha *only* if the image file explicitly
+// says there's premultiplied data (currently only happens in iPhone images,
+// and only if iPhone convert-to-rgb processing is on).
+//
+// ===========================================================================
+//
+// ADDITIONAL CONFIGURATION
+//
+//  - You can suppress implementation of any of the decoders to reduce
+//    your code footprint by #defining one or more of the following
+//    symbols before creating the implementation.
+//
+//        STBI_NO_JPEG
+//        STBI_NO_PNG
+//        STBI_NO_BMP
+//        STBI_NO_PSD
+//        STBI_NO_TGA
+//        STBI_NO_GIF
+//        STBI_NO_HDR
+//        STBI_NO_PIC
+//        STBI_NO_PNM   (.ppm and .pgm)
+//
+//  - You can request *only* certain decoders and suppress all other ones
+//    (this will be more forward-compatible, as addition of new decoders
+//    doesn't require you to disable them explicitly):
+//
+//        STBI_ONLY_JPEG
+//        STBI_ONLY_PNG
+//        STBI_ONLY_BMP
+//        STBI_ONLY_PSD
+//        STBI_ONLY_TGA
+//        STBI_ONLY_GIF
+//        STBI_ONLY_HDR
+//        STBI_ONLY_PIC
+//        STBI_ONLY_PNM   (.ppm and .pgm)
+//
+//   - If you use STBI_NO_PNG (or _ONLY_ without PNG), and you still
+//     want the zlib decoder to be available, #define STBI_SUPPORT_ZLIB
+//
+
+
+#ifndef STBI_NO_STDIO
+#include <stdio.h>
+#endif // STBI_NO_STDIO
+
+#define STBI_VERSION 1
+
+enum
+{
+   STBI_default = 0, // only used for desired_channels
+
+   STBI_grey       = 1,
+   STBI_grey_alpha = 2,
+   STBI_rgb        = 3,
+   STBI_rgb_alpha  = 4
+};
+
+typedef unsigned char stbi_uc;
+typedef unsigned short stbi_us;
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifdef STB_IMAGE_STATIC
+#define STBIDEF static
+#else
+#define STBIDEF extern
+#endif
+
+//////////////////////////////////////////////////////////////////////////////
+//
+// PRIMARY API - works on images of any type
+//
+
+//
+// load image by filename, open file, or memory buffer
+//
+
+typedef struct
+{
+   int      (*read)  (void *user,char *data,int size);   // fill 'data' with 'size' bytes.  return number of bytes actually read
+   void     (*skip)  (void *user,int n);                 // skip the next 'n' bytes, or 'unget' the last -n bytes if negative
+   int      (*eof)   (void *user);                       // returns nonzero if we are at end of file/data
+} stbi_io_callbacks;
+
+////////////////////////////////////
+//
+// 8-bits-per-channel interface
+//
+
+STBIDEF stbi_uc *stbi_load_from_memory   (stbi_uc           const *buffer, int len   , int *x, int *y, int *channels_in_file, int desired_channels);
+STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk  , void *user, int *x, int *y, int *channels_in_file, int desired_channels);
+
+#ifndef STBI_NO_STDIO
+STBIDEF stbi_uc *stbi_load            (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels);
+STBIDEF stbi_uc *stbi_load_from_file  (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels);
+// for stbi_load_from_file, file pointer is left pointing immediately after image
+#endif
+
+////////////////////////////////////
+//
+// 16-bits-per-channel interface
+//
+
+STBIDEF stbi_us *stbi_load_16_from_memory   (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels);
+STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels);
+
+#ifndef STBI_NO_STDIO
+STBIDEF stbi_us *stbi_load_16          (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels);
+STBIDEF stbi_us *stbi_load_from_file_16(FILE *f, int *x, int *y, int *channels_in_file, int desired_channels);
+#endif
+
+////////////////////////////////////
+//
+// float-per-channel interface
+//
+#ifndef STBI_NO_LINEAR
+   STBIDEF float *stbi_loadf_from_memory     (stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels);
+   STBIDEF float *stbi_loadf_from_callbacks  (stbi_io_callbacks const *clbk, void *user, int *x, int *y,  int *channels_in_file, int desired_channels);
+
+   #ifndef STBI_NO_STDIO
+   STBIDEF float *stbi_loadf            (char const *filename, int *x, int *y, int *channels_in_file, int desired_channels);
+   STBIDEF float *stbi_loadf_from_file  (FILE *f, int *x, int *y, int *channels_in_file, int desired_channels);
+   #endif
+#endif
+
+#ifndef STBI_NO_HDR
+   STBIDEF void   stbi_hdr_to_ldr_gamma(float gamma);
+   STBIDEF void   stbi_hdr_to_ldr_scale(float scale);
+#endif // STBI_NO_HDR
+
+#ifndef STBI_NO_LINEAR
+   STBIDEF void   stbi_ldr_to_hdr_gamma(float gamma);
+   STBIDEF void   stbi_ldr_to_hdr_scale(float scale);
+#endif // STBI_NO_LINEAR
+
+// stbi_is_hdr is always defined, but always returns false if STBI_NO_HDR
+STBIDEF int    stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user);
+STBIDEF int    stbi_is_hdr_from_memory(stbi_uc const *buffer, int len);
+#ifndef STBI_NO_STDIO
+STBIDEF int      stbi_is_hdr          (char const *filename);
+STBIDEF int      stbi_is_hdr_from_file(FILE *f);
+#endif // STBI_NO_STDIO
+
+
+// get a VERY brief reason for failure
+// NOT THREADSAFE
+STBIDEF const char *stbi_failure_reason  (void);
+
+// free the loaded image -- this is just free()
+STBIDEF void     stbi_image_free      (void *retval_from_stbi_load);
+
+// get image dimensions & components without fully decoding
+STBIDEF int      stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp);
+STBIDEF int      stbi_info_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp);
+
+#ifndef STBI_NO_STDIO
+STBIDEF int      stbi_info            (char const *filename,     int *x, int *y, int *comp);
+STBIDEF int      stbi_info_from_file  (FILE *f,                  int *x, int *y, int *comp);
+
+#endif
+
+
+
+// for image formats that explicitly notate that they have premultiplied alpha,
+// we just return the colors as stored in the file. set this flag to force
+// unpremultiplication. results are undefined if the unpremultiply overflow.
+STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply);
+
+// indicate whether we should process iphone images back to canonical format,
+// or just pass them through "as-is"
+STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert);
+
+// flip the image vertically, so the first pixel in the output array is the bottom left
+STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip);
+
+// ZLIB client - used by PNG, available for other purposes
+
+STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen);
+STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header);
+STBIDEF char *stbi_zlib_decode_malloc(const char *buffer, int len, int *outlen);
+STBIDEF int   stbi_zlib_decode_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
+
+STBIDEF char *stbi_zlib_decode_noheader_malloc(const char *buffer, int len, int *outlen);
+STBIDEF int   stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen);
+
+
+#ifdef __cplusplus
+}
+#endif
+
+//
+//
+////   end header file   /////////////////////////////////////////////////////
+#endif // STBI_INCLUDE_STB_IMAGE_H
+
+#ifdef STB_IMAGE_IMPLEMENTATION
+
+#if defined(STBI_ONLY_JPEG) || defined(STBI_ONLY_PNG) || defined(STBI_ONLY_BMP) \
+  || defined(STBI_ONLY_TGA) || defined(STBI_ONLY_GIF) || defined(STBI_ONLY_PSD) \
+  || defined(STBI_ONLY_HDR) || defined(STBI_ONLY_PIC) || defined(STBI_ONLY_PNM) \
+  || defined(STBI_ONLY_ZLIB)
+   #ifndef STBI_ONLY_JPEG
+   #define STBI_NO_JPEG
+   #endif
+   #ifndef STBI_ONLY_PNG
+   #define STBI_NO_PNG
+   #endif
+   #ifndef STBI_ONLY_BMP
+   #define STBI_NO_BMP
+   #endif
+   #ifndef STBI_ONLY_PSD
+   #define STBI_NO_PSD
+   #endif
+   #ifndef STBI_ONLY_TGA
+   #define STBI_NO_TGA
+   #endif
+   #ifndef STBI_ONLY_GIF
+   #define STBI_NO_GIF
+   #endif
+   #ifndef STBI_ONLY_HDR
+   #define STBI_NO_HDR
+   #endif
+   #ifndef STBI_ONLY_PIC
+   #define STBI_NO_PIC
+   #endif
+   #ifndef STBI_ONLY_PNM
+   #define STBI_NO_PNM
+   #endif
+#endif
+
+#if defined(STBI_NO_PNG) && !defined(STBI_SUPPORT_ZLIB) && !defined(STBI_NO_ZLIB)
+#define STBI_NO_ZLIB
+#endif
+
+
+#include <stdarg.h>
+#include <stddef.h> // ptrdiff_t on osx
+#include <stdlib.h>
+#include <string.h>
+#include <limits.h>
+
+#if !defined(STBI_NO_LINEAR) || !defined(STBI_NO_HDR)
+#include <math.h>  // ldexp
+#endif
+
+#ifndef STBI_NO_STDIO
+#include <stdio.h>
+#endif
+
+#ifndef STBI_ASSERT
+#include <assert.h>
+#define STBI_ASSERT(x) assert(x)
+#endif
+
+
+#ifndef _MSC_VER
+   #ifdef __cplusplus
+   #define stbi_inline inline
+   #else
+   #define stbi_inline
+   #endif
+#else
+   #define stbi_inline __forceinline
+#endif
+
+
+#ifdef _MSC_VER
+typedef unsigned short stbi__uint16;
+typedef   signed short stbi__int16;
+typedef unsigned int   stbi__uint32;
+typedef   signed int   stbi__int32;
+#else
+#include <stdint.h>
+typedef uint16_t stbi__uint16;
+typedef int16_t  stbi__int16;
+typedef uint32_t stbi__uint32;
+typedef int32_t  stbi__int32;
+#endif
+
+// should produce compiler error if size is wrong
+typedef unsigned char validate_uint32[sizeof(stbi__uint32)==4 ? 1 : -1];
+
+#ifdef _MSC_VER
+#define STBI_NOTUSED(v)  (void)(v)
+#else
+#define STBI_NOTUSED(v)  (void)sizeof(v)
+#endif
+
+#ifdef _MSC_VER
+#define STBI_HAS_LROTL
+#endif
+
+#ifdef STBI_HAS_LROTL
+   #define stbi_lrot(x,y)  _lrotl(x,y)
+#else
+   #define stbi_lrot(x,y)  (((x) << (y)) | ((x) >> (32 - (y))))
+#endif
+
+#if defined(STBI_MALLOC) && defined(STBI_FREE) && (defined(STBI_REALLOC) || defined(STBI_REALLOC_SIZED))
+// ok
+#elif !defined(STBI_MALLOC) && !defined(STBI_FREE) && !defined(STBI_REALLOC) && !defined(STBI_REALLOC_SIZED)
+// ok
+#else
+#error "Must define all or none of STBI_MALLOC, STBI_FREE, and STBI_REALLOC (or STBI_REALLOC_SIZED)."
+#endif
+
+#ifndef STBI_MALLOC
+#define STBI_MALLOC(sz)           malloc(sz)
+#define STBI_REALLOC(p,newsz)     realloc(p,newsz)
+#define STBI_FREE(p)              free(p)
+#endif
+
+#ifndef STBI_REALLOC_SIZED
+#define STBI_REALLOC_SIZED(p,oldsz,newsz) STBI_REALLOC(p,newsz)
+#endif
+
+// x86/x64 detection
+#if defined(__x86_64__) || defined(_M_X64)
+#define STBI__X64_TARGET
+#elif defined(__i386) || defined(_M_IX86)
+#define STBI__X86_TARGET
+#endif
+
+#if defined(__GNUC__) && defined(STBI__X86_TARGET) && !defined(__SSE2__) && !defined(STBI_NO_SIMD)
+// gcc doesn't support sse2 intrinsics unless you compile with -msse2,
+// which in turn means it gets to use SSE2 everywhere. This is unfortunate,
+// but previous attempts to provide the SSE2 functions with runtime
+// detection caused numerous issues. The way architecture extensions are
+// exposed in GCC/Clang is, sadly, not really suited for one-file libs.
+// New behavior: if compiled with -msse2, we use SSE2 without any
+// detection; if not, we don't use it at all.
+#define STBI_NO_SIMD
+#endif
+
+#if defined(__MINGW32__) && defined(STBI__X86_TARGET) && !defined(STBI_MINGW_ENABLE_SSE2) && !defined(STBI_NO_SIMD)
+// Note that __MINGW32__ doesn't actually mean 32-bit, so we have to avoid STBI__X64_TARGET
+//
+// 32-bit MinGW wants ESP to be 16-byte aligned, but this is not in the
+// Windows ABI and VC++ as well as Windows DLLs don't maintain that invariant.
+// As a result, enabling SSE2 on 32-bit MinGW is dangerous when not
+// simultaneously enabling "-mstackrealign".
+//
+// See https://github.com/nothings/stb/issues/81 for more information.
+//
+// So default to no SSE2 on 32-bit MinGW. If you've read this far and added
+// -mstackrealign to your build settings, feel free to #define STBI_MINGW_ENABLE_SSE2.
+#define STBI_NO_SIMD
+#endif
+
+#if !defined(STBI_NO_SIMD) && (defined(STBI__X86_TARGET) || defined(STBI__X64_TARGET))
+#define STBI_SSE2
+#include <emmintrin.h>
+
+#ifdef _MSC_VER
+
+#if _MSC_VER >= 1400  // not VC6
+#include <intrin.h> // __cpuid
+static int stbi__cpuid3(void)
+{
+   int info[4];
+   __cpuid(info,1);
+   return info[3];
+}
+#else
+static int stbi__cpuid3(void)
+{
+   int res;
+   __asm {
+      mov  eax,1
+      cpuid
+      mov  res,edx
+   }
+   return res;
+}
+#endif
+
+#define STBI_SIMD_ALIGN(type, name) __declspec(align(16)) type name
+
+static int stbi__sse2_available(void)
+{
+   int info3 = stbi__cpuid3();
+   return ((info3 >> 26) & 1) != 0;
+}
+#else // assume GCC-style if not VC++
+#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
+
+static int stbi__sse2_available(void)
+{
+   // If we're even attempting to compile this on GCC/Clang, that means
+   // -msse2 is on, which means the compiler is allowed to use SSE2
+   // instructions at will, and so are we.
+   return 1;
+}
+#endif
+#endif
+
+// ARM NEON
+#if defined(STBI_NO_SIMD) && defined(STBI_NEON)
+#undef STBI_NEON
+#endif
+
+#ifdef STBI_NEON
+#include <arm_neon.h>
+// assume GCC or Clang on ARM targets
+#define STBI_SIMD_ALIGN(type, name) type name __attribute__((aligned(16)))
+#endif
+
+#ifndef STBI_SIMD_ALIGN
+#define STBI_SIMD_ALIGN(type, name) type name
+#endif
+
+///////////////////////////////////////////////
+//
+//  stbi__context struct and start_xxx functions
+
+// stbi__context structure is our basic context used by all images, so it
+// contains all the IO context, plus some basic image information
+typedef struct
+{
+   stbi__uint32 img_x, img_y;
+   int img_n, img_out_n;
+
+   stbi_io_callbacks io;
+   void *io_user_data;
+
+   int read_from_callbacks;
+   int buflen;
+   stbi_uc buffer_start[128];
+
+   stbi_uc *img_buffer, *img_buffer_end;
+   stbi_uc *img_buffer_original, *img_buffer_original_end;
+} stbi__context;
+
+
+static void stbi__refill_buffer(stbi__context *s);
+
+// initialize a memory-decode context
+static void stbi__start_mem(stbi__context *s, stbi_uc const *buffer, int len)
+{
+   s->io.read = NULL;
+   s->read_from_callbacks = 0;
+   s->img_buffer = s->img_buffer_original = (stbi_uc *) buffer;
+   s->img_buffer_end = s->img_buffer_original_end = (stbi_uc *) buffer+len;
+}
+
+// initialize a callback-based context
+static void stbi__start_callbacks(stbi__context *s, stbi_io_callbacks *c, void *user)
+{
+   s->io = *c;
+   s->io_user_data = user;
+   s->buflen = sizeof(s->buffer_start);
+   s->read_from_callbacks = 1;
+   s->img_buffer_original = s->buffer_start;
+   stbi__refill_buffer(s);
+   s->img_buffer_original_end = s->img_buffer_end;
+}
+
+#ifndef STBI_NO_STDIO
+
+static int stbi__stdio_read(void *user, char *data, int size)
+{
+   return (int) fread(data,1,size,(FILE*) user);
+}
+
+static void stbi__stdio_skip(void *user, int n)
+{
+   fseek((FILE*) user, n, SEEK_CUR);
+}
+
+static int stbi__stdio_eof(void *user)
+{
+   return feof((FILE*) user);
+}
+
+static stbi_io_callbacks stbi__stdio_callbacks =
+{
+   stbi__stdio_read,
+   stbi__stdio_skip,
+   stbi__stdio_eof,
+};
+
+static void stbi__start_file(stbi__context *s, FILE *f)
+{
+   stbi__start_callbacks(s, &stbi__stdio_callbacks, (void *) f);
+}
+
+//static void stop_file(stbi__context *s) { }
+
+#endif // !STBI_NO_STDIO
+
+static void stbi__rewind(stbi__context *s)
+{
+   // conceptually rewind SHOULD rewind to the beginning of the stream,
+   // but we just rewind to the beginning of the initial buffer, because
+   // we only use it after doing 'test', which only ever looks at at most 92 bytes
+   s->img_buffer = s->img_buffer_original;
+   s->img_buffer_end = s->img_buffer_original_end;
+}
+
+enum
+{
+   STBI_ORDER_RGB,
+   STBI_ORDER_BGR
+};
+
+typedef struct
+{
+   int bits_per_channel;
+   int num_channels;
+   int channel_order;
+} stbi__result_info;
+
+#ifndef STBI_NO_JPEG
+static int      stbi__jpeg_test(stbi__context *s);
+static void    *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_PNG
+static int      stbi__png_test(stbi__context *s);
+static void    *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__png_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_BMP
+static int      stbi__bmp_test(stbi__context *s);
+static void    *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_TGA
+static int      stbi__tga_test(stbi__context *s);
+static void    *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__tga_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_PSD
+static int      stbi__psd_test(stbi__context *s);
+static void    *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc);
+static int      stbi__psd_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_HDR
+static int      stbi__hdr_test(stbi__context *s);
+static float   *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_PIC
+static int      stbi__pic_test(stbi__context *s);
+static void    *stbi__pic_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__pic_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_GIF
+static int      stbi__gif_test(stbi__context *s);
+static void    *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__gif_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+#ifndef STBI_NO_PNM
+static int      stbi__pnm_test(stbi__context *s);
+static void    *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri);
+static int      stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp);
+#endif
+
+// this is not threadsafe
+static const char *stbi__g_failure_reason;
+
+STBIDEF const char *stbi_failure_reason(void)
+{
+   return stbi__g_failure_reason;
+}
+
+static int stbi__err(const char *str)
+{
+   stbi__g_failure_reason = str;
+   return 0;
+}
+
+static void *stbi__malloc(size_t size)
+{
+    return STBI_MALLOC(size);
+}
+
+// stb_image uses ints pervasively, including for offset calculations.
+// therefore the largest decoded image size we can support with the
+// current code, even on 64-bit targets, is INT_MAX. this is not a
+// significant limitation for the intended use case.
+//
+// we do, however, need to make sure our size calculations don't
+// overflow. hence a few helper functions for size calculations that
+// multiply integers together, making sure that they're non-negative
+// and no overflow occurs.
+
+// return 1 if the sum is valid, 0 on overflow.
+// negative terms are considered invalid.
+static int stbi__addsizes_valid(int a, int b)
+{
+   if (b < 0) return 0;
+   // now 0 <= b <= INT_MAX, hence also
+   // 0 <= INT_MAX - b <= INTMAX.
+   // And "a + b <= INT_MAX" (which might overflow) is the
+   // same as a <= INT_MAX - b (no overflow)
+   return a <= INT_MAX - b;
+}
+
+// returns 1 if the product is valid, 0 on overflow.
+// negative factors are considered invalid.
+static int stbi__mul2sizes_valid(int a, int b)
+{
+   if (a < 0 || b < 0) return 0;
+   if (b == 0) return 1; // mul-by-0 is always safe
+   // portable way to check for no overflows in a*b
+   return a <= INT_MAX/b;
+}
+
+// returns 1 if "a*b + add" has no negative terms/factors and doesn't overflow
+static int stbi__mad2sizes_valid(int a, int b, int add)
+{
+   return stbi__mul2sizes_valid(a, b) && stbi__addsizes_valid(a*b, add);
+}
+
+// returns 1 if "a*b*c + add" has no negative terms/factors and doesn't overflow
+static int stbi__mad3sizes_valid(int a, int b, int c, int add)
+{
+   return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) &&
+      stbi__addsizes_valid(a*b*c, add);
+}
+
+// returns 1 if "a*b*c*d + add" has no negative terms/factors and doesn't overflow
+static int stbi__mad4sizes_valid(int a, int b, int c, int d, int add)
+{
+   return stbi__mul2sizes_valid(a, b) && stbi__mul2sizes_valid(a*b, c) &&
+      stbi__mul2sizes_valid(a*b*c, d) && stbi__addsizes_valid(a*b*c*d, add);
+}
+
+// mallocs with size overflow checking
+static void *stbi__malloc_mad2(int a, int b, int add)
+{
+   if (!stbi__mad2sizes_valid(a, b, add)) return NULL;
+   return stbi__malloc(a*b + add);
+}
+
+static void *stbi__malloc_mad3(int a, int b, int c, int add)
+{
+   if (!stbi__mad3sizes_valid(a, b, c, add)) return NULL;
+   return stbi__malloc(a*b*c + add);
+}
+
+static void *stbi__malloc_mad4(int a, int b, int c, int d, int add)
+{
+   if (!stbi__mad4sizes_valid(a, b, c, d, add)) return NULL;
+   return stbi__malloc(a*b*c*d + add);
+}
+
+// stbi__err - error
+// stbi__errpf - error returning pointer to float
+// stbi__errpuc - error returning pointer to unsigned char
+
+#ifdef STBI_NO_FAILURE_STRINGS
+   #define stbi__err(x,y)  0
+#elif defined(STBI_FAILURE_USERMSG)
+   #define stbi__err(x,y)  stbi__err(y)
+#else
+   #define stbi__err(x,y)  stbi__err(x)
+#endif
+
+#define stbi__errpf(x,y)   ((float *)(size_t) (stbi__err(x,y)?NULL:NULL))
+#define stbi__errpuc(x,y)  ((unsigned char *)(size_t) (stbi__err(x,y)?NULL:NULL))
+
+STBIDEF void stbi_image_free(void *retval_from_stbi_load)
+{
+   STBI_FREE(retval_from_stbi_load);
+}
+
+#ifndef STBI_NO_LINEAR
+static float   *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp);
+#endif
+
+#ifndef STBI_NO_HDR
+static stbi_uc *stbi__hdr_to_ldr(float   *data, int x, int y, int comp);
+#endif
+
+static int stbi__vertically_flip_on_load = 0;
+
+STBIDEF void stbi_set_flip_vertically_on_load(int flag_true_if_should_flip)
+{
+    stbi__vertically_flip_on_load = flag_true_if_should_flip;
+}
+
+static void *stbi__load_main(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc)
+{
+   memset(ri, 0, sizeof(*ri)); // make sure it's initialized if we add new fields
+   ri->bits_per_channel = 8; // default is 8 so most paths don't have to be changed
+   ri->channel_order = STBI_ORDER_RGB; // all current input & output are this, but this is here so we can add BGR order
+   ri->num_channels = 0;
+
+   #ifndef STBI_NO_JPEG
+   if (stbi__jpeg_test(s)) return stbi__jpeg_load(s,x,y,comp,req_comp, ri);
+   #endif
+   #ifndef STBI_NO_PNG
+   if (stbi__png_test(s))  return stbi__png_load(s,x,y,comp,req_comp, ri);
+   #endif
+   #ifndef STBI_NO_BMP
+   if (stbi__bmp_test(s))  return stbi__bmp_load(s,x,y,comp,req_comp, ri);
+   #endif
+   #ifndef STBI_NO_GIF
+   if (stbi__gif_test(s))  return stbi__gif_load(s,x,y,comp,req_comp, ri);
+   #endif
+   #ifndef STBI_NO_PSD
+   if (stbi__psd_test(s))  return stbi__psd_load(s,x,y,comp,req_comp, ri, bpc);
+   #endif
+   #ifndef STBI_NO_PIC
+   if (stbi__pic_test(s))  return stbi__pic_load(s,x,y,comp,req_comp, ri);
+   #endif
+   #ifndef STBI_NO_PNM
+   if (stbi__pnm_test(s))  return stbi__pnm_load(s,x,y,comp,req_comp, ri);
+   #endif
+
+   #ifndef STBI_NO_HDR
+   if (stbi__hdr_test(s)) {
+      float *hdr = stbi__hdr_load(s, x,y,comp,req_comp, ri);
+      return stbi__hdr_to_ldr(hdr, *x, *y, req_comp ? req_comp : *comp);
+   }
+   #endif
+
+   #ifndef STBI_NO_TGA
+   // test tga last because it's a crappy test!
+   if (stbi__tga_test(s))
+      return stbi__tga_load(s,x,y,comp,req_comp, ri);
+   #endif
+
+   return stbi__errpuc("unknown image type", "Image not of any known type, or corrupt");
+}
+
+static stbi_uc *stbi__convert_16_to_8(stbi__uint16 *orig, int w, int h, int channels)
+{
+   int i;
+   int img_len = w * h * channels;
+   stbi_uc *reduced;
+
+   reduced = (stbi_uc *) stbi__malloc(img_len);
+   if (reduced == NULL) return stbi__errpuc("outofmem", "Out of memory");
+
+   for (i = 0; i < img_len; ++i)
+      reduced[i] = (stbi_uc)((orig[i] >> 8) & 0xFF); // top half of each byte is sufficient approx of 16->8 bit scaling
+
+   STBI_FREE(orig);
+   return reduced;
+}
+
+static stbi__uint16 *stbi__convert_8_to_16(stbi_uc *orig, int w, int h, int channels)
+{
+   int i;
+   int img_len = w * h * channels;
+   stbi__uint16 *enlarged;
+
+   enlarged = (stbi__uint16 *) stbi__malloc(img_len*2);
+   if (enlarged == NULL) return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory");
+
+   for (i = 0; i < img_len; ++i)
+      enlarged[i] = (stbi__uint16)((orig[i] << 8) + orig[i]); // replicate to high and low byte, maps 0->0, 255->0xffff
+
+   STBI_FREE(orig);
+   return enlarged;
+}
+
+static void stbi__vertical_flip(void *image, int w, int h, int bytes_per_pixel)
+{
+   int row;
+   size_t bytes_per_row = (size_t)w * bytes_per_pixel;
+   stbi_uc temp[2048];
+   stbi_uc *bytes = (stbi_uc *)image;
+
+   for (row = 0; row < (h>>1); row++) {
+      stbi_uc *row0 = bytes + row*bytes_per_row;
+      stbi_uc *row1 = bytes + (h - row - 1)*bytes_per_row;
+      // swap row0 with row1
+      size_t bytes_left = bytes_per_row;
+      while (bytes_left) {
+         size_t bytes_copy = (bytes_left < sizeof(temp)) ? bytes_left : sizeof(temp);
+         memcpy(temp, row0, bytes_copy);
+         memcpy(row0, row1, bytes_copy);
+         memcpy(row1, temp, bytes_copy);
+         row0 += bytes_copy;
+         row1 += bytes_copy;
+         bytes_left -= bytes_copy;
+      }
+   }
+}
+
+static unsigned char *stbi__load_and_postprocess_8bit(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__result_info ri;
+   void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 8);
+
+   if (result == NULL)
+      return NULL;
+
+   if (ri.bits_per_channel != 8) {
+      STBI_ASSERT(ri.bits_per_channel == 16);
+      result = stbi__convert_16_to_8((stbi__uint16 *) result, *x, *y, req_comp == 0 ? *comp : req_comp);
+      ri.bits_per_channel = 8;
+   }
+
+   // @TODO: move stbi__convert_format to here
+
+   if (stbi__vertically_flip_on_load) {
+      int channels = req_comp ? req_comp : *comp;
+      stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi_uc));
+   }
+
+   return (unsigned char *) result;
+}
+
+static stbi__uint16 *stbi__load_and_postprocess_16bit(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__result_info ri;
+   void *result = stbi__load_main(s, x, y, comp, req_comp, &ri, 16);
+
+   if (result == NULL)
+      return NULL;
+
+   if (ri.bits_per_channel != 16) {
+      STBI_ASSERT(ri.bits_per_channel == 8);
+      result = stbi__convert_8_to_16((stbi_uc *) result, *x, *y, req_comp == 0 ? *comp : req_comp);
+      ri.bits_per_channel = 16;
+   }
+
+   // @TODO: move stbi__convert_format16 to here
+   // @TODO: special case RGB-to-Y (and RGBA-to-YA) for 8-bit-to-16-bit case to keep more precision
+
+   if (stbi__vertically_flip_on_load) {
+      int channels = req_comp ? req_comp : *comp;
+      stbi__vertical_flip(result, *x, *y, channels * sizeof(stbi__uint16));
+   }
+
+   return (stbi__uint16 *) result;
+}
+
+#ifndef STBI_NO_HDR
+static void stbi__float_postprocess(float *result, int *x, int *y, int *comp, int req_comp)
+{
+   if (stbi__vertically_flip_on_load && result != NULL) {
+      int channels = req_comp ? req_comp : *comp;
+      stbi__vertical_flip(result, *x, *y, channels * sizeof(float));
+   }
+}
+#endif
+
+#ifndef STBI_NO_STDIO
+
+static FILE *stbi__fopen(char const *filename, char const *mode)
+{
+   FILE *f;
+#if defined(_MSC_VER) && _MSC_VER >= 1400
+   if (0 != fopen_s(&f, filename, mode))
+      f=0;
+#else
+   f = fopen(filename, mode);
+#endif
+   return f;
+}
+
+
+STBIDEF stbi_uc *stbi_load(char const *filename, int *x, int *y, int *comp, int req_comp)
+{
+   FILE *f = stbi__fopen(filename, "rb");
+   unsigned char *result;
+   if (!f) return stbi__errpuc("can't fopen", "Unable to open file");
+   result = stbi_load_from_file(f,x,y,comp,req_comp);
+   fclose(f);
+   return result;
+}
+
+STBIDEF stbi_uc *stbi_load_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
+{
+   unsigned char *result;
+   stbi__context s;
+   stbi__start_file(&s,f);
+   result = stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp);
+   if (result) {
+      // need to 'unget' all the characters in the IO buffer
+      fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR);
+   }
+   return result;
+}
+
+STBIDEF stbi__uint16 *stbi_load_from_file_16(FILE *f, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__uint16 *result;
+   stbi__context s;
+   stbi__start_file(&s,f);
+   result = stbi__load_and_postprocess_16bit(&s,x,y,comp,req_comp);
+   if (result) {
+      // need to 'unget' all the characters in the IO buffer
+      fseek(f, - (int) (s.img_buffer_end - s.img_buffer), SEEK_CUR);
+   }
+   return result;
+}
+
+STBIDEF stbi_us *stbi_load_16(char const *filename, int *x, int *y, int *comp, int req_comp)
+{
+   FILE *f = stbi__fopen(filename, "rb");
+   stbi__uint16 *result;
+   if (!f) return (stbi_us *) stbi__errpuc("can't fopen", "Unable to open file");
+   result = stbi_load_from_file_16(f,x,y,comp,req_comp);
+   fclose(f);
+   return result;
+}
+
+
+#endif //!STBI_NO_STDIO
+
+STBIDEF stbi_us *stbi_load_16_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *channels_in_file, int desired_channels)
+{
+   stbi__context s;
+   stbi__start_mem(&s,buffer,len);
+   return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels);
+}
+
+STBIDEF stbi_us *stbi_load_16_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *channels_in_file, int desired_channels)
+{
+   stbi__context s;
+   stbi__start_callbacks(&s, (stbi_io_callbacks *)clbk, user);
+   return stbi__load_and_postprocess_16bit(&s,x,y,channels_in_file,desired_channels);
+}
+
+STBIDEF stbi_uc *stbi_load_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__context s;
+   stbi__start_mem(&s,buffer,len);
+   return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp);
+}
+
+STBIDEF stbi_uc *stbi_load_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__context s;
+   stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
+   return stbi__load_and_postprocess_8bit(&s,x,y,comp,req_comp);
+}
+
+#ifndef STBI_NO_LINEAR
+static float *stbi__loadf_main(stbi__context *s, int *x, int *y, int *comp, int req_comp)
+{
+   unsigned char *data;
+   #ifndef STBI_NO_HDR
+   if (stbi__hdr_test(s)) {
+      stbi__result_info ri;
+      float *hdr_data = stbi__hdr_load(s,x,y,comp,req_comp, &ri);
+      if (hdr_data)
+         stbi__float_postprocess(hdr_data,x,y,comp,req_comp);
+      return hdr_data;
+   }
+   #endif
+   data = stbi__load_and_postprocess_8bit(s, x, y, comp, req_comp);
+   if (data)
+      return stbi__ldr_to_hdr(data, *x, *y, req_comp ? req_comp : *comp);
+   return stbi__errpf("unknown image type", "Image not of any known type, or corrupt");
+}
+
+STBIDEF float *stbi_loadf_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__context s;
+   stbi__start_mem(&s,buffer,len);
+   return stbi__loadf_main(&s,x,y,comp,req_comp);
+}
+
+STBIDEF float *stbi_loadf_from_callbacks(stbi_io_callbacks const *clbk, void *user, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__context s;
+   stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
+   return stbi__loadf_main(&s,x,y,comp,req_comp);
+}
+
+#ifndef STBI_NO_STDIO
+STBIDEF float *stbi_loadf(char const *filename, int *x, int *y, int *comp, int req_comp)
+{
+   float *result;
+   FILE *f = stbi__fopen(filename, "rb");
+   if (!f) return stbi__errpf("can't fopen", "Unable to open file");
+   result = stbi_loadf_from_file(f,x,y,comp,req_comp);
+   fclose(f);
+   return result;
+}
+
+STBIDEF float *stbi_loadf_from_file(FILE *f, int *x, int *y, int *comp, int req_comp)
+{
+   stbi__context s;
+   stbi__start_file(&s,f);
+   return stbi__loadf_main(&s,x,y,comp,req_comp);
+}
+#endif // !STBI_NO_STDIO
+
+#endif // !STBI_NO_LINEAR
+
+// these is-hdr-or-not is defined independent of whether STBI_NO_LINEAR is
+// defined, for API simplicity; if STBI_NO_LINEAR is defined, it always
+// reports false!
+
+STBIDEF int stbi_is_hdr_from_memory(stbi_uc const *buffer, int len)
+{
+   #ifndef STBI_NO_HDR
+   stbi__context s;
+   stbi__start_mem(&s,buffer,len);
+   return stbi__hdr_test(&s);
+   #else
+   STBI_NOTUSED(buffer);
+   STBI_NOTUSED(len);
+   return 0;
+   #endif
+}
+
+#ifndef STBI_NO_STDIO
+STBIDEF int      stbi_is_hdr          (char const *filename)
+{
+   FILE *f = stbi__fopen(filename, "rb");
+   int result=0;
+   if (f) {
+      result = stbi_is_hdr_from_file(f);
+      fclose(f);
+   }
+   return result;
+}
+
+STBIDEF int      stbi_is_hdr_from_file(FILE *f)
+{
+   #ifndef STBI_NO_HDR
+   stbi__context s;
+   stbi__start_file(&s,f);
+   return stbi__hdr_test(&s);
+   #else
+   STBI_NOTUSED(f);
+   return 0;
+   #endif
+}
+#endif // !STBI_NO_STDIO
+
+STBIDEF int      stbi_is_hdr_from_callbacks(stbi_io_callbacks const *clbk, void *user)
+{
+   #ifndef STBI_NO_HDR
+   stbi__context s;
+   stbi__start_callbacks(&s, (stbi_io_callbacks *) clbk, user);
+   return stbi__hdr_test(&s);
+   #else
+   STBI_NOTUSED(clbk);
+   STBI_NOTUSED(user);
+   return 0;
+   #endif
+}
+
+#ifndef STBI_NO_LINEAR
+static float stbi__l2h_gamma=2.2f, stbi__l2h_scale=1.0f;
+
+STBIDEF void   stbi_ldr_to_hdr_gamma(float gamma) { stbi__l2h_gamma = gamma; }
+STBIDEF void   stbi_ldr_to_hdr_scale(float scale) { stbi__l2h_scale = scale; }
+#endif
+
+static float stbi__h2l_gamma_i=1.0f/2.2f, stbi__h2l_scale_i=1.0f;
+
+STBIDEF void   stbi_hdr_to_ldr_gamma(float gamma) { stbi__h2l_gamma_i = 1/gamma; }
+STBIDEF void   stbi_hdr_to_ldr_scale(float scale) { stbi__h2l_scale_i = 1/scale; }
+
+
+//////////////////////////////////////////////////////////////////////////////
+//
+// Common code used by all image loaders
+//
+
+enum
+{
+   STBI__SCAN_load=0,
+   STBI__SCAN_type,
+   STBI__SCAN_header
+};
+
+static void stbi__refill_buffer(stbi__context *s)
+{
+   int n = (s->io.read)(s->io_user_data,(char*)s->buffer_start,s->buflen);
+   if (n == 0) {
+      // at end of file, treat same as if from memory, but need to handle case
+      // where s->img_buffer isn't pointing to safe memory, e.g. 0-byte file
+      s->read_from_callbacks = 0;
+      s->img_buffer = s->buffer_start;
+      s->img_buffer_end = s->buffer_start+1;
+      *s->img_buffer = 0;
+   } else {
+      s->img_buffer = s->buffer_start;
+      s->img_buffer_end = s->buffer_start + n;
+   }
+}
+
+stbi_inline static stbi_uc stbi__get8(stbi__context *s)
+{
+   if (s->img_buffer < s->img_buffer_end)
+      return *s->img_buffer++;
+   if (s->read_from_callbacks) {
+      stbi__refill_buffer(s);
+      return *s->img_buffer++;
+   }
+   return 0;
+}
+
+stbi_inline static int stbi__at_eof(stbi__context *s)
+{
+   if (s->io.read) {
+      if (!(s->io.eof)(s->io_user_data)) return 0;
+      // if feof() is true, check if buffer = end
+      // special case: we've only got the special 0 character at the end
+      if (s->read_from_callbacks == 0) return 1;
+   }
+
+   return s->img_buffer >= s->img_buffer_end;
+}
+
+static void stbi__skip(stbi__context *s, int n)
+{
+   if (n < 0) {
+      s->img_buffer = s->img_buffer_end;
+      return;
+   }
+   if (s->io.read) {
+      int blen = (int) (s->img_buffer_end - s->img_buffer);
+      if (blen < n) {
+         s->img_buffer = s->img_buffer_end;
+         (s->io.skip)(s->io_user_data, n - blen);
+         return;
+      }
+   }
+   s->img_buffer += n;
+}
+
+static int stbi__getn(stbi__context *s, stbi_uc *buffer, int n)
+{
+   if (s->io.read) {
+      int blen = (int) (s->img_buffer_end - s->img_buffer);
+      if (blen < n) {
+         int res, count;
+
+         memcpy(buffer, s->img_buffer, blen);
+
+         count = (s->io.read)(s->io_user_data, (char*) buffer + blen, n - blen);
+         res = (count == (n-blen));
+         s->img_buffer = s->img_buffer_end;
+         return res;
+      }
+   }
+
+   if (s->img_buffer+n <= s->img_buffer_end) {
+      memcpy(buffer, s->img_buffer, n);
+      s->img_buffer += n;
+      return 1;
+   } else
+      return 0;
+}
+
+static int stbi__get16be(stbi__context *s)
+{
+   int z = stbi__get8(s);
+   return (z << 8) + stbi__get8(s);
+}
+
+static stbi__uint32 stbi__get32be(stbi__context *s)
+{
+   stbi__uint32 z = stbi__get16be(s);
+   return (z << 16) + stbi__get16be(s);
+}
+
+#if defined(STBI_NO_BMP) && defined(STBI_NO_TGA) && defined(STBI_NO_GIF)
+// nothing
+#else
+static int stbi__get16le(stbi__context *s)
+{
+   int z = stbi__get8(s);
+   return z + (stbi__get8(s) << 8);
+}
+#endif
+
+#ifndef STBI_NO_BMP
+static stbi__uint32 stbi__get32le(stbi__context *s)
+{
+   stbi__uint32 z = stbi__get16le(s);
+   return z + (stbi__get16le(s) << 16);
+}
+#endif
+
+#define STBI__BYTECAST(x)  ((stbi_uc) ((x) & 255))  // truncate int to byte without warnings
+
+
+//////////////////////////////////////////////////////////////////////////////
+//
+//  generic converter from built-in img_n to req_comp
+//    individual types do this automatically as much as possible (e.g. jpeg
+//    does all cases internally since it needs to colorspace convert anyway,
+//    and it never has alpha, so very few cases ). png can automatically
+//    interleave an alpha=255 channel, but falls back to this for other cases
+//
+//  assume data buffer is malloced, so malloc a new one and free that one
+//  only failure mode is malloc failing
+
+static stbi_uc stbi__compute_y(int r, int g, int b)
+{
+   return (stbi_uc) (((r*77) + (g*150) +  (29*b)) >> 8);
+}
+
+static unsigned char *stbi__convert_format(unsigned char *data, int img_n, int req_comp, unsigned int x, unsigned int y)
+{
+   int i,j;
+   unsigned char *good;
+
+   if (req_comp == img_n) return data;
+   STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
+
+   good = (unsigned char *) stbi__malloc_mad3(req_comp, x, y, 0);
+   if (good == NULL) {
+      STBI_FREE(data);
+      return stbi__errpuc("outofmem", "Out of memory");
+   }
+
+   for (j=0; j < (int) y; ++j) {
+      unsigned char *src  = data + j * x * img_n   ;
+      unsigned char *dest = good + j * x * req_comp;
+
+      #define STBI__COMBO(a,b)  ((a)*8+(b))
+      #define STBI__CASE(a,b)   case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
+      // convert source image with img_n components to one with req_comp components;
+      // avoid switch per pixel, so use switch per scanline and massive macros
+      switch (STBI__COMBO(img_n, req_comp)) {
+         STBI__CASE(1,2) { dest[0]=src[0], dest[1]=255;                                     } break;
+         STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0];                                  } break;
+         STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=255;                     } break;
+         STBI__CASE(2,1) { dest[0]=src[0];                                                  } break;
+         STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0];                                  } break;
+         STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1];                  } break;
+         STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=255;        } break;
+         STBI__CASE(3,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]);                   } break;
+         STBI__CASE(3,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = 255;    } break;
+         STBI__CASE(4,1) { dest[0]=stbi__compute_y(src[0],src[1],src[2]);                   } break;
+         STBI__CASE(4,2) { dest[0]=stbi__compute_y(src[0],src[1],src[2]), dest[1] = src[3]; } break;
+         STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2];                    } break;
+         default: STBI_ASSERT(0);
+      }
+      #undef STBI__CASE
+   }
+
+   STBI_FREE(data);
+   return good;
+}
+
+static stbi__uint16 stbi__compute_y_16(int r, int g, int b)
+{
+   return (stbi__uint16) (((r*77) + (g*150) +  (29*b)) >> 8);
+}
+
+static stbi__uint16 *stbi__convert_format16(stbi__uint16 *data, int img_n, int req_comp, unsigned int x, unsigned int y)
+{
+   int i,j;
+   stbi__uint16 *good;
+
+   if (req_comp == img_n) return data;
+   STBI_ASSERT(req_comp >= 1 && req_comp <= 4);
+
+   good = (stbi__uint16 *) stbi__malloc(req_comp * x * y * 2);
+   if (good == NULL) {
+      STBI_FREE(data);
+      return (stbi__uint16 *) stbi__errpuc("outofmem", "Out of memory");
+   }
+
+   for (j=0; j < (int) y; ++j) {
+      stbi__uint16 *src  = data + j * x * img_n   ;
+      stbi__uint16 *dest = good + j * x * req_comp;
+
+      #define STBI__COMBO(a,b)  ((a)*8+(b))
+      #define STBI__CASE(a,b)   case STBI__COMBO(a,b): for(i=x-1; i >= 0; --i, src += a, dest += b)
+      // convert source image with img_n components to one with req_comp components;
+      // avoid switch per pixel, so use switch per scanline and massive macros
+      switch (STBI__COMBO(img_n, req_comp)) {
+         STBI__CASE(1,2) { dest[0]=src[0], dest[1]=0xffff;                                     } break;
+         STBI__CASE(1,3) { dest[0]=dest[1]=dest[2]=src[0];                                     } break;
+         STBI__CASE(1,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=0xffff;                     } break;
+         STBI__CASE(2,1) { dest[0]=src[0];                                                     } break;
+         STBI__CASE(2,3) { dest[0]=dest[1]=dest[2]=src[0];                                     } break;
+         STBI__CASE(2,4) { dest[0]=dest[1]=dest[2]=src[0], dest[3]=src[1];                     } break;
+         STBI__CASE(3,4) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2],dest[3]=0xffff;        } break;
+         STBI__CASE(3,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]);                   } break;
+         STBI__CASE(3,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = 0xffff; } break;
+         STBI__CASE(4,1) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]);                   } break;
+         STBI__CASE(4,2) { dest[0]=stbi__compute_y_16(src[0],src[1],src[2]), dest[1] = src[3]; } break;
+         STBI__CASE(4,3) { dest[0]=src[0],dest[1]=src[1],dest[2]=src[2];                       } break;
+         default: STBI_ASSERT(0);
+      }
+      #undef STBI__CASE
+   }
+
+   STBI_FREE(data);
+   return good;
+}
+
+#ifndef STBI_NO_LINEAR
+static float   *stbi__ldr_to_hdr(stbi_uc *data, int x, int y, int comp)
+{
+   int i,k,n;
+   float *output;
+   if (!data) return NULL;
+   output = (float *) stbi__malloc_mad4(x, y, comp, sizeof(float), 0);
+   if (output == NULL) { STBI_FREE(data); return stbi__errpf("outofmem", "Out of memory"); }
+   // compute number of non-alpha components
+   if (comp & 1) n = comp; else n = comp-1;
+   for (i=0; i < x*y; ++i) {
+      for (k=0; k < n; ++k) {
+         output[i*comp + k] = (float) (pow(data[i*comp+k]/255.0f, stbi__l2h_gamma) * stbi__l2h_scale);
+      }
+      if (k < comp) output[i*comp + k] = data[i*comp+k]/255.0f;
+   }
+   STBI_FREE(data);
+   return output;
+}
+#endif
+
+#ifndef STBI_NO_HDR
+#define stbi__float2int(x)   ((int) (x))
+static stbi_uc *stbi__hdr_to_ldr(float   *data, int x, int y, int comp)
+{
+   int i,k,n;
+   stbi_uc *output;
+   if (!data) return NULL;
+   output = (stbi_uc *) stbi__malloc_mad3(x, y, comp, 0);
+   if (output == NULL) { STBI_FREE(data); return stbi__errpuc("outofmem", "Out of memory"); }
+   // compute number of non-alpha components
+   if (comp & 1) n = comp; else n = comp-1;
+   for (i=0; i < x*y; ++i) {
+      for (k=0; k < n; ++k) {
+         float z = (float) pow(data[i*comp+k]*stbi__h2l_scale_i, stbi__h2l_gamma_i) * 255 + 0.5f;
+         if (z < 0) z = 0;
+         if (z > 255) z = 255;
+         output[i*comp + k] = (stbi_uc) stbi__float2int(z);
+      }
+      if (k < comp) {
+         float z = data[i*comp+k] * 255 + 0.5f;
+         if (z < 0) z = 0;
+         if (z > 255) z = 255;
+         output[i*comp + k] = (stbi_uc) stbi__float2int(z);
+      }
+   }
+   STBI_FREE(data);
+   return output;
+}
+#endif
+
+//////////////////////////////////////////////////////////////////////////////
+//
+//  "baseline" JPEG/JFIF decoder
+//
+//    simple implementation
+//      - doesn't support delayed output of y-dimension
+//      - simple interface (only one output format: 8-bit interleaved RGB)
+//      - doesn't try to recover corrupt jpegs
+//      - doesn't allow partial loading, loading multiple at once
+//      - still fast on x86 (copying globals into locals doesn't help x86)
+//      - allocates lots of intermediate memory (full size of all components)
+//        - non-interleaved case requires this anyway
+//        - allows good upsampling (see next)
+//    high-quality
+//      - upsampled channels are bilinearly interpolated, even across blocks
+//      - quality integer IDCT derived from IJG's 'slow'
+//    performance
+//      - fast huffman; reasonable integer IDCT
+//      - some SIMD kernels for common paths on targets with SSE2/NEON
+//      - uses a lot of intermediate memory, could cache poorly
+
+#ifndef STBI_NO_JPEG
+
+// huffman decoding acceleration
+#define FAST_BITS   9  // larger handles more cases; smaller stomps less cache
+
+typedef struct
+{
+   stbi_uc  fast[1 << FAST_BITS];
+   // weirdly, repacking this into AoS is a 10% speed loss, instead of a win
+   stbi__uint16 code[256];
+   stbi_uc  values[256];
+   stbi_uc  size[257];
+   unsigned int maxcode[18];
+   int    delta[17];   // old 'firstsymbol' - old 'firstcode'
+} stbi__huffman;
+
+typedef struct
+{
+   stbi__context *s;
+   stbi__huffman huff_dc[4];
+   stbi__huffman huff_ac[4];
+   stbi__uint16 dequant[4][64];
+   stbi__int16 fast_ac[4][1 << FAST_BITS];
+
+// sizes for components, interleaved MCUs
+   int img_h_max, img_v_max;
+   int img_mcu_x, img_mcu_y;
+   int img_mcu_w, img_mcu_h;
+
+// definition of jpeg image component
+   struct
+   {
+      int id;
+      int h,v;
+      int tq;
+      int hd,ha;
+      int dc_pred;
+
+      int x,y,w2,h2;
+      stbi_uc *data;
+      void *raw_data, *raw_coeff;
+      stbi_uc *linebuf;
+      short   *coeff;   // progressive only
+      int      coeff_w, coeff_h; // number of 8x8 coefficient blocks
+   } img_comp[4];
+
+   stbi__uint32   code_buffer; // jpeg entropy-coded buffer
+   int            code_bits;   // number of valid bits
+   unsigned char  marker;      // marker seen while filling entropy buffer
+   int            nomore;      // flag if we saw a marker so must stop
+
+   int            progressive;
+   int            spec_start;
+   int            spec_end;
+   int            succ_high;
+   int            succ_low;
+   int            eob_run;
+   int            jfif;
+   int            app14_color_transform; // Adobe APP14 tag
+   int            rgb;
+
+   int scan_n, order[4];
+   int restart_interval, todo;
+
+// kernels
+   void (*idct_block_kernel)(stbi_uc *out, int out_stride, short data[64]);
+   void (*YCbCr_to_RGB_kernel)(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step);
+   stbi_uc *(*resample_row_hv_2_kernel)(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs);
+} stbi__jpeg;
+
+static int stbi__build_huffman(stbi__huffman *h, int *count)
+{
+   int i,j,k=0,code;
+   // build size list for each symbol (from JPEG spec)
+   for (i=0; i < 16; ++i)
+      for (j=0; j < count[i]; ++j)
+         h->size[k++] = (stbi_uc) (i+1);
+   h->size[k] = 0;
+
+   // compute actual symbols (from jpeg spec)
+   code = 0;
+   k = 0;
+   for(j=1; j <= 16; ++j) {
+      // compute delta to add to code to compute symbol id
+      h->delta[j] = k - code;
+      if (h->size[k] == j) {
+         while (h->size[k] == j)
+            h->code[k++] = (stbi__uint16) (code++);
+         if (code-1 >= (1 << j)) return stbi__err("bad code lengths","Corrupt JPEG");
+      }
+      // compute largest code + 1 for this size, preshifted as needed later
+      h->maxcode[j] = code << (16-j);
+      code <<= 1;
+   }
+   h->maxcode[j] = 0xffffffff;
+
+   // build non-spec acceleration table; 255 is flag for not-accelerated
+   memset(h->fast, 255, 1 << FAST_BITS);
+   for (i=0; i < k; ++i) {
+      int s = h->size[i];
+      if (s <= FAST_BITS) {
+         int c = h->code[i] << (FAST_BITS-s);
+         int m = 1 << (FAST_BITS-s);
+         for (j=0; j < m; ++j) {
+            h->fast[c+j] = (stbi_uc) i;
+         }
+      }
+   }
+   return 1;
+}
+
+// build a table that decodes both magnitude and value of small ACs in
+// one go.
+static void stbi__build_fast_ac(stbi__int16 *fast_ac, stbi__huffman *h)
+{
+   int i;
+   for (i=0; i < (1 << FAST_BITS); ++i) {
+      stbi_uc fast = h->fast[i];
+      fast_ac[i] = 0;
+      if (fast < 255) {
+         int rs = h->values[fast];
+         int run = (rs >> 4) & 15;
+         int magbits = rs & 15;
+         int len = h->size[fast];
+
+         if (magbits && len + magbits <= FAST_BITS) {
+            // magnitude code followed by receive_extend code
+            int k = ((i << len) & ((1 << FAST_BITS) - 1)) >> (FAST_BITS - magbits);
+            int m = 1 << (magbits - 1);
+            if (k < m) k += (~0U << magbits) + 1;
+            // if the result is small enough, we can fit it in fast_ac table
+            if (k >= -128 && k <= 127)
+               fast_ac[i] = (stbi__int16) ((k << 8) + (run << 4) + (len + magbits));
+         }
+      }
+   }
+}
+
+static void stbi__grow_buffer_unsafe(stbi__jpeg *j)
+{
+   do {
+      int b = j->nomore ? 0 : stbi__get8(j->s);
+      if (b == 0xff) {
+         int c = stbi__get8(j->s);
+         while (c == 0xff) c = stbi__get8(j->s); // consume fill bytes
+         if (c != 0) {
+            j->marker = (unsigned char) c;
+            j->nomore = 1;
+            return;
+         }
+      }
+      j->code_buffer |= b << (24 - j->code_bits);
+      j->code_bits += 8;
+   } while (j->code_bits <= 24);
+}
+
+// (1 << n) - 1
+static stbi__uint32 stbi__bmask[17]={0,1,3,7,15,31,63,127,255,511,1023,2047,4095,8191,16383,32767,65535};
+
+// decode a jpeg huffman value from the bitstream
+stbi_inline static int stbi__jpeg_huff_decode(stbi__jpeg *j, stbi__huffman *h)
+{
+   unsigned int temp;
+   int c,k;
+
+   if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+
+   // look at the top FAST_BITS and determine what symbol ID it is,
+   // if the code is <= FAST_BITS
+   c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
+   k = h->fast[c];
+   if (k < 255) {
+      int s = h->size[k];
+      if (s > j->code_bits)
+         return -1;
+      j->code_buffer <<= s;
+      j->code_bits -= s;
+      return h->values[k];
+   }
+
+   // naive test is to shift the code_buffer down so k bits are
+   // valid, then test against maxcode. To speed this up, we've
+   // preshifted maxcode left so that it has (16-k) 0s at the
+   // end; in other words, regardless of the number of bits, it
+   // wants to be compared against something shifted to have 16;
+   // that way we don't need to shift inside the loop.
+   temp = j->code_buffer >> 16;
+   for (k=FAST_BITS+1 ; ; ++k)
+      if (temp < h->maxcode[k])
+         break;
+   if (k == 17) {
+      // error! code not found
+      j->code_bits -= 16;
+      return -1;
+   }
+
+   if (k > j->code_bits)
+      return -1;
+
+   // convert the huffman code to the symbol id
+   c = ((j->code_buffer >> (32 - k)) & stbi__bmask[k]) + h->delta[k];
+   STBI_ASSERT((((j->code_buffer) >> (32 - h->size[c])) & stbi__bmask[h->size[c]]) == h->code[c]);
+
+   // convert the id to a symbol
+   j->code_bits -= k;
+   j->code_buffer <<= k;
+   return h->values[c];
+}
+
+// bias[n] = (-1<<n) + 1
+static int const stbi__jbias[16] = {0,-1,-3,-7,-15,-31,-63,-127,-255,-511,-1023,-2047,-4095,-8191,-16383,-32767};
+
+// combined JPEG 'receive' and JPEG 'extend', since baseline
+// always extends everything it receives.
+stbi_inline static int stbi__extend_receive(stbi__jpeg *j, int n)
+{
+   unsigned int k;
+   int sgn;
+   if (j->code_bits < n) stbi__grow_buffer_unsafe(j);
+
+   sgn = (stbi__int32)j->code_buffer >> 31; // sign bit is always in MSB
+   k = stbi_lrot(j->code_buffer, n);
+   STBI_ASSERT(n >= 0 && n < (int) (sizeof(stbi__bmask)/sizeof(*stbi__bmask)));
+   j->code_buffer = k & ~stbi__bmask[n];
+   k &= stbi__bmask[n];
+   j->code_bits -= n;
+   return k + (stbi__jbias[n] & ~sgn);
+}
+
+// get some unsigned bits
+stbi_inline static int stbi__jpeg_get_bits(stbi__jpeg *j, int n)
+{
+   unsigned int k;
+   if (j->code_bits < n) stbi__grow_buffer_unsafe(j);
+   k = stbi_lrot(j->code_buffer, n);
+   j->code_buffer = k & ~stbi__bmask[n];
+   k &= stbi__bmask[n];
+   j->code_bits -= n;
+   return k;
+}
+
+stbi_inline static int stbi__jpeg_get_bit(stbi__jpeg *j)
+{
+   unsigned int k;
+   if (j->code_bits < 1) stbi__grow_buffer_unsafe(j);
+   k = j->code_buffer;
+   j->code_buffer <<= 1;
+   --j->code_bits;
+   return k & 0x80000000;
+}
+
+// given a value that's at position X in the zigzag stream,
+// where does it appear in the 8x8 matrix coded as row-major?
+static stbi_uc stbi__jpeg_dezigzag[64+15] =
+{
+    0,  1,  8, 16,  9,  2,  3, 10,
+   17, 24, 32, 25, 18, 11,  4,  5,
+   12, 19, 26, 33, 40, 48, 41, 34,
+   27, 20, 13,  6,  7, 14, 21, 28,
+   35, 42, 49, 56, 57, 50, 43, 36,
+   29, 22, 15, 23, 30, 37, 44, 51,
+   58, 59, 52, 45, 38, 31, 39, 46,
+   53, 60, 61, 54, 47, 55, 62, 63,
+   // let corrupt input sample past end
+   63, 63, 63, 63, 63, 63, 63, 63,
+   63, 63, 63, 63, 63, 63, 63
+};
+
+// decode one 64-entry block--
+static int stbi__jpeg_decode_block(stbi__jpeg *j, short data[64], stbi__huffman *hdc, stbi__huffman *hac, stbi__int16 *fac, int b, stbi__uint16 *dequant)
+{
+   int diff,dc,k;
+   int t;
+
+   if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+   t = stbi__jpeg_huff_decode(j, hdc);
+   if (t < 0) return stbi__err("bad huffman code","Corrupt JPEG");
+
+   // 0 all the ac values now so we can do it 32-bits at a time
+   memset(data,0,64*sizeof(data[0]));
+
+   diff = t ? stbi__extend_receive(j, t) : 0;
+   dc = j->img_comp[b].dc_pred + diff;
+   j->img_comp[b].dc_pred = dc;
+   data[0] = (short) (dc * dequant[0]);
+
+   // decode AC components, see JPEG spec
+   k = 1;
+   do {
+      unsigned int zig;
+      int c,r,s;
+      if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+      c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
+      r = fac[c];
+      if (r) { // fast-AC path
+         k += (r >> 4) & 15; // run
+         s = r & 15; // combined length
+         j->code_buffer <<= s;
+         j->code_bits -= s;
+         // decode into unzigzag'd location
+         zig = stbi__jpeg_dezigzag[k++];
+         data[zig] = (short) ((r >> 8) * dequant[zig]);
+      } else {
+         int rs = stbi__jpeg_huff_decode(j, hac);
+         if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
+         s = rs & 15;
+         r = rs >> 4;
+         if (s == 0) {
+            if (rs != 0xf0) break; // end block
+            k += 16;
+         } else {
+            k += r;
+            // decode into unzigzag'd location
+            zig = stbi__jpeg_dezigzag[k++];
+            data[zig] = (short) (stbi__extend_receive(j,s) * dequant[zig]);
+         }
+      }
+   } while (k < 64);
+   return 1;
+}
+
+static int stbi__jpeg_decode_block_prog_dc(stbi__jpeg *j, short data[64], stbi__huffman *hdc, int b)
+{
+   int diff,dc;
+   int t;
+   if (j->spec_end != 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+
+   if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+
+   if (j->succ_high == 0) {
+      // first scan for DC coefficient, must be first
+      memset(data,0,64*sizeof(data[0])); // 0 all the ac values now
+      t = stbi__jpeg_huff_decode(j, hdc);
+      diff = t ? stbi__extend_receive(j, t) : 0;
+
+      dc = j->img_comp[b].dc_pred + diff;
+      j->img_comp[b].dc_pred = dc;
+      data[0] = (short) (dc << j->succ_low);
+   } else {
+      // refinement scan for DC coefficient
+      if (stbi__jpeg_get_bit(j))
+         data[0] += (short) (1 << j->succ_low);
+   }
+   return 1;
+}
+
+// @OPTIMIZE: store non-zigzagged during the decode passes,
+// and only de-zigzag when dequantizing
+static int stbi__jpeg_decode_block_prog_ac(stbi__jpeg *j, short data[64], stbi__huffman *hac, stbi__int16 *fac)
+{
+   int k;
+   if (j->spec_start == 0) return stbi__err("can't merge dc and ac", "Corrupt JPEG");
+
+   if (j->succ_high == 0) {
+      int shift = j->succ_low;
+
+      if (j->eob_run) {
+         --j->eob_run;
+         return 1;
+      }
+
+      k = j->spec_start;
+      do {
+         unsigned int zig;
+         int c,r,s;
+         if (j->code_bits < 16) stbi__grow_buffer_unsafe(j);
+         c = (j->code_buffer >> (32 - FAST_BITS)) & ((1 << FAST_BITS)-1);
+         r = fac[c];
+         if (r) { // fast-AC path
+            k += (r >> 4) & 15; // run
+            s = r & 15; // combined length
+            j->code_buffer <<= s;
+            j->code_bits -= s;
+            zig = stbi__jpeg_dezigzag[k++];
+            data[zig] = (short) ((r >> 8) << shift);
+         } else {
+            int rs = stbi__jpeg_huff_decode(j, hac);
+            if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
+            s = rs & 15;
+            r = rs >> 4;
+            if (s == 0) {
+               if (r < 15) {
+                  j->eob_run = (1 << r);
+                  if (r)
+                     j->eob_run += stbi__jpeg_get_bits(j, r);
+                  --j->eob_run;
+                  break;
+               }
+               k += 16;
+            } else {
+               k += r;
+               zig = stbi__jpeg_dezigzag[k++];
+               data[zig] = (short) (stbi__extend_receive(j,s) << shift);
+            }
+         }
+      } while (k <= j->spec_end);
+   } else {
+      // refinement scan for these AC coefficients
+
+      short bit = (short) (1 << j->succ_low);
+
+      if (j->eob_run) {
+         --j->eob_run;
+         for (k = j->spec_start; k <= j->spec_end; ++k) {
+            short *p = &data[stbi__jpeg_dezigzag[k]];
+            if (*p != 0)
+               if (stbi__jpeg_get_bit(j))
+                  if ((*p & bit)==0) {
+                     if (*p > 0)
+                        *p += bit;
+                     else
+                        *p -= bit;
+                  }
+         }
+      } else {
+         k = j->spec_start;
+         do {
+            int r,s;
+            int rs = stbi__jpeg_huff_decode(j, hac); // @OPTIMIZE see if we can use the fast path here, advance-by-r is so slow, eh
+            if (rs < 0) return stbi__err("bad huffman code","Corrupt JPEG");
+            s = rs & 15;
+            r = rs >> 4;
+            if (s == 0) {
+               if (r < 15) {
+                  j->eob_run = (1 << r) - 1;
+                  if (r)
+                     j->eob_run += stbi__jpeg_get_bits(j, r);
+                  r = 64; // force end of block
+               } else {
+                  // r=15 s=0 should write 16 0s, so we just do
+                  // a run of 15 0s and then write s (which is 0),
+                  // so we don't have to do anything special here
+               }
+            } else {
+               if (s != 1) return stbi__err("bad huffman code", "Corrupt JPEG");
+               // sign bit
+               if (stbi__jpeg_get_bit(j))
+                  s = bit;
+               else
+                  s = -bit;
+            }
+
+            // advance by r
+            while (k <= j->spec_end) {
+               short *p = &data[stbi__jpeg_dezigzag[k++]];
+               if (*p != 0) {
+                  if (stbi__jpeg_get_bit(j))
+                     if ((*p & bit)==0) {
+                        if (*p > 0)
+                           *p += bit;
+                        else
+                           *p -= bit;
+                     }
+               } else {
+                  if (r == 0) {
+                     *p = (short) s;
+                     break;
+                  }
+                  --r;
+               }
+            }
+         } while (k <= j->spec_end);
+      }
+   }
+   return 1;
+}
+
+// take a -128..127 value and stbi__clamp it and convert to 0..255
+stbi_inline static stbi_uc stbi__clamp(int x)
+{
+   // trick to use a single test to catch both cases
+   if ((unsigned int) x > 255) {
+      if (x < 0) return 0;
+      if (x > 255) return 255;
+   }
+   return (stbi_uc) x;
+}
+
+#define stbi__f2f(x)  ((int) (((x) * 4096 + 0.5)))
+#define stbi__fsh(x)  ((x) << 12)
+
+// derived from jidctint -- DCT_ISLOW
+#define STBI__IDCT_1D(s0,s1,s2,s3,s4,s5,s6,s7) \
+   int t0,t1,t2,t3,p1,p2,p3,p4,p5,x0,x1,x2,x3; \
+   p2 = s2;                                    \
+   p3 = s6;                                    \
+   p1 = (p2+p3) * stbi__f2f(0.5411961f);       \
+   t2 = p1 + p3*stbi__f2f(-1.847759065f);      \
+   t3 = p1 + p2*stbi__f2f( 0.765366865f);      \
+   p2 = s0;                                    \
+   p3 = s4;                                    \
+   t0 = stbi__fsh(p2+p3);                      \
+   t1 = stbi__fsh(p2-p3);                      \
+   x0 = t0+t3;                                 \
+   x3 = t0-t3;                                 \
+   x1 = t1+t2;                                 \
+   x2 = t1-t2;                                 \
+   t0 = s7;                                    \
+   t1 = s5;                                    \
+   t2 = s3;                                    \
+   t3 = s1;                                    \
+   p3 = t0+t2;                                 \
+   p4 = t1+t3;                                 \
+   p1 = t0+t3;                                 \
+   p2 = t1+t2;                                 \
+   p5 = (p3+p4)*stbi__f2f( 1.175875602f);      \
+   t0 = t0*stbi__f2f( 0.298631336f);           \
+   t1 = t1*stbi__f2f( 2.053119869f);           \
+   t2 = t2*stbi__f2f( 3.072711026f);           \
+   t3 = t3*stbi__f2f( 1.501321110f);           \
+   p1 = p5 + p1*stbi__f2f(-0.899976223f);      \
+   p2 = p5 + p2*stbi__f2f(-2.562915447f);      \
+   p3 = p3*stbi__f2f(-1.961570560f);           \
+   p4 = p4*stbi__f2f(-0.390180644f);           \
+   t3 += p1+p4;                                \
+   t2 += p2+p3;                                \
+   t1 += p2+p4;                                \
+   t0 += p1+p3;
+
+static void stbi__idct_block(stbi_uc *out, int out_stride, short data[64])
+{
+   int i,val[64],*v=val;
+   stbi_uc *o;
+   short *d = data;
+
+   // columns
+   for (i=0; i < 8; ++i,++d, ++v) {
+      // if all zeroes, shortcut -- this avoids dequantizing 0s and IDCTing
+      if (d[ 8]==0 && d[16]==0 && d[24]==0 && d[32]==0
+           && d[40]==0 && d[48]==0 && d[56]==0) {
+         //    no shortcut                 0     seconds
+         //    (1|2|3|4|5|6|7)==0          0     seconds
+         //    all separate               -0.047 seconds
+         //    1 && 2|3 && 4|5 && 6|7:    -0.047 seconds
+         int dcterm = d[0] << 2;
+         v[0] = v[8] = v[16] = v[24] = v[32] = v[40] = v[48] = v[56] = dcterm;
+      } else {
+         STBI__IDCT_1D(d[ 0],d[ 8],d[16],d[24],d[32],d[40],d[48],d[56])
+         // constants scaled things up by 1<<12; let's bring them back
+         // down, but keep 2 extra bits of precision
+         x0 += 512; x1 += 512; x2 += 512; x3 += 512;
+         v[ 0] = (x0+t3) >> 10;
+         v[56] = (x0-t3) >> 10;
+         v[ 8] = (x1+t2) >> 10;
+         v[48] = (x1-t2) >> 10;
+         v[16] = (x2+t1) >> 10;
+         v[40] = (x2-t1) >> 10;
+         v[24] = (x3+t0) >> 10;
+         v[32] = (x3-t0) >> 10;
+      }
+   }
+
+   for (i=0, v=val, o=out; i < 8; ++i,v+=8,o+=out_stride) {
+      // no fast case since the first 1D IDCT spread components out
+      STBI__IDCT_1D(v[0],v[1],v[2],v[3],v[4],v[5],v[6],v[7])
+      // constants scaled things up by 1<<12, plus we had 1<<2 from first
+      // loop, plus horizontal and vertical each scale by sqrt(8) so together
+      // we've got an extra 1<<3, so 1<<17 total we need to remove.
+      // so we want to round that, which means adding 0.5 * 1<<17,
+      // aka 65536. Also, we'll end up with -128 to 127 that we want
+      // to encode as 0..255 by adding 128, so we'll add that before the shift
+      x0 += 65536 + (128<<17);
+      x1 += 65536 + (128<<17);
+      x2 += 65536 + (128<<17);
+      x3 += 65536 + (128<<17);
+      // tried computing the shifts into temps, or'ing the temps to see
+      // if any were out of range, but that was slower
+      o[0] = stbi__clamp((x0+t3) >> 17);
+      o[7] = stbi__clamp((x0-t3) >> 17);
+      o[1] = stbi__clamp((x1+t2) >> 17);
+      o[6] = stbi__clamp((x1-t2) >> 17);
+      o[2] = stbi__clamp((x2+t1) >> 17);
+      o[5] = stbi__clamp((x2-t1) >> 17);
+      o[3] = stbi__clamp((x3+t0) >> 17);
+      o[4] = stbi__clamp((x3-t0) >> 17);
+   }
+}
+
+#ifdef STBI_SSE2
+// sse2 integer IDCT. not the fastest possible implementation but it
+// produces bit-identical results to the generic C version so it's
+// fully "transparent".
+static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
+{
+   // This is constructed to match our regular (generic) integer IDCT exactly.
+   __m128i row0, row1, row2, row3, row4, row5, row6, row7;
+   __m128i tmp;
+
+   // dot product constant: even elems=x, odd elems=y
+   #define dct_const(x,y)  _mm_setr_epi16((x),(y),(x),(y),(x),(y),(x),(y))
+
+   // out(0) = c0[even]*x + c0[odd]*y   (c0, x, y 16-bit, out 32-bit)
+   // out(1) = c1[even]*x + c1[odd]*y
+   #define dct_rot(out0,out1, x,y,c0,c1) \
+      __m128i c0##lo = _mm_unpacklo_epi16((x),(y)); \
+      __m128i c0##hi = _mm_unpackhi_epi16((x),(y)); \
+      __m128i out0##_l = _mm_madd_epi16(c0##lo, c0); \
+      __m128i out0##_h = _mm_madd_epi16(c0##hi, c0); \
+      __m128i out1##_l = _mm_madd_epi16(c0##lo, c1); \
+      __m128i out1##_h = _mm_madd_epi16(c0##hi, c1)
+
+   // out = in << 12  (in 16-bit, out 32-bit)
+   #define dct_widen(out, in) \
+      __m128i out##_l = _mm_srai_epi32(_mm_unpacklo_epi16(_mm_setzero_si128(), (in)), 4); \
+      __m128i out##_h = _mm_srai_epi32(_mm_unpackhi_epi16(_mm_setzero_si128(), (in)), 4)
+
+   // wide add
+   #define dct_wadd(out, a, b) \
+      __m128i out##_l = _mm_add_epi32(a##_l, b##_l); \
+      __m128i out##_h = _mm_add_epi32(a##_h, b##_h)
+
+   // wide sub
+   #define dct_wsub(out, a, b) \
+      __m128i out##_l = _mm_sub_epi32(a##_l, b##_l); \
+      __m128i out##_h = _mm_sub_epi32(a##_h, b##_h)
+
+   // butterfly a/b, add bias, then shift by "s" and pack
+   #define dct_bfly32o(out0, out1, a,b,bias,s) \
+      { \
+         __m128i abiased_l = _mm_add_epi32(a##_l, bias); \
+         __m128i abiased_h = _mm_add_epi32(a##_h, bias); \
+         dct_wadd(sum, abiased, b); \
+         dct_wsub(dif, abiased, b); \
+         out0 = _mm_packs_epi32(_mm_srai_epi32(sum_l, s), _mm_srai_epi32(sum_h, s)); \
+         out1 = _mm_packs_epi32(_mm_srai_epi32(dif_l, s), _mm_srai_epi32(dif_h, s)); \
+      }
+
+   // 8-bit interleave step (for transposes)
+   #define dct_interleave8(a, b) \
+      tmp = a; \
+      a = _mm_unpacklo_epi8(a, b); \
+      b = _mm_unpackhi_epi8(tmp, b)
+
+   // 16-bit interleave step (for transposes)
+   #define dct_interleave16(a, b) \
+      tmp = a; \
+      a = _mm_unpacklo_epi16(a, b); \
+      b = _mm_unpackhi_epi16(tmp, b)
+
+   #define dct_pass(bias,shift) \
+      { \
+         /* even part */ \
+         dct_rot(t2e,t3e, row2,row6, rot0_0,rot0_1); \
+         __m128i sum04 = _mm_add_epi16(row0, row4); \
+         __m128i dif04 = _mm_sub_epi16(row0, row4); \
+         dct_widen(t0e, sum04); \
+         dct_widen(t1e, dif04); \
+         dct_wadd(x0, t0e, t3e); \
+         dct_wsub(x3, t0e, t3e); \
+         dct_wadd(x1, t1e, t2e); \
+         dct_wsub(x2, t1e, t2e); \
+         /* odd part */ \
+         dct_rot(y0o,y2o, row7,row3, rot2_0,rot2_1); \
+         dct_rot(y1o,y3o, row5,row1, rot3_0,rot3_1); \
+         __m128i sum17 = _mm_add_epi16(row1, row7); \
+         __m128i sum35 = _mm_add_epi16(row3, row5); \
+         dct_rot(y4o,y5o, sum17,sum35, rot1_0,rot1_1); \
+         dct_wadd(x4, y0o, y4o); \
+         dct_wadd(x5, y1o, y5o); \
+         dct_wadd(x6, y2o, y5o); \
+         dct_wadd(x7, y3o, y4o); \
+         dct_bfly32o(row0,row7, x0,x7,bias,shift); \
+         dct_bfly32o(row1,row6, x1,x6,bias,shift); \
+         dct_bfly32o(row2,row5, x2,x5,bias,shift); \
+         dct_bfly32o(row3,row4, x3,x4,bias,shift); \
+      }
+
+   __m128i rot0_0 = dct_const(stbi__f2f(0.5411961f), stbi__f2f(0.5411961f) + stbi__f2f(-1.847759065f));
+   __m128i rot0_1 = dct_const(stbi__f2f(0.5411961f) + stbi__f2f( 0.765366865f), stbi__f2f(0.5411961f));
+   __m128i rot1_0 = dct_const(stbi__f2f(1.175875602f) + stbi__f2f(-0.899976223f), stbi__f2f(1.175875602f));
+   __m128i rot1_1 = dct_const(stbi__f2f(1.175875602f), stbi__f2f(1.175875602f) + stbi__f2f(-2.562915447f));
+   __m128i rot2_0 = dct_const(stbi__f2f(-1.961570560f) + stbi__f2f( 0.298631336f), stbi__f2f(-1.961570560f));
+   __m128i rot2_1 = dct_const(stbi__f2f(-1.961570560f), stbi__f2f(-1.961570560f) + stbi__f2f( 3.072711026f));
+   __m128i rot3_0 = dct_const(stbi__f2f(-0.390180644f) + stbi__f2f( 2.053119869f), stbi__f2f(-0.390180644f));
+   __m128i rot3_1 = dct_const(stbi__f2f(-0.390180644f), stbi__f2f(-0.390180644f) + stbi__f2f( 1.501321110f));
+
+   // rounding biases in column/row passes, see stbi__idct_block for explanation.
+   __m128i bias_0 = _mm_set1_epi32(512);
+   __m128i bias_1 = _mm_set1_epi32(65536 + (128<<17));
+
+   // load
+   row0 = _mm_load_si128((const __m128i *) (data + 0*8));
+   row1 = _mm_load_si128((const __m128i *) (data + 1*8));
+   row2 = _mm_load_si128((const __m128i *) (data + 2*8));
+   row3 = _mm_load_si128((const __m128i *) (data + 3*8));
+   row4 = _mm_load_si128((const __m128i *) (data + 4*8));
+   row5 = _mm_load_si128((const __m128i *) (data + 5*8));
+   row6 = _mm_load_si128((const __m128i *) (data + 6*8));
+   row7 = _mm_load_si128((const __m128i *) (data + 7*8));
+
+   // column pass
+   dct_pass(bias_0, 10);
+
+   {
+      // 16bit 8x8 transpose pass 1
+      dct_interleave16(row0, row4);
+      dct_interleave16(row1, row5);
+      dct_interleave16(row2, row6);
+      dct_interleave16(row3, row7);
+
+      // transpose pass 2
+      dct_interleave16(row0, row2);
+      dct_interleave16(row1, row3);
+      dct_interleave16(row4, row6);
+      dct_interleave16(row5, row7);
+
+      // transpose pass 3
+      dct_interleave16(row0, row1);
+      dct_interleave16(row2, row3);
+      dct_interleave16(row4, row5);
+      dct_interleave16(row6, row7);
+   }
+
+   // row pass
+   dct_pass(bias_1, 17);
+
+   {
+      // pack
+      __m128i p0 = _mm_packus_epi16(row0, row1); // a0a1a2a3...a7b0b1b2b3...b7
+      __m128i p1 = _mm_packus_epi16(row2, row3);
+      __m128i p2 = _mm_packus_epi16(row4, row5);
+      __m128i p3 = _mm_packus_epi16(row6, row7);
+
+      // 8bit 8x8 transpose pass 1
+      dct_interleave8(p0, p2); // a0e0a1e1...
+      dct_interleave8(p1, p3); // c0g0c1g1...
+
+      // transpose pass 2
+      dct_interleave8(p0, p1); // a0c0e0g0...
+      dct_interleave8(p2, p3); // b0d0f0h0...
+
+      // transpose pass 3
+      dct_interleave8(p0, p2); // a0b0c0d0...
+      dct_interleave8(p1, p3); // a4b4c4d4...
+
+      // store
+      _mm_storel_epi64((__m128i *) out, p0); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p0, 0x4e)); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, p2); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p2, 0x4e)); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, p1); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p1, 0x4e)); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, p3); out += out_stride;
+      _mm_storel_epi64((__m128i *) out, _mm_shuffle_epi32(p3, 0x4e));
+   }
+
+#undef dct_const
+#undef dct_rot
+#undef dct_widen
+#undef dct_wadd
+#undef dct_wsub
+#undef dct_bfly32o
+#undef dct_interleave8
+#undef dct_interleave16
+#undef dct_pass
+}
+
+#endif // STBI_SSE2
+
+#ifdef STBI_NEON
+
+// NEON integer IDCT. should produce bit-identical
+// results to the generic C version.
+static void stbi__idct_simd(stbi_uc *out, int out_stride, short data[64])
+{
+   int16x8_t row0, row1, row2, row3, row4, row5, row6, row7;
+
+   int16x4_t rot0_0 = vdup_n_s16(stbi__f2f(0.5411961f));
+   int16x4_t rot0_1 = vdup_n_s16(stbi__f2f(-1.847759065f));
+   int16x4_t rot0_2 = vdup_n_s16(stbi__f2f( 0.765366865f));
+   int16x4_t rot1_0 = vdup_n_s16(stbi__f2f( 1.175875602f));
+   int16x4_t rot1_1 = vdup_n_s16(stbi__f2f(-0.899976223f));
+   int16x4_t rot1_2 = vdup_n_s16(stbi__f2f(-2.562915447f));
+   int16x4_t rot2_0 = vdup_n_s16(stbi__f2f(-1.961570560f));
+   int16x4_t rot2_1 = vdup_n_s16(stbi__f2f(-0.390180644f));
+   int16x4_t rot3_0 = vdup_n_s16(stbi__f2f( 0.298631336f));
+   int16x4_t rot3_1 = vdup_n_s16(stbi__f2f( 2.053119869f));
+   int16x4_t rot3_2 = vdup_n_s16(stbi__f2f( 3.072711026f));
+   int16x4_t rot3_3 = vdup_n_s16(stbi__f2f( 1.501321110f));
+
+#define dct_long_mul(out, inq, coeff) \
+   int32x4_t out##_l = vmull_s16(vget_low_s16(inq), coeff); \
+   int32x4_t out##_h = vmull_s16(vget_high_s16(inq), coeff)
+
+#define dct_long_mac(out, acc, inq, coeff) \
+   int32x4_t out##_l = vmlal_s16(acc##_l, vget_low_s16(inq), coeff); \
+   int32x4_t out##_h = vmlal_s16(acc##_h, vget_high_s16(inq), coeff)
+
+#define dct_widen(out, inq) \
+   int32x4_t out##_l = vshll_n_s16(vget_low_s16(inq), 12); \
+   int32x4_t out##_h = vshll_n_s16(vget_high_s16(inq), 12)
+
+// wide add
+#define dct_wadd(out, a, b) \
+   int32x4_t out##_l = vaddq_s32(a##_l, b##_l); \
+   int32x4_t out##_h = vaddq_s32(a##_h, b##_h)
+
+// wide sub
+#define dct_wsub(out, a, b) \
+   int32x4_t out##_l = vsubq_s32(a##_l, b##_l); \
+   int32x4_t out##_h = vsubq_s32(a##_h, b##_h)
+
+// butterfly a/b, then shift using "shiftop" by "s" and pack
+#define dct_bfly32o(out0,out1, a,b,shiftop,s) \
+   { \
+      dct_wadd(sum, a, b); \
+      dct_wsub(dif, a, b); \
+      out0 = vcombine_s16(shiftop(sum_l, s), shiftop(sum_h, s)); \
+      out1 = vcombine_s16(shiftop(dif_l, s), shiftop(dif_h, s)); \
+   }
+
+#define dct_pass(shiftop, shift) \
+   { \
+      /* even part */ \
+      int16x8_t sum26 = vaddq_s16(row2, row6); \
+      dct_long_mul(p1e, sum26, rot0_0); \
+      dct_long_mac(t2e, p1e, row6, rot0_1); \
+      dct_long_mac(t3e, p1e, row2, rot0_2); \
+      int16x8_t sum04 = vaddq_s16(row0, row4); \
+      int16x8_t dif04 = vsubq_s16(row0, row4); \
+      dct_widen(t0e, sum04); \
+      dct_widen(t1e, dif04); \
+      dct_wadd(x0, t0e, t3e); \
+      dct_wsub(x3, t0e, t3e); \
+      dct_wadd(x1, t1e, t2e); \
+      dct_wsub(x2, t1e, t2e); \
+      /* odd part */ \
+      int16x8_t sum15 = vaddq_s16(row1, row5); \
+      int16x8_t sum17 = vaddq_s16(row1, row7); \
+      int16x8_t sum35 = vaddq_s16(row3, row5); \
+      int16x8_t sum37 = vaddq_s16(row3, row7); \
+      int16x8_t sumodd = vaddq_s16(sum17, sum35); \
+      dct_long_mul(p5o, sumodd, rot1_0); \
+      dct_long_mac(p1o, p5o, sum17, rot1_1); \
+      dct_long_mac(p2o, p5o, sum35, rot1_2); \
+      dct_long_mul(p3o, sum37, rot2_0); \
+      dct_long_mul(p4o, sum15, rot2_1); \
+      dct_wadd(sump13o, p1o, p3o); \
+      dct_wadd(sump24o, p2o, p4o); \
+      dct_wadd(sump23o, p2o, p3o); \
+      dct_wadd(sump14o, p1o, p4o); \
+      dct_long_mac(x4, sump13o, row7, rot3_0); \
+      dct_long_mac(x5, sump24o, row5, rot3_1); \
+      dct_long_mac(x6, sump23o, row3, rot3_2); \
+      dct_long_mac(x7, sump14o, row1, rot3_3); \
+      dct_bfly32o(row0,row7, x0,x7,shiftop,shift); \
+      dct_bfly32o(row1,row6, x1,x6,shiftop,shift); \
+      dct_bfly32o(row2,row5, x2,x5,shiftop,shift); \
+      dct_bfly32o(row3,row4, x3,x4,shiftop,shift); \
+   }
+
+   // load
+   row0 = vld1q_s16(data + 0*8);
+   row1 = vld1q_s16(data + 1*8);
+   row2 = vld1q_s16(data + 2*8);
+   row3 = vld1q_s16(data + 3*8);
+   row4 = vld1q_s16(data + 4*8);
+   row5 = vld1q_s16(data + 5*8);
+   row6 = vld1q_s16(data + 6*8);
+   row7 = vld1q_s16(data + 7*8);
+
+   // add DC bias
+   row0 = vaddq_s16(row0, vsetq_lane_s16(1024, vdupq_n_s16(0), 0));
+
+   // column pass
+   dct_pass(vrshrn_n_s32, 10);
+
+   // 16bit 8x8 transpose
+   {
+// these three map to a single VTRN.16, VTRN.32, and VSWP, respectively.
+// whether compilers actually get this is another story, sadly.
+#define dct_trn16(x, y) { int16x8x2_t t = vtrnq_s16(x, y); x = t.val[0]; y = t.val[1]; }
+#define dct_trn32(x, y) { int32x4x2_t t = vtrnq_s32(vreinterpretq_s32_s16(x), vreinterpretq_s32_s16(y)); x = vreinterpretq_s16_s32(t.val[0]); y = vreinterpretq_s16_s32(t.val[1]); }
+#define dct_trn64(x, y) { int16x8_t x0 = x; int16x8_t y0 = y; x = vcombine_s16(vget_low_s16(x0), vget_low_s16(y0)); y = vcombine_s16(vget_high_s16(x0), vget_high_s16(y0)); }
+
+      // pass 1
+      dct_trn16(row0, row1); // a0b0a2b2a4b4a6b6
+      dct_trn16(row2, row3);
+      dct_trn16(row4, row5);
+      dct_trn16(row6, row7);
+
+      // pass 2
+      dct_trn32(row0, row2); // a0b0c0d0a4b4c4d4
+      dct_trn32(row1, row3);
+      dct_trn32(row4, row6);
+      dct_trn32(row5, row7);
+
+      // pass 3
+      dct_trn64(row0, row4); // a0b0c0d0e0f0g0h0
+      dct_trn64(row1, row5);
+      dct_trn64(row2, row6);
+      dct_trn64(row3, row7);
+
+#undef dct_trn16
+#undef dct_trn32
+#undef dct_trn64
+   }
+
+   // row pass
+   // vrshrn_n_s32 only supports shifts up to 16, we need
+   // 17. so do a non-rounding shift of 16 first then follow
+   // up with a rounding shift by 1.
+   dct_pass(vshrn_n_s32, 16);
+
+   {
+      // pack and round
+      uint8x8_t p0 = vqrshrun_n_s16(row0, 1);
+      uint8x8_t p1 = vqrshrun_n_s16(row1, 1);
+      uint8x8_t p2 = vqrshrun_n_s16(row2, 1);
+      uint8x8_t p3 = vqrshrun_n_s16(row3, 1);
+      uint8x8_t p4 = vqrshrun_n_s16(row4, 1);
+      uint8x8_t p5 = vqrshrun_n_s16(row5, 1);
+      uint8x8_t p6 = vqrshrun_n_s16(row6, 1);
+      uint8x8_t p7 = vqrshrun_n_s16(row7, 1);
+
+      // again, these can translate into one instruction, but often don't.
+#define dct_trn8_8(x, y) { uint8x8x2_t t = vtrn_u8(x, y); x = t.val[0]; y = t.val[1]; }
+#define dct_trn8_16(x, y) { uint16x4x2_t t = vtrn_u16(vreinterpret_u16_u8(x), vreinterpret_u16_u8(y)); x = vreinterpret_u8_u16(t.val[0]); y = vreinterpret_u8_u16(t.val[1]); }
+#define dct_trn8_32(x, y) { uint32x2x2_t t = vtrn_u32(vreinterpret_u32_u8(x), vreinterpret_u32_u8(y)); x = vreinterpret_u8_u32(t.val[0]); y = vreinterpret_u8_u32(t.val[1]); }
+
+      // sadly can't use interleaved stores here since we only write
+      // 8 bytes to each scan line!
+
+      // 8x8 8-bit transpose pass 1
+      dct_trn8_8(p0, p1);
+      dct_trn8_8(p2, p3);
+      dct_trn8_8(p4, p5);
+      dct_trn8_8(p6, p7);
+
+      // pass 2
+      dct_trn8_16(p0, p2);
+      dct_trn8_16(p1, p3);
+      dct_trn8_16(p4, p6);
+      dct_trn8_16(p5, p7);
+
+      // pass 3
+      dct_trn8_32(p0, p4);
+      dct_trn8_32(p1, p5);
+      dct_trn8_32(p2, p6);
+      dct_trn8_32(p3, p7);
+
+      // store
+      vst1_u8(out, p0); out += out_stride;
+      vst1_u8(out, p1); out += out_stride;
+      vst1_u8(out, p2); out += out_stride;
+      vst1_u8(out, p3); out += out_stride;
+      vst1_u8(out, p4); out += out_stride;
+      vst1_u8(out, p5); out += out_stride;
+      vst1_u8(out, p6); out += out_stride;
+      vst1_u8(out, p7);
+
+#undef dct_trn8_8
+#undef dct_trn8_16
+#undef dct_trn8_32
+   }
+
+#undef dct_long_mul
+#undef dct_long_mac
+#undef dct_widen
+#undef dct_wadd
+#undef dct_wsub
+#undef dct_bfly32o
+#undef dct_pass
+}
+
+#endif // STBI_NEON
+
+#define STBI__MARKER_none  0xff
+// if there's a pending marker from the entropy stream, return that
+// otherwise, fetch from the stream and get a marker. if there's no
+// marker, return 0xff, which is never a valid marker value
+static stbi_uc stbi__get_marker(stbi__jpeg *j)
+{
+   stbi_uc x;
+   if (j->marker != STBI__MARKER_none) { x = j->marker; j->marker = STBI__MARKER_none; return x; }
+   x = stbi__get8(j->s);
+   if (x != 0xff) return STBI__MARKER_none;
+   while (x == 0xff)
+      x = stbi__get8(j->s); // consume repeated 0xff fill bytes
+   return x;
+}
+
+// in each scan, we'll have scan_n components, and the order
+// of the components is specified by order[]
+#define STBI__RESTART(x)     ((x) >= 0xd0 && (x) <= 0xd7)
+
+// after a restart interval, stbi__jpeg_reset the entropy decoder and
+// the dc prediction
+static void stbi__jpeg_reset(stbi__jpeg *j)
+{
+   j->code_bits = 0;
+   j->code_buffer = 0;
+   j->nomore = 0;
+   j->img_comp[0].dc_pred = j->img_comp[1].dc_pred = j->img_comp[2].dc_pred = j->img_comp[3].dc_pred = 0;
+   j->marker = STBI__MARKER_none;
+   j->todo = j->restart_interval ? j->restart_interval : 0x7fffffff;
+   j->eob_run = 0;
+   // no more than 1<<31 MCUs if no restart_interal? that's plenty safe,
+   // since we don't even allow 1<<30 pixels
+}
+
+static int stbi__parse_entropy_coded_data(stbi__jpeg *z)
+{
+   stbi__jpeg_reset(z);
+   if (!z->progressive) {
+      if (z->scan_n == 1) {
+         int i,j;
+         STBI_SIMD_ALIGN(short, data[64]);
+         int n = z->order[0];
+         // non-interleaved data, we just need to process one block at a time,
+         // in trivial scanline order
+         // number of blocks to do just depends on how many actual "pixels" this
+         // component has, independent of interleaved MCU blocking and such
+         int w = (z->img_comp[n].x+7) >> 3;
+         int h = (z->img_comp[n].y+7) >> 3;
+         for (j=0; j < h; ++j) {
+            for (i=0; i < w; ++i) {
+               int ha = z->img_comp[n].ha;
+               if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
+               z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
+               // every data block is an MCU, so countdown the restart interval
+               if (--z->todo <= 0) {
+                  if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+                  // if it's NOT a restart, then just bail, so we get corrupt data
+                  // rather than no data
+                  if (!STBI__RESTART(z->marker)) return 1;
+                  stbi__jpeg_reset(z);
+               }
+            }
+         }
+         return 1;
+      } else { // interleaved
+         int i,j,k,x,y;
+         STBI_SIMD_ALIGN(short, data[64]);
+         for (j=0; j < z->img_mcu_y; ++j) {
+            for (i=0; i < z->img_mcu_x; ++i) {
+               // scan an interleaved mcu... process scan_n components in order
+               for (k=0; k < z->scan_n; ++k) {
+                  int n = z->order[k];
+                  // scan out an mcu's worth of this component; that's just determined
+                  // by the basic H and V specified for the component
+                  for (y=0; y < z->img_comp[n].v; ++y) {
+                     for (x=0; x < z->img_comp[n].h; ++x) {
+                        int x2 = (i*z->img_comp[n].h + x)*8;
+                        int y2 = (j*z->img_comp[n].v + y)*8;
+                        int ha = z->img_comp[n].ha;
+                        if (!stbi__jpeg_decode_block(z, data, z->huff_dc+z->img_comp[n].hd, z->huff_ac+ha, z->fast_ac[ha], n, z->dequant[z->img_comp[n].tq])) return 0;
+                        z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*y2+x2, z->img_comp[n].w2, data);
+                     }
+                  }
+               }
+               // after all interleaved components, that's an interleaved MCU,
+               // so now count down the restart interval
+               if (--z->todo <= 0) {
+                  if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+                  if (!STBI__RESTART(z->marker)) return 1;
+                  stbi__jpeg_reset(z);
+               }
+            }
+         }
+         return 1;
+      }
+   } else {
+      if (z->scan_n == 1) {
+         int i,j;
+         int n = z->order[0];
+         // non-interleaved data, we just need to process one block at a time,
+         // in trivial scanline order
+         // number of blocks to do just depends on how many actual "pixels" this
+         // component has, independent of interleaved MCU blocking and such
+         int w = (z->img_comp[n].x+7) >> 3;
+         int h = (z->img_comp[n].y+7) >> 3;
+         for (j=0; j < h; ++j) {
+            for (i=0; i < w; ++i) {
+               short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
+               if (z->spec_start == 0) {
+                  if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
+                     return 0;
+               } else {
+                  int ha = z->img_comp[n].ha;
+                  if (!stbi__jpeg_decode_block_prog_ac(z, data, &z->huff_ac[ha], z->fast_ac[ha]))
+                     return 0;
+               }
+               // every data block is an MCU, so countdown the restart interval
+               if (--z->todo <= 0) {
+                  if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+                  if (!STBI__RESTART(z->marker)) return 1;
+                  stbi__jpeg_reset(z);
+               }
+            }
+         }
+         return 1;
+      } else { // interleaved
+         int i,j,k,x,y;
+         for (j=0; j < z->img_mcu_y; ++j) {
+            for (i=0; i < z->img_mcu_x; ++i) {
+               // scan an interleaved mcu... process scan_n components in order
+               for (k=0; k < z->scan_n; ++k) {
+                  int n = z->order[k];
+                  // scan out an mcu's worth of this component; that's just determined
+                  // by the basic H and V specified for the component
+                  for (y=0; y < z->img_comp[n].v; ++y) {
+                     for (x=0; x < z->img_comp[n].h; ++x) {
+                        int x2 = (i*z->img_comp[n].h + x);
+                        int y2 = (j*z->img_comp[n].v + y);
+                        short *data = z->img_comp[n].coeff + 64 * (x2 + y2 * z->img_comp[n].coeff_w);
+                        if (!stbi__jpeg_decode_block_prog_dc(z, data, &z->huff_dc[z->img_comp[n].hd], n))
+                           return 0;
+                     }
+                  }
+               }
+               // after all interleaved components, that's an interleaved MCU,
+               // so now count down the restart interval
+               if (--z->todo <= 0) {
+                  if (z->code_bits < 24) stbi__grow_buffer_unsafe(z);
+                  if (!STBI__RESTART(z->marker)) return 1;
+                  stbi__jpeg_reset(z);
+               }
+            }
+         }
+         return 1;
+      }
+   }
+}
+
+static void stbi__jpeg_dequantize(short *data, stbi__uint16 *dequant)
+{
+   int i;
+   for (i=0; i < 64; ++i)
+      data[i] *= dequant[i];
+}
+
+static void stbi__jpeg_finish(stbi__jpeg *z)
+{
+   if (z->progressive) {
+      // dequantize and idct the data
+      int i,j,n;
+      for (n=0; n < z->s->img_n; ++n) {
+         int w = (z->img_comp[n].x+7) >> 3;
+         int h = (z->img_comp[n].y+7) >> 3;
+         for (j=0; j < h; ++j) {
+            for (i=0; i < w; ++i) {
+               short *data = z->img_comp[n].coeff + 64 * (i + j * z->img_comp[n].coeff_w);
+               stbi__jpeg_dequantize(data, z->dequant[z->img_comp[n].tq]);
+               z->idct_block_kernel(z->img_comp[n].data+z->img_comp[n].w2*j*8+i*8, z->img_comp[n].w2, data);
+            }
+         }
+      }
+   }
+}
+
+static int stbi__process_marker(stbi__jpeg *z, int m)
+{
+   int L;
+   switch (m) {
+      case STBI__MARKER_none: // no marker found
+         return stbi__err("expected marker","Corrupt JPEG");
+
+      case 0xDD: // DRI - specify restart interval
+         if (stbi__get16be(z->s) != 4) return stbi__err("bad DRI len","Corrupt JPEG");
+         z->restart_interval = stbi__get16be(z->s);
+         return 1;
+
+      case 0xDB: // DQT - define quantization table
+         L = stbi__get16be(z->s)-2;
+         while (L > 0) {
+            int q = stbi__get8(z->s);
+            int p = q >> 4, sixteen = (p != 0);
+            int t = q & 15,i;
+            if (p != 0 && p != 1) return stbi__err("bad DQT type","Corrupt JPEG");
+            if (t > 3) return stbi__err("bad DQT table","Corrupt JPEG");
+
+            for (i=0; i < 64; ++i)
+               z->dequant[t][stbi__jpeg_dezigzag[i]] = (stbi__uint16)(sixteen ? stbi__get16be(z->s) : stbi__get8(z->s));
+            L -= (sixteen ? 129 : 65);
+         }
+         return L==0;
+
+      case 0xC4: // DHT - define huffman table
+         L = stbi__get16be(z->s)-2;
+         while (L > 0) {
+            stbi_uc *v;
+            int sizes[16],i,n=0;
+            int q = stbi__get8(z->s);
+            int tc = q >> 4;
+            int th = q & 15;
+            if (tc > 1 || th > 3) return stbi__err("bad DHT header","Corrupt JPEG");
+            for (i=0; i < 16; ++i) {
+               sizes[i] = stbi__get8(z->s);
+               n += sizes[i];
+            }
+            L -= 17;
+            if (tc == 0) {
+               if (!stbi__build_huffman(z->huff_dc+th, sizes)) return 0;
+               v = z->huff_dc[th].values;
+            } else {
+               if (!stbi__build_huffman(z->huff_ac+th, sizes)) return 0;
+               v = z->huff_ac[th].values;
+            }
+            for (i=0; i < n; ++i)
+               v[i] = stbi__get8(z->s);
+            if (tc != 0)
+               stbi__build_fast_ac(z->fast_ac[th], z->huff_ac + th);
+            L -= n;
+         }
+         return L==0;
+   }
+
+   // check for comment block or APP blocks
+   if ((m >= 0xE0 && m <= 0xEF) || m == 0xFE) {
+      L = stbi__get16be(z->s);
+      if (L < 2) {
+         if (m == 0xFE)
+            return stbi__err("bad COM len","Corrupt JPEG");
+         else
+            return stbi__err("bad APP len","Corrupt JPEG");
+      }
+      L -= 2;
+
+      if (m == 0xE0 && L >= 5) { // JFIF APP0 segment
+         static const unsigned char tag[5] = {'J','F','I','F','\0'};
+         int ok = 1;
+         int i;
+         for (i=0; i < 5; ++i)
+            if (stbi__get8(z->s) != tag[i])
+               ok = 0;
+         L -= 5;
+         if (ok)
+            z->jfif = 1;
+      } else if (m == 0xEE && L >= 12) { // Adobe APP14 segment
+         static const unsigned char tag[6] = {'A','d','o','b','e','\0'};
+         int ok = 1;
+         int i;
+         for (i=0; i < 6; ++i)
+            if (stbi__get8(z->s) != tag[i])
+               ok = 0;
+         L -= 6;
+         if (ok) {
+            stbi__get8(z->s); // version
+            stbi__get16be(z->s); // flags0
+            stbi__get16be(z->s); // flags1
+            z->app14_color_transform = stbi__get8(z->s); // color transform
+            L -= 6;
+         }
+      }
+
+      stbi__skip(z->s, L);
+      return 1;
+   }
+
+   return stbi__err("unknown marker","Corrupt JPEG");
+}
+
+// after we see SOS
+static int stbi__process_scan_header(stbi__jpeg *z)
+{
+   int i;
+   int Ls = stbi__get16be(z->s);
+   z->scan_n = stbi__get8(z->s);
+   if (z->scan_n < 1 || z->scan_n > 4 || z->scan_n > (int) z->s->img_n) return stbi__err("bad SOS component count","Corrupt JPEG");
+   if (Ls != 6+2*z->scan_n) return stbi__err("bad SOS len","Corrupt JPEG");
+   for (i=0; i < z->scan_n; ++i) {
+      int id = stbi__get8(z->s), which;
+      int q = stbi__get8(z->s);
+      for (which = 0; which < z->s->img_n; ++which)
+         if (z->img_comp[which].id == id)
+            break;
+      if (which == z->s->img_n) return 0; // no match
+      z->img_comp[which].hd = q >> 4;   if (z->img_comp[which].hd > 3) return stbi__err("bad DC huff","Corrupt JPEG");
+      z->img_comp[which].ha = q & 15;   if (z->img_comp[which].ha > 3) return stbi__err("bad AC huff","Corrupt JPEG");
+      z->order[i] = which;
+   }
+
+   {
+      int aa;
+      z->spec_start = stbi__get8(z->s);
+      z->spec_end   = stbi__get8(z->s); // should be 63, but might be 0
+      aa = stbi__get8(z->s);
+      z->succ_high = (aa >> 4);
+      z->succ_low  = (aa & 15);
+      if (z->progressive) {
+         if (z->spec_start > 63 || z->spec_end > 63  || z->spec_start > z->spec_end || z->succ_high > 13 || z->succ_low > 13)
+            return stbi__err("bad SOS", "Corrupt JPEG");
+      } else {
+         if (z->spec_start != 0) return stbi__err("bad SOS","Corrupt JPEG");
+         if (z->succ_high != 0 || z->succ_low != 0) return stbi__err("bad SOS","Corrupt JPEG");
+         z->spec_end = 63;
+      }
+   }
+
+   return 1;
+}
+
+static int stbi__free_jpeg_components(stbi__jpeg *z, int ncomp, int why)
+{
+   int i;
+   for (i=0; i < ncomp; ++i) {
+      if (z->img_comp[i].raw_data) {
+         STBI_FREE(z->img_comp[i].raw_data);
+         z->img_comp[i].raw_data = NULL;
+         z->img_comp[i].data = NULL;
+      }
+      if (z->img_comp[i].raw_coeff) {
+         STBI_FREE(z->img_comp[i].raw_coeff);
+         z->img_comp[i].raw_coeff = 0;
+         z->img_comp[i].coeff = 0;
+      }
+      if (z->img_comp[i].linebuf) {
+         STBI_FREE(z->img_comp[i].linebuf);
+         z->img_comp[i].linebuf = NULL;
+      }
+   }
+   return why;
+}
+
+static int stbi__process_frame_header(stbi__jpeg *z, int scan)
+{
+   stbi__context *s = z->s;
+   int Lf,p,i,q, h_max=1,v_max=1,c;
+   Lf = stbi__get16be(s);         if (Lf < 11) return stbi__err("bad SOF len","Corrupt JPEG"); // JPEG
+   p  = stbi__get8(s);            if (p != 8) return stbi__err("only 8-bit","JPEG format not supported: 8-bit only"); // JPEG baseline
+   s->img_y = stbi__get16be(s);   if (s->img_y == 0) return stbi__err("no header height", "JPEG format not supported: delayed height"); // Legal, but we don't handle it--but neither does IJG
+   s->img_x = stbi__get16be(s);   if (s->img_x == 0) return stbi__err("0 width","Corrupt JPEG"); // JPEG requires
+   c = stbi__get8(s);
+   if (c != 3 && c != 1 && c != 4) return stbi__err("bad component count","Corrupt JPEG");
+   s->img_n = c;
+   for (i=0; i < c; ++i) {
+      z->img_comp[i].data = NULL;
+      z->img_comp[i].linebuf = NULL;
+   }
+
+   if (Lf != 8+3*s->img_n) return stbi__err("bad SOF len","Corrupt JPEG");
+
+   z->rgb = 0;
+   for (i=0; i < s->img_n; ++i) {
+      static unsigned char rgb[3] = { 'R', 'G', 'B' };
+      z->img_comp[i].id = stbi__get8(s);
+      if (s->img_n == 3 && z->img_comp[i].id == rgb[i])
+         ++z->rgb;
+      q = stbi__get8(s);
+      z->img_comp[i].h = (q >> 4);  if (!z->img_comp[i].h || z->img_comp[i].h > 4) return stbi__err("bad H","Corrupt JPEG");
+      z->img_comp[i].v = q & 15;    if (!z->img_comp[i].v || z->img_comp[i].v > 4) return stbi__err("bad V","Corrupt JPEG");
+      z->img_comp[i].tq = stbi__get8(s);  if (z->img_comp[i].tq > 3) return stbi__err("bad TQ","Corrupt JPEG");
+   }
+
+   if (scan != STBI__SCAN_load) return 1;
+
+   if (!stbi__mad3sizes_valid(s->img_x, s->img_y, s->img_n, 0)) return stbi__err("too large", "Image too large to decode");
+
+   for (i=0; i < s->img_n; ++i) {
+      if (z->img_comp[i].h > h_max) h_max = z->img_comp[i].h;
+      if (z->img_comp[i].v > v_max) v_max = z->img_comp[i].v;
+   }
+
+   // compute interleaved mcu info
+   z->img_h_max = h_max;
+   z->img_v_max = v_max;
+   z->img_mcu_w = h_max * 8;
+   z->img_mcu_h = v_max * 8;
+   // these sizes can't be more than 17 bits
+   z->img_mcu_x = (s->img_x + z->img_mcu_w-1) / z->img_mcu_w;
+   z->img_mcu_y = (s->img_y + z->img_mcu_h-1) / z->img_mcu_h;
+
+   for (i=0; i < s->img_n; ++i) {
+      // number of effective pixels (e.g. for non-interleaved MCU)
+      z->img_comp[i].x = (s->img_x * z->img_comp[i].h + h_max-1) / h_max;
+      z->img_comp[i].y = (s->img_y * z->img_comp[i].v + v_max-1) / v_max;
+      // to simplify generation, we'll allocate enough memory to decode
+      // the bogus oversized data from using interleaved MCUs and their
+      // big blocks (e.g. a 16x16 iMCU on an image of width 33); we won't
+      // discard the extra data until colorspace conversion
+      //
+      // img_mcu_x, img_mcu_y: <=17 bits; comp[i].h and .v are <=4 (checked earlier)
+      // so these muls can't overflow with 32-bit ints (which we require)
+      z->img_comp[i].w2 = z->img_mcu_x * z->img_comp[i].h * 8;
+      z->img_comp[i].h2 = z->img_mcu_y * z->img_comp[i].v * 8;
+      z->img_comp[i].coeff = 0;
+      z->img_comp[i].raw_coeff = 0;
+      z->img_comp[i].linebuf = NULL;
+      z->img_comp[i].raw_data = stbi__malloc_mad2(z->img_comp[i].w2, z->img_comp[i].h2, 15);
+      if (z->img_comp[i].raw_data == NULL)
+         return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory"));
+      // align blocks for idct using mmx/sse
+      z->img_comp[i].data = (stbi_uc*) (((size_t) z->img_comp[i].raw_data + 15) & ~15);
+      if (z->progressive) {
+         // w2, h2 are multiples of 8 (see above)
+         z->img_comp[i].coeff_w = z->img_comp[i].w2 / 8;
+         z->img_comp[i].coeff_h = z->img_comp[i].h2 / 8;
+         z->img_comp[i].raw_coeff = stbi__malloc_mad3(z->img_comp[i].w2, z->img_comp[i].h2, sizeof(short), 15);
+         if (z->img_comp[i].raw_coeff == NULL)
+            return stbi__free_jpeg_components(z, i+1, stbi__err("outofmem", "Out of memory"));
+         z->img_comp[i].coeff = (short*) (((size_t) z->img_comp[i].raw_coeff + 15) & ~15);
+      }
+   }
+
+   return 1;
+}
+
+// use comparisons since in some cases we handle more than one case (e.g. SOF)
+#define stbi__DNL(x)         ((x) == 0xdc)
+#define stbi__SOI(x)         ((x) == 0xd8)
+#define stbi__EOI(x)         ((x) == 0xd9)
+#define stbi__SOF(x)         ((x) == 0xc0 || (x) == 0xc1 || (x) == 0xc2)
+#define stbi__SOS(x)         ((x) == 0xda)
+
+#define stbi__SOF_progressive(x)   ((x) == 0xc2)
+
+static int stbi__decode_jpeg_header(stbi__jpeg *z, int scan)
+{
+   int m;
+   z->jfif = 0;
+   z->app14_color_transform = -1; // valid values are 0,1,2
+   z->marker = STBI__MARKER_none; // initialize cached marker to empty
+   m = stbi__get_marker(z);
+   if (!stbi__SOI(m)) return stbi__err("no SOI","Corrupt JPEG");
+   if (scan == STBI__SCAN_type) return 1;
+   m = stbi__get_marker(z);
+   while (!stbi__SOF(m)) {
+      if (!stbi__process_marker(z,m)) return 0;
+      m = stbi__get_marker(z);
+      while (m == STBI__MARKER_none) {
+         // some files have extra padding after their blocks, so ok, we'll scan
+         if (stbi__at_eof(z->s)) return stbi__err("no SOF", "Corrupt JPEG");
+         m = stbi__get_marker(z);
+      }
+   }
+   z->progressive = stbi__SOF_progressive(m);
+   if (!stbi__process_frame_header(z, scan)) return 0;
+   return 1;
+}
+
+// decode image to YCbCr format
+static int stbi__decode_jpeg_image(stbi__jpeg *j)
+{
+   int m;
+   for (m = 0; m < 4; m++) {
+      j->img_comp[m].raw_data = NULL;
+      j->img_comp[m].raw_coeff = NULL;
+   }
+   j->restart_interval = 0;
+   if (!stbi__decode_jpeg_header(j, STBI__SCAN_load)) return 0;
+   m = stbi__get_marker(j);
+   while (!stbi__EOI(m)) {
+      if (stbi__SOS(m)) {
+         if (!stbi__process_scan_header(j)) return 0;
+         if (!stbi__parse_entropy_coded_data(j)) return 0;
+         if (j->marker == STBI__MARKER_none ) {
+            // handle 0s at the end of image data from IP Kamera 9060
+            while (!stbi__at_eof(j->s)) {
+               int x = stbi__get8(j->s);
+               if (x == 255) {
+                  j->marker = stbi__get8(j->s);
+                  break;
+               }
+            }
+            // if we reach eof without hitting a marker, stbi__get_marker() below will fail and we'll eventually return 0
+         }
+      } else if (stbi__DNL(m)) {
+         int Ld = stbi__get16be(j->s);
+         stbi__uint32 NL = stbi__get16be(j->s);
+         if (Ld != 4) stbi__err("bad DNL len", "Corrupt JPEG");
+         if (NL != j->s->img_y) stbi__err("bad DNL height", "Corrupt JPEG");
+      } else {
+         if (!stbi__process_marker(j, m)) return 0;
+      }
+      m = stbi__get_marker(j);
+   }
+   if (j->progressive)
+      stbi__jpeg_finish(j);
+   return 1;
+}
+
+// static jfif-centered resampling (across block boundaries)
+
+typedef stbi_uc *(*resample_row_func)(stbi_uc *out, stbi_uc *in0, stbi_uc *in1,
+                                    int w, int hs);
+
+#define stbi__div4(x) ((stbi_uc) ((x) >> 2))
+
+static stbi_uc *resample_row_1(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+{
+   STBI_NOTUSED(out);
+   STBI_NOTUSED(in_far);
+   STBI_NOTUSED(w);
+   STBI_NOTUSED(hs);
+   return in_near;
+}
+
+static stbi_uc* stbi__resample_row_v_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+{
+   // need to generate two samples vertically for every one in input
+   int i;
+   STBI_NOTUSED(hs);
+   for (i=0; i < w; ++i)
+      out[i] = stbi__div4(3*in_near[i] + in_far[i] + 2);
+   return out;
+}
+
+static stbi_uc*  stbi__resample_row_h_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+{
+   // need to generate two samples horizontally for every one in input
+   int i;
+   stbi_uc *input = in_near;
+
+   if (w == 1) {
+      // if only one sample, can't do any interpolation
+      out[0] = out[1] = input[0];
+      return out;
+   }
+
+   out[0] = input[0];
+   out[1] = stbi__div4(input[0]*3 + input[1] + 2);
+   for (i=1; i < w-1; ++i) {
+      int n = 3*input[i]+2;
+      out[i*2+0] = stbi__div4(n+input[i-1]);
+      out[i*2+1] = stbi__div4(n+input[i+1]);
+   }
+   out[i*2+0] = stbi__div4(input[w-2]*3 + input[w-1] + 2);
+   out[i*2+1] = input[w-1];
+
+   STBI_NOTUSED(in_far);
+   STBI_NOTUSED(hs);
+
+   return out;
+}
+
+#define stbi__div16(x) ((stbi_uc) ((x) >> 4))
+
+static stbi_uc *stbi__resample_row_hv_2(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+{
+   // need to generate 2x2 samples for every one in input
+   int i,t0,t1;
+   if (w == 1) {
+      out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);
+      return out;
+   }
+
+   t1 = 3*in_near[0] + in_far[0];
+   out[0] = stbi__div4(t1+2);
+   for (i=1; i < w; ++i) {
+      t0 = t1;
+      t1 = 3*in_near[i]+in_far[i];
+      out[i*2-1] = stbi__div16(3*t0 + t1 + 8);
+      out[i*2  ] = stbi__div16(3*t1 + t0 + 8);
+   }
+   out[w*2-1] = stbi__div4(t1+2);
+
+   STBI_NOTUSED(hs);
+
+   return out;
+}
+
+#if defined(STBI_SSE2) || defined(STBI_NEON)
+static stbi_uc *stbi__resample_row_hv_2_simd(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+{
+   // need to generate 2x2 samples for every one in input
+   int i=0,t0,t1;
+
+   if (w == 1) {
+      out[0] = out[1] = stbi__div4(3*in_near[0] + in_far[0] + 2);
+      return out;
+   }
+
+   t1 = 3*in_near[0] + in_far[0];
+   // process groups of 8 pixels for as long as we can.
+   // note we can't handle the last pixel in a row in this loop
+   // because we need to handle the filter boundary conditions.
+   for (; i < ((w-1) & ~7); i += 8) {
+#if defined(STBI_SSE2)
+      // load and perform the vertical filtering pass
+      // this uses 3*x + y = 4*x + (y - x)
+      __m128i zero  = _mm_setzero_si128();
+      __m128i farb  = _mm_loadl_epi64((__m128i *) (in_far + i));
+      __m128i nearb = _mm_loadl_epi64((__m128i *) (in_near + i));
+      __m128i farw  = _mm_unpacklo_epi8(farb, zero);
+      __m128i nearw = _mm_unpacklo_epi8(nearb, zero);
+      __m128i diff  = _mm_sub_epi16(farw, nearw);
+      __m128i nears = _mm_slli_epi16(nearw, 2);
+      __m128i curr  = _mm_add_epi16(nears, diff); // current row
+
+      // horizontal filter works the same based on shifted vers of current
+      // row. "prev" is current row shifted right by 1 pixel; we need to
+      // insert the previous pixel value (from t1).
+      // "next" is current row shifted left by 1 pixel, with first pixel
+      // of next block of 8 pixels added in.
+      __m128i prv0 = _mm_slli_si128(curr, 2);
+      __m128i nxt0 = _mm_srli_si128(curr, 2);
+      __m128i prev = _mm_insert_epi16(prv0, t1, 0);
+      __m128i next = _mm_insert_epi16(nxt0, 3*in_near[i+8] + in_far[i+8], 7);
+
+      // horizontal filter, polyphase implementation since it's convenient:
+      // even pixels = 3*cur + prev = cur*4 + (prev - cur)
+      // odd  pixels = 3*cur + next = cur*4 + (next - cur)
+      // note the shared term.
+      __m128i bias  = _mm_set1_epi16(8);
+      __m128i curs = _mm_slli_epi16(curr, 2);
+      __m128i prvd = _mm_sub_epi16(prev, curr);
+      __m128i nxtd = _mm_sub_epi16(next, curr);
+      __m128i curb = _mm_add_epi16(curs, bias);
+      __m128i even = _mm_add_epi16(prvd, curb);
+      __m128i odd  = _mm_add_epi16(nxtd, curb);
+
+      // interleave even and odd pixels, then undo scaling.
+      __m128i int0 = _mm_unpacklo_epi16(even, odd);
+      __m128i int1 = _mm_unpackhi_epi16(even, odd);
+      __m128i de0  = _mm_srli_epi16(int0, 4);
+      __m128i de1  = _mm_srli_epi16(int1, 4);
+
+      // pack and write output
+      __m128i outv = _mm_packus_epi16(de0, de1);
+      _mm_storeu_si128((__m128i *) (out + i*2), outv);
+#elif defined(STBI_NEON)
+      // load and perform the vertical filtering pass
+      // this uses 3*x + y = 4*x + (y - x)
+      uint8x8_t farb  = vld1_u8(in_far + i);
+      uint8x8_t nearb = vld1_u8(in_near + i);
+      int16x8_t diff  = vreinterpretq_s16_u16(vsubl_u8(farb, nearb));
+      int16x8_t nears = vreinterpretq_s16_u16(vshll_n_u8(nearb, 2));
+      int16x8_t curr  = vaddq_s16(nears, diff); // current row
+
+      // horizontal filter works the same based on shifted vers of current
+      // row. "prev" is current row shifted right by 1 pixel; we need to
+      // insert the previous pixel value (from t1).
+      // "next" is current row shifted left by 1 pixel, with first pixel
+      // of next block of 8 pixels added in.
+      int16x8_t prv0 = vextq_s16(curr, curr, 7);
+      int16x8_t nxt0 = vextq_s16(curr, curr, 1);
+      int16x8_t prev = vsetq_lane_s16(t1, prv0, 0);
+      int16x8_t next = vsetq_lane_s16(3*in_near[i+8] + in_far[i+8], nxt0, 7);
+
+      // horizontal filter, polyphase implementation since it's convenient:
+      // even pixels = 3*cur + prev = cur*4 + (prev - cur)
+      // odd  pixels = 3*cur + next = cur*4 + (next - cur)
+      // note the shared term.
+      int16x8_t curs = vshlq_n_s16(curr, 2);
+      int16x8_t prvd = vsubq_s16(prev, curr);
+      int16x8_t nxtd = vsubq_s16(next, curr);
+      int16x8_t even = vaddq_s16(curs, prvd);
+      int16x8_t odd  = vaddq_s16(curs, nxtd);
+
+      // undo scaling and round, then store with even/odd phases interleaved
+      uint8x8x2_t o;
+      o.val[0] = vqrshrun_n_s16(even, 4);
+      o.val[1] = vqrshrun_n_s16(odd,  4);
+      vst2_u8(out + i*2, o);
+#endif
+
+      // "previous" value for next iter
+      t1 = 3*in_near[i+7] + in_far[i+7];
+   }
+
+   t0 = t1;
+   t1 = 3*in_near[i] + in_far[i];
+   out[i*2] = stbi__div16(3*t1 + t0 + 8);
+
+   for (++i; i < w; ++i) {
+      t0 = t1;
+      t1 = 3*in_near[i]+in_far[i];
+      out[i*2-1] = stbi__div16(3*t0 + t1 + 8);
+      out[i*2  ] = stbi__div16(3*t1 + t0 + 8);
+   }
+   out[w*2-1] = stbi__div4(t1+2);
+
+   STBI_NOTUSED(hs);
+
+   return out;
+}
+#endif
+
+static stbi_uc *stbi__resample_row_generic(stbi_uc *out, stbi_uc *in_near, stbi_uc *in_far, int w, int hs)
+{
+   // resample with nearest-neighbor
+   int i,j;
+   STBI_NOTUSED(in_far);
+   for (i=0; i < w; ++i)
+      for (j=0; j < hs; ++j)
+         out[i*hs+j] = in_near[i];
+   return out;
+}
+
+// this is a reduced-precision calculation of YCbCr-to-RGB introduced
+// to make sure the code produces the same results in both SIMD and scalar
+#define stbi__float2fixed(x)  (((int) ((x) * 4096.0f + 0.5f)) << 8)
+static void stbi__YCbCr_to_RGB_row(stbi_uc *out, const stbi_uc *y, const stbi_uc *pcb, const stbi_uc *pcr, int count, int step)
+{
+   int i;
+   for (i=0; i < count; ++i) {
+      int y_fixed = (y[i] << 20) + (1<<19); // rounding
+      int r,g,b;
+      int cr = pcr[i] - 128;
+      int cb = pcb[i] - 128;
+      r = y_fixed +  cr* stbi__float2fixed(1.40200f);
+      g = y_fixed + (cr*-stbi__float2fixed(0.71414f)) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000);
+      b = y_fixed                                     +   cb* stbi__float2fixed(1.77200f);
+      r >>= 20;
+      g >>= 20;
+      b >>= 20;
+      if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
+      if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
+      if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
+      out[0] = (stbi_uc)r;
+      out[1] = (stbi_uc)g;
+      out[2] = (stbi_uc)b;
+      out[3] = 255;
+      out += step;
+   }
+}
+
+#if defined(STBI_SSE2) || defined(STBI_NEON)
+static void stbi__YCbCr_to_RGB_simd(stbi_uc *out, stbi_uc const *y, stbi_uc const *pcb, stbi_uc const *pcr, int count, int step)
+{
+   int i = 0;
+
+#ifdef STBI_SSE2
+   // step == 3 is pretty ugly on the final interleave, and i'm not convinced
+   // it's useful in practice (you wouldn't use it for textures, for example).
+   // so just accelerate step == 4 case.
+   if (step == 4) {
+      // this is a fairly straightforward implementation and not super-optimized.
+      __m128i signflip  = _mm_set1_epi8(-0x80);
+      __m128i cr_const0 = _mm_set1_epi16(   (short) ( 1.40200f*4096.0f+0.5f));
+      __m128i cr_const1 = _mm_set1_epi16( - (short) ( 0.71414f*4096.0f+0.5f));
+      __m128i cb_const0 = _mm_set1_epi16( - (short) ( 0.34414f*4096.0f+0.5f));
+      __m128i cb_const1 = _mm_set1_epi16(   (short) ( 1.77200f*4096.0f+0.5f));
+      __m128i y_bias = _mm_set1_epi8((char) (unsigned char) 128);
+      __m128i xw = _mm_set1_epi16(255); // alpha channel
+
+      for (; i+7 < count; i += 8) {
+         // load
+         __m128i y_bytes = _mm_loadl_epi64((__m128i *) (y+i));
+         __m128i cr_bytes = _mm_loadl_epi64((__m128i *) (pcr+i));
+         __m128i cb_bytes = _mm_loadl_epi64((__m128i *) (pcb+i));
+         __m128i cr_biased = _mm_xor_si128(cr_bytes, signflip); // -128
+         __m128i cb_biased = _mm_xor_si128(cb_bytes, signflip); // -128
+
+         // unpack to short (and left-shift cr, cb by 8)
+         __m128i yw  = _mm_unpacklo_epi8(y_bias, y_bytes);
+         __m128i crw = _mm_unpacklo_epi8(_mm_setzero_si128(), cr_biased);
+         __m128i cbw = _mm_unpacklo_epi8(_mm_setzero_si128(), cb_biased);
+
+         // color transform
+         __m128i yws = _mm_srli_epi16(yw, 4);
+         __m128i cr0 = _mm_mulhi_epi16(cr_const0, crw);
+         __m128i cb0 = _mm_mulhi_epi16(cb_const0, cbw);
+         __m128i cb1 = _mm_mulhi_epi16(cbw, cb_const1);
+         __m128i cr1 = _mm_mulhi_epi16(crw, cr_const1);
+         __m128i rws = _mm_add_epi16(cr0, yws);
+         __m128i gwt = _mm_add_epi16(cb0, yws);
+         __m128i bws = _mm_add_epi16(yws, cb1);
+         __m128i gws = _mm_add_epi16(gwt, cr1);
+
+         // descale
+         __m128i rw = _mm_srai_epi16(rws, 4);
+         __m128i bw = _mm_srai_epi16(bws, 4);
+         __m128i gw = _mm_srai_epi16(gws, 4);
+
+         // back to byte, set up for transpose
+         __m128i brb = _mm_packus_epi16(rw, bw);
+         __m128i gxb = _mm_packus_epi16(gw, xw);
+
+         // transpose to interleave channels
+         __m128i t0 = _mm_unpacklo_epi8(brb, gxb);
+         __m128i t1 = _mm_unpackhi_epi8(brb, gxb);
+         __m128i o0 = _mm_unpacklo_epi16(t0, t1);
+         __m128i o1 = _mm_unpackhi_epi16(t0, t1);
+
+         // store
+         _mm_storeu_si128((__m128i *) (out + 0), o0);
+         _mm_storeu_si128((__m128i *) (out + 16), o1);
+         out += 32;
+      }
+   }
+#endif
+
+#ifdef STBI_NEON
+   // in this version, step=3 support would be easy to add. but is there demand?
+   if (step == 4) {
+      // this is a fairly straightforward implementation and not super-optimized.
+      uint8x8_t signflip = vdup_n_u8(0x80);
+      int16x8_t cr_const0 = vdupq_n_s16(   (short) ( 1.40200f*4096.0f+0.5f));
+      int16x8_t cr_const1 = vdupq_n_s16( - (short) ( 0.71414f*4096.0f+0.5f));
+      int16x8_t cb_const0 = vdupq_n_s16( - (short) ( 0.34414f*4096.0f+0.5f));
+      int16x8_t cb_const1 = vdupq_n_s16(   (short) ( 1.77200f*4096.0f+0.5f));
+
+      for (; i+7 < count; i += 8) {
+         // load
+         uint8x8_t y_bytes  = vld1_u8(y + i);
+         uint8x8_t cr_bytes = vld1_u8(pcr + i);
+         uint8x8_t cb_bytes = vld1_u8(pcb + i);
+         int8x8_t cr_biased = vreinterpret_s8_u8(vsub_u8(cr_bytes, signflip));
+         int8x8_t cb_biased = vreinterpret_s8_u8(vsub_u8(cb_bytes, signflip));
+
+         // expand to s16
+         int16x8_t yws = vreinterpretq_s16_u16(vshll_n_u8(y_bytes, 4));
+         int16x8_t crw = vshll_n_s8(cr_biased, 7);
+         int16x8_t cbw = vshll_n_s8(cb_biased, 7);
+
+         // color transform
+         int16x8_t cr0 = vqdmulhq_s16(crw, cr_const0);
+         int16x8_t cb0 = vqdmulhq_s16(cbw, cb_const0);
+         int16x8_t cr1 = vqdmulhq_s16(crw, cr_const1);
+         int16x8_t cb1 = vqdmulhq_s16(cbw, cb_const1);
+         int16x8_t rws = vaddq_s16(yws, cr0);
+         int16x8_t gws = vaddq_s16(vaddq_s16(yws, cb0), cr1);
+         int16x8_t bws = vaddq_s16(yws, cb1);
+
+         // undo scaling, round, convert to byte
+         uint8x8x4_t o;
+         o.val[0] = vqrshrun_n_s16(rws, 4);
+         o.val[1] = vqrshrun_n_s16(gws, 4);
+         o.val[2] = vqrshrun_n_s16(bws, 4);
+         o.val[3] = vdup_n_u8(255);
+
+         // store, interleaving r/g/b/a
+         vst4_u8(out, o);
+         out += 8*4;
+      }
+   }
+#endif
+
+   for (; i < count; ++i) {
+      int y_fixed = (y[i] << 20) + (1<<19); // rounding
+      int r,g,b;
+      int cr = pcr[i] - 128;
+      int cb = pcb[i] - 128;
+      r = y_fixed + cr* stbi__float2fixed(1.40200f);
+      g = y_fixed + cr*-stbi__float2fixed(0.71414f) + ((cb*-stbi__float2fixed(0.34414f)) & 0xffff0000);
+      b = y_fixed                                   +   cb* stbi__float2fixed(1.77200f);
+      r >>= 20;
+      g >>= 20;
+      b >>= 20;
+      if ((unsigned) r > 255) { if (r < 0) r = 0; else r = 255; }
+      if ((unsigned) g > 255) { if (g < 0) g = 0; else g = 255; }
+      if ((unsigned) b > 255) { if (b < 0) b = 0; else b = 255; }
+      out[0] = (stbi_uc)r;
+      out[1] = (stbi_uc)g;
+      out[2] = (stbi_uc)b;
+      out[3] = 255;
+      out += step;
+   }
+}
+#endif
+
+// set up the kernels
+static void stbi__setup_jpeg(stbi__jpeg *j)
+{
+   j->idct_block_kernel = stbi__idct_block;
+   j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_row;
+   j->resample_row_hv_2_kernel = stbi__resample_row_hv_2;
+
+#ifdef STBI_SSE2
+   if (stbi__sse2_available()) {
+      j->idct_block_kernel = stbi__idct_simd;
+      j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
+      j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
+   }
+#endif
+
+#ifdef STBI_NEON
+   j->idct_block_kernel = stbi__idct_simd;
+   j->YCbCr_to_RGB_kernel = stbi__YCbCr_to_RGB_simd;
+   j->resample_row_hv_2_kernel = stbi__resample_row_hv_2_simd;
+#endif
+}
+
+// clean up the temporary component buffers
+static void stbi__cleanup_jpeg(stbi__jpeg *j)
+{
+   stbi__free_jpeg_components(j, j->s->img_n, 0);
+}
+
+typedef struct
+{
+   resample_row_func resample;
+   stbi_uc *line0,*line1;
+   int hs,vs;   // expansion factor in each axis
+   int w_lores; // horizontal pixels pre-expansion
+   int ystep;   // how far through vertical expansion we are
+   int ypos;    // which pre-expansion row we're on
+} stbi__resample;
+
+// fast 0..255 * 0..255 => 0..255 rounded multiplication
+static stbi_uc stbi__blinn_8x8(stbi_uc x, stbi_uc y)
+{
+   unsigned int t = x*y + 128;
+   return (stbi_uc) ((t + (t >>8)) >> 8);
+}
+
+static stbi_uc *load_jpeg_image(stbi__jpeg *z, int *out_x, int *out_y, int *comp, int req_comp)
+{
+   int n, decode_n, is_rgb;
+   z->s->img_n = 0; // make stbi__cleanup_jpeg safe
+
+   // validate req_comp
+   if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
+
+   // load a jpeg image from whichever source, but leave in YCbCr format
+   if (!stbi__decode_jpeg_image(z)) { stbi__cleanup_jpeg(z); return NULL; }
+
+   // determine actual number of components to generate
+   n = req_comp ? req_comp : z->s->img_n >= 3 ? 3 : 1;
+
+   is_rgb = z->s->img_n == 3 && (z->rgb == 3 || (z->app14_color_transform == 0 && !z->jfif));
+
+   if (z->s->img_n == 3 && n < 3 && !is_rgb)
+      decode_n = 1;
+   else
+      decode_n = z->s->img_n;
+
+   // resample and color-convert
+   {
+      int k;
+      unsigned int i,j;
+      stbi_uc *output;
+      stbi_uc *coutput[4];
+
+      stbi__resample res_comp[4];
+
+      for (k=0; k < decode_n; ++k) {
+         stbi__resample *r = &res_comp[k];
+
+         // allocate line buffer big enough for upsampling off the edges
+         // with upsample factor of 4
+         z->img_comp[k].linebuf = (stbi_uc *) stbi__malloc(z->s->img_x + 3);
+         if (!z->img_comp[k].linebuf) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
+
+         r->hs      = z->img_h_max / z->img_comp[k].h;
+         r->vs      = z->img_v_max / z->img_comp[k].v;
+         r->ystep   = r->vs >> 1;
+         r->w_lores = (z->s->img_x + r->hs-1) / r->hs;
+         r->ypos    = 0;
+         r->line0   = r->line1 = z->img_comp[k].data;
+
+         if      (r->hs == 1 && r->vs == 1) r->resample = resample_row_1;
+         else if (r->hs == 1 && r->vs == 2) r->resample = stbi__resample_row_v_2;
+         else if (r->hs == 2 && r->vs == 1) r->resample = stbi__resample_row_h_2;
+         else if (r->hs == 2 && r->vs == 2) r->resample = z->resample_row_hv_2_kernel;
+         else                               r->resample = stbi__resample_row_generic;
+      }
+
+      // can't error after this so, this is safe
+      output = (stbi_uc *) stbi__malloc_mad3(n, z->s->img_x, z->s->img_y, 1);
+      if (!output) { stbi__cleanup_jpeg(z); return stbi__errpuc("outofmem", "Out of memory"); }
+
+      // now go ahead and resample
+      for (j=0; j < z->s->img_y; ++j) {
+         stbi_uc *out = output + n * z->s->img_x * j;
+         for (k=0; k < decode_n; ++k) {
+            stbi__resample *r = &res_comp[k];
+            int y_bot = r->ystep >= (r->vs >> 1);
+            coutput[k] = r->resample(z->img_comp[k].linebuf,
+                                     y_bot ? r->line1 : r->line0,
+                                     y_bot ? r->line0 : r->line1,
+                                     r->w_lores, r->hs);
+            if (++r->ystep >= r->vs) {
+               r->ystep = 0;
+               r->line0 = r->line1;
+               if (++r->ypos < z->img_comp[k].y)
+                  r->line1 += z->img_comp[k].w2;
+            }
+         }
+         if (n >= 3) {
+            stbi_uc *y = coutput[0];
+            if (z->s->img_n == 3) {
+               if (is_rgb) {
+                  for (i=0; i < z->s->img_x; ++i) {
+                     out[0] = y[i];
+                     out[1] = coutput[1][i];
+                     out[2] = coutput[2][i];
+                     out[3] = 255;
+                     out += n;
+                  }
+               } else {
+                  z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
+               }
+            } else if (z->s->img_n == 4) {
+               if (z->app14_color_transform == 0) { // CMYK
+                  for (i=0; i < z->s->img_x; ++i) {
+                     stbi_uc m = coutput[3][i];
+                     out[0] = stbi__blinn_8x8(coutput[0][i], m);
+                     out[1] = stbi__blinn_8x8(coutput[1][i], m);
+                     out[2] = stbi__blinn_8x8(coutput[2][i], m);
+                     out[3] = 255;
+                     out += n;
+                  }
+               } else if (z->app14_color_transform == 2) { // YCCK
+                  z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
+                  for (i=0; i < z->s->img_x; ++i) {
+                     stbi_uc m = coutput[3][i];
+                     out[0] = stbi__blinn_8x8(255 - out[0], m);
+                     out[1] = stbi__blinn_8x8(255 - out[1], m);
+                     out[2] = stbi__blinn_8x8(255 - out[2], m);
+                     out += n;
+                  }
+               } else { // YCbCr + alpha?  Ignore the fourth channel for now
+                  z->YCbCr_to_RGB_kernel(out, y, coutput[1], coutput[2], z->s->img_x, n);
+               }
+            } else
+               for (i=0; i < z->s->img_x; ++i) {
+                  out[0] = out[1] = out[2] = y[i];
+                  out[3] = 255; // not used if n==3
+                  out += n;
+               }
+         } else {
+            if (is_rgb) {
+               if (n == 1)
+                  for (i=0; i < z->s->img_x; ++i)
+                     *out++ = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]);
+               else {
+                  for (i=0; i < z->s->img_x; ++i, out += 2) {
+                     out[0] = stbi__compute_y(coutput[0][i], coutput[1][i], coutput[2][i]);
+                     out[1] = 255;
+                  }
+               }
+            } else if (z->s->img_n == 4 && z->app14_color_transform == 0) {
+               for (i=0; i < z->s->img_x; ++i) {
+                  stbi_uc m = coutput[3][i];
+                  stbi_uc r = stbi__blinn_8x8(coutput[0][i], m);
+                  stbi_uc g = stbi__blinn_8x8(coutput[1][i], m);
+                  stbi_uc b = stbi__blinn_8x8(coutput[2][i], m);
+                  out[0] = stbi__compute_y(r, g, b);
+                  out[1] = 255;
+                  out += n;
+               }
+            } else if (z->s->img_n == 4 && z->app14_color_transform == 2) {
+               for (i=0; i < z->s->img_x; ++i) {
+                  out[0] = stbi__blinn_8x8(255 - coutput[0][i], coutput[3][i]);
+                  out[1] = 255;
+                  out += n;
+               }
+            } else {
+               stbi_uc *y = coutput[0];
+               if (n == 1)
+                  for (i=0; i < z->s->img_x; ++i) out[i] = y[i];
+               else
+                  for (i=0; i < z->s->img_x; ++i) *out++ = y[i], *out++ = 255;
+            }
+         }
+      }
+      stbi__cleanup_jpeg(z);
+      *out_x = z->s->img_x;
+      *out_y = z->s->img_y;
+      if (comp) *comp = z->s->img_n >= 3 ? 3 : 1; // report original components, not output
+      return output;
+   }
+}
+
+static void *stbi__jpeg_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   unsigned char* result;
+   stbi__jpeg* j = (stbi__jpeg*) stbi__malloc(sizeof(stbi__jpeg));
+   STBI_NOTUSED(ri);
+   j->s = s;
+   stbi__setup_jpeg(j);
+   result = load_jpeg_image(j, x,y,comp,req_comp);
+   STBI_FREE(j);
+   return result;
+}
+
+static int stbi__jpeg_test(stbi__context *s)
+{
+   int r;
+   stbi__jpeg* j = (stbi__jpeg*)stbi__malloc(sizeof(stbi__jpeg));
+   j->s = s;
+   stbi__setup_jpeg(j);
+   r = stbi__decode_jpeg_header(j, STBI__SCAN_type);
+   stbi__rewind(s);
+   STBI_FREE(j);
+   return r;
+}
+
+static int stbi__jpeg_info_raw(stbi__jpeg *j, int *x, int *y, int *comp)
+{
+   if (!stbi__decode_jpeg_header(j, STBI__SCAN_header)) {
+      stbi__rewind( j->s );
+      return 0;
+   }
+   if (x) *x = j->s->img_x;
+   if (y) *y = j->s->img_y;
+   if (comp) *comp = j->s->img_n >= 3 ? 3 : 1;
+   return 1;
+}
+
+static int stbi__jpeg_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   int result;
+   stbi__jpeg* j = (stbi__jpeg*) (stbi__malloc(sizeof(stbi__jpeg)));
+   j->s = s;
+   result = stbi__jpeg_info_raw(j, x, y, comp);
+   STBI_FREE(j);
+   return result;
+}
+#endif
+
+// public domain zlib decode    v0.2  Sean Barrett 2006-11-18
+//    simple implementation
+//      - all input must be provided in an upfront buffer
+//      - all output is written to a single output buffer (can malloc/realloc)
+//    performance
+//      - fast huffman
+
+#ifndef STBI_NO_ZLIB
+
+// fast-way is faster to check than jpeg huffman, but slow way is slower
+#define STBI__ZFAST_BITS  9 // accelerate all cases in default tables
+#define STBI__ZFAST_MASK  ((1 << STBI__ZFAST_BITS) - 1)
+
+// zlib-style huffman encoding
+// (jpegs packs from left, zlib from right, so can't share code)
+typedef struct
+{
+   stbi__uint16 fast[1 << STBI__ZFAST_BITS];
+   stbi__uint16 firstcode[16];
+   int maxcode[17];
+   stbi__uint16 firstsymbol[16];
+   stbi_uc  size[288];
+   stbi__uint16 value[288];
+} stbi__zhuffman;
+
+stbi_inline static int stbi__bitreverse16(int n)
+{
+  n = ((n & 0xAAAA) >>  1) | ((n & 0x5555) << 1);
+  n = ((n & 0xCCCC) >>  2) | ((n & 0x3333) << 2);
+  n = ((n & 0xF0F0) >>  4) | ((n & 0x0F0F) << 4);
+  n = ((n & 0xFF00) >>  8) | ((n & 0x00FF) << 8);
+  return n;
+}
+
+stbi_inline static int stbi__bit_reverse(int v, int bits)
+{
+   STBI_ASSERT(bits <= 16);
+   // to bit reverse n bits, reverse 16 and shift
+   // e.g. 11 bits, bit reverse and shift away 5
+   return stbi__bitreverse16(v) >> (16-bits);
+}
+
+static int stbi__zbuild_huffman(stbi__zhuffman *z, const stbi_uc *sizelist, int num)
+{
+   int i,k=0;
+   int code, next_code[16], sizes[17];
+
+   // DEFLATE spec for generating codes
+   memset(sizes, 0, sizeof(sizes));
+   memset(z->fast, 0, sizeof(z->fast));
+   for (i=0; i < num; ++i)
+      ++sizes[sizelist[i]];
+   sizes[0] = 0;
+   for (i=1; i < 16; ++i)
+      if (sizes[i] > (1 << i))
+         return stbi__err("bad sizes", "Corrupt PNG");
+   code = 0;
+   for (i=1; i < 16; ++i) {
+      next_code[i] = code;
+      z->firstcode[i] = (stbi__uint16) code;
+      z->firstsymbol[i] = (stbi__uint16) k;
+      code = (code + sizes[i]);
+      if (sizes[i])
+         if (code-1 >= (1 << i)) return stbi__err("bad codelengths","Corrupt PNG");
+      z->maxcode[i] = code << (16-i); // preshift for inner loop
+      code <<= 1;
+      k += sizes[i];
+   }
+   z->maxcode[16] = 0x10000; // sentinel
+   for (i=0; i < num; ++i) {
+      int s = sizelist[i];
+      if (s) {
+         int c = next_code[s] - z->firstcode[s] + z->firstsymbol[s];
+         stbi__uint16 fastv = (stbi__uint16) ((s << 9) | i);
+         z->size [c] = (stbi_uc     ) s;
+         z->value[c] = (stbi__uint16) i;
+         if (s <= STBI__ZFAST_BITS) {
+            int j = stbi__bit_reverse(next_code[s],s);
+            while (j < (1 << STBI__ZFAST_BITS)) {
+               z->fast[j] = fastv;
+               j += (1 << s);
+            }
+         }
+         ++next_code[s];
+      }
+   }
+   return 1;
+}
+
+// zlib-from-memory implementation for PNG reading
+//    because PNG allows splitting the zlib stream arbitrarily,
+//    and it's annoying structurally to have PNG call ZLIB call PNG,
+//    we require PNG read all the IDATs and combine them into a single
+//    memory buffer
+
+typedef struct
+{
+   stbi_uc *zbuffer, *zbuffer_end;
+   int num_bits;
+   stbi__uint32 code_buffer;
+
+   char *zout;
+   char *zout_start;
+   char *zout_end;
+   int   z_expandable;
+
+   stbi__zhuffman z_length, z_distance;
+} stbi__zbuf;
+
+stbi_inline static stbi_uc stbi__zget8(stbi__zbuf *z)
+{
+   if (z->zbuffer >= z->zbuffer_end) return 0;
+   return *z->zbuffer++;
+}
+
+static void stbi__fill_bits(stbi__zbuf *z)
+{
+   do {
+      STBI_ASSERT(z->code_buffer < (1U << z->num_bits));
+      z->code_buffer |= (unsigned int) stbi__zget8(z) << z->num_bits;
+      z->num_bits += 8;
+   } while (z->num_bits <= 24);
+}
+
+stbi_inline static unsigned int stbi__zreceive(stbi__zbuf *z, int n)
+{
+   unsigned int k;
+   if (z->num_bits < n) stbi__fill_bits(z);
+   k = z->code_buffer & ((1 << n) - 1);
+   z->code_buffer >>= n;
+   z->num_bits -= n;
+   return k;
+}
+
+static int stbi__zhuffman_decode_slowpath(stbi__zbuf *a, stbi__zhuffman *z)
+{
+   int b,s,k;
+   // not resolved by fast table, so compute it the slow way
+   // use jpeg approach, which requires MSbits at top
+   k = stbi__bit_reverse(a->code_buffer, 16);
+   for (s=STBI__ZFAST_BITS+1; ; ++s)
+      if (k < z->maxcode[s])
+         break;
+   if (s == 16) return -1; // invalid code!
+   // code size is s, so:
+   b = (k >> (16-s)) - z->firstcode[s] + z->firstsymbol[s];
+   STBI_ASSERT(z->size[b] == s);
+   a->code_buffer >>= s;
+   a->num_bits -= s;
+   return z->value[b];
+}
+
+stbi_inline static int stbi__zhuffman_decode(stbi__zbuf *a, stbi__zhuffman *z)
+{
+   int b,s;
+   if (a->num_bits < 16) stbi__fill_bits(a);
+   b = z->fast[a->code_buffer & STBI__ZFAST_MASK];
+   if (b) {
+      s = b >> 9;
+      a->code_buffer >>= s;
+      a->num_bits -= s;
+      return b & 511;
+   }
+   return stbi__zhuffman_decode_slowpath(a, z);
+}
+
+static int stbi__zexpand(stbi__zbuf *z, char *zout, int n)  // need to make room for n bytes
+{
+   char *q;
+   int cur, limit, old_limit;
+   z->zout = zout;
+   if (!z->z_expandable) return stbi__err("output buffer limit","Corrupt PNG");
+   cur   = (int) (z->zout     - z->zout_start);
+   limit = old_limit = (int) (z->zout_end - z->zout_start);
+   while (cur + n > limit)
+      limit *= 2;
+   q = (char *) STBI_REALLOC_SIZED(z->zout_start, old_limit, limit);
+   STBI_NOTUSED(old_limit);
+   if (q == NULL) return stbi__err("outofmem", "Out of memory");
+   z->zout_start = q;
+   z->zout       = q + cur;
+   z->zout_end   = q + limit;
+   return 1;
+}
+
+static int stbi__zlength_base[31] = {
+   3,4,5,6,7,8,9,10,11,13,
+   15,17,19,23,27,31,35,43,51,59,
+   67,83,99,115,131,163,195,227,258,0,0 };
+
+static int stbi__zlength_extra[31]=
+{ 0,0,0,0,0,0,0,0,1,1,1,1,2,2,2,2,3,3,3,3,4,4,4,4,5,5,5,5,0,0,0 };
+
+static int stbi__zdist_base[32] = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,
+257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577,0,0};
+
+static int stbi__zdist_extra[32] =
+{ 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13};
+
+static int stbi__parse_huffman_block(stbi__zbuf *a)
+{
+   char *zout = a->zout;
+   for(;;) {
+      int z = stbi__zhuffman_decode(a, &a->z_length);
+      if (z < 256) {
+         if (z < 0) return stbi__err("bad huffman code","Corrupt PNG"); // error in huffman codes
+         if (zout >= a->zout_end) {
+            if (!stbi__zexpand(a, zout, 1)) return 0;
+            zout = a->zout;
+         }
+         *zout++ = (char) z;
+      } else {
+         stbi_uc *p;
+         int len,dist;
+         if (z == 256) {
+            a->zout = zout;
+            return 1;
+         }
+         z -= 257;
+         len = stbi__zlength_base[z];
+         if (stbi__zlength_extra[z]) len += stbi__zreceive(a, stbi__zlength_extra[z]);
+         z = stbi__zhuffman_decode(a, &a->z_distance);
+         if (z < 0) return stbi__err("bad huffman code","Corrupt PNG");
+         dist = stbi__zdist_base[z];
+         if (stbi__zdist_extra[z]) dist += stbi__zreceive(a, stbi__zdist_extra[z]);
+         if (zout - a->zout_start < dist) return stbi__err("bad dist","Corrupt PNG");
+         if (zout + len > a->zout_end) {
+            if (!stbi__zexpand(a, zout, len)) return 0;
+            zout = a->zout;
+         }
+         p = (stbi_uc *) (zout - dist);
+         if (dist == 1) { // run of one byte; common in images.
+            stbi_uc v = *p;
+            if (len) { do *zout++ = v; while (--len); }
+         } else {
+            if (len) { do *zout++ = *p++; while (--len); }
+         }
+      }
+   }
+}
+
+static int stbi__compute_huffman_codes(stbi__zbuf *a)
+{
+   static stbi_uc length_dezigzag[19] = { 16,17,18,0,8,7,9,6,10,5,11,4,12,3,13,2,14,1,15 };
+   stbi__zhuffman z_codelength;
+   stbi_uc lencodes[286+32+137];//padding for maximum single op
+   stbi_uc codelength_sizes[19];
+   int i,n;
+
+   int hlit  = stbi__zreceive(a,5) + 257;
+   int hdist = stbi__zreceive(a,5) + 1;
+   int hclen = stbi__zreceive(a,4) + 4;
+   int ntot  = hlit + hdist;
+
+   memset(codelength_sizes, 0, sizeof(codelength_sizes));
+   for (i=0; i < hclen; ++i) {
+      int s = stbi__zreceive(a,3);
+      codelength_sizes[length_dezigzag[i]] = (stbi_uc) s;
+   }
+   if (!stbi__zbuild_huffman(&z_codelength, codelength_sizes, 19)) return 0;
+
+   n = 0;
+   while (n < ntot) {
+      int c = stbi__zhuffman_decode(a, &z_codelength);
+      if (c < 0 || c >= 19) return stbi__err("bad codelengths", "Corrupt PNG");
+      if (c < 16)
+         lencodes[n++] = (stbi_uc) c;
+      else {
+         stbi_uc fill = 0;
+         if (c == 16) {
+            c = stbi__zreceive(a,2)+3;
+            if (n == 0) return stbi__err("bad codelengths", "Corrupt PNG");
+            fill = lencodes[n-1];
+         } else if (c == 17)
+            c = stbi__zreceive(a,3)+3;
+         else {
+            STBI_ASSERT(c == 18);
+            c = stbi__zreceive(a,7)+11;
+         }
+         if (ntot - n < c) return stbi__err("bad codelengths", "Corrupt PNG");
+         memset(lencodes+n, fill, c);
+         n += c;
+      }
+   }
+   if (n != ntot) return stbi__err("bad codelengths","Corrupt PNG");
+   if (!stbi__zbuild_huffman(&a->z_length, lencodes, hlit)) return 0;
+   if (!stbi__zbuild_huffman(&a->z_distance, lencodes+hlit, hdist)) return 0;
+   return 1;
+}
+
+static int stbi__parse_uncompressed_block(stbi__zbuf *a)
+{
+   stbi_uc header[4];
+   int len,nlen,k;
+   if (a->num_bits & 7)
+      stbi__zreceive(a, a->num_bits & 7); // discard
+   // drain the bit-packed data into header
+   k = 0;
+   while (a->num_bits > 0) {
+      header[k++] = (stbi_uc) (a->code_buffer & 255); // suppress MSVC run-time check
+      a->code_buffer >>= 8;
+      a->num_bits -= 8;
+   }
+   STBI_ASSERT(a->num_bits == 0);
+   // now fill header the normal way
+   while (k < 4)
+      header[k++] = stbi__zget8(a);
+   len  = header[1] * 256 + header[0];
+   nlen = header[3] * 256 + header[2];
+   if (nlen != (len ^ 0xffff)) return stbi__err("zlib corrupt","Corrupt PNG");
+   if (a->zbuffer + len > a->zbuffer_end) return stbi__err("read past buffer","Corrupt PNG");
+   if (a->zout + len > a->zout_end)
+      if (!stbi__zexpand(a, a->zout, len)) return 0;
+   memcpy(a->zout, a->zbuffer, len);
+   a->zbuffer += len;
+   a->zout += len;
+   return 1;
+}
+
+static int stbi__parse_zlib_header(stbi__zbuf *a)
+{
+   int cmf   = stbi__zget8(a);
+   int cm    = cmf & 15;
+   /* int cinfo = cmf >> 4; */
+   int flg   = stbi__zget8(a);
+   if ((cmf*256+flg) % 31 != 0) return stbi__err("bad zlib header","Corrupt PNG"); // zlib spec
+   if (flg & 32) return stbi__err("no preset dict","Corrupt PNG"); // preset dictionary not allowed in png
+   if (cm != 8) return stbi__err("bad compression","Corrupt PNG"); // DEFLATE required for png
+   // window = 1 << (8 + cinfo)... but who cares, we fully buffer output
+   return 1;
+}
+
+static const stbi_uc stbi__zdefault_length[288] =
+{
+   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,
+   8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+   9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9, 9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,9,
+   7,7,7,7,7,7,7,7,7,7,7,7,7,7,7,7, 7,7,7,7,7,7,7,7,8,8,8,8,8,8,8,8
+};
+static const stbi_uc stbi__zdefault_distance[32] =
+{
+   5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5
+};
+/*
+Init algorithm:
+{
+   int i;   // use <= to match clearly with spec
+   for (i=0; i <= 143; ++i)     stbi__zdefault_length[i]   = 8;
+   for (   ; i <= 255; ++i)     stbi__zdefault_length[i]   = 9;
+   for (   ; i <= 279; ++i)     stbi__zdefault_length[i]   = 7;
+   for (   ; i <= 287; ++i)     stbi__zdefault_length[i]   = 8;
+
+   for (i=0; i <=  31; ++i)     stbi__zdefault_distance[i] = 5;
+}
+*/
+
+static int stbi__parse_zlib(stbi__zbuf *a, int parse_header)
+{
+   int final, type;
+   if (parse_header)
+      if (!stbi__parse_zlib_header(a)) return 0;
+   a->num_bits = 0;
+   a->code_buffer = 0;
+   do {
+      final = stbi__zreceive(a,1);
+      type = stbi__zreceive(a,2);
+      if (type == 0) {
+         if (!stbi__parse_uncompressed_block(a)) return 0;
+      } else if (type == 3) {
+         return 0;
+      } else {
+         if (type == 1) {
+            // use fixed code lengths
+            if (!stbi__zbuild_huffman(&a->z_length  , stbi__zdefault_length  , 288)) return 0;
+            if (!stbi__zbuild_huffman(&a->z_distance, stbi__zdefault_distance,  32)) return 0;
+         } else {
+            if (!stbi__compute_huffman_codes(a)) return 0;
+         }
+         if (!stbi__parse_huffman_block(a)) return 0;
+      }
+   } while (!final);
+   return 1;
+}
+
+static int stbi__do_zlib(stbi__zbuf *a, char *obuf, int olen, int exp, int parse_header)
+{
+   a->zout_start = obuf;
+   a->zout       = obuf;
+   a->zout_end   = obuf + olen;
+   a->z_expandable = exp;
+
+   return stbi__parse_zlib(a, parse_header);
+}
+
+STBIDEF char *stbi_zlib_decode_malloc_guesssize(const char *buffer, int len, int initial_size, int *outlen)
+{
+   stbi__zbuf a;
+   char *p = (char *) stbi__malloc(initial_size);
+   if (p == NULL) return NULL;
+   a.zbuffer = (stbi_uc *) buffer;
+   a.zbuffer_end = (stbi_uc *) buffer + len;
+   if (stbi__do_zlib(&a, p, initial_size, 1, 1)) {
+      if (outlen) *outlen = (int) (a.zout - a.zout_start);
+      return a.zout_start;
+   } else {
+      STBI_FREE(a.zout_start);
+      return NULL;
+   }
+}
+
+STBIDEF char *stbi_zlib_decode_malloc(char const *buffer, int len, int *outlen)
+{
+   return stbi_zlib_decode_malloc_guesssize(buffer, len, 16384, outlen);
+}
+
+STBIDEF char *stbi_zlib_decode_malloc_guesssize_headerflag(const char *buffer, int len, int initial_size, int *outlen, int parse_header)
+{
+   stbi__zbuf a;
+   char *p = (char *) stbi__malloc(initial_size);
+   if (p == NULL) return NULL;
+   a.zbuffer = (stbi_uc *) buffer;
+   a.zbuffer_end = (stbi_uc *) buffer + len;
+   if (stbi__do_zlib(&a, p, initial_size, 1, parse_header)) {
+      if (outlen) *outlen = (int) (a.zout - a.zout_start);
+      return a.zout_start;
+   } else {
+      STBI_FREE(a.zout_start);
+      return NULL;
+   }
+}
+
+STBIDEF int stbi_zlib_decode_buffer(char *obuffer, int olen, char const *ibuffer, int ilen)
+{
+   stbi__zbuf a;
+   a.zbuffer = (stbi_uc *) ibuffer;
+   a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
+   if (stbi__do_zlib(&a, obuffer, olen, 0, 1))
+      return (int) (a.zout - a.zout_start);
+   else
+      return -1;
+}
+
+STBIDEF char *stbi_zlib_decode_noheader_malloc(char const *buffer, int len, int *outlen)
+{
+   stbi__zbuf a;
+   char *p = (char *) stbi__malloc(16384);
+   if (p == NULL) return NULL;
+   a.zbuffer = (stbi_uc *) buffer;
+   a.zbuffer_end = (stbi_uc *) buffer+len;
+   if (stbi__do_zlib(&a, p, 16384, 1, 0)) {
+      if (outlen) *outlen = (int) (a.zout - a.zout_start);
+      return a.zout_start;
+   } else {
+      STBI_FREE(a.zout_start);
+      return NULL;
+   }
+}
+
+STBIDEF int stbi_zlib_decode_noheader_buffer(char *obuffer, int olen, const char *ibuffer, int ilen)
+{
+   stbi__zbuf a;
+   a.zbuffer = (stbi_uc *) ibuffer;
+   a.zbuffer_end = (stbi_uc *) ibuffer + ilen;
+   if (stbi__do_zlib(&a, obuffer, olen, 0, 0))
+      return (int) (a.zout - a.zout_start);
+   else
+      return -1;
+}
+#endif
+
+// public domain "baseline" PNG decoder   v0.10  Sean Barrett 2006-11-18
+//    simple implementation
+//      - only 8-bit samples
+//      - no CRC checking
+//      - allocates lots of intermediate memory
+//        - avoids problem of streaming data between subsystems
+//        - avoids explicit window management
+//    performance
+//      - uses stb_zlib, a PD zlib implementation with fast huffman decoding
+
+#ifndef STBI_NO_PNG
+typedef struct
+{
+   stbi__uint32 length;
+   stbi__uint32 type;
+} stbi__pngchunk;
+
+static stbi__pngchunk stbi__get_chunk_header(stbi__context *s)
+{
+   stbi__pngchunk c;
+   c.length = stbi__get32be(s);
+   c.type   = stbi__get32be(s);
+   return c;
+}
+
+static int stbi__check_png_header(stbi__context *s)
+{
+   static stbi_uc png_sig[8] = { 137,80,78,71,13,10,26,10 };
+   int i;
+   for (i=0; i < 8; ++i)
+      if (stbi__get8(s) != png_sig[i]) return stbi__err("bad png sig","Not a PNG");
+   return 1;
+}
+
+typedef struct
+{
+   stbi__context *s;
+   stbi_uc *idata, *expanded, *out;
+   int depth;
+} stbi__png;
+
+
+enum {
+   STBI__F_none=0,
+   STBI__F_sub=1,
+   STBI__F_up=2,
+   STBI__F_avg=3,
+   STBI__F_paeth=4,
+   // synthetic filters used for first scanline to avoid needing a dummy row of 0s
+   STBI__F_avg_first,
+   STBI__F_paeth_first
+};
+
+static stbi_uc first_row_filter[5] =
+{
+   STBI__F_none,
+   STBI__F_sub,
+   STBI__F_none,
+   STBI__F_avg_first,
+   STBI__F_paeth_first
+};
+
+static int stbi__paeth(int a, int b, int c)
+{
+   int p = a + b - c;
+   int pa = abs(p-a);
+   int pb = abs(p-b);
+   int pc = abs(p-c);
+   if (pa <= pb && pa <= pc) return a;
+   if (pb <= pc) return b;
+   return c;
+}
+
+static stbi_uc stbi__depth_scale_table[9] = { 0, 0xff, 0x55, 0, 0x11, 0,0,0, 0x01 };
+
+// create the png data from post-deflated data
+static int stbi__create_png_image_raw(stbi__png *a, stbi_uc *raw, stbi__uint32 raw_len, int out_n, stbi__uint32 x, stbi__uint32 y, int depth, int color)
+{
+   int bytes = (depth == 16? 2 : 1);
+   stbi__context *s = a->s;
+   stbi__uint32 i,j,stride = x*out_n*bytes;
+   stbi__uint32 img_len, img_width_bytes;
+   int k;
+   int img_n = s->img_n; // copy it into a local for later
+
+   int output_bytes = out_n*bytes;
+   int filter_bytes = img_n*bytes;
+   int width = x;
+
+   STBI_ASSERT(out_n == s->img_n || out_n == s->img_n+1);
+   a->out = (stbi_uc *) stbi__malloc_mad3(x, y, output_bytes, 0); // extra bytes to write off the end into
+   if (!a->out) return stbi__err("outofmem", "Out of memory");
+
+   img_width_bytes = (((img_n * x * depth) + 7) >> 3);
+   img_len = (img_width_bytes + 1) * y;
+   // we used to check for exact match between raw_len and img_len on non-interlaced PNGs,
+   // but issue #276 reported a PNG in the wild that had extra data at the end (all zeros),
+   // so just check for raw_len < img_len always.
+   if (raw_len < img_len) return stbi__err("not enough pixels","Corrupt PNG");
+
+   for (j=0; j < y; ++j) {
+      stbi_uc *cur = a->out + stride*j;
+      stbi_uc *prior;
+      int filter = *raw++;
+
+      if (filter > 4)
+         return stbi__err("invalid filter","Corrupt PNG");
+
+      if (depth < 8) {
+         STBI_ASSERT(img_width_bytes <= x);
+         cur += x*out_n - img_width_bytes; // store output to the rightmost img_len bytes, so we can decode in place
+         filter_bytes = 1;
+         width = img_width_bytes;
+      }
+      prior = cur - stride; // bugfix: need to compute this after 'cur +=' computation above
+
+      // if first row, use special filter that doesn't sample previous row
+      if (j == 0) filter = first_row_filter[filter];
+
+      // handle first byte explicitly
+      for (k=0; k < filter_bytes; ++k) {
+         switch (filter) {
+            case STBI__F_none       : cur[k] = raw[k]; break;
+            case STBI__F_sub        : cur[k] = raw[k]; break;
+            case STBI__F_up         : cur[k] = STBI__BYTECAST(raw[k] + prior[k]); break;
+            case STBI__F_avg        : cur[k] = STBI__BYTECAST(raw[k] + (prior[k]>>1)); break;
+            case STBI__F_paeth      : cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(0,prior[k],0)); break;
+            case STBI__F_avg_first  : cur[k] = raw[k]; break;
+            case STBI__F_paeth_first: cur[k] = raw[k]; break;
+         }
+      }
+
+      if (depth == 8) {
+         if (img_n != out_n)
+            cur[img_n] = 255; // first pixel
+         raw += img_n;
+         cur += out_n;
+         prior += out_n;
+      } else if (depth == 16) {
+         if (img_n != out_n) {
+            cur[filter_bytes]   = 255; // first pixel top byte
+            cur[filter_bytes+1] = 255; // first pixel bottom byte
+         }
+         raw += filter_bytes;
+         cur += output_bytes;
+         prior += output_bytes;
+      } else {
+         raw += 1;
+         cur += 1;
+         prior += 1;
+      }
+
+      // this is a little gross, so that we don't switch per-pixel or per-component
+      if (depth < 8 || img_n == out_n) {
+         int nk = (width - 1)*filter_bytes;
+         #define STBI__CASE(f) \
+             case f:     \
+                for (k=0; k < nk; ++k)
+         switch (filter) {
+            // "none" filter turns into a memcpy here; make that explicit.
+            case STBI__F_none:         memcpy(cur, raw, nk); break;
+            STBI__CASE(STBI__F_sub)          { cur[k] = STBI__BYTECAST(raw[k] + cur[k-filter_bytes]); } break;
+            STBI__CASE(STBI__F_up)           { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
+            STBI__CASE(STBI__F_avg)          { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k-filter_bytes])>>1)); } break;
+            STBI__CASE(STBI__F_paeth)        { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],prior[k],prior[k-filter_bytes])); } break;
+            STBI__CASE(STBI__F_avg_first)    { cur[k] = STBI__BYTECAST(raw[k] + (cur[k-filter_bytes] >> 1)); } break;
+            STBI__CASE(STBI__F_paeth_first)  { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k-filter_bytes],0,0)); } break;
+         }
+         #undef STBI__CASE
+         raw += nk;
+      } else {
+         STBI_ASSERT(img_n+1 == out_n);
+         #define STBI__CASE(f) \
+             case f:     \
+                for (i=x-1; i >= 1; --i, cur[filter_bytes]=255,raw+=filter_bytes,cur+=output_bytes,prior+=output_bytes) \
+                   for (k=0; k < filter_bytes; ++k)
+         switch (filter) {
+            STBI__CASE(STBI__F_none)         { cur[k] = raw[k]; } break;
+            STBI__CASE(STBI__F_sub)          { cur[k] = STBI__BYTECAST(raw[k] + cur[k- output_bytes]); } break;
+            STBI__CASE(STBI__F_up)           { cur[k] = STBI__BYTECAST(raw[k] + prior[k]); } break;
+            STBI__CASE(STBI__F_avg)          { cur[k] = STBI__BYTECAST(raw[k] + ((prior[k] + cur[k- output_bytes])>>1)); } break;
+            STBI__CASE(STBI__F_paeth)        { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],prior[k],prior[k- output_bytes])); } break;
+            STBI__CASE(STBI__F_avg_first)    { cur[k] = STBI__BYTECAST(raw[k] + (cur[k- output_bytes] >> 1)); } break;
+            STBI__CASE(STBI__F_paeth_first)  { cur[k] = STBI__BYTECAST(raw[k] + stbi__paeth(cur[k- output_bytes],0,0)); } break;
+         }
+         #undef STBI__CASE
+
+         // the loop above sets the high byte of the pixels' alpha, but for
+         // 16 bit png files we also need the low byte set. we'll do that here.
+         if (depth == 16) {
+            cur = a->out + stride*j; // start at the beginning of the row again
+            for (i=0; i < x; ++i,cur+=output_bytes) {
+               cur[filter_bytes+1] = 255;
+            }
+         }
+      }
+   }
+
+   // we make a separate pass to expand bits to pixels; for performance,
+   // this could run two scanlines behind the above code, so it won't
+   // intefere with filtering but will still be in the cache.
+   if (depth < 8) {
+      for (j=0; j < y; ++j) {
+         stbi_uc *cur = a->out + stride*j;
+         stbi_uc *in  = a->out + stride*j + x*out_n - img_width_bytes;
+         // unpack 1/2/4-bit into a 8-bit buffer. allows us to keep the common 8-bit path optimal at minimal cost for 1/2/4-bit
+         // png guarante byte alignment, if width is not multiple of 8/4/2 we'll decode dummy trailing data that will be skipped in the later loop
+         stbi_uc scale = (color == 0) ? stbi__depth_scale_table[depth] : 1; // scale grayscale values to 0..255 range
+
+         // note that the final byte might overshoot and write more data than desired.
+         // we can allocate enough data that this never writes out of memory, but it
+         // could also overwrite the next scanline. can it overwrite non-empty data
+         // on the next scanline? yes, consider 1-pixel-wide scanlines with 1-bit-per-pixel.
+         // so we need to explicitly clamp the final ones
+
+         if (depth == 4) {
+            for (k=x*img_n; k >= 2; k-=2, ++in) {
+               *cur++ = scale * ((*in >> 4)       );
+               *cur++ = scale * ((*in     ) & 0x0f);
+            }
+            if (k > 0) *cur++ = scale * ((*in >> 4)       );
+         } else if (depth == 2) {
+            for (k=x*img_n; k >= 4; k-=4, ++in) {
+               *cur++ = scale * ((*in >> 6)       );
+               *cur++ = scale * ((*in >> 4) & 0x03);
+               *cur++ = scale * ((*in >> 2) & 0x03);
+               *cur++ = scale * ((*in     ) & 0x03);
+            }
+            if (k > 0) *cur++ = scale * ((*in >> 6)       );
+            if (k > 1) *cur++ = scale * ((*in >> 4) & 0x03);
+            if (k > 2) *cur++ = scale * ((*in >> 2) & 0x03);
+         } else if (depth == 1) {
+            for (k=x*img_n; k >= 8; k-=8, ++in) {
+               *cur++ = scale * ((*in >> 7)       );
+               *cur++ = scale * ((*in >> 6) & 0x01);
+               *cur++ = scale * ((*in >> 5) & 0x01);
+               *cur++ = scale * ((*in >> 4) & 0x01);
+               *cur++ = scale * ((*in >> 3) & 0x01);
+               *cur++ = scale * ((*in >> 2) & 0x01);
+               *cur++ = scale * ((*in >> 1) & 0x01);
+               *cur++ = scale * ((*in     ) & 0x01);
+            }
+            if (k > 0) *cur++ = scale * ((*in >> 7)       );
+            if (k > 1) *cur++ = scale * ((*in >> 6) & 0x01);
+            if (k > 2) *cur++ = scale * ((*in >> 5) & 0x01);
+            if (k > 3) *cur++ = scale * ((*in >> 4) & 0x01);
+            if (k > 4) *cur++ = scale * ((*in >> 3) & 0x01);
+            if (k > 5) *cur++ = scale * ((*in >> 2) & 0x01);
+            if (k > 6) *cur++ = scale * ((*in >> 1) & 0x01);
+         }
+         if (img_n != out_n) {
+            int q;
+            // insert alpha = 255
+            cur = a->out + stride*j;
+            if (img_n == 1) {
+               for (q=x-1; q >= 0; --q) {
+                  cur[q*2+1] = 255;
+                  cur[q*2+0] = cur[q];
+               }
+            } else {
+               STBI_ASSERT(img_n == 3);
+               for (q=x-1; q >= 0; --q) {
+                  cur[q*4+3] = 255;
+                  cur[q*4+2] = cur[q*3+2];
+                  cur[q*4+1] = cur[q*3+1];
+                  cur[q*4+0] = cur[q*3+0];
+               }
+            }
+         }
+      }
+   } else if (depth == 16) {
+      // force the image data from big-endian to platform-native.
+      // this is done in a separate pass due to the decoding relying
+      // on the data being untouched, but could probably be done
+      // per-line during decode if care is taken.
+      stbi_uc *cur = a->out;
+      stbi__uint16 *cur16 = (stbi__uint16*)cur;
+
+      for(i=0; i < x*y*out_n; ++i,cur16++,cur+=2) {
+         *cur16 = (cur[0] << 8) | cur[1];
+      }
+   }
+
+   return 1;
+}
+
+static int stbi__create_png_image(stbi__png *a, stbi_uc *image_data, stbi__uint32 image_data_len, int out_n, int depth, int color, int interlaced)
+{
+   int bytes = (depth == 16 ? 2 : 1);
+   int out_bytes = out_n * bytes;
+   stbi_uc *final;
+   int p;
+   if (!interlaced)
+      return stbi__create_png_image_raw(a, image_data, image_data_len, out_n, a->s->img_x, a->s->img_y, depth, color);
+
+   // de-interlacing
+   final = (stbi_uc *) stbi__malloc_mad3(a->s->img_x, a->s->img_y, out_bytes, 0);
+   for (p=0; p < 7; ++p) {
+      int xorig[] = { 0,4,0,2,0,1,0 };
+      int yorig[] = { 0,0,4,0,2,0,1 };
+      int xspc[]  = { 8,8,4,4,2,2,1 };
+      int yspc[]  = { 8,8,8,4,4,2,2 };
+      int i,j,x,y;
+      // pass1_x[4] = 0, pass1_x[5] = 1, pass1_x[12] = 1
+      x = (a->s->img_x - xorig[p] + xspc[p]-1) / xspc[p];
+      y = (a->s->img_y - yorig[p] + yspc[p]-1) / yspc[p];
+      if (x && y) {
+         stbi__uint32 img_len = ((((a->s->img_n * x * depth) + 7) >> 3) + 1) * y;
+         if (!stbi__create_png_image_raw(a, image_data, image_data_len, out_n, x, y, depth, color)) {
+            STBI_FREE(final);
+            return 0;
+         }
+         for (j=0; j < y; ++j) {
+            for (i=0; i < x; ++i) {
+               int out_y = j*yspc[p]+yorig[p];
+               int out_x = i*xspc[p]+xorig[p];
+               memcpy(final + out_y*a->s->img_x*out_bytes + out_x*out_bytes,
+                      a->out + (j*x+i)*out_bytes, out_bytes);
+            }
+         }
+         STBI_FREE(a->out);
+         image_data += img_len;
+         image_data_len -= img_len;
+      }
+   }
+   a->out = final;
+
+   return 1;
+}
+
+static int stbi__compute_transparency(stbi__png *z, stbi_uc tc[3], int out_n)
+{
+   stbi__context *s = z->s;
+   stbi__uint32 i, pixel_count = s->img_x * s->img_y;
+   stbi_uc *p = z->out;
+
+   // compute color-based transparency, assuming we've
+   // already got 255 as the alpha value in the output
+   STBI_ASSERT(out_n == 2 || out_n == 4);
+
+   if (out_n == 2) {
+      for (i=0; i < pixel_count; ++i) {
+         p[1] = (p[0] == tc[0] ? 0 : 255);
+         p += 2;
+      }
+   } else {
+      for (i=0; i < pixel_count; ++i) {
+         if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
+            p[3] = 0;
+         p += 4;
+      }
+   }
+   return 1;
+}
+
+static int stbi__compute_transparency16(stbi__png *z, stbi__uint16 tc[3], int out_n)
+{
+   stbi__context *s = z->s;
+   stbi__uint32 i, pixel_count = s->img_x * s->img_y;
+   stbi__uint16 *p = (stbi__uint16*) z->out;
+
+   // compute color-based transparency, assuming we've
+   // already got 65535 as the alpha value in the output
+   STBI_ASSERT(out_n == 2 || out_n == 4);
+
+   if (out_n == 2) {
+      for (i = 0; i < pixel_count; ++i) {
+         p[1] = (p[0] == tc[0] ? 0 : 65535);
+         p += 2;
+      }
+   } else {
+      for (i = 0; i < pixel_count; ++i) {
+         if (p[0] == tc[0] && p[1] == tc[1] && p[2] == tc[2])
+            p[3] = 0;
+         p += 4;
+      }
+   }
+   return 1;
+}
+
+static int stbi__expand_png_palette(stbi__png *a, stbi_uc *palette, int len, int pal_img_n)
+{
+   stbi__uint32 i, pixel_count = a->s->img_x * a->s->img_y;
+   stbi_uc *p, *temp_out, *orig = a->out;
+
+   p = (stbi_uc *) stbi__malloc_mad2(pixel_count, pal_img_n, 0);
+   if (p == NULL) return stbi__err("outofmem", "Out of memory");
+
+   // between here and free(out) below, exitting would leak
+   temp_out = p;
+
+   if (pal_img_n == 3) {
+      for (i=0; i < pixel_count; ++i) {
+         int n = orig[i]*4;
+         p[0] = palette[n  ];
+         p[1] = palette[n+1];
+         p[2] = palette[n+2];
+         p += 3;
+      }
+   } else {
+      for (i=0; i < pixel_count; ++i) {
+         int n = orig[i]*4;
+         p[0] = palette[n  ];
+         p[1] = palette[n+1];
+         p[2] = palette[n+2];
+         p[3] = palette[n+3];
+         p += 4;
+      }
+   }
+   STBI_FREE(a->out);
+   a->out = temp_out;
+
+   STBI_NOTUSED(len);
+
+   return 1;
+}
+
+static int stbi__unpremultiply_on_load = 0;
+static int stbi__de_iphone_flag = 0;
+
+STBIDEF void stbi_set_unpremultiply_on_load(int flag_true_if_should_unpremultiply)
+{
+   stbi__unpremultiply_on_load = flag_true_if_should_unpremultiply;
+}
+
+STBIDEF void stbi_convert_iphone_png_to_rgb(int flag_true_if_should_convert)
+{
+   stbi__de_iphone_flag = flag_true_if_should_convert;
+}
+
+static void stbi__de_iphone(stbi__png *z)
+{
+   stbi__context *s = z->s;
+   stbi__uint32 i, pixel_count = s->img_x * s->img_y;
+   stbi_uc *p = z->out;
+
+   if (s->img_out_n == 3) {  // convert bgr to rgb
+      for (i=0; i < pixel_count; ++i) {
+         stbi_uc t = p[0];
+         p[0] = p[2];
+         p[2] = t;
+         p += 3;
+      }
+   } else {
+      STBI_ASSERT(s->img_out_n == 4);
+      if (stbi__unpremultiply_on_load) {
+         // convert bgr to rgb and unpremultiply
+         for (i=0; i < pixel_count; ++i) {
+            stbi_uc a = p[3];
+            stbi_uc t = p[0];
+            if (a) {
+               stbi_uc half = a / 2;
+               p[0] = (p[2] * 255 + half) / a;
+               p[1] = (p[1] * 255 + half) / a;
+               p[2] = ( t   * 255 + half) / a;
+            } else {
+               p[0] = p[2];
+               p[2] = t;
+            }
+            p += 4;
+         }
+      } else {
+         // convert bgr to rgb
+         for (i=0; i < pixel_count; ++i) {
+            stbi_uc t = p[0];
+            p[0] = p[2];
+            p[2] = t;
+            p += 4;
+         }
+      }
+   }
+}
+
+#define STBI__PNG_TYPE(a,b,c,d)  (((a) << 24) + ((b) << 16) + ((c) << 8) + (d))
+
+static int stbi__parse_png_file(stbi__png *z, int scan, int req_comp)
+{
+   stbi_uc palette[1024], pal_img_n=0;
+   stbi_uc has_trans=0, tc[3];
+   stbi__uint16 tc16[3];
+   stbi__uint32 ioff=0, idata_limit=0, i, pal_len=0;
+   int first=1,k,interlace=0, color=0, is_iphone=0;
+   stbi__context *s = z->s;
+
+   z->expanded = NULL;
+   z->idata = NULL;
+   z->out = NULL;
+
+   if (!stbi__check_png_header(s)) return 0;
+
+   if (scan == STBI__SCAN_type) return 1;
+
+   for (;;) {
+      stbi__pngchunk c = stbi__get_chunk_header(s);
+      switch (c.type) {
+         case STBI__PNG_TYPE('C','g','B','I'):
+            is_iphone = 1;
+            stbi__skip(s, c.length);
+            break;
+         case STBI__PNG_TYPE('I','H','D','R'): {
+            int comp,filter;
+            if (!first) return stbi__err("multiple IHDR","Corrupt PNG");
+            first = 0;
+            if (c.length != 13) return stbi__err("bad IHDR len","Corrupt PNG");
+            s->img_x = stbi__get32be(s); if (s->img_x > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
+            s->img_y = stbi__get32be(s); if (s->img_y > (1 << 24)) return stbi__err("too large","Very large image (corrupt?)");
+            z->depth = stbi__get8(s);  if (z->depth != 1 && z->depth != 2 && z->depth != 4 && z->depth != 8 && z->depth != 16)  return stbi__err("1/2/4/8/16-bit only","PNG not supported: 1/2/4/8/16-bit only");
+            color = stbi__get8(s);  if (color > 6)         return stbi__err("bad ctype","Corrupt PNG");
+            if (color == 3 && z->depth == 16)                  return stbi__err("bad ctype","Corrupt PNG");
+            if (color == 3) pal_img_n = 3; else if (color & 1) return stbi__err("bad ctype","Corrupt PNG");
+            comp  = stbi__get8(s);  if (comp) return stbi__err("bad comp method","Corrupt PNG");
+            filter= stbi__get8(s);  if (filter) return stbi__err("bad filter method","Corrupt PNG");
+            interlace = stbi__get8(s); if (interlace>1) return stbi__err("bad interlace method","Corrupt PNG");
+            if (!s->img_x || !s->img_y) return stbi__err("0-pixel image","Corrupt PNG");
+            if (!pal_img_n) {
+               s->img_n = (color & 2 ? 3 : 1) + (color & 4 ? 1 : 0);
+               if ((1 << 30) / s->img_x / s->img_n < s->img_y) return stbi__err("too large", "Image too large to decode");
+               if (scan == STBI__SCAN_header) return 1;
+            } else {
+               // if paletted, then pal_n is our final components, and
+               // img_n is # components to decompress/filter.
+               s->img_n = 1;
+               if ((1 << 30) / s->img_x / 4 < s->img_y) return stbi__err("too large","Corrupt PNG");
+               // if SCAN_header, have to scan to see if we have a tRNS
+            }
+            break;
+         }
+
+         case STBI__PNG_TYPE('P','L','T','E'):  {
+            if (first) return stbi__err("first not IHDR", "Corrupt PNG");
+            if (c.length > 256*3) return stbi__err("invalid PLTE","Corrupt PNG");
+            pal_len = c.length / 3;
+            if (pal_len * 3 != c.length) return stbi__err("invalid PLTE","Corrupt PNG");
+            for (i=0; i < pal_len; ++i) {
+               palette[i*4+0] = stbi__get8(s);
+               palette[i*4+1] = stbi__get8(s);
+               palette[i*4+2] = stbi__get8(s);
+               palette[i*4+3] = 255;
+            }
+            break;
+         }
+
+         case STBI__PNG_TYPE('t','R','N','S'): {
+            if (first) return stbi__err("first not IHDR", "Corrupt PNG");
+            if (z->idata) return stbi__err("tRNS after IDAT","Corrupt PNG");
+            if (pal_img_n) {
+               if (scan == STBI__SCAN_header) { s->img_n = 4; return 1; }
+               if (pal_len == 0) return stbi__err("tRNS before PLTE","Corrupt PNG");
+               if (c.length > pal_len) return stbi__err("bad tRNS len","Corrupt PNG");
+               pal_img_n = 4;
+               for (i=0; i < c.length; ++i)
+                  palette[i*4+3] = stbi__get8(s);
+            } else {
+               if (!(s->img_n & 1)) return stbi__err("tRNS with alpha","Corrupt PNG");
+               if (c.length != (stbi__uint32) s->img_n*2) return stbi__err("bad tRNS len","Corrupt PNG");
+               has_trans = 1;
+               if (z->depth == 16) {
+                  for (k = 0; k < s->img_n; ++k) tc16[k] = (stbi__uint16)stbi__get16be(s); // copy the values as-is
+               } else {
+                  for (k = 0; k < s->img_n; ++k) tc[k] = (stbi_uc)(stbi__get16be(s) & 255) * stbi__depth_scale_table[z->depth]; // non 8-bit images will be larger
+               }
+            }
+            break;
+         }
+
+         case STBI__PNG_TYPE('I','D','A','T'): {
+            if (first) return stbi__err("first not IHDR", "Corrupt PNG");
+            if (pal_img_n && !pal_len) return stbi__err("no PLTE","Corrupt PNG");
+            if (scan == STBI__SCAN_header) { s->img_n = pal_img_n; return 1; }
+            if ((int)(ioff + c.length) < (int)ioff) return 0;
+            if (ioff + c.length > idata_limit) {
+               stbi__uint32 idata_limit_old = idata_limit;
+               stbi_uc *p;
+               if (idata_limit == 0) idata_limit = c.length > 4096 ? c.length : 4096;
+               while (ioff + c.length > idata_limit)
+                  idata_limit *= 2;
+               STBI_NOTUSED(idata_limit_old);
+               p = (stbi_uc *) STBI_REALLOC_SIZED(z->idata, idata_limit_old, idata_limit); if (p == NULL) return stbi__err("outofmem", "Out of memory");
+               z->idata = p;
+            }
+            if (!stbi__getn(s, z->idata+ioff,c.length)) return stbi__err("outofdata","Corrupt PNG");
+            ioff += c.length;
+            break;
+         }
+
+         case STBI__PNG_TYPE('I','E','N','D'): {
+            stbi__uint32 raw_len, bpl;
+            if (first) return stbi__err("first not IHDR", "Corrupt PNG");
+            if (scan != STBI__SCAN_load) return 1;
+            if (z->idata == NULL) return stbi__err("no IDAT","Corrupt PNG");
+            // initial guess for decoded data size to avoid unnecessary reallocs
+            bpl = (s->img_x * z->depth + 7) / 8; // bytes per line, per component
+            raw_len = bpl * s->img_y * s->img_n /* pixels */ + s->img_y /* filter mode per row */;
+            z->expanded = (stbi_uc *) stbi_zlib_decode_malloc_guesssize_headerflag((char *) z->idata, ioff, raw_len, (int *) &raw_len, !is_iphone);
+            if (z->expanded == NULL) return 0; // zlib should set error
+            STBI_FREE(z->idata); z->idata = NULL;
+            if ((req_comp == s->img_n+1 && req_comp != 3 && !pal_img_n) || has_trans)
+               s->img_out_n = s->img_n+1;
+            else
+               s->img_out_n = s->img_n;
+            if (!stbi__create_png_image(z, z->expanded, raw_len, s->img_out_n, z->depth, color, interlace)) return 0;
+            if (has_trans) {
+               if (z->depth == 16) {
+                  if (!stbi__compute_transparency16(z, tc16, s->img_out_n)) return 0;
+               } else {
+                  if (!stbi__compute_transparency(z, tc, s->img_out_n)) return 0;
+               }
+            }
+            if (is_iphone && stbi__de_iphone_flag && s->img_out_n > 2)
+               stbi__de_iphone(z);
+            if (pal_img_n) {
+               // pal_img_n == 3 or 4
+               s->img_n = pal_img_n; // record the actual colors we had
+               s->img_out_n = pal_img_n;
+               if (req_comp >= 3) s->img_out_n = req_comp;
+               if (!stbi__expand_png_palette(z, palette, pal_len, s->img_out_n))
+                  return 0;
+            } else if (has_trans) {
+               // non-paletted image with tRNS -> source image has (constant) alpha
+               ++s->img_n;
+            }
+            STBI_FREE(z->expanded); z->expanded = NULL;
+            return 1;
+         }
+
+         default:
+            // if critical, fail
+            if (first) return stbi__err("first not IHDR", "Corrupt PNG");
+            if ((c.type & (1 << 29)) == 0) {
+               #ifndef STBI_NO_FAILURE_STRINGS
+               // not threadsafe
+               static char invalid_chunk[] = "XXXX PNG chunk not known";
+               invalid_chunk[0] = STBI__BYTECAST(c.type >> 24);
+               invalid_chunk[1] = STBI__BYTECAST(c.type >> 16);
+               invalid_chunk[2] = STBI__BYTECAST(c.type >>  8);
+               invalid_chunk[3] = STBI__BYTECAST(c.type >>  0);
+               #endif
+               return stbi__err(invalid_chunk, "PNG not supported: unknown PNG chunk type");
+            }
+            stbi__skip(s, c.length);
+            break;
+      }
+      // end of PNG chunk, read and skip CRC
+      stbi__get32be(s);
+   }
+}
+
+static void *stbi__do_png(stbi__png *p, int *x, int *y, int *n, int req_comp, stbi__result_info *ri)
+{
+   void *result=NULL;
+   if (req_comp < 0 || req_comp > 4) return stbi__errpuc("bad req_comp", "Internal error");
+   if (stbi__parse_png_file(p, STBI__SCAN_load, req_comp)) {
+      if (p->depth < 8)
+         ri->bits_per_channel = 8;
+      else
+         ri->bits_per_channel = p->depth;
+      result = p->out;
+      p->out = NULL;
+      if (req_comp && req_comp != p->s->img_out_n) {
+         if (ri->bits_per_channel == 8)
+            result = stbi__convert_format((unsigned char *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
+         else
+            result = stbi__convert_format16((stbi__uint16 *) result, p->s->img_out_n, req_comp, p->s->img_x, p->s->img_y);
+         p->s->img_out_n = req_comp;
+         if (result == NULL) return result;
+      }
+      *x = p->s->img_x;
+      *y = p->s->img_y;
+      if (n) *n = p->s->img_n;
+   }
+   STBI_FREE(p->out);      p->out      = NULL;
+   STBI_FREE(p->expanded); p->expanded = NULL;
+   STBI_FREE(p->idata);    p->idata    = NULL;
+
+   return result;
+}
+
+static void *stbi__png_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   stbi__png p;
+   p.s = s;
+   return stbi__do_png(&p, x,y,comp,req_comp, ri);
+}
+
+static int stbi__png_test(stbi__context *s)
+{
+   int r;
+   r = stbi__check_png_header(s);
+   stbi__rewind(s);
+   return r;
+}
+
+static int stbi__png_info_raw(stbi__png *p, int *x, int *y, int *comp)
+{
+   if (!stbi__parse_png_file(p, STBI__SCAN_header, 0)) {
+      stbi__rewind( p->s );
+      return 0;
+   }
+   if (x) *x = p->s->img_x;
+   if (y) *y = p->s->img_y;
+   if (comp) *comp = p->s->img_n;
+   return 1;
+}
+
+static int stbi__png_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   stbi__png p;
+   p.s = s;
+   return stbi__png_info_raw(&p, x, y, comp);
+}
+#endif
+
+// Microsoft/Windows BMP image
+
+#ifndef STBI_NO_BMP
+static int stbi__bmp_test_raw(stbi__context *s)
+{
+   int r;
+   int sz;
+   if (stbi__get8(s) != 'B') return 0;
+   if (stbi__get8(s) != 'M') return 0;
+   stbi__get32le(s); // discard filesize
+   stbi__get16le(s); // discard reserved
+   stbi__get16le(s); // discard reserved
+   stbi__get32le(s); // discard data offset
+   sz = stbi__get32le(s);
+   r = (sz == 12 || sz == 40 || sz == 56 || sz == 108 || sz == 124);
+   return r;
+}
+
+static int stbi__bmp_test(stbi__context *s)
+{
+   int r = stbi__bmp_test_raw(s);
+   stbi__rewind(s);
+   return r;
+}
+
+
+// returns 0..31 for the highest set bit
+static int stbi__high_bit(unsigned int z)
+{
+   int n=0;
+   if (z == 0) return -1;
+   if (z >= 0x10000) n += 16, z >>= 16;
+   if (z >= 0x00100) n +=  8, z >>=  8;
+   if (z >= 0x00010) n +=  4, z >>=  4;
+   if (z >= 0x00004) n +=  2, z >>=  2;
+   if (z >= 0x00002) n +=  1, z >>=  1;
+   return n;
+}
+
+static int stbi__bitcount(unsigned int a)
+{
+   a = (a & 0x55555555) + ((a >>  1) & 0x55555555); // max 2
+   a = (a & 0x33333333) + ((a >>  2) & 0x33333333); // max 4
+   a = (a + (a >> 4)) & 0x0f0f0f0f; // max 8 per 4, now 8 bits
+   a = (a + (a >> 8)); // max 16 per 8 bits
+   a = (a + (a >> 16)); // max 32 per 8 bits
+   return a & 0xff;
+}
+
+static int stbi__shiftsigned(int v, int shift, int bits)
+{
+   int result;
+   int z=0;
+
+   if (shift < 0) v <<= -shift;
+   else v >>= shift;
+   result = v;
+
+   z = bits;
+   while (z < 8) {
+      result += v >> z;
+      z += bits;
+   }
+   return result;
+}
+
+typedef struct
+{
+   int bpp, offset, hsz;
+   unsigned int mr,mg,mb,ma, all_a;
+} stbi__bmp_data;
+
+static void *stbi__bmp_parse_header(stbi__context *s, stbi__bmp_data *info)
+{
+   int hsz;
+   if (stbi__get8(s) != 'B' || stbi__get8(s) != 'M') return stbi__errpuc("not BMP", "Corrupt BMP");
+   stbi__get32le(s); // discard filesize
+   stbi__get16le(s); // discard reserved
+   stbi__get16le(s); // discard reserved
+   info->offset = stbi__get32le(s);
+   info->hsz = hsz = stbi__get32le(s);
+   info->mr = info->mg = info->mb = info->ma = 0;
+
+   if (hsz != 12 && hsz != 40 && hsz != 56 && hsz != 108 && hsz != 124) return stbi__errpuc("unknown BMP", "BMP type not supported: unknown");
+   if (hsz == 12) {
+      s->img_x = stbi__get16le(s);
+      s->img_y = stbi__get16le(s);
+   } else {
+      s->img_x = stbi__get32le(s);
+      s->img_y = stbi__get32le(s);
+   }
+   if (stbi__get16le(s) != 1) return stbi__errpuc("bad BMP", "bad BMP");
+   info->bpp = stbi__get16le(s);
+   if (info->bpp == 1) return stbi__errpuc("monochrome", "BMP type not supported: 1-bit");
+   if (hsz != 12) {
+      int compress = stbi__get32le(s);
+      if (compress == 1 || compress == 2) return stbi__errpuc("BMP RLE", "BMP type not supported: RLE");
+      stbi__get32le(s); // discard sizeof
+      stbi__get32le(s); // discard hres
+      stbi__get32le(s); // discard vres
+      stbi__get32le(s); // discard colorsused
+      stbi__get32le(s); // discard max important
+      if (hsz == 40 || hsz == 56) {
+         if (hsz == 56) {
+            stbi__get32le(s);
+            stbi__get32le(s);
+            stbi__get32le(s);
+            stbi__get32le(s);
+         }
+         if (info->bpp == 16 || info->bpp == 32) {
+            if (compress == 0) {
+               if (info->bpp == 32) {
+                  info->mr = 0xffu << 16;
+                  info->mg = 0xffu <<  8;
+                  info->mb = 0xffu <<  0;
+                  info->ma = 0xffu << 24;
+                  info->all_a = 0; // if all_a is 0 at end, then we loaded alpha channel but it was all 0
+               } else {
+                  info->mr = 31u << 10;
+                  info->mg = 31u <<  5;
+                  info->mb = 31u <<  0;
+               }
+            } else if (compress == 3) {
+               info->mr = stbi__get32le(s);
+               info->mg = stbi__get32le(s);
+               info->mb = stbi__get32le(s);
+               // not documented, but generated by photoshop and handled by mspaint
+               if (info->mr == info->mg && info->mg == info->mb) {
+                  // ?!?!?
+                  return stbi__errpuc("bad BMP", "bad BMP");
+               }
+            } else
+               return stbi__errpuc("bad BMP", "bad BMP");
+         }
+      } else {
+         int i;
+         if (hsz != 108 && hsz != 124)
+            return stbi__errpuc("bad BMP", "bad BMP");
+         info->mr = stbi__get32le(s);
+         info->mg = stbi__get32le(s);
+         info->mb = stbi__get32le(s);
+         info->ma = stbi__get32le(s);
+         stbi__get32le(s); // discard color space
+         for (i=0; i < 12; ++i)
+            stbi__get32le(s); // discard color space parameters
+         if (hsz == 124) {
+            stbi__get32le(s); // discard rendering intent
+            stbi__get32le(s); // discard offset of profile data
+            stbi__get32le(s); // discard size of profile data
+            stbi__get32le(s); // discard reserved
+         }
+      }
+   }
+   return (void *) 1;
+}
+
+
+static void *stbi__bmp_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   stbi_uc *out;
+   unsigned int mr=0,mg=0,mb=0,ma=0, all_a;
+   stbi_uc pal[256][4];
+   int psize=0,i,j,width;
+   int flip_vertically, pad, target;
+   stbi__bmp_data info;
+   STBI_NOTUSED(ri);
+
+   info.all_a = 255;
+   if (stbi__bmp_parse_header(s, &info) == NULL)
+      return NULL; // error code already set
+
+   flip_vertically = ((int) s->img_y) > 0;
+   s->img_y = abs((int) s->img_y);
+
+   mr = info.mr;
+   mg = info.mg;
+   mb = info.mb;
+   ma = info.ma;
+   all_a = info.all_a;
+
+   if (info.hsz == 12) {
+      if (info.bpp < 24)
+         psize = (info.offset - 14 - 24) / 3;
+   } else {
+      if (info.bpp < 16)
+         psize = (info.offset - 14 - info.hsz) >> 2;
+   }
+
+   s->img_n = ma ? 4 : 3;
+   if (req_comp && req_comp >= 3) // we can directly decode 3 or 4
+      target = req_comp;
+   else
+      target = s->img_n; // if they want monochrome, we'll post-convert
+
+   // sanity-check size
+   if (!stbi__mad3sizes_valid(target, s->img_x, s->img_y, 0))
+      return stbi__errpuc("too large", "Corrupt BMP");
+
+   out = (stbi_uc *) stbi__malloc_mad3(target, s->img_x, s->img_y, 0);
+   if (!out) return stbi__errpuc("outofmem", "Out of memory");
+   if (info.bpp < 16) {
+      int z=0;
+      if (psize == 0 || psize > 256) { STBI_FREE(out); return stbi__errpuc("invalid", "Corrupt BMP"); }
+      for (i=0; i < psize; ++i) {
+         pal[i][2] = stbi__get8(s);
+         pal[i][1] = stbi__get8(s);
+         pal[i][0] = stbi__get8(s);
+         if (info.hsz != 12) stbi__get8(s);
+         pal[i][3] = 255;
+      }
+      stbi__skip(s, info.offset - 14 - info.hsz - psize * (info.hsz == 12 ? 3 : 4));
+      if (info.bpp == 4) width = (s->img_x + 1) >> 1;
+      else if (info.bpp == 8) width = s->img_x;
+      else { STBI_FREE(out); return stbi__errpuc("bad bpp", "Corrupt BMP"); }
+      pad = (-width)&3;
+      for (j=0; j < (int) s->img_y; ++j) {
+         for (i=0; i < (int) s->img_x; i += 2) {
+            int v=stbi__get8(s),v2=0;
+            if (info.bpp == 4) {
+               v2 = v & 15;
+               v >>= 4;
+            }
+            out[z++] = pal[v][0];
+            out[z++] = pal[v][1];
+            out[z++] = pal[v][2];
+            if (target == 4) out[z++] = 255;
+            if (i+1 == (int) s->img_x) break;
+            v = (info.bpp == 8) ? stbi__get8(s) : v2;
+            out[z++] = pal[v][0];
+            out[z++] = pal[v][1];
+            out[z++] = pal[v][2];
+            if (target == 4) out[z++] = 255;
+         }
+         stbi__skip(s, pad);
+      }
+   } else {
+      int rshift=0,gshift=0,bshift=0,ashift=0,rcount=0,gcount=0,bcount=0,acount=0;
+      int z = 0;
+      int easy=0;
+      stbi__skip(s, info.offset - 14 - info.hsz);
+      if (info.bpp == 24) width = 3 * s->img_x;
+      else if (info.bpp == 16) width = 2*s->img_x;
+      else /* bpp = 32 and pad = 0 */ width=0;
+      pad = (-width) & 3;
+      if (info.bpp == 24) {
+         easy = 1;
+      } else if (info.bpp == 32) {
+         if (mb == 0xff && mg == 0xff00 && mr == 0x00ff0000 && ma == 0xff000000)
+            easy = 2;
+      }
+      if (!easy) {
+         if (!mr || !mg || !mb) { STBI_FREE(out); return stbi__errpuc("bad masks", "Corrupt BMP"); }
+         // right shift amt to put high bit in position #7
+         rshift = stbi__high_bit(mr)-7; rcount = stbi__bitcount(mr);
+         gshift = stbi__high_bit(mg)-7; gcount = stbi__bitcount(mg);
+         bshift = stbi__high_bit(mb)-7; bcount = stbi__bitcount(mb);
+         ashift = stbi__high_bit(ma)-7; acount = stbi__bitcount(ma);
+      }
+      for (j=0; j < (int) s->img_y; ++j) {
+         if (easy) {
+            for (i=0; i < (int) s->img_x; ++i) {
+               unsigned char a;
+               out[z+2] = stbi__get8(s);
+               out[z+1] = stbi__get8(s);
+               out[z+0] = stbi__get8(s);
+               z += 3;
+               a = (easy == 2 ? stbi__get8(s) : 255);
+               all_a |= a;
+               if (target == 4) out[z++] = a;
+            }
+         } else {
+            int bpp = info.bpp;
+            for (i=0; i < (int) s->img_x; ++i) {
+               stbi__uint32 v = (bpp == 16 ? (stbi__uint32) stbi__get16le(s) : stbi__get32le(s));
+               int a;
+               out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mr, rshift, rcount));
+               out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mg, gshift, gcount));
+               out[z++] = STBI__BYTECAST(stbi__shiftsigned(v & mb, bshift, bcount));
+               a = (ma ? stbi__shiftsigned(v & ma, ashift, acount) : 255);
+               all_a |= a;
+               if (target == 4) out[z++] = STBI__BYTECAST(a);
+            }
+         }
+         stbi__skip(s, pad);
+      }
+   }
+
+   // if alpha channel is all 0s, replace with all 255s
+   if (target == 4 && all_a == 0)
+      for (i=4*s->img_x*s->img_y-1; i >= 0; i -= 4)
+         out[i] = 255;
+
+   if (flip_vertically) {
+      stbi_uc t;
+      for (j=0; j < (int) s->img_y>>1; ++j) {
+         stbi_uc *p1 = out +      j     *s->img_x*target;
+         stbi_uc *p2 = out + (s->img_y-1-j)*s->img_x*target;
+         for (i=0; i < (int) s->img_x*target; ++i) {
+            t = p1[i], p1[i] = p2[i], p2[i] = t;
+         }
+      }
+   }
+
+   if (req_comp && req_comp != target) {
+      out = stbi__convert_format(out, target, req_comp, s->img_x, s->img_y);
+      if (out == NULL) return out; // stbi__convert_format frees input on failure
+   }
+
+   *x = s->img_x;
+   *y = s->img_y;
+   if (comp) *comp = s->img_n;
+   return out;
+}
+#endif
+
+// Targa Truevision - TGA
+// by Jonathan Dummer
+#ifndef STBI_NO_TGA
+// returns STBI_rgb or whatever, 0 on error
+static int stbi__tga_get_comp(int bits_per_pixel, int is_grey, int* is_rgb16)
+{
+   // only RGB or RGBA (incl. 16bit) or grey allowed
+   if(is_rgb16) *is_rgb16 = 0;
+   switch(bits_per_pixel) {
+      case 8:  return STBI_grey;
+      case 16: if(is_grey) return STBI_grey_alpha;
+            // else: fall-through
+      case 15: if(is_rgb16) *is_rgb16 = 1;
+            return STBI_rgb;
+      case 24: // fall-through
+      case 32: return bits_per_pixel/8;
+      default: return 0;
+   }
+}
+
+static int stbi__tga_info(stbi__context *s, int *x, int *y, int *comp)
+{
+    int tga_w, tga_h, tga_comp, tga_image_type, tga_bits_per_pixel, tga_colormap_bpp;
+    int sz, tga_colormap_type;
+    stbi__get8(s);                   // discard Offset
+    tga_colormap_type = stbi__get8(s); // colormap type
+    if( tga_colormap_type > 1 ) {
+        stbi__rewind(s);
+        return 0;      // only RGB or indexed allowed
+    }
+    tga_image_type = stbi__get8(s); // image type
+    if ( tga_colormap_type == 1 ) { // colormapped (paletted) image
+        if (tga_image_type != 1 && tga_image_type != 9) {
+            stbi__rewind(s);
+            return 0;
+        }
+        stbi__skip(s,4);       // skip index of first colormap entry and number of entries
+        sz = stbi__get8(s);    //   check bits per palette color entry
+        if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) {
+            stbi__rewind(s);
+            return 0;
+        }
+        stbi__skip(s,4);       // skip image x and y origin
+        tga_colormap_bpp = sz;
+    } else { // "normal" image w/o colormap - only RGB or grey allowed, +/- RLE
+        if ( (tga_image_type != 2) && (tga_image_type != 3) && (tga_image_type != 10) && (tga_image_type != 11) ) {
+            stbi__rewind(s);
+            return 0; // only RGB or grey allowed, +/- RLE
+        }
+        stbi__skip(s,9); // skip colormap specification and image x/y origin
+        tga_colormap_bpp = 0;
+    }
+    tga_w = stbi__get16le(s);
+    if( tga_w < 1 ) {
+        stbi__rewind(s);
+        return 0;   // test width
+    }
+    tga_h = stbi__get16le(s);
+    if( tga_h < 1 ) {
+        stbi__rewind(s);
+        return 0;   // test height
+    }
+    tga_bits_per_pixel = stbi__get8(s); // bits per pixel
+    stbi__get8(s); // ignore alpha bits
+    if (tga_colormap_bpp != 0) {
+        if((tga_bits_per_pixel != 8) && (tga_bits_per_pixel != 16)) {
+            // when using a colormap, tga_bits_per_pixel is the size of the indexes
+            // I don't think anything but 8 or 16bit indexes makes sense
+            stbi__rewind(s);
+            return 0;
+        }
+        tga_comp = stbi__tga_get_comp(tga_colormap_bpp, 0, NULL);
+    } else {
+        tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3) || (tga_image_type == 11), NULL);
+    }
+    if(!tga_comp) {
+      stbi__rewind(s);
+      return 0;
+    }
+    if (x) *x = tga_w;
+    if (y) *y = tga_h;
+    if (comp) *comp = tga_comp;
+    return 1;                   // seems to have passed everything
+}
+
+static int stbi__tga_test(stbi__context *s)
+{
+   int res = 0;
+   int sz, tga_color_type;
+   stbi__get8(s);      //   discard Offset
+   tga_color_type = stbi__get8(s);   //   color type
+   if ( tga_color_type > 1 ) goto errorEnd;   //   only RGB or indexed allowed
+   sz = stbi__get8(s);   //   image type
+   if ( tga_color_type == 1 ) { // colormapped (paletted) image
+      if (sz != 1 && sz != 9) goto errorEnd; // colortype 1 demands image type 1 or 9
+      stbi__skip(s,4);       // skip index of first colormap entry and number of entries
+      sz = stbi__get8(s);    //   check bits per palette color entry
+      if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd;
+      stbi__skip(s,4);       // skip image x and y origin
+   } else { // "normal" image w/o colormap
+      if ( (sz != 2) && (sz != 3) && (sz != 10) && (sz != 11) ) goto errorEnd; // only RGB or grey allowed, +/- RLE
+      stbi__skip(s,9); // skip colormap specification and image x/y origin
+   }
+   if ( stbi__get16le(s) < 1 ) goto errorEnd;      //   test width
+   if ( stbi__get16le(s) < 1 ) goto errorEnd;      //   test height
+   sz = stbi__get8(s);   //   bits per pixel
+   if ( (tga_color_type == 1) && (sz != 8) && (sz != 16) ) goto errorEnd; // for colormapped images, bpp is size of an index
+   if ( (sz != 8) && (sz != 15) && (sz != 16) && (sz != 24) && (sz != 32) ) goto errorEnd;
+
+   res = 1; // if we got this far, everything's good and we can return 1 instead of 0
+
+errorEnd:
+   stbi__rewind(s);
+   return res;
+}
+
+// read 16bit value and convert to 24bit RGB
+static void stbi__tga_read_rgb16(stbi__context *s, stbi_uc* out)
+{
+   stbi__uint16 px = (stbi__uint16)stbi__get16le(s);
+   stbi__uint16 fiveBitMask = 31;
+   // we have 3 channels with 5bits each
+   int r = (px >> 10) & fiveBitMask;
+   int g = (px >> 5) & fiveBitMask;
+   int b = px & fiveBitMask;
+   // Note that this saves the data in RGB(A) order, so it doesn't need to be swapped later
+   out[0] = (stbi_uc)((r * 255)/31);
+   out[1] = (stbi_uc)((g * 255)/31);
+   out[2] = (stbi_uc)((b * 255)/31);
+
+   // some people claim that the most significant bit might be used for alpha
+   // (possibly if an alpha-bit is set in the "image descriptor byte")
+   // but that only made 16bit test images completely translucent..
+   // so let's treat all 15 and 16bit TGAs as RGB with no alpha.
+}
+
+static void *stbi__tga_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   //   read in the TGA header stuff
+   int tga_offset = stbi__get8(s);
+   int tga_indexed = stbi__get8(s);
+   int tga_image_type = stbi__get8(s);
+   int tga_is_RLE = 0;
+   int tga_palette_start = stbi__get16le(s);
+   int tga_palette_len = stbi__get16le(s);
+   int tga_palette_bits = stbi__get8(s);
+   int tga_x_origin = stbi__get16le(s);
+   int tga_y_origin = stbi__get16le(s);
+   int tga_width = stbi__get16le(s);
+   int tga_height = stbi__get16le(s);
+   int tga_bits_per_pixel = stbi__get8(s);
+   int tga_comp, tga_rgb16=0;
+   int tga_inverted = stbi__get8(s);
+   // int tga_alpha_bits = tga_inverted & 15; // the 4 lowest bits - unused (useless?)
+   //   image data
+   unsigned char *tga_data;
+   unsigned char *tga_palette = NULL;
+   int i, j;
+   unsigned char raw_data[4] = {0};
+   int RLE_count = 0;
+   int RLE_repeating = 0;
+   int read_next_pixel = 1;
+   STBI_NOTUSED(ri);
+
+   //   do a tiny bit of precessing
+   if ( tga_image_type >= 8 )
+   {
+      tga_image_type -= 8;
+      tga_is_RLE = 1;
+   }
+   tga_inverted = 1 - ((tga_inverted >> 5) & 1);
+
+   //   If I'm paletted, then I'll use the number of bits from the palette
+   if ( tga_indexed ) tga_comp = stbi__tga_get_comp(tga_palette_bits, 0, &tga_rgb16);
+   else tga_comp = stbi__tga_get_comp(tga_bits_per_pixel, (tga_image_type == 3), &tga_rgb16);
+
+   if(!tga_comp) // shouldn't really happen, stbi__tga_test() should have ensured basic consistency
+      return stbi__errpuc("bad format", "Can't find out TGA pixelformat");
+
+   //   tga info
+   *x = tga_width;
+   *y = tga_height;
+   if (comp) *comp = tga_comp;
+
+   if (!stbi__mad3sizes_valid(tga_width, tga_height, tga_comp, 0))
+      return stbi__errpuc("too large", "Corrupt TGA");
+
+   tga_data = (unsigned char*)stbi__malloc_mad3(tga_width, tga_height, tga_comp, 0);
+   if (!tga_data) return stbi__errpuc("outofmem", "Out of memory");
+
+   // skip to the data's starting position (offset usually = 0)
+   stbi__skip(s, tga_offset );
+
+   if ( !tga_indexed && !tga_is_RLE && !tga_rgb16 ) {
+      for (i=0; i < tga_height; ++i) {
+         int row = tga_inverted ? tga_height -i - 1 : i;
+         stbi_uc *tga_row = tga_data + row*tga_width*tga_comp;
+         stbi__getn(s, tga_row, tga_width * tga_comp);
+      }
+   } else  {
+      //   do I need to load a palette?
+      if ( tga_indexed)
+      {
+         //   any data to skip? (offset usually = 0)
+         stbi__skip(s, tga_palette_start );
+         //   load the palette
+         tga_palette = (unsigned char*)stbi__malloc_mad2(tga_palette_len, tga_comp, 0);
+         if (!tga_palette) {
+            STBI_FREE(tga_data);
+            return stbi__errpuc("outofmem", "Out of memory");
+         }
+         if (tga_rgb16) {
+            stbi_uc *pal_entry = tga_palette;
+            STBI_ASSERT(tga_comp == STBI_rgb);
+            for (i=0; i < tga_palette_len; ++i) {
+               stbi__tga_read_rgb16(s, pal_entry);
+               pal_entry += tga_comp;
+            }
+         } else if (!stbi__getn(s, tga_palette, tga_palette_len * tga_comp)) {
+               STBI_FREE(tga_data);
+               STBI_FREE(tga_palette);
+               return stbi__errpuc("bad palette", "Corrupt TGA");
+         }
+      }
+      //   load the data
+      for (i=0; i < tga_width * tga_height; ++i)
+      {
+         //   if I'm in RLE mode, do I need to get a RLE stbi__pngchunk?
+         if ( tga_is_RLE )
+         {
+            if ( RLE_count == 0 )
+            {
+               //   yep, get the next byte as a RLE command
+               int RLE_cmd = stbi__get8(s);
+               RLE_count = 1 + (RLE_cmd & 127);
+               RLE_repeating = RLE_cmd >> 7;
+               read_next_pixel = 1;
+            } else if ( !RLE_repeating )
+            {
+               read_next_pixel = 1;
+            }
+         } else
+         {
+            read_next_pixel = 1;
+         }
+         //   OK, if I need to read a pixel, do it now
+         if ( read_next_pixel )
+         {
+            //   load however much data we did have
+            if ( tga_indexed )
+            {
+               // read in index, then perform the lookup
+               int pal_idx = (tga_bits_per_pixel == 8) ? stbi__get8(s) : stbi__get16le(s);
+               if ( pal_idx >= tga_palette_len ) {
+                  // invalid index
+                  pal_idx = 0;
+               }
+               pal_idx *= tga_comp;
+               for (j = 0; j < tga_comp; ++j) {
+                  raw_data[j] = tga_palette[pal_idx+j];
+               }
+            } else if(tga_rgb16) {
+               STBI_ASSERT(tga_comp == STBI_rgb);
+               stbi__tga_read_rgb16(s, raw_data);
+            } else {
+               //   read in the data raw
+               for (j = 0; j < tga_comp; ++j) {
+                  raw_data[j] = stbi__get8(s);
+               }
+            }
+            //   clear the reading flag for the next pixel
+            read_next_pixel = 0;
+         } // end of reading a pixel
+
+         // copy data
+         for (j = 0; j < tga_comp; ++j)
+           tga_data[i*tga_comp+j] = raw_data[j];
+
+         //   in case we're in RLE mode, keep counting down
+         --RLE_count;
+      }
+      //   do I need to invert the image?
+      if ( tga_inverted )
+      {
+         for (j = 0; j*2 < tga_height; ++j)
+         {
+            int index1 = j * tga_width * tga_comp;
+            int index2 = (tga_height - 1 - j) * tga_width * tga_comp;
+            for (i = tga_width * tga_comp; i > 0; --i)
+            {
+               unsigned char temp = tga_data[index1];
+               tga_data[index1] = tga_data[index2];
+               tga_data[index2] = temp;
+               ++index1;
+               ++index2;
+            }
+         }
+      }
+      //   clear my palette, if I had one
+      if ( tga_palette != NULL )
+      {
+         STBI_FREE( tga_palette );
+      }
+   }
+
+   // swap RGB - if the source data was RGB16, it already is in the right order
+   if (tga_comp >= 3 && !tga_rgb16)
+   {
+      unsigned char* tga_pixel = tga_data;
+      for (i=0; i < tga_width * tga_height; ++i)
+      {
+         unsigned char temp = tga_pixel[0];
+         tga_pixel[0] = tga_pixel[2];
+         tga_pixel[2] = temp;
+         tga_pixel += tga_comp;
+      }
+   }
+
+   // convert to target component count
+   if (req_comp && req_comp != tga_comp)
+      tga_data = stbi__convert_format(tga_data, tga_comp, req_comp, tga_width, tga_height);
+
+   //   the things I do to get rid of an error message, and yet keep
+   //   Microsoft's C compilers happy... [8^(
+   tga_palette_start = tga_palette_len = tga_palette_bits =
+         tga_x_origin = tga_y_origin = 0;
+   //   OK, done
+   return tga_data;
+}
+#endif
+
+// *************************************************************************************************
+// Photoshop PSD loader -- PD by Thatcher Ulrich, integration by Nicolas Schulz, tweaked by STB
+
+#ifndef STBI_NO_PSD
+static int stbi__psd_test(stbi__context *s)
+{
+   int r = (stbi__get32be(s) == 0x38425053);
+   stbi__rewind(s);
+   return r;
+}
+
+static int stbi__psd_decode_rle(stbi__context *s, stbi_uc *p, int pixelCount)
+{
+   int count, nleft, len;
+
+   count = 0;
+   while ((nleft = pixelCount - count) > 0) {
+      len = stbi__get8(s);
+      if (len == 128) {
+         // No-op.
+      } else if (len < 128) {
+         // Copy next len+1 bytes literally.
+         len++;
+         if (len > nleft) return 0; // corrupt data
+         count += len;
+         while (len) {
+            *p = stbi__get8(s);
+            p += 4;
+            len--;
+         }
+      } else if (len > 128) {
+         stbi_uc   val;
+         // Next -len+1 bytes in the dest are replicated from next source byte.
+         // (Interpret len as a negative 8-bit int.)
+         len = 257 - len;
+         if (len > nleft) return 0; // corrupt data
+         val = stbi__get8(s);
+         count += len;
+         while (len) {
+            *p = val;
+            p += 4;
+            len--;
+         }
+      }
+   }
+
+   return 1;
+}
+
+static void *stbi__psd_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri, int bpc)
+{
+   int pixelCount;
+   int channelCount, compression;
+   int channel, i;
+   int bitdepth;
+   int w,h;
+   stbi_uc *out;
+   STBI_NOTUSED(ri);
+
+   // Check identifier
+   if (stbi__get32be(s) != 0x38425053)   // "8BPS"
+      return stbi__errpuc("not PSD", "Corrupt PSD image");
+
+   // Check file type version.
+   if (stbi__get16be(s) != 1)
+      return stbi__errpuc("wrong version", "Unsupported version of PSD image");
+
+   // Skip 6 reserved bytes.
+   stbi__skip(s, 6 );
+
+   // Read the number of channels (R, G, B, A, etc).
+   channelCount = stbi__get16be(s);
+   if (channelCount < 0 || channelCount > 16)
+      return stbi__errpuc("wrong channel count", "Unsupported number of channels in PSD image");
+
+   // Read the rows and columns of the image.
+   h = stbi__get32be(s);
+   w = stbi__get32be(s);
+
+   // Make sure the depth is 8 bits.
+   bitdepth = stbi__get16be(s);
+   if (bitdepth != 8 && bitdepth != 16)
+      return stbi__errpuc("unsupported bit depth", "PSD bit depth is not 8 or 16 bit");
+
+   // Make sure the color mode is RGB.
+   // Valid options are:
+   //   0: Bitmap
+   //   1: Grayscale
+   //   2: Indexed color
+   //   3: RGB color
+   //   4: CMYK color
+   //   7: Multichannel
+   //   8: Duotone
+   //   9: Lab color
+   if (stbi__get16be(s) != 3)
+      return stbi__errpuc("wrong color format", "PSD is not in RGB color format");
+
+   // Skip the Mode Data.  (It's the palette for indexed color; other info for other modes.)
+   stbi__skip(s,stbi__get32be(s) );
+
+   // Skip the image resources.  (resolution, pen tool paths, etc)
+   stbi__skip(s, stbi__get32be(s) );
+
+   // Skip the reserved data.
+   stbi__skip(s, stbi__get32be(s) );
+
+   // Find out if the data is compressed.
+   // Known values:
+   //   0: no compression
+   //   1: RLE compressed
+   compression = stbi__get16be(s);
+   if (compression > 1)
+      return stbi__errpuc("bad compression", "PSD has an unknown compression format");
+
+   // Check size
+   if (!stbi__mad3sizes_valid(4, w, h, 0))
+      return stbi__errpuc("too large", "Corrupt PSD");
+
+   // Create the destination image.
+
+   if (!compression && bitdepth == 16 && bpc == 16) {
+      out = (stbi_uc *) stbi__malloc_mad3(8, w, h, 0);
+      ri->bits_per_channel = 16;
+   } else
+      out = (stbi_uc *) stbi__malloc(4 * w*h);
+
+   if (!out) return stbi__errpuc("outofmem", "Out of memory");
+   pixelCount = w*h;
+
+   // Initialize the data to zero.
+   //memset( out, 0, pixelCount * 4 );
+
+   // Finally, the image data.
+   if (compression) {
+      // RLE as used by .PSD and .TIFF
+      // Loop until you get the number of unpacked bytes you are expecting:
+      //     Read the next source byte into n.
+      //     If n is between 0 and 127 inclusive, copy the next n+1 bytes literally.
+      //     Else if n is between -127 and -1 inclusive, copy the next byte -n+1 times.
+      //     Else if n is 128, noop.
+      // Endloop
+
+      // The RLE-compressed data is preceeded by a 2-byte data count for each row in the data,
+      // which we're going to just skip.
+      stbi__skip(s, h * channelCount * 2 );
+
+      // Read the RLE data by channel.
+      for (channel = 0; channel < 4; channel++) {
+         stbi_uc *p;
+
+         p = out+channel;
+         if (channel >= channelCount) {
+            // Fill this channel with default data.
+            for (i = 0; i < pixelCount; i++, p += 4)
+               *p = (channel == 3 ? 255 : 0);
+         } else {
+            // Read the RLE data.
+            if (!stbi__psd_decode_rle(s, p, pixelCount)) {
+               STBI_FREE(out);
+               return stbi__errpuc("corrupt", "bad RLE data");
+            }
+         }
+      }
+
+   } else {
+      // We're at the raw image data.  It's each channel in order (Red, Green, Blue, Alpha, ...)
+      // where each channel consists of an 8-bit (or 16-bit) value for each pixel in the image.
+
+      // Read the data by channel.
+      for (channel = 0; channel < 4; channel++) {
+         if (channel >= channelCount) {
+            // Fill this channel with default data.
+            if (bitdepth == 16 && bpc == 16) {
+               stbi__uint16 *q = ((stbi__uint16 *) out) + channel;
+               stbi__uint16 val = channel == 3 ? 65535 : 0;
+               for (i = 0; i < pixelCount; i++, q += 4)
+                  *q = val;
+            } else {
+               stbi_uc *p = out+channel;
+               stbi_uc val = channel == 3 ? 255 : 0;
+               for (i = 0; i < pixelCount; i++, p += 4)
+                  *p = val;
+            }
+         } else {
+            if (ri->bits_per_channel == 16) {    // output bpc
+               stbi__uint16 *q = ((stbi__uint16 *) out) + channel;
+               for (i = 0; i < pixelCount; i++, q += 4)
+                  *q = (stbi__uint16) stbi__get16be(s);
+            } else {
+               stbi_uc *p = out+channel;
+               if (bitdepth == 16) {  // input bpc
+                  for (i = 0; i < pixelCount; i++, p += 4)
+                     *p = (stbi_uc) (stbi__get16be(s) >> 8);
+               } else {
+                  for (i = 0; i < pixelCount; i++, p += 4)
+                     *p = stbi__get8(s);
+               }
+            }
+         }
+      }
+   }
+
+   // remove weird white matte from PSD
+   if (channelCount >= 4) {
+      if (ri->bits_per_channel == 16) {
+         for (i=0; i < w*h; ++i) {
+            stbi__uint16 *pixel = (stbi__uint16 *) out + 4*i;
+            if (pixel[3] != 0 && pixel[3] != 65535) {
+               float a = pixel[3] / 65535.0f;
+               float ra = 1.0f / a;
+               float inv_a = 65535.0f * (1 - ra);
+               pixel[0] = (stbi__uint16) (pixel[0]*ra + inv_a);
+               pixel[1] = (stbi__uint16) (pixel[1]*ra + inv_a);
+               pixel[2] = (stbi__uint16) (pixel[2]*ra + inv_a);
+            }
+         }
+      } else {
+         for (i=0; i < w*h; ++i) {
+            unsigned char *pixel = out + 4*i;
+            if (pixel[3] != 0 && pixel[3] != 255) {
+               float a = pixel[3] / 255.0f;
+               float ra = 1.0f / a;
+               float inv_a = 255.0f * (1 - ra);
+               pixel[0] = (unsigned char) (pixel[0]*ra + inv_a);
+               pixel[1] = (unsigned char) (pixel[1]*ra + inv_a);
+               pixel[2] = (unsigned char) (pixel[2]*ra + inv_a);
+            }
+         }
+      }
+   }
+
+   // convert to desired output format
+   if (req_comp && req_comp != 4) {
+      if (ri->bits_per_channel == 16)
+         out = (stbi_uc *) stbi__convert_format16((stbi__uint16 *) out, 4, req_comp, w, h);
+      else
+         out = stbi__convert_format(out, 4, req_comp, w, h);
+      if (out == NULL) return out; // stbi__convert_format frees input on failure
+   }
+
+   if (comp) *comp = 4;
+   *y = h;
+   *x = w;
+
+   return out;
+}
+#endif
+
+// *************************************************************************************************
+// Softimage PIC loader
+// by Tom Seddon
+//
+// See http://softimage.wiki.softimage.com/index.php/INFO:_PIC_file_format
+// See http://ozviz.wasp.uwa.edu.au/~pbourke/dataformats/softimagepic/
+
+#ifndef STBI_NO_PIC
+static int stbi__pic_is4(stbi__context *s,const char *str)
+{
+   int i;
+   for (i=0; i<4; ++i)
+      if (stbi__get8(s) != (stbi_uc)str[i])
+         return 0;
+
+   return 1;
+}
+
+static int stbi__pic_test_core(stbi__context *s)
+{
+   int i;
+
+   if (!stbi__pic_is4(s,"\x53\x80\xF6\x34"))
+      return 0;
+
+   for(i=0;i<84;++i)
+      stbi__get8(s);
+
+   if (!stbi__pic_is4(s,"PICT"))
+      return 0;
+
+   return 1;
+}
+
+typedef struct
+{
+   stbi_uc size,type,channel;
+} stbi__pic_packet;
+
+static stbi_uc *stbi__readval(stbi__context *s, int channel, stbi_uc *dest)
+{
+   int mask=0x80, i;
+
+   for (i=0; i<4; ++i, mask>>=1) {
+      if (channel & mask) {
+         if (stbi__at_eof(s)) return stbi__errpuc("bad file","PIC file too short");
+         dest[i]=stbi__get8(s);
+      }
+   }
+
+   return dest;
+}
+
+static void stbi__copyval(int channel,stbi_uc *dest,const stbi_uc *src)
+{
+   int mask=0x80,i;
+
+   for (i=0;i<4; ++i, mask>>=1)
+      if (channel&mask)
+         dest[i]=src[i];
+}
+
+static stbi_uc *stbi__pic_load_core(stbi__context *s,int width,int height,int *comp, stbi_uc *result)
+{
+   int act_comp=0,num_packets=0,y,chained;
+   stbi__pic_packet packets[10];
+
+   // this will (should...) cater for even some bizarre stuff like having data
+    // for the same channel in multiple packets.
+   do {
+      stbi__pic_packet *packet;
+
+      if (num_packets==sizeof(packets)/sizeof(packets[0]))
+         return stbi__errpuc("bad format","too many packets");
+
+      packet = &packets[num_packets++];
+
+      chained = stbi__get8(s);
+      packet->size    = stbi__get8(s);
+      packet->type    = stbi__get8(s);
+      packet->channel = stbi__get8(s);
+
+      act_comp |= packet->channel;
+
+      if (stbi__at_eof(s))          return stbi__errpuc("bad file","file too short (reading packets)");
+      if (packet->size != 8)  return stbi__errpuc("bad format","packet isn't 8bpp");
+   } while (chained);
+
+   *comp = (act_comp & 0x10 ? 4 : 3); // has alpha channel?
+
+   for(y=0; y<height; ++y) {
+      int packet_idx;
+
+      for(packet_idx=0; packet_idx < num_packets; ++packet_idx) {
+         stbi__pic_packet *packet = &packets[packet_idx];
+         stbi_uc *dest = result+y*width*4;
+
+         switch (packet->type) {
+            default:
+               return stbi__errpuc("bad format","packet has bad compression type");
+
+            case 0: {//uncompressed
+               int x;
+
+               for(x=0;x<width;++x, dest+=4)
+                  if (!stbi__readval(s,packet->channel,dest))
+                     return 0;
+               break;
+            }
+
+            case 1://Pure RLE
+               {
+                  int left=width, i;
+
+                  while (left>0) {
+                     stbi_uc count,value[4];
+
+                     count=stbi__get8(s);
+                     if (stbi__at_eof(s))   return stbi__errpuc("bad file","file too short (pure read count)");
+
+                     if (count > left)
+                        count = (stbi_uc) left;
+
+                     if (!stbi__readval(s,packet->channel,value))  return 0;
+
+                     for(i=0; i<count; ++i,dest+=4)
+                        stbi__copyval(packet->channel,dest,value);
+                     left -= count;
+                  }
+               }
+               break;
+
+            case 2: {//Mixed RLE
+               int left=width;
+               while (left>0) {
+                  int count = stbi__get8(s), i;
+                  if (stbi__at_eof(s))  return stbi__errpuc("bad file","file too short (mixed read count)");
+
+                  if (count >= 128) { // Repeated
+                     stbi_uc value[4];
+
+                     if (count==128)
+                        count = stbi__get16be(s);
+                     else
+                        count -= 127;
+                     if (count > left)
+                        return stbi__errpuc("bad file","scanline overrun");
+
+                     if (!stbi__readval(s,packet->channel,value))
+                        return 0;
+
+                     for(i=0;i<count;++i, dest += 4)
+                        stbi__copyval(packet->channel,dest,value);
+                  } else { // Raw
+                     ++count;
+                     if (count>left) return stbi__errpuc("bad file","scanline overrun");
+
+                     for(i=0;i<count;++i, dest+=4)
+                        if (!stbi__readval(s,packet->channel,dest))
+                           return 0;
+                  }
+                  left-=count;
+               }
+               break;
+            }
+         }
+      }
+   }
+
+   return result;
+}
+
+static void *stbi__pic_load(stbi__context *s,int *px,int *py,int *comp,int req_comp, stbi__result_info *ri)
+{
+   stbi_uc *result;
+   int i, x,y, internal_comp;
+   STBI_NOTUSED(ri);
+
+   if (!comp) comp = &internal_comp;
+
+   for (i=0; i<92; ++i)
+      stbi__get8(s);
+
+   x = stbi__get16be(s);
+   y = stbi__get16be(s);
+   if (stbi__at_eof(s))  return stbi__errpuc("bad file","file too short (pic header)");
+   if (!stbi__mad3sizes_valid(x, y, 4, 0)) return stbi__errpuc("too large", "PIC image too large to decode");
+
+   stbi__get32be(s); //skip `ratio'
+   stbi__get16be(s); //skip `fields'
+   stbi__get16be(s); //skip `pad'
+
+   // intermediate buffer is RGBA
+   result = (stbi_uc *) stbi__malloc_mad3(x, y, 4, 0);
+   memset(result, 0xff, x*y*4);
+
+   if (!stbi__pic_load_core(s,x,y,comp, result)) {
+      STBI_FREE(result);
+      result=0;
+   }
+   *px = x;
+   *py = y;
+   if (req_comp == 0) req_comp = *comp;
+   result=stbi__convert_format(result,4,req_comp,x,y);
+
+   return result;
+}
+
+static int stbi__pic_test(stbi__context *s)
+{
+   int r = stbi__pic_test_core(s);
+   stbi__rewind(s);
+   return r;
+}
+#endif
+
+// *************************************************************************************************
+// GIF loader -- public domain by Jean-Marc Lienher -- simplified/shrunk by stb
+
+#ifndef STBI_NO_GIF
+typedef struct
+{
+   stbi__int16 prefix;
+   stbi_uc first;
+   stbi_uc suffix;
+} stbi__gif_lzw;
+
+typedef struct
+{
+   int w,h;
+   stbi_uc *out, *old_out;             // output buffer (always 4 components)
+   int flags, bgindex, ratio, transparent, eflags, delay;
+   stbi_uc  pal[256][4];
+   stbi_uc lpal[256][4];
+   stbi__gif_lzw codes[4096];
+   stbi_uc *color_table;
+   int parse, step;
+   int lflags;
+   int start_x, start_y;
+   int max_x, max_y;
+   int cur_x, cur_y;
+   int line_size;
+} stbi__gif;
+
+static int stbi__gif_test_raw(stbi__context *s)
+{
+   int sz;
+   if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8') return 0;
+   sz = stbi__get8(s);
+   if (sz != '9' && sz != '7') return 0;
+   if (stbi__get8(s) != 'a') return 0;
+   return 1;
+}
+
+static int stbi__gif_test(stbi__context *s)
+{
+   int r = stbi__gif_test_raw(s);
+   stbi__rewind(s);
+   return r;
+}
+
+static void stbi__gif_parse_colortable(stbi__context *s, stbi_uc pal[256][4], int num_entries, int transp)
+{
+   int i;
+   for (i=0; i < num_entries; ++i) {
+      pal[i][2] = stbi__get8(s);
+      pal[i][1] = stbi__get8(s);
+      pal[i][0] = stbi__get8(s);
+      pal[i][3] = transp == i ? 0 : 255;
+   }
+}
+
+static int stbi__gif_header(stbi__context *s, stbi__gif *g, int *comp, int is_info)
+{
+   stbi_uc version;
+   if (stbi__get8(s) != 'G' || stbi__get8(s) != 'I' || stbi__get8(s) != 'F' || stbi__get8(s) != '8')
+      return stbi__err("not GIF", "Corrupt GIF");
+
+   version = stbi__get8(s);
+   if (version != '7' && version != '9')    return stbi__err("not GIF", "Corrupt GIF");
+   if (stbi__get8(s) != 'a')                return stbi__err("not GIF", "Corrupt GIF");
+
+   stbi__g_failure_reason = "";
+   g->w = stbi__get16le(s);
+   g->h = stbi__get16le(s);
+   g->flags = stbi__get8(s);
+   g->bgindex = stbi__get8(s);
+   g->ratio = stbi__get8(s);
+   g->transparent = -1;
+
+   if (comp != 0) *comp = 4;  // can't actually tell whether it's 3 or 4 until we parse the comments
+
+   if (is_info) return 1;
+
+   if (g->flags & 0x80)
+      stbi__gif_parse_colortable(s,g->pal, 2 << (g->flags & 7), -1);
+
+   return 1;
+}
+
+static int stbi__gif_info_raw(stbi__context *s, int *x, int *y, int *comp)
+{
+   stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif));
+   if (!stbi__gif_header(s, g, comp, 1)) {
+      STBI_FREE(g);
+      stbi__rewind( s );
+      return 0;
+   }
+   if (x) *x = g->w;
+   if (y) *y = g->h;
+   STBI_FREE(g);
+   return 1;
+}
+
+static void stbi__out_gif_code(stbi__gif *g, stbi__uint16 code)
+{
+   stbi_uc *p, *c;
+
+   // recurse to decode the prefixes, since the linked-list is backwards,
+   // and working backwards through an interleaved image would be nasty
+   if (g->codes[code].prefix >= 0)
+      stbi__out_gif_code(g, g->codes[code].prefix);
+
+   if (g->cur_y >= g->max_y) return;
+
+   p = &g->out[g->cur_x + g->cur_y];
+   c = &g->color_table[g->codes[code].suffix * 4];
+
+   if (c[3] >= 128) {
+      p[0] = c[2];
+      p[1] = c[1];
+      p[2] = c[0];
+      p[3] = c[3];
+   }
+   g->cur_x += 4;
+
+   if (g->cur_x >= g->max_x) {
+      g->cur_x = g->start_x;
+      g->cur_y += g->step;
+
+      while (g->cur_y >= g->max_y && g->parse > 0) {
+         g->step = (1 << g->parse) * g->line_size;
+         g->cur_y = g->start_y + (g->step >> 1);
+         --g->parse;
+      }
+   }
+}
+
+static stbi_uc *stbi__process_gif_raster(stbi__context *s, stbi__gif *g)
+{
+   stbi_uc lzw_cs;
+   stbi__int32 len, init_code;
+   stbi__uint32 first;
+   stbi__int32 codesize, codemask, avail, oldcode, bits, valid_bits, clear;
+   stbi__gif_lzw *p;
+
+   lzw_cs = stbi__get8(s);
+   if (lzw_cs > 12) return NULL;
+   clear = 1 << lzw_cs;
+   first = 1;
+   codesize = lzw_cs + 1;
+   codemask = (1 << codesize) - 1;
+   bits = 0;
+   valid_bits = 0;
+   for (init_code = 0; init_code < clear; init_code++) {
+      g->codes[init_code].prefix = -1;
+      g->codes[init_code].first = (stbi_uc) init_code;
+      g->codes[init_code].suffix = (stbi_uc) init_code;
+   }
+
+   // support no starting clear code
+   avail = clear+2;
+   oldcode = -1;
+
+   len = 0;
+   for(;;) {
+      if (valid_bits < codesize) {
+         if (len == 0) {
+            len = stbi__get8(s); // start new block
+            if (len == 0)
+               return g->out;
+         }
+         --len;
+         bits |= (stbi__int32) stbi__get8(s) << valid_bits;
+         valid_bits += 8;
+      } else {
+         stbi__int32 code = bits & codemask;
+         bits >>= codesize;
+         valid_bits -= codesize;
+         // @OPTIMIZE: is there some way we can accelerate the non-clear path?
+         if (code == clear) {  // clear code
+            codesize = lzw_cs + 1;
+            codemask = (1 << codesize) - 1;
+            avail = clear + 2;
+            oldcode = -1;
+            first = 0;
+         } else if (code == clear + 1) { // end of stream code
+            stbi__skip(s, len);
+            while ((len = stbi__get8(s)) > 0)
+               stbi__skip(s,len);
+            return g->out;
+         } else if (code <= avail) {
+            if (first) return stbi__errpuc("no clear code", "Corrupt GIF");
+
+            if (oldcode >= 0) {
+               p = &g->codes[avail++];
+               if (avail > 4096)        return stbi__errpuc("too many codes", "Corrupt GIF");
+               p->prefix = (stbi__int16) oldcode;
+               p->first = g->codes[oldcode].first;
+               p->suffix = (code == avail) ? p->first : g->codes[code].first;
+            } else if (code == avail)
+               return stbi__errpuc("illegal code in raster", "Corrupt GIF");
+
+            stbi__out_gif_code(g, (stbi__uint16) code);
+
+            if ((avail & codemask) == 0 && avail <= 0x0FFF) {
+               codesize++;
+               codemask = (1 << codesize) - 1;
+            }
+
+            oldcode = code;
+         } else {
+            return stbi__errpuc("illegal code in raster", "Corrupt GIF");
+         }
+      }
+   }
+}
+
+static void stbi__fill_gif_background(stbi__gif *g, int x0, int y0, int x1, int y1)
+{
+   int x, y;
+   stbi_uc *c = g->pal[g->bgindex];
+   for (y = y0; y < y1; y += 4 * g->w) {
+      for (x = x0; x < x1; x += 4) {
+         stbi_uc *p  = &g->out[y + x];
+         p[0] = c[2];
+         p[1] = c[1];
+         p[2] = c[0];
+         p[3] = 0;
+      }
+   }
+}
+
+// this function is designed to support animated gifs, although stb_image doesn't support it
+static stbi_uc *stbi__gif_load_next(stbi__context *s, stbi__gif *g, int *comp, int req_comp)
+{
+   int i;
+   stbi_uc *prev_out = 0;
+
+   if (g->out == 0 && !stbi__gif_header(s, g, comp,0))
+      return 0; // stbi__g_failure_reason set by stbi__gif_header
+
+   if (!stbi__mad3sizes_valid(g->w, g->h, 4, 0))
+      return stbi__errpuc("too large", "GIF too large");
+
+   prev_out = g->out;
+   g->out = (stbi_uc *) stbi__malloc_mad3(4, g->w, g->h, 0);
+   if (g->out == 0) return stbi__errpuc("outofmem", "Out of memory");
+
+   switch ((g->eflags & 0x1C) >> 2) {
+      case 0: // unspecified (also always used on 1st frame)
+         stbi__fill_gif_background(g, 0, 0, 4 * g->w, 4 * g->w * g->h);
+         break;
+      case 1: // do not dispose
+         if (prev_out) memcpy(g->out, prev_out, 4 * g->w * g->h);
+         g->old_out = prev_out;
+         break;
+      case 2: // dispose to background
+         if (prev_out) memcpy(g->out, prev_out, 4 * g->w * g->h);
+         stbi__fill_gif_background(g, g->start_x, g->start_y, g->max_x, g->max_y);
+         break;
+      case 3: // dispose to previous
+         if (g->old_out) {
+            for (i = g->start_y; i < g->max_y; i += 4 * g->w)
+               memcpy(&g->out[i + g->start_x], &g->old_out[i + g->start_x], g->max_x - g->start_x);
+         }
+         break;
+   }
+
+   for (;;) {
+      switch (stbi__get8(s)) {
+         case 0x2C: /* Image Descriptor */
+         {
+            int prev_trans = -1;
+            stbi__int32 x, y, w, h;
+            stbi_uc *o;
+
+            x = stbi__get16le(s);
+            y = stbi__get16le(s);
+            w = stbi__get16le(s);
+            h = stbi__get16le(s);
+            if (((x + w) > (g->w)) || ((y + h) > (g->h)))
+               return stbi__errpuc("bad Image Descriptor", "Corrupt GIF");
+
+            g->line_size = g->w * 4;
+            g->start_x = x * 4;
+            g->start_y = y * g->line_size;
+            g->max_x   = g->start_x + w * 4;
+            g->max_y   = g->start_y + h * g->line_size;
+            g->cur_x   = g->start_x;
+            g->cur_y   = g->start_y;
+
+            g->lflags = stbi__get8(s);
+
+            if (g->lflags & 0x40) {
+               g->step = 8 * g->line_size; // first interlaced spacing
+               g->parse = 3;
+            } else {
+               g->step = g->line_size;
+               g->parse = 0;
+            }
+
+            if (g->lflags & 0x80) {
+               stbi__gif_parse_colortable(s,g->lpal, 2 << (g->lflags & 7), g->eflags & 0x01 ? g->transparent : -1);
+               g->color_table = (stbi_uc *) g->lpal;
+            } else if (g->flags & 0x80) {
+               if (g->transparent >= 0 && (g->eflags & 0x01)) {
+                  prev_trans = g->pal[g->transparent][3];
+                  g->pal[g->transparent][3] = 0;
+               }
+               g->color_table = (stbi_uc *) g->pal;
+            } else
+               return stbi__errpuc("missing color table", "Corrupt GIF");
+
+            o = stbi__process_gif_raster(s, g);
+            if (o == NULL) return NULL;
+
+            if (prev_trans != -1)
+               g->pal[g->transparent][3] = (stbi_uc) prev_trans;
+
+            return o;
+         }
+
+         case 0x21: // Comment Extension.
+         {
+            int len;
+            if (stbi__get8(s) == 0xF9) { // Graphic Control Extension.
+               len = stbi__get8(s);
+               if (len == 4) {
+                  g->eflags = stbi__get8(s);
+                  g->delay = stbi__get16le(s);
+                  g->transparent = stbi__get8(s);
+               } else {
+                  stbi__skip(s, len);
+                  break;
+               }
+            }
+            while ((len = stbi__get8(s)) != 0)
+               stbi__skip(s, len);
+            break;
+         }
+
+         case 0x3B: // gif stream termination code
+            return (stbi_uc *) s; // using '1' causes warning on some compilers
+
+         default:
+            return stbi__errpuc("unknown code", "Corrupt GIF");
+      }
+   }
+
+   STBI_NOTUSED(req_comp);
+}
+
+static void *stbi__gif_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   stbi_uc *u = 0;
+   stbi__gif* g = (stbi__gif*) stbi__malloc(sizeof(stbi__gif));
+   memset(g, 0, sizeof(*g));
+   STBI_NOTUSED(ri);
+
+   u = stbi__gif_load_next(s, g, comp, req_comp);
+   if (u == (stbi_uc *) s) u = 0;  // end of animated gif marker
+   if (u) {
+      *x = g->w;
+      *y = g->h;
+      if (req_comp && req_comp != 4)
+         u = stbi__convert_format(u, 4, req_comp, g->w, g->h);
+   }
+   else if (g->out)
+      STBI_FREE(g->out);
+   STBI_FREE(g);
+   return u;
+}
+
+static int stbi__gif_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   return stbi__gif_info_raw(s,x,y,comp);
+}
+#endif
+
+// *************************************************************************************************
+// Radiance RGBE HDR loader
+// originally by Nicolas Schulz
+#ifndef STBI_NO_HDR
+static int stbi__hdr_test_core(stbi__context *s, const char *signature)
+{
+   int i;
+   for (i=0; signature[i]; ++i)
+      if (stbi__get8(s) != signature[i])
+          return 0;
+   stbi__rewind(s);
+   return 1;
+}
+
+static int stbi__hdr_test(stbi__context* s)
+{
+   int r = stbi__hdr_test_core(s, "#?RADIANCE\n");
+   stbi__rewind(s);
+   if(!r) {
+       r = stbi__hdr_test_core(s, "#?RGBE\n");
+       stbi__rewind(s);
+   }
+   return r;
+}
+
+#define STBI__HDR_BUFLEN  1024
+static char *stbi__hdr_gettoken(stbi__context *z, char *buffer)
+{
+   int len=0;
+   char c = '\0';
+
+   c = (char) stbi__get8(z);
+
+   while (!stbi__at_eof(z) && c != '\n') {
+      buffer[len++] = c;
+      if (len == STBI__HDR_BUFLEN-1) {
+         // flush to end of line
+         while (!stbi__at_eof(z) && stbi__get8(z) != '\n')
+            ;
+         break;
+      }
+      c = (char) stbi__get8(z);
+   }
+
+   buffer[len] = 0;
+   return buffer;
+}
+
+static void stbi__hdr_convert(float *output, stbi_uc *input, int req_comp)
+{
+   if ( input[3] != 0 ) {
+      float f1;
+      // Exponent
+      f1 = (float) ldexp(1.0f, input[3] - (int)(128 + 8));
+      if (req_comp <= 2)
+         output[0] = (input[0] + input[1] + input[2]) * f1 / 3;
+      else {
+         output[0] = input[0] * f1;
+         output[1] = input[1] * f1;
+         output[2] = input[2] * f1;
+      }
+      if (req_comp == 2) output[1] = 1;
+      if (req_comp == 4) output[3] = 1;
+   } else {
+      switch (req_comp) {
+         case 4: output[3] = 1; /* fallthrough */
+         case 3: output[0] = output[1] = output[2] = 0;
+                 break;
+         case 2: output[1] = 1; /* fallthrough */
+         case 1: output[0] = 0;
+                 break;
+      }
+   }
+}
+
+static float *stbi__hdr_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   char buffer[STBI__HDR_BUFLEN];
+   char *token;
+   int valid = 0;
+   int width, height;
+   stbi_uc *scanline;
+   float *hdr_data;
+   int len;
+   unsigned char count, value;
+   int i, j, k, c1,c2, z;
+   const char *headerToken;
+   STBI_NOTUSED(ri);
+
+   // Check identifier
+   headerToken = stbi__hdr_gettoken(s,buffer);
+   if (strcmp(headerToken, "#?RADIANCE") != 0 && strcmp(headerToken, "#?RGBE") != 0)
+      return stbi__errpf("not HDR", "Corrupt HDR image");
+
+   // Parse header
+   for(;;) {
+      token = stbi__hdr_gettoken(s,buffer);
+      if (token[0] == 0) break;
+      if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
+   }
+
+   if (!valid)    return stbi__errpf("unsupported format", "Unsupported HDR format");
+
+   // Parse width and height
+   // can't use sscanf() if we're not using stdio!
+   token = stbi__hdr_gettoken(s,buffer);
+   if (strncmp(token, "-Y ", 3))  return stbi__errpf("unsupported data layout", "Unsupported HDR format");
+   token += 3;
+   height = (int) strtol(token, &token, 10);
+   while (*token == ' ') ++token;
+   if (strncmp(token, "+X ", 3))  return stbi__errpf("unsupported data layout", "Unsupported HDR format");
+   token += 3;
+   width = (int) strtol(token, NULL, 10);
+
+   *x = width;
+   *y = height;
+
+   if (comp) *comp = 3;
+   if (req_comp == 0) req_comp = 3;
+
+   if (!stbi__mad4sizes_valid(width, height, req_comp, sizeof(float), 0))
+      return stbi__errpf("too large", "HDR image is too large");
+
+   // Read data
+   hdr_data = (float *) stbi__malloc_mad4(width, height, req_comp, sizeof(float), 0);
+   if (!hdr_data)
+      return stbi__errpf("outofmem", "Out of memory");
+
+   // Load image data
+   // image data is stored as some number of sca
+   if ( width < 8 || width >= 32768) {
+      // Read flat data
+      for (j=0; j < height; ++j) {
+         for (i=0; i < width; ++i) {
+            stbi_uc rgbe[4];
+           main_decode_loop:
+            stbi__getn(s, rgbe, 4);
+            stbi__hdr_convert(hdr_data + j * width * req_comp + i * req_comp, rgbe, req_comp);
+         }
+      }
+   } else {
+      // Read RLE-encoded data
+      scanline = NULL;
+
+      for (j = 0; j < height; ++j) {
+         c1 = stbi__get8(s);
+         c2 = stbi__get8(s);
+         len = stbi__get8(s);
+         if (c1 != 2 || c2 != 2 || (len & 0x80)) {
+            // not run-length encoded, so we have to actually use THIS data as a decoded
+            // pixel (note this can't be a valid pixel--one of RGB must be >= 128)
+            stbi_uc rgbe[4];
+            rgbe[0] = (stbi_uc) c1;
+            rgbe[1] = (stbi_uc) c2;
+            rgbe[2] = (stbi_uc) len;
+            rgbe[3] = (stbi_uc) stbi__get8(s);
+            stbi__hdr_convert(hdr_data, rgbe, req_comp);
+            i = 1;
+            j = 0;
+            STBI_FREE(scanline);
+            goto main_decode_loop; // yes, this makes no sense
+         }
+         len <<= 8;
+         len |= stbi__get8(s);
+         if (len != width) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("invalid decoded scanline length", "corrupt HDR"); }
+         if (scanline == NULL) {
+            scanline = (stbi_uc *) stbi__malloc_mad2(width, 4, 0);
+            if (!scanline) {
+               STBI_FREE(hdr_data);
+               return stbi__errpf("outofmem", "Out of memory");
+            }
+         }
+
+         for (k = 0; k < 4; ++k) {
+            int nleft;
+            i = 0;
+            while ((nleft = width - i) > 0) {
+               count = stbi__get8(s);
+               if (count > 128) {
+                  // Run
+                  value = stbi__get8(s);
+                  count -= 128;
+                  if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); }
+                  for (z = 0; z < count; ++z)
+                     scanline[i++ * 4 + k] = value;
+               } else {
+                  // Dump
+                  if (count > nleft) { STBI_FREE(hdr_data); STBI_FREE(scanline); return stbi__errpf("corrupt", "bad RLE data in HDR"); }
+                  for (z = 0; z < count; ++z)
+                     scanline[i++ * 4 + k] = stbi__get8(s);
+               }
+            }
+         }
+         for (i=0; i < width; ++i)
+            stbi__hdr_convert(hdr_data+(j*width + i)*req_comp, scanline + i*4, req_comp);
+      }
+      if (scanline)
+         STBI_FREE(scanline);
+   }
+
+   return hdr_data;
+}
+
+static int stbi__hdr_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   char buffer[STBI__HDR_BUFLEN];
+   char *token;
+   int valid = 0;
+   int dummy;
+
+   if (!x) x = &dummy;
+   if (!y) y = &dummy;
+   if (!comp) comp = &dummy;
+
+   if (stbi__hdr_test(s) == 0) {
+       stbi__rewind( s );
+       return 0;
+   }
+
+   for(;;) {
+      token = stbi__hdr_gettoken(s,buffer);
+      if (token[0] == 0) break;
+      if (strcmp(token, "FORMAT=32-bit_rle_rgbe") == 0) valid = 1;
+   }
+
+   if (!valid) {
+       stbi__rewind( s );
+       return 0;
+   }
+   token = stbi__hdr_gettoken(s,buffer);
+   if (strncmp(token, "-Y ", 3)) {
+       stbi__rewind( s );
+       return 0;
+   }
+   token += 3;
+   *y = (int) strtol(token, &token, 10);
+   while (*token == ' ') ++token;
+   if (strncmp(token, "+X ", 3)) {
+       stbi__rewind( s );
+       return 0;
+   }
+   token += 3;
+   *x = (int) strtol(token, NULL, 10);
+   *comp = 3;
+   return 1;
+}
+#endif // STBI_NO_HDR
+
+#ifndef STBI_NO_BMP
+static int stbi__bmp_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   void *p;
+   stbi__bmp_data info;
+
+   info.all_a = 255;
+   p = stbi__bmp_parse_header(s, &info);
+   stbi__rewind( s );
+   if (p == NULL)
+      return 0;
+   if (x) *x = s->img_x;
+   if (y) *y = s->img_y;
+   if (comp) *comp = info.ma ? 4 : 3;
+   return 1;
+}
+#endif
+
+#ifndef STBI_NO_PSD
+static int stbi__psd_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   int channelCount, dummy;
+   if (!x) x = &dummy;
+   if (!y) y = &dummy;
+   if (!comp) comp = &dummy;
+   if (stbi__get32be(s) != 0x38425053) {
+       stbi__rewind( s );
+       return 0;
+   }
+   if (stbi__get16be(s) != 1) {
+       stbi__rewind( s );
+       return 0;
+   }
+   stbi__skip(s, 6);
+   channelCount = stbi__get16be(s);
+   if (channelCount < 0 || channelCount > 16) {
+       stbi__rewind( s );
+       return 0;
+   }
+   *y = stbi__get32be(s);
+   *x = stbi__get32be(s);
+   if (stbi__get16be(s) != 8) {
+       stbi__rewind( s );
+       return 0;
+   }
+   if (stbi__get16be(s) != 3) {
+       stbi__rewind( s );
+       return 0;
+   }
+   *comp = 4;
+   return 1;
+}
+#endif
+
+#ifndef STBI_NO_PIC
+static int stbi__pic_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   int act_comp=0,num_packets=0,chained,dummy;
+   stbi__pic_packet packets[10];
+
+   if (!x) x = &dummy;
+   if (!y) y = &dummy;
+   if (!comp) comp = &dummy;
+
+   if (!stbi__pic_is4(s,"\x53\x80\xF6\x34")) {
+      stbi__rewind(s);
+      return 0;
+   }
+
+   stbi__skip(s, 88);
+
+   *x = stbi__get16be(s);
+   *y = stbi__get16be(s);
+   if (stbi__at_eof(s)) {
+      stbi__rewind( s);
+      return 0;
+   }
+   if ( (*x) != 0 && (1 << 28) / (*x) < (*y)) {
+      stbi__rewind( s );
+      return 0;
+   }
+
+   stbi__skip(s, 8);
+
+   do {
+      stbi__pic_packet *packet;
+
+      if (num_packets==sizeof(packets)/sizeof(packets[0]))
+         return 0;
+
+      packet = &packets[num_packets++];
+      chained = stbi__get8(s);
+      packet->size    = stbi__get8(s);
+      packet->type    = stbi__get8(s);
+      packet->channel = stbi__get8(s);
+      act_comp |= packet->channel;
+
+      if (stbi__at_eof(s)) {
+          stbi__rewind( s );
+          return 0;
+      }
+      if (packet->size != 8) {
+          stbi__rewind( s );
+          return 0;
+      }
+   } while (chained);
+
+   *comp = (act_comp & 0x10 ? 4 : 3);
+
+   return 1;
+}
+#endif
+
+// *************************************************************************************************
+// Portable Gray Map and Portable Pixel Map loader
+// by Ken Miller
+//
+// PGM: http://netpbm.sourceforge.net/doc/pgm.html
+// PPM: http://netpbm.sourceforge.net/doc/ppm.html
+//
+// Known limitations:
+//    Does not support comments in the header section
+//    Does not support ASCII image data (formats P2 and P3)
+//    Does not support 16-bit-per-channel
+
+#ifndef STBI_NO_PNM
+
+static int      stbi__pnm_test(stbi__context *s)
+{
+   char p, t;
+   p = (char) stbi__get8(s);
+   t = (char) stbi__get8(s);
+   if (p != 'P' || (t != '5' && t != '6')) {
+       stbi__rewind( s );
+       return 0;
+   }
+   return 1;
+}
+
+static void *stbi__pnm_load(stbi__context *s, int *x, int *y, int *comp, int req_comp, stbi__result_info *ri)
+{
+   stbi_uc *out;
+   STBI_NOTUSED(ri);
+
+   if (!stbi__pnm_info(s, (int *)&s->img_x, (int *)&s->img_y, (int *)&s->img_n))
+      return 0;
+
+   *x = s->img_x;
+   *y = s->img_y;
+   if (comp) *comp = s->img_n;
+
+   if (!stbi__mad3sizes_valid(s->img_n, s->img_x, s->img_y, 0))
+      return stbi__errpuc("too large", "PNM too large");
+
+   out = (stbi_uc *) stbi__malloc_mad3(s->img_n, s->img_x, s->img_y, 0);
+   if (!out) return stbi__errpuc("outofmem", "Out of memory");
+   stbi__getn(s, out, s->img_n * s->img_x * s->img_y);
+
+   if (req_comp && req_comp != s->img_n) {
+      out = stbi__convert_format(out, s->img_n, req_comp, s->img_x, s->img_y);
+      if (out == NULL) return out; // stbi__convert_format frees input on failure
+   }
+   return out;
+}
+
+static int      stbi__pnm_isspace(char c)
+{
+   return c == ' ' || c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r';
+}
+
+static void     stbi__pnm_skip_whitespace(stbi__context *s, char *c)
+{
+   for (;;) {
+      while (!stbi__at_eof(s) && stbi__pnm_isspace(*c))
+         *c = (char) stbi__get8(s);
+
+      if (stbi__at_eof(s) || *c != '#')
+         break;
+
+      while (!stbi__at_eof(s) && *c != '\n' && *c != '\r' )
+         *c = (char) stbi__get8(s);
+   }
+}
+
+static int      stbi__pnm_isdigit(char c)
+{
+   return c >= '0' && c <= '9';
+}
+
+static int      stbi__pnm_getinteger(stbi__context *s, char *c)
+{
+   int value = 0;
+
+   while (!stbi__at_eof(s) && stbi__pnm_isdigit(*c)) {
+      value = value*10 + (*c - '0');
+      *c = (char) stbi__get8(s);
+   }
+
+   return value;
+}
+
+static int      stbi__pnm_info(stbi__context *s, int *x, int *y, int *comp)
+{
+   int maxv, dummy;
+   char c, p, t;
+
+   if (!x) x = &dummy;
+   if (!y) y = &dummy;
+   if (!comp) comp = &dummy;
+
+   stbi__rewind(s);
+
+   // Get identifier
+   p = (char) stbi__get8(s);
+   t = (char) stbi__get8(s);
+   if (p != 'P' || (t != '5' && t != '6')) {
+       stbi__rewind(s);
+       return 0;
+   }
+
+   *comp = (t == '6') ? 3 : 1;  // '5' is 1-component .pgm; '6' is 3-component .ppm
+
+   c = (char) stbi__get8(s);
+   stbi__pnm_skip_whitespace(s, &c);
+
+   *x = stbi__pnm_getinteger(s, &c); // read width
+   stbi__pnm_skip_whitespace(s, &c);
+
+   *y = stbi__pnm_getinteger(s, &c); // read height
+   stbi__pnm_skip_whitespace(s, &c);
+
+   maxv = stbi__pnm_getinteger(s, &c);  // read max value
+
+   if (maxv > 255)
+      return stbi__err("max value > 255", "PPM image not 8-bit");
+   else
+      return 1;
+}
+#endif
+
+static int stbi__info_main(stbi__context *s, int *x, int *y, int *comp)
+{
+   #ifndef STBI_NO_JPEG
+   if (stbi__jpeg_info(s, x, y, comp)) return 1;
+   #endif
+
+   #ifndef STBI_NO_PNG
+   if (stbi__png_info(s, x, y, comp))  return 1;
+   #endif
+
+   #ifndef STBI_NO_GIF
+   if (stbi__gif_info(s, x, y, comp))  return 1;
+   #endif
+
+   #ifndef STBI_NO_BMP
+   if (stbi__bmp_info(s, x, y, comp))  return 1;
+   #endif
+
+   #ifndef STBI_NO_PSD
+   if (stbi__psd_info(s, x, y, comp))  return 1;
+   #endif
+
+   #ifndef STBI_NO_PIC
+   if (stbi__pic_info(s, x, y, comp))  return 1;
+   #endif
+
+   #ifndef STBI_NO_PNM
+   if (stbi__pnm_info(s, x, y, comp))  return 1;
+   #endif
+
+   #ifndef STBI_NO_HDR
+   if (stbi__hdr_info(s, x, y, comp))  return 1;
+   #endif
+
+   // test tga last because it's a crappy test!
+   #ifndef STBI_NO_TGA
+   if (stbi__tga_info(s, x, y, comp))
+       return 1;
+   #endif
+   return stbi__err("unknown image type", "Image not of any known type, or corrupt");
+}
+
+#ifndef STBI_NO_STDIO
+STBIDEF int stbi_info(char const *filename, int *x, int *y, int *comp)
+{
+    FILE *f = stbi__fopen(filename, "rb");
+    int result;
+    if (!f) return stbi__err("can't fopen", "Unable to open file");
+    result = stbi_info_from_file(f, x, y, comp);
+    fclose(f);
+    return result;
+}
+
+STBIDEF int stbi_info_from_file(FILE *f, int *x, int *y, int *comp)
+{
+   int r;
+   stbi__context s;
+   long pos = ftell(f);
+   stbi__start_file(&s, f);
+   r = stbi__info_main(&s,x,y,comp);
+   fseek(f,pos,SEEK_SET);
+   return r;
+}
+#endif // !STBI_NO_STDIO
+
+STBIDEF int stbi_info_from_memory(stbi_uc const *buffer, int len, int *x, int *y, int *comp)
+{
+   stbi__context s;
+   stbi__start_mem(&s,buffer,len);
+   return stbi__info_main(&s,x,y,comp);
+}
+
+STBIDEF int stbi_info_from_callbacks(stbi_io_callbacks const *c, void *user, int *x, int *y, int *comp)
+{
+   stbi__context s;
+   stbi__start_callbacks(&s, (stbi_io_callbacks *) c, user);
+   return stbi__info_main(&s,x,y,comp);
+}
+
+#endif // STB_IMAGE_IMPLEMENTATION
+
+/*
+   revision history:
+      2.16  (2017-07-23) all functions have 16-bit variants;
+                         STBI_NO_STDIO works again;
+                         compilation fixes;
+                         fix rounding in unpremultiply;
+                         optimize vertical flip;
+                         disable raw_len validation;
+                         documentation fixes
+      2.15  (2017-03-18) fix png-1,2,4 bug; now all Imagenet JPGs decode;
+                         warning fixes; disable run-time SSE detection on gcc;
+                         uniform handling of optional "return" values;
+                         thread-safe initialization of zlib tables
+      2.14  (2017-03-03) remove deprecated STBI_JPEG_OLD; fixes for Imagenet JPGs
+      2.13  (2016-11-29) add 16-bit API, only supported for PNG right now
+      2.12  (2016-04-02) fix typo in 2.11 PSD fix that caused crashes
+      2.11  (2016-04-02) allocate large structures on the stack
+                         remove white matting for transparent PSD
+                         fix reported channel count for PNG & BMP
+                         re-enable SSE2 in non-gcc 64-bit
+                         support RGB-formatted JPEG
+                         read 16-bit PNGs (only as 8-bit)
+      2.10  (2016-01-22) avoid warning introduced in 2.09 by STBI_REALLOC_SIZED
+      2.09  (2016-01-16) allow comments in PNM files
+                         16-bit-per-pixel TGA (not bit-per-component)
+                         info() for TGA could break due to .hdr handling
+                         info() for BMP to shares code instead of sloppy parse
+                         can use STBI_REALLOC_SIZED if allocator doesn't support realloc
+                         code cleanup
+      2.08  (2015-09-13) fix to 2.07 cleanup, reading RGB PSD as RGBA
+      2.07  (2015-09-13) fix compiler warnings
+                         partial animated GIF support
+                         limited 16-bpc PSD support
+                         #ifdef unused functions
+                         bug with < 92 byte PIC,PNM,HDR,TGA
+      2.06  (2015-04-19) fix bug where PSD returns wrong '*comp' value
+      2.05  (2015-04-19) fix bug in progressive JPEG handling, fix warning
+      2.04  (2015-04-15) try to re-enable SIMD on MinGW 64-bit
+      2.03  (2015-04-12) extra corruption checking (mmozeiko)
+                         stbi_set_flip_vertically_on_load (nguillemot)
+                         fix NEON support; fix mingw support
+      2.02  (2015-01-19) fix incorrect assert, fix warning
+      2.01  (2015-01-17) fix various warnings; suppress SIMD on gcc 32-bit without -msse2
+      2.00b (2014-12-25) fix STBI_MALLOC in progressive JPEG
+      2.00  (2014-12-25) optimize JPG, including x86 SSE2 & NEON SIMD (ryg)
+                         progressive JPEG (stb)
+                         PGM/PPM support (Ken Miller)
+                         STBI_MALLOC,STBI_REALLOC,STBI_FREE
+                         GIF bugfix -- seemingly never worked
+                         STBI_NO_*, STBI_ONLY_*
+      1.48  (2014-12-14) fix incorrectly-named assert()
+      1.47  (2014-12-14) 1/2/4-bit PNG support, both direct and paletted (Omar Cornut & stb)
+                         optimize PNG (ryg)
+                         fix bug in interlaced PNG with user-specified channel count (stb)
+      1.46  (2014-08-26)
+              fix broken tRNS chunk (colorkey-style transparency) in non-paletted PNG
+      1.45  (2014-08-16)
+              fix MSVC-ARM internal compiler error by wrapping malloc
+      1.44  (2014-08-07)
+              various warning fixes from Ronny Chevalier
+      1.43  (2014-07-15)
+              fix MSVC-only compiler problem in code changed in 1.42
+      1.42  (2014-07-09)
+              don't define _CRT_SECURE_NO_WARNINGS (affects user code)
+              fixes to stbi__cleanup_jpeg path
+              added STBI_ASSERT to avoid requiring assert.h
+      1.41  (2014-06-25)
+              fix search&replace from 1.36 that messed up comments/error messages
+      1.40  (2014-06-22)
+              fix gcc struct-initialization warning
+      1.39  (2014-06-15)
+              fix to TGA optimization when req_comp != number of components in TGA;
+              fix to GIF loading because BMP wasn't rewinding (whoops, no GIFs in my test suite)
+              add support for BMP version 5 (more ignored fields)
+      1.38  (2014-06-06)
+              suppress MSVC warnings on integer casts truncating values
+              fix accidental rename of 'skip' field of I/O
+      1.37  (2014-06-04)
+              remove duplicate typedef
+      1.36  (2014-06-03)
+              convert to header file single-file library
+              if de-iphone isn't set, load iphone images color-swapped instead of returning NULL
+      1.35  (2014-05-27)
+              various warnings
+              fix broken STBI_SIMD path
+              fix bug where stbi_load_from_file no longer left file pointer in correct place
+              fix broken non-easy path for 32-bit BMP (possibly never used)
+              TGA optimization by Arseny Kapoulkine
+      1.34  (unknown)
+              use STBI_NOTUSED in stbi__resample_row_generic(), fix one more leak in tga failure case
+      1.33  (2011-07-14)
+              make stbi_is_hdr work in STBI_NO_HDR (as specified), minor compiler-friendly improvements
+      1.32  (2011-07-13)
+              support for "info" function for all supported filetypes (SpartanJ)
+      1.31  (2011-06-20)
+              a few more leak fixes, bug in PNG handling (SpartanJ)
+      1.30  (2011-06-11)
+              added ability to load files via callbacks to accomidate custom input streams (Ben Wenger)
+              removed deprecated format-specific test/load functions
+              removed support for installable file formats (stbi_loader) -- would have been broken for IO callbacks anyway
+              error cases in bmp and tga give messages and don't leak (Raymond Barbiero, grisha)
+              fix inefficiency in decoding 32-bit BMP (David Woo)
+      1.29  (2010-08-16)
+              various warning fixes from Aurelien Pocheville
+      1.28  (2010-08-01)
+              fix bug in GIF palette transparency (SpartanJ)
+      1.27  (2010-08-01)
+              cast-to-stbi_uc to fix warnings
+      1.26  (2010-07-24)
+              fix bug in file buffering for PNG reported by SpartanJ
+      1.25  (2010-07-17)
+              refix trans_data warning (Won Chun)
+      1.24  (2010-07-12)
+              perf improvements reading from files on platforms with lock-heavy fgetc()
+              minor perf improvements for jpeg
+              deprecated type-specific functions so we'll get feedback if they're needed
+              attempt to fix trans_data warning (Won Chun)
+      1.23    fixed bug in iPhone support
+      1.22  (2010-07-10)
+              removed image *writing* support
+              stbi_info support from Jetro Lauha
+              GIF support from Jean-Marc Lienher
+              iPhone PNG-extensions from James Brown
+              warning-fixes from Nicolas Schulz and Janez Zemva (i.stbi__err. Janez (U+017D)emva)
+      1.21    fix use of 'stbi_uc' in header (reported by jon blow)
+      1.20    added support for Softimage PIC, by Tom Seddon
+      1.19    bug in interlaced PNG corruption check (found by ryg)
+      1.18  (2008-08-02)
+              fix a threading bug (local mutable static)
+      1.17    support interlaced PNG
+      1.16    major bugfix - stbi__convert_format converted one too many pixels
+      1.15    initialize some fields for thread safety
+      1.14    fix threadsafe conversion bug
+              header-file-only version (#define STBI_HEADER_FILE_ONLY before including)
+      1.13    threadsafe
+      1.12    const qualifiers in the API
+      1.11    Support installable IDCT, colorspace conversion routines
+      1.10    Fixes for 64-bit (don't use "unsigned long")
+              optimized upsampling by Fabian "ryg" Giesen
+      1.09    Fix format-conversion for PSD code (bad global variables!)
+      1.08    Thatcher Ulrich's PSD code integrated by Nicolas Schulz
+      1.07    attempt to fix C++ warning/errors again
+      1.06    attempt to fix C++ warning/errors again
+      1.05    fix TGA loading to return correct *comp and use good luminance calc
+      1.04    default float alpha is 1, not 255; use 'void *' for stbi_image_free
+      1.03    bugfixes to STBI_NO_STDIO, STBI_NO_HDR
+      1.02    support for (subset of) HDR files, float interface for preferred access to them
+      1.01    fix bug: possible bug in handling right-side up bmps... not sure
+              fix bug: the stbi__bmp_load() and stbi__tga_load() functions didn't work at all
+      1.00    interface to zlib that skips zlib header
+      0.99    correct handling of alpha in palette
+      0.98    TGA loader by lonesock; dynamically add loaders (untested)
+      0.97    jpeg errors on too large a file; also catch another malloc failure
+      0.96    fix detection of invalid v value - particleman@mollyrocket forum
+      0.95    during header scan, seek to markers in case of padding
+      0.94    STBI_NO_STDIO to disable stdio usage; rename all #defines the same
+      0.93    handle jpegtran output; verbose errors
+      0.92    read 4,8,16,24,32-bit BMP files of several formats
+      0.91    output 24-bit Windows 3.0 BMP files
+      0.90    fix a few more warnings; bump version number to approach 1.0
+      0.61    bugfixes due to Marc LeBlanc, Christopher Lloyd
+      0.60    fix compiling as c++
+      0.59    fix warnings: merge Dave Moore's -Wall fixes
+      0.58    fix bug: zlib uncompressed mode len/nlen was wrong endian
+      0.57    fix bug: jpg last huffman symbol before marker was >9 bits but less than 16 available
+      0.56    fix bug: zlib uncompressed mode len vs. nlen
+      0.55    fix bug: restart_interval not initialized to 0
+      0.54    allow NULL for 'int *comp'
+      0.53    fix bug in png 3->4; speedup png decoding
+      0.52    png handles req_comp=3,4 directly; minor cleanup; jpeg comments
+      0.51    obey req_comp requests, 1-component jpegs return as 1-component,
+              on 'test' only check type, not whether we support this variant
+      0.50  (2006-11-19)
+              first released version
+*/
+
+
+/*
+------------------------------------------------------------------------------
+This software is available under 2 licenses -- choose whichever you prefer.
+------------------------------------------------------------------------------
+ALTERNATIVE A - MIT License
+Copyright (c) 2017 Sean Barrett
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so, subject to the following conditions:
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+------------------------------------------------------------------------------
+ALTERNATIVE B - Public Domain (www.unlicense.org)
+This is free and unencumbered software released into the public domain.
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+------------------------------------------------------------------------------
+*/

+ 1458 - 0
3rdparty/stb/include/stb_image_write.h

@@ -0,0 +1,1458 @@
+/* stb_image_write - v1.07 - public domain - http://nothings.org/stb/stb_image_write.h
+   writes out PNG/BMP/TGA/JPEG/HDR images to C stdio - Sean Barrett 2010-2015
+                                     no warranty implied; use at your own risk
+
+   Before #including,
+
+       #define STB_IMAGE_WRITE_IMPLEMENTATION
+
+   in the file that you want to have the implementation.
+
+   Will probably not work correctly with strict-aliasing optimizations.
+
+ABOUT:
+
+   This header file is a library for writing images to C stdio. It could be
+   adapted to write to memory or a general streaming interface; let me know.
+
+   The PNG output is not optimal; it is 20-50% larger than the file
+   written by a decent optimizing implementation. This library is designed
+   for source code compactness and simplicity, not optimal image file size
+   or run-time performance.
+
+BUILDING:
+
+   You can #define STBIW_ASSERT(x) before the #include to avoid using assert.h.
+   You can #define STBIW_MALLOC(), STBIW_REALLOC(), and STBIW_FREE() to replace
+   malloc,realloc,free.
+   You can define STBIW_MEMMOVE() to replace memmove()
+
+USAGE:
+
+   There are four functions, one for each image file format:
+
+     int stbi_write_png(char const *filename, int w, int h, int comp, const void *data, int stride_in_bytes);
+     int stbi_write_bmp(char const *filename, int w, int h, int comp, const void *data);
+     int stbi_write_tga(char const *filename, int w, int h, int comp, const void *data);
+     int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
+     int stbi_write_jpg(char const *filename, int w, int h, int comp, const float *data);
+
+   There are also four equivalent functions that use an arbitrary write function. You are
+   expected to open/close your file-equivalent before and after calling these:
+
+     int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void  *data, int stride_in_bytes);
+     int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void  *data);
+     int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void  *data);
+     int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
+     int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality);
+
+   where the callback is:
+      void stbi_write_func(void *context, void *data, int size);
+
+   You can define STBI_WRITE_NO_STDIO to disable the file variant of these
+   functions, so the library will not use stdio.h at all. However, this will
+   also disable HDR writing, because it requires stdio for formatted output.
+
+   Each function returns 0 on failure and non-0 on success.
+
+   The functions create an image file defined by the parameters. The image
+   is a rectangle of pixels stored from left-to-right, top-to-bottom.
+   Each pixel contains 'comp' channels of data stored interleaved with 8-bits
+   per channel, in the following order: 1=Y, 2=YA, 3=RGB, 4=RGBA. (Y is
+   monochrome color.) The rectangle is 'w' pixels wide and 'h' pixels tall.
+   The *data pointer points to the first byte of the top-left-most pixel.
+   For PNG, "stride_in_bytes" is the distance in bytes from the first byte of
+   a row of pixels to the first byte of the next row of pixels.
+
+   PNG creates output files with the same number of components as the input.
+   The BMP format expands Y to RGB in the file format and does not
+   output alpha.
+
+   PNG supports writing rectangles of data even when the bytes storing rows of
+   data are not consecutive in memory (e.g. sub-rectangles of a larger image),
+   by supplying the stride between the beginning of adjacent rows. The other
+   formats do not. (Thus you cannot write a native-format BMP through the BMP
+   writer, both because it is in BGR order and because it may have padding
+   at the end of the line.)
+
+   HDR expects linear float data. Since the format is always 32-bit rgb(e)
+   data, alpha (if provided) is discarded, and for monochrome data it is
+   replicated across all three channels.
+
+   TGA supports RLE or non-RLE compressed data. To use non-RLE-compressed
+   data, set the global variable 'stbi_write_tga_with_rle' to 0.
+
+   JPEG does ignore alpha channels in input data; quality is between 1 and 100.
+   Higher quality looks better but results in a bigger image.
+   JPEG baseline (no JPEG progressive).
+
+CREDITS:
+
+   PNG/BMP/TGA
+      Sean Barrett
+   HDR
+      Baldur Karlsson
+   TGA monochrome:
+      Jean-Sebastien Guay
+   misc enhancements:
+      Tim Kelsey
+   TGA RLE
+      Alan Hickman
+   initial file IO callback implementation
+      Emmanuel Julien
+   JPEG
+      Jon Olick (original jo_jpeg.cpp code)
+      Daniel Gibson
+   bugfixes:
+      github:Chribba
+      Guillaume Chereau
+      github:jry2
+      github:romigrou
+      Sergio Gonzalez
+      Jonas Karlsson
+      Filip Wasil
+      Thatcher Ulrich
+      github:poppolopoppo
+      Patrick Boettcher
+
+LICENSE
+
+  See end of file for license information.
+
+*/
+
+#ifndef INCLUDE_STB_IMAGE_WRITE_H
+#define INCLUDE_STB_IMAGE_WRITE_H
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+#ifdef STB_IMAGE_WRITE_STATIC
+#define STBIWDEF static
+#else
+#define STBIWDEF extern
+extern int stbi_write_tga_with_rle;
+#endif
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_png(char const *filename, int w, int h, int comp, const void  *data, int stride_in_bytes);
+STBIWDEF int stbi_write_bmp(char const *filename, int w, int h, int comp, const void  *data);
+STBIWDEF int stbi_write_tga(char const *filename, int w, int h, int comp, const void  *data);
+STBIWDEF int stbi_write_hdr(char const *filename, int w, int h, int comp, const float *data);
+STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void  *data, int quality);
+#endif
+
+typedef void stbi_write_func(void *context, void *data, int size);
+
+STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void  *data, int stride_in_bytes);
+STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void  *data);
+STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const void  *data);
+STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int w, int h, int comp, const float *data);
+STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void  *data, int quality);
+
+#ifdef __cplusplus
+}
+#endif
+
+#endif//INCLUDE_STB_IMAGE_WRITE_H
+
+#ifdef STB_IMAGE_WRITE_IMPLEMENTATION
+
+#ifdef _WIN32
+   #ifndef _CRT_SECURE_NO_WARNINGS
+   #define _CRT_SECURE_NO_WARNINGS
+   #endif
+   #ifndef _CRT_NONSTDC_NO_DEPRECATE
+   #define _CRT_NONSTDC_NO_DEPRECATE
+   #endif
+#endif
+
+#ifndef STBI_WRITE_NO_STDIO
+#include <stdio.h>
+#endif // STBI_WRITE_NO_STDIO
+
+#include <stdarg.h>
+#include <stdlib.h>
+#include <string.h>
+#include <math.h>
+
+#if defined(STBIW_MALLOC) && defined(STBIW_FREE) && (defined(STBIW_REALLOC) || defined(STBIW_REALLOC_SIZED))
+// ok
+#elif !defined(STBIW_MALLOC) && !defined(STBIW_FREE) && !defined(STBIW_REALLOC) && !defined(STBIW_REALLOC_SIZED)
+// ok
+#else
+#error "Must define all or none of STBIW_MALLOC, STBIW_FREE, and STBIW_REALLOC (or STBIW_REALLOC_SIZED)."
+#endif
+
+#ifndef STBIW_MALLOC
+#define STBIW_MALLOC(sz)        malloc(sz)
+#define STBIW_REALLOC(p,newsz)  realloc(p,newsz)
+#define STBIW_FREE(p)           free(p)
+#endif
+
+#ifndef STBIW_REALLOC_SIZED
+#define STBIW_REALLOC_SIZED(p,oldsz,newsz) STBIW_REALLOC(p,newsz)
+#endif
+
+
+#ifndef STBIW_MEMMOVE
+#define STBIW_MEMMOVE(a,b,sz) memmove(a,b,sz)
+#endif
+
+
+#ifndef STBIW_ASSERT
+#include <assert.h>
+#define STBIW_ASSERT(x) assert(x)
+#endif
+
+#define STBIW_UCHAR(x) (unsigned char) ((x) & 0xff)
+
+typedef struct
+{
+   stbi_write_func *func;
+   void *context;
+} stbi__write_context;
+
+// initialize a callback-based context
+static void stbi__start_write_callbacks(stbi__write_context *s, stbi_write_func *c, void *context)
+{
+   s->func    = c;
+   s->context = context;
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+
+static void stbi__stdio_write(void *context, void *data, int size)
+{
+   fwrite(data,1,size,(FILE*) context);
+}
+
+static int stbi__start_write_file(stbi__write_context *s, const char *filename)
+{
+   FILE *f = fopen(filename, "wb");
+   stbi__start_write_callbacks(s, stbi__stdio_write, (void *) f);
+   return f != NULL;
+}
+
+static void stbi__end_write_file(stbi__write_context *s)
+{
+   fclose((FILE *)s->context);
+}
+
+#endif // !STBI_WRITE_NO_STDIO
+
+typedef unsigned int stbiw_uint32;
+typedef int stb_image_write_test[sizeof(stbiw_uint32)==4 ? 1 : -1];
+
+#ifdef STB_IMAGE_WRITE_STATIC
+static int stbi_write_tga_with_rle = 1;
+#else
+int stbi_write_tga_with_rle = 1;
+#endif
+
+static void stbiw__writefv(stbi__write_context *s, const char *fmt, va_list v)
+{
+   while (*fmt) {
+      switch (*fmt++) {
+         case ' ': break;
+         case '1': { unsigned char x = STBIW_UCHAR(va_arg(v, int));
+                     s->func(s->context,&x,1);
+                     break; }
+         case '2': { int x = va_arg(v,int);
+                     unsigned char b[2];
+                     b[0] = STBIW_UCHAR(x);
+                     b[1] = STBIW_UCHAR(x>>8);
+                     s->func(s->context,b,2);
+                     break; }
+         case '4': { stbiw_uint32 x = va_arg(v,int);
+                     unsigned char b[4];
+                     b[0]=STBIW_UCHAR(x);
+                     b[1]=STBIW_UCHAR(x>>8);
+                     b[2]=STBIW_UCHAR(x>>16);
+                     b[3]=STBIW_UCHAR(x>>24);
+                     s->func(s->context,b,4);
+                     break; }
+         default:
+            STBIW_ASSERT(0);
+            return;
+      }
+   }
+}
+
+static void stbiw__writef(stbi__write_context *s, const char *fmt, ...)
+{
+   va_list v;
+   va_start(v, fmt);
+   stbiw__writefv(s, fmt, v);
+   va_end(v);
+}
+
+static void stbiw__putc(stbi__write_context *s, unsigned char c)
+{
+   s->func(s->context, &c, 1);
+}
+
+static void stbiw__write3(stbi__write_context *s, unsigned char a, unsigned char b, unsigned char c)
+{
+   unsigned char arr[3];
+   arr[0] = a, arr[1] = b, arr[2] = c;
+   s->func(s->context, arr, 3);
+}
+
+static void stbiw__write_pixel(stbi__write_context *s, int rgb_dir, int comp, int write_alpha, int expand_mono, unsigned char *d)
+{
+   unsigned char bg[3] = { 255, 0, 255}, px[3];
+   int k;
+
+   if (write_alpha < 0)
+      s->func(s->context, &d[comp - 1], 1);
+
+   switch (comp) {
+      case 2: // 2 pixels = mono + alpha, alpha is written separately, so same as 1-channel case
+      case 1:
+         if (expand_mono)
+            stbiw__write3(s, d[0], d[0], d[0]); // monochrome bmp
+         else
+            s->func(s->context, d, 1);  // monochrome TGA
+         break;
+      case 4:
+         if (!write_alpha) {
+            // composite against pink background
+            for (k = 0; k < 3; ++k)
+               px[k] = bg[k] + ((d[k] - bg[k]) * d[3]) / 255;
+            stbiw__write3(s, px[1 - rgb_dir], px[1], px[1 + rgb_dir]);
+            break;
+         }
+         /* FALLTHROUGH */
+      case 3:
+         stbiw__write3(s, d[1 - rgb_dir], d[1], d[1 + rgb_dir]);
+         break;
+   }
+   if (write_alpha > 0)
+      s->func(s->context, &d[comp - 1], 1);
+}
+
+static void stbiw__write_pixels(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, void *data, int write_alpha, int scanline_pad, int expand_mono)
+{
+   stbiw_uint32 zero = 0;
+   int i,j, j_end;
+
+   if (y <= 0)
+      return;
+
+   if (vdir < 0)
+      j_end = -1, j = y-1;
+   else
+      j_end =  y, j = 0;
+
+   for (; j != j_end; j += vdir) {
+      for (i=0; i < x; ++i) {
+         unsigned char *d = (unsigned char *) data + (j*x+i)*comp;
+         stbiw__write_pixel(s, rgb_dir, comp, write_alpha, expand_mono, d);
+      }
+      s->func(s->context, &zero, scanline_pad);
+   }
+}
+
+static int stbiw__outfile(stbi__write_context *s, int rgb_dir, int vdir, int x, int y, int comp, int expand_mono, void *data, int alpha, int pad, const char *fmt, ...)
+{
+   if (y < 0 || x < 0) {
+      return 0;
+   } else {
+      va_list v;
+      va_start(v, fmt);
+      stbiw__writefv(s, fmt, v);
+      va_end(v);
+      stbiw__write_pixels(s,rgb_dir,vdir,x,y,comp,data,alpha,pad, expand_mono);
+      return 1;
+   }
+}
+
+static int stbi_write_bmp_core(stbi__write_context *s, int x, int y, int comp, const void *data)
+{
+   int pad = (-x*3) & 3;
+   return stbiw__outfile(s,-1,-1,x,y,comp,1,(void *) data,0,pad,
+           "11 4 22 4" "4 44 22 444444",
+           'B', 'M', 14+40+(x*3+pad)*y, 0,0, 14+40,  // file header
+            40, x,y, 1,24, 0,0,0,0,0,0);             // bitmap header
+}
+
+STBIWDEF int stbi_write_bmp_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data)
+{
+   stbi__write_context s;
+   stbi__start_write_callbacks(&s, func, context);
+   return stbi_write_bmp_core(&s, x, y, comp, data);
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_bmp(char const *filename, int x, int y, int comp, const void *data)
+{
+   stbi__write_context s;
+   if (stbi__start_write_file(&s,filename)) {
+      int r = stbi_write_bmp_core(&s, x, y, comp, data);
+      stbi__end_write_file(&s);
+      return r;
+   } else
+      return 0;
+}
+#endif //!STBI_WRITE_NO_STDIO
+
+static int stbi_write_tga_core(stbi__write_context *s, int x, int y, int comp, void *data)
+{
+   int has_alpha = (comp == 2 || comp == 4);
+   int colorbytes = has_alpha ? comp-1 : comp;
+   int format = colorbytes < 2 ? 3 : 2; // 3 color channels (RGB/RGBA) = 2, 1 color channel (Y/YA) = 3
+
+   if (y < 0 || x < 0)
+      return 0;
+
+   if (!stbi_write_tga_with_rle) {
+      return stbiw__outfile(s, -1, -1, x, y, comp, 0, (void *) data, has_alpha, 0,
+         "111 221 2222 11", 0, 0, format, 0, 0, 0, 0, 0, x, y, (colorbytes + has_alpha) * 8, has_alpha * 8);
+   } else {
+      int i,j,k;
+
+      stbiw__writef(s, "111 221 2222 11", 0,0,format+8, 0,0,0, 0,0,x,y, (colorbytes + has_alpha) * 8, has_alpha * 8);
+
+      for (j = y - 1; j >= 0; --j) {
+          unsigned char *row = (unsigned char *) data + j * x * comp;
+         int len;
+
+         for (i = 0; i < x; i += len) {
+            unsigned char *begin = row + i * comp;
+            int diff = 1;
+            len = 1;
+
+            if (i < x - 1) {
+               ++len;
+               diff = memcmp(begin, row + (i + 1) * comp, comp);
+               if (diff) {
+                  const unsigned char *prev = begin;
+                  for (k = i + 2; k < x && len < 128; ++k) {
+                     if (memcmp(prev, row + k * comp, comp)) {
+                        prev += comp;
+                        ++len;
+                     } else {
+                        --len;
+                        break;
+                     }
+                  }
+               } else {
+                  for (k = i + 2; k < x && len < 128; ++k) {
+                     if (!memcmp(begin, row + k * comp, comp)) {
+                        ++len;
+                     } else {
+                        break;
+                     }
+                  }
+               }
+            }
+
+            if (diff) {
+               unsigned char header = STBIW_UCHAR(len - 1);
+               s->func(s->context, &header, 1);
+               for (k = 0; k < len; ++k) {
+                  stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin + k * comp);
+               }
+            } else {
+               unsigned char header = STBIW_UCHAR(len - 129);
+               s->func(s->context, &header, 1);
+               stbiw__write_pixel(s, -1, comp, has_alpha, 0, begin);
+            }
+         }
+      }
+   }
+   return 1;
+}
+
+STBIWDEF int stbi_write_tga_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data)
+{
+   stbi__write_context s;
+   stbi__start_write_callbacks(&s, func, context);
+   return stbi_write_tga_core(&s, x, y, comp, (void *) data);
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_tga(char const *filename, int x, int y, int comp, const void *data)
+{
+   stbi__write_context s;
+   if (stbi__start_write_file(&s,filename)) {
+      int r = stbi_write_tga_core(&s, x, y, comp, (void *) data);
+      stbi__end_write_file(&s);
+      return r;
+   } else
+      return 0;
+}
+#endif
+
+// *************************************************************************************************
+// Radiance RGBE HDR writer
+// by Baldur Karlsson
+
+#define stbiw__max(a, b)  ((a) > (b) ? (a) : (b))
+
+void stbiw__linear_to_rgbe(unsigned char *rgbe, float *linear)
+{
+   int exponent;
+   float maxcomp = stbiw__max(linear[0], stbiw__max(linear[1], linear[2]));
+
+   if (maxcomp < 1e-32f) {
+      rgbe[0] = rgbe[1] = rgbe[2] = rgbe[3] = 0;
+   } else {
+      float normalize = (float) frexp(maxcomp, &exponent) * 256.0f/maxcomp;
+
+      rgbe[0] = (unsigned char)(linear[0] * normalize);
+      rgbe[1] = (unsigned char)(linear[1] * normalize);
+      rgbe[2] = (unsigned char)(linear[2] * normalize);
+      rgbe[3] = (unsigned char)(exponent + 128);
+   }
+}
+
+void stbiw__write_run_data(stbi__write_context *s, int length, unsigned char databyte)
+{
+   unsigned char lengthbyte = STBIW_UCHAR(length+128);
+   STBIW_ASSERT(length+128 <= 255);
+   s->func(s->context, &lengthbyte, 1);
+   s->func(s->context, &databyte, 1);
+}
+
+void stbiw__write_dump_data(stbi__write_context *s, int length, unsigned char *data)
+{
+   unsigned char lengthbyte = STBIW_UCHAR(length);
+   STBIW_ASSERT(length <= 128); // inconsistent with spec but consistent with official code
+   s->func(s->context, &lengthbyte, 1);
+   s->func(s->context, data, length);
+}
+
+void stbiw__write_hdr_scanline(stbi__write_context *s, int width, int ncomp, unsigned char *scratch, float *scanline)
+{
+   unsigned char scanlineheader[4] = { 2, 2, 0, 0 };
+   unsigned char rgbe[4];
+   float linear[3];
+   int x;
+
+   scanlineheader[2] = (width&0xff00)>>8;
+   scanlineheader[3] = (width&0x00ff);
+
+   /* skip RLE for images too small or large */
+   if (width < 8 || width >= 32768) {
+      for (x=0; x < width; x++) {
+         switch (ncomp) {
+            case 4: /* fallthrough */
+            case 3: linear[2] = scanline[x*ncomp + 2];
+                    linear[1] = scanline[x*ncomp + 1];
+                    linear[0] = scanline[x*ncomp + 0];
+                    break;
+            default:
+                    linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0];
+                    break;
+         }
+         stbiw__linear_to_rgbe(rgbe, linear);
+         s->func(s->context, rgbe, 4);
+      }
+   } else {
+      int c,r;
+      /* encode into scratch buffer */
+      for (x=0; x < width; x++) {
+         switch(ncomp) {
+            case 4: /* fallthrough */
+            case 3: linear[2] = scanline[x*ncomp + 2];
+                    linear[1] = scanline[x*ncomp + 1];
+                    linear[0] = scanline[x*ncomp + 0];
+                    break;
+            default:
+                    linear[0] = linear[1] = linear[2] = scanline[x*ncomp + 0];
+                    break;
+         }
+         stbiw__linear_to_rgbe(rgbe, linear);
+         scratch[x + width*0] = rgbe[0];
+         scratch[x + width*1] = rgbe[1];
+         scratch[x + width*2] = rgbe[2];
+         scratch[x + width*3] = rgbe[3];
+      }
+
+      s->func(s->context, scanlineheader, 4);
+
+      /* RLE each component separately */
+      for (c=0; c < 4; c++) {
+         unsigned char *comp = &scratch[width*c];
+
+         x = 0;
+         while (x < width) {
+            // find first run
+            r = x;
+            while (r+2 < width) {
+               if (comp[r] == comp[r+1] && comp[r] == comp[r+2])
+                  break;
+               ++r;
+            }
+            if (r+2 >= width)
+               r = width;
+            // dump up to first run
+            while (x < r) {
+               int len = r-x;
+               if (len > 128) len = 128;
+               stbiw__write_dump_data(s, len, &comp[x]);
+               x += len;
+            }
+            // if there's a run, output it
+            if (r+2 < width) { // same test as what we break out of in search loop, so only true if we break'd
+               // find next byte after run
+               while (r < width && comp[r] == comp[x])
+                  ++r;
+               // output run up to r
+               while (x < r) {
+                  int len = r-x;
+                  if (len > 127) len = 127;
+                  stbiw__write_run_data(s, len, comp[x]);
+                  x += len;
+               }
+            }
+         }
+      }
+   }
+}
+
+static int stbi_write_hdr_core(stbi__write_context *s, int x, int y, int comp, float *data)
+{
+   if (y <= 0 || x <= 0 || data == NULL)
+      return 0;
+   else {
+      // Each component is stored separately. Allocate scratch space for full output scanline.
+      unsigned char *scratch = (unsigned char *) STBIW_MALLOC(x*4);
+      int i, len;
+      char buffer[128];
+      char header[] = "#?RADIANCE\n# Written by stb_image_write.h\nFORMAT=32-bit_rle_rgbe\n";
+      s->func(s->context, header, sizeof(header)-1);
+
+      len = sprintf(buffer, "EXPOSURE=          1.0000000000000\n\n-Y %d +X %d\n", y, x);
+      s->func(s->context, buffer, len);
+
+      for(i=0; i < y; i++)
+         stbiw__write_hdr_scanline(s, x, comp, scratch, data + comp*i*x);
+      STBIW_FREE(scratch);
+      return 1;
+   }
+}
+
+STBIWDEF int stbi_write_hdr_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const float *data)
+{
+   stbi__write_context s;
+   stbi__start_write_callbacks(&s, func, context);
+   return stbi_write_hdr_core(&s, x, y, comp, (float *) data);
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_hdr(char const *filename, int x, int y, int comp, const float *data)
+{
+   stbi__write_context s;
+   if (stbi__start_write_file(&s,filename)) {
+      int r = stbi_write_hdr_core(&s, x, y, comp, (float *) data);
+      stbi__end_write_file(&s);
+      return r;
+   } else
+      return 0;
+}
+#endif // STBI_WRITE_NO_STDIO
+
+
+//////////////////////////////////////////////////////////////////////////////
+//
+// PNG writer
+//
+
+// stretchy buffer; stbiw__sbpush() == vector<>::push_back() -- stbiw__sbcount() == vector<>::size()
+#define stbiw__sbraw(a) ((int *) (a) - 2)
+#define stbiw__sbm(a)   stbiw__sbraw(a)[0]
+#define stbiw__sbn(a)   stbiw__sbraw(a)[1]
+
+#define stbiw__sbneedgrow(a,n)  ((a)==0 || stbiw__sbn(a)+n >= stbiw__sbm(a))
+#define stbiw__sbmaybegrow(a,n) (stbiw__sbneedgrow(a,(n)) ? stbiw__sbgrow(a,n) : 0)
+#define stbiw__sbgrow(a,n)  stbiw__sbgrowf((void **) &(a), (n), sizeof(*(a)))
+
+#define stbiw__sbpush(a, v)      (stbiw__sbmaybegrow(a,1), (a)[stbiw__sbn(a)++] = (v))
+#define stbiw__sbcount(a)        ((a) ? stbiw__sbn(a) : 0)
+#define stbiw__sbfree(a)         ((a) ? STBIW_FREE(stbiw__sbraw(a)),0 : 0)
+
+static void *stbiw__sbgrowf(void **arr, int increment, int itemsize)
+{
+   int m = *arr ? 2*stbiw__sbm(*arr)+increment : increment+1;
+   void *p = STBIW_REALLOC_SIZED(*arr ? stbiw__sbraw(*arr) : 0, *arr ? (stbiw__sbm(*arr)*itemsize + sizeof(int)*2) : 0, itemsize * m + sizeof(int)*2);
+   STBIW_ASSERT(p);
+   if (p) {
+      if (!*arr) ((int *) p)[1] = 0;
+      *arr = (void *) ((int *) p + 2);
+      stbiw__sbm(*arr) = m;
+   }
+   return *arr;
+}
+
+static unsigned char *stbiw__zlib_flushf(unsigned char *data, unsigned int *bitbuffer, int *bitcount)
+{
+   while (*bitcount >= 8) {
+      stbiw__sbpush(data, STBIW_UCHAR(*bitbuffer));
+      *bitbuffer >>= 8;
+      *bitcount -= 8;
+   }
+   return data;
+}
+
+static int stbiw__zlib_bitrev(int code, int codebits)
+{
+   int res=0;
+   while (codebits--) {
+      res = (res << 1) | (code & 1);
+      code >>= 1;
+   }
+   return res;
+}
+
+static unsigned int stbiw__zlib_countm(unsigned char *a, unsigned char *b, int limit)
+{
+   int i;
+   for (i=0; i < limit && i < 258; ++i)
+      if (a[i] != b[i]) break;
+   return i;
+}
+
+static unsigned int stbiw__zhash(unsigned char *data)
+{
+   stbiw_uint32 hash = data[0] + (data[1] << 8) + (data[2] << 16);
+   hash ^= hash << 3;
+   hash += hash >> 5;
+   hash ^= hash << 4;
+   hash += hash >> 17;
+   hash ^= hash << 25;
+   hash += hash >> 6;
+   return hash;
+}
+
+#define stbiw__zlib_flush() (out = stbiw__zlib_flushf(out, &bitbuf, &bitcount))
+#define stbiw__zlib_add(code,codebits) \
+      (bitbuf |= (code) << bitcount, bitcount += (codebits), stbiw__zlib_flush())
+#define stbiw__zlib_huffa(b,c)  stbiw__zlib_add(stbiw__zlib_bitrev(b,c),c)
+// default huffman tables
+#define stbiw__zlib_huff1(n)  stbiw__zlib_huffa(0x30 + (n), 8)
+#define stbiw__zlib_huff2(n)  stbiw__zlib_huffa(0x190 + (n)-144, 9)
+#define stbiw__zlib_huff3(n)  stbiw__zlib_huffa(0 + (n)-256,7)
+#define stbiw__zlib_huff4(n)  stbiw__zlib_huffa(0xc0 + (n)-280,8)
+#define stbiw__zlib_huff(n)  ((n) <= 143 ? stbiw__zlib_huff1(n) : (n) <= 255 ? stbiw__zlib_huff2(n) : (n) <= 279 ? stbiw__zlib_huff3(n) : stbiw__zlib_huff4(n))
+#define stbiw__zlib_huffb(n) ((n) <= 143 ? stbiw__zlib_huff1(n) : stbiw__zlib_huff2(n))
+
+#define stbiw__ZHASH   16384
+
+unsigned char * stbi_zlib_compress(unsigned char *data, int data_len, int *out_len, int quality)
+{
+   static unsigned short lengthc[] = { 3,4,5,6,7,8,9,10,11,13,15,17,19,23,27,31,35,43,51,59,67,83,99,115,131,163,195,227,258, 259 };
+   static unsigned char  lengtheb[]= { 0,0,0,0,0,0,0, 0, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4,  4,  5,  5,  5,  5,  0 };
+   static unsigned short distc[]   = { 1,2,3,4,5,7,9,13,17,25,33,49,65,97,129,193,257,385,513,769,1025,1537,2049,3073,4097,6145,8193,12289,16385,24577, 32768 };
+   static unsigned char  disteb[]  = { 0,0,0,0,1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,13,13 };
+   unsigned int bitbuf=0;
+   int i,j, bitcount=0;
+   unsigned char *out = NULL;
+   unsigned char ***hash_table = (unsigned char***) STBIW_MALLOC(stbiw__ZHASH * sizeof(char**));
+   if (quality < 5) quality = 5;
+
+   stbiw__sbpush(out, 0x78);   // DEFLATE 32K window
+   stbiw__sbpush(out, 0x5e);   // FLEVEL = 1
+   stbiw__zlib_add(1,1);  // BFINAL = 1
+   stbiw__zlib_add(1,2);  // BTYPE = 1 -- fixed huffman
+
+   for (i=0; i < stbiw__ZHASH; ++i)
+      hash_table[i] = NULL;
+
+   i=0;
+   while (i < data_len-3) {
+      // hash next 3 bytes of data to be compressed
+      int h = stbiw__zhash(data+i)&(stbiw__ZHASH-1), best=3;
+      unsigned char *bestloc = 0;
+      unsigned char **hlist = hash_table[h];
+      int n = stbiw__sbcount(hlist);
+      for (j=0; j < n; ++j) {
+         if (hlist[j]-data > i-32768) { // if entry lies within window
+            int d = stbiw__zlib_countm(hlist[j], data+i, data_len-i);
+            if (d >= best) best=d,bestloc=hlist[j];
+         }
+      }
+      // when hash table entry is too long, delete half the entries
+      if (hash_table[h] && stbiw__sbn(hash_table[h]) == 2*quality) {
+         STBIW_MEMMOVE(hash_table[h], hash_table[h]+quality, sizeof(hash_table[h][0])*quality);
+         stbiw__sbn(hash_table[h]) = quality;
+      }
+      stbiw__sbpush(hash_table[h],data+i);
+
+      if (bestloc) {
+         // "lazy matching" - check match at *next* byte, and if it's better, do cur byte as literal
+         h = stbiw__zhash(data+i+1)&(stbiw__ZHASH-1);
+         hlist = hash_table[h];
+         n = stbiw__sbcount(hlist);
+         for (j=0; j < n; ++j) {
+            if (hlist[j]-data > i-32767) {
+               int e = stbiw__zlib_countm(hlist[j], data+i+1, data_len-i-1);
+               if (e > best) { // if next match is better, bail on current match
+                  bestloc = NULL;
+                  break;
+               }
+            }
+         }
+      }
+
+      if (bestloc) {
+         int d = (int) (data+i - bestloc); // distance back
+         STBIW_ASSERT(d <= 32767 && best <= 258);
+         for (j=0; best > lengthc[j+1]-1; ++j);
+         stbiw__zlib_huff(j+257);
+         if (lengtheb[j]) stbiw__zlib_add(best - lengthc[j], lengtheb[j]);
+         for (j=0; d > distc[j+1]-1; ++j);
+         stbiw__zlib_add(stbiw__zlib_bitrev(j,5),5);
+         if (disteb[j]) stbiw__zlib_add(d - distc[j], disteb[j]);
+         i += best;
+      } else {
+         stbiw__zlib_huffb(data[i]);
+         ++i;
+      }
+   }
+   // write out final bytes
+   for (;i < data_len; ++i)
+      stbiw__zlib_huffb(data[i]);
+   stbiw__zlib_huff(256); // end of block
+   // pad with 0 bits to byte boundary
+   while (bitcount)
+      stbiw__zlib_add(0,1);
+
+   for (i=0; i < stbiw__ZHASH; ++i)
+      (void) stbiw__sbfree(hash_table[i]);
+   STBIW_FREE(hash_table);
+
+   {
+      // compute adler32 on input
+      unsigned int s1=1, s2=0;
+      int blocklen = (int) (data_len % 5552);
+      j=0;
+      while (j < data_len) {
+         for (i=0; i < blocklen; ++i) s1 += data[j+i], s2 += s1;
+         s1 %= 65521, s2 %= 65521;
+         j += blocklen;
+         blocklen = 5552;
+      }
+      stbiw__sbpush(out, STBIW_UCHAR(s2 >> 8));
+      stbiw__sbpush(out, STBIW_UCHAR(s2));
+      stbiw__sbpush(out, STBIW_UCHAR(s1 >> 8));
+      stbiw__sbpush(out, STBIW_UCHAR(s1));
+   }
+   *out_len = stbiw__sbn(out);
+   // make returned pointer freeable
+   STBIW_MEMMOVE(stbiw__sbraw(out), out, *out_len);
+   return (unsigned char *) stbiw__sbraw(out);
+}
+
+static unsigned int stbiw__crc32(unsigned char *buffer, int len)
+{
+   static unsigned int crc_table[256] =
+   {
+      0x00000000, 0x77073096, 0xEE0E612C, 0x990951BA, 0x076DC419, 0x706AF48F, 0xE963A535, 0x9E6495A3,
+      0x0eDB8832, 0x79DCB8A4, 0xE0D5E91E, 0x97D2D988, 0x09B64C2B, 0x7EB17CBD, 0xE7B82D07, 0x90BF1D91,
+      0x1DB71064, 0x6AB020F2, 0xF3B97148, 0x84BE41DE, 0x1ADAD47D, 0x6DDDE4EB, 0xF4D4B551, 0x83D385C7,
+      0x136C9856, 0x646BA8C0, 0xFD62F97A, 0x8A65C9EC, 0x14015C4F, 0x63066CD9, 0xFA0F3D63, 0x8D080DF5,
+      0x3B6E20C8, 0x4C69105E, 0xD56041E4, 0xA2677172, 0x3C03E4D1, 0x4B04D447, 0xD20D85FD, 0xA50AB56B,
+      0x35B5A8FA, 0x42B2986C, 0xDBBBC9D6, 0xACBCF940, 0x32D86CE3, 0x45DF5C75, 0xDCD60DCF, 0xABD13D59,
+      0x26D930AC, 0x51DE003A, 0xC8D75180, 0xBFD06116, 0x21B4F4B5, 0x56B3C423, 0xCFBA9599, 0xB8BDA50F,
+      0x2802B89E, 0x5F058808, 0xC60CD9B2, 0xB10BE924, 0x2F6F7C87, 0x58684C11, 0xC1611DAB, 0xB6662D3D,
+      0x76DC4190, 0x01DB7106, 0x98D220BC, 0xEFD5102A, 0x71B18589, 0x06B6B51F, 0x9FBFE4A5, 0xE8B8D433,
+      0x7807C9A2, 0x0F00F934, 0x9609A88E, 0xE10E9818, 0x7F6A0DBB, 0x086D3D2D, 0x91646C97, 0xE6635C01,
+      0x6B6B51F4, 0x1C6C6162, 0x856530D8, 0xF262004E, 0x6C0695ED, 0x1B01A57B, 0x8208F4C1, 0xF50FC457,
+      0x65B0D9C6, 0x12B7E950, 0x8BBEB8EA, 0xFCB9887C, 0x62DD1DDF, 0x15DA2D49, 0x8CD37CF3, 0xFBD44C65,
+      0x4DB26158, 0x3AB551CE, 0xA3BC0074, 0xD4BB30E2, 0x4ADFA541, 0x3DD895D7, 0xA4D1C46D, 0xD3D6F4FB,
+      0x4369E96A, 0x346ED9FC, 0xAD678846, 0xDA60B8D0, 0x44042D73, 0x33031DE5, 0xAA0A4C5F, 0xDD0D7CC9,
+      0x5005713C, 0x270241AA, 0xBE0B1010, 0xC90C2086, 0x5768B525, 0x206F85B3, 0xB966D409, 0xCE61E49F,
+      0x5EDEF90E, 0x29D9C998, 0xB0D09822, 0xC7D7A8B4, 0x59B33D17, 0x2EB40D81, 0xB7BD5C3B, 0xC0BA6CAD,
+      0xEDB88320, 0x9ABFB3B6, 0x03B6E20C, 0x74B1D29A, 0xEAD54739, 0x9DD277AF, 0x04DB2615, 0x73DC1683,
+      0xE3630B12, 0x94643B84, 0x0D6D6A3E, 0x7A6A5AA8, 0xE40ECF0B, 0x9309FF9D, 0x0A00AE27, 0x7D079EB1,
+      0xF00F9344, 0x8708A3D2, 0x1E01F268, 0x6906C2FE, 0xF762575D, 0x806567CB, 0x196C3671, 0x6E6B06E7,
+      0xFED41B76, 0x89D32BE0, 0x10DA7A5A, 0x67DD4ACC, 0xF9B9DF6F, 0x8EBEEFF9, 0x17B7BE43, 0x60B08ED5,
+      0xD6D6A3E8, 0xA1D1937E, 0x38D8C2C4, 0x4FDFF252, 0xD1BB67F1, 0xA6BC5767, 0x3FB506DD, 0x48B2364B,
+      0xD80D2BDA, 0xAF0A1B4C, 0x36034AF6, 0x41047A60, 0xDF60EFC3, 0xA867DF55, 0x316E8EEF, 0x4669BE79,
+      0xCB61B38C, 0xBC66831A, 0x256FD2A0, 0x5268E236, 0xCC0C7795, 0xBB0B4703, 0x220216B9, 0x5505262F,
+      0xC5BA3BBE, 0xB2BD0B28, 0x2BB45A92, 0x5CB36A04, 0xC2D7FFA7, 0xB5D0CF31, 0x2CD99E8B, 0x5BDEAE1D,
+      0x9B64C2B0, 0xEC63F226, 0x756AA39C, 0x026D930A, 0x9C0906A9, 0xEB0E363F, 0x72076785, 0x05005713,
+      0x95BF4A82, 0xE2B87A14, 0x7BB12BAE, 0x0CB61B38, 0x92D28E9B, 0xE5D5BE0D, 0x7CDCEFB7, 0x0BDBDF21,
+      0x86D3D2D4, 0xF1D4E242, 0x68DDB3F8, 0x1FDA836E, 0x81BE16CD, 0xF6B9265B, 0x6FB077E1, 0x18B74777,
+      0x88085AE6, 0xFF0F6A70, 0x66063BCA, 0x11010B5C, 0x8F659EFF, 0xF862AE69, 0x616BFFD3, 0x166CCF45,
+      0xA00AE278, 0xD70DD2EE, 0x4E048354, 0x3903B3C2, 0xA7672661, 0xD06016F7, 0x4969474D, 0x3E6E77DB,
+      0xAED16A4A, 0xD9D65ADC, 0x40DF0B66, 0x37D83BF0, 0xA9BCAE53, 0xDEBB9EC5, 0x47B2CF7F, 0x30B5FFE9,
+      0xBDBDF21C, 0xCABAC28A, 0x53B39330, 0x24B4A3A6, 0xBAD03605, 0xCDD70693, 0x54DE5729, 0x23D967BF,
+      0xB3667A2E, 0xC4614AB8, 0x5D681B02, 0x2A6F2B94, 0xB40BBE37, 0xC30C8EA1, 0x5A05DF1B, 0x2D02EF8D
+   };
+
+   unsigned int crc = ~0u;
+   int i;
+   for (i=0; i < len; ++i)
+      crc = (crc >> 8) ^ crc_table[buffer[i] ^ (crc & 0xff)];
+   return ~crc;
+}
+
+#define stbiw__wpng4(o,a,b,c,d) ((o)[0]=STBIW_UCHAR(a),(o)[1]=STBIW_UCHAR(b),(o)[2]=STBIW_UCHAR(c),(o)[3]=STBIW_UCHAR(d),(o)+=4)
+#define stbiw__wp32(data,v) stbiw__wpng4(data, (v)>>24,(v)>>16,(v)>>8,(v));
+#define stbiw__wptag(data,s) stbiw__wpng4(data, s[0],s[1],s[2],s[3])
+
+static void stbiw__wpcrc(unsigned char **data, int len)
+{
+   unsigned int crc = stbiw__crc32(*data - len - 4, len+4);
+   stbiw__wp32(*data, crc);
+}
+
+static unsigned char stbiw__paeth(int a, int b, int c)
+{
+   int p = a + b - c, pa = abs(p-a), pb = abs(p-b), pc = abs(p-c);
+   if (pa <= pb && pa <= pc) return STBIW_UCHAR(a);
+   if (pb <= pc) return STBIW_UCHAR(b);
+   return STBIW_UCHAR(c);
+}
+
+// @OPTIMIZE: provide an option that always forces left-predict or paeth predict
+unsigned char *stbi_write_png_to_mem(unsigned char *pixels, int stride_bytes, int x, int y, int n, int *out_len)
+{
+   int ctype[5] = { -1, 0, 4, 2, 6 };
+   unsigned char sig[8] = { 137,80,78,71,13,10,26,10 };
+   unsigned char *out,*o, *filt, *zlib;
+   signed char *line_buffer;
+   int i,j,k,p,zlen;
+
+   if (stride_bytes == 0)
+      stride_bytes = x * n;
+
+   filt = (unsigned char *) STBIW_MALLOC((x*n+1) * y); if (!filt) return 0;
+   line_buffer = (signed char *) STBIW_MALLOC(x * n); if (!line_buffer) { STBIW_FREE(filt); return 0; }
+   for (j=0; j < y; ++j) {
+      static int mapping[] = { 0,1,2,3,4 };
+      static int firstmap[] = { 0,1,0,5,6 };
+      int *mymap = (j != 0) ? mapping : firstmap;
+      int best = 0, bestval = 0x7fffffff;
+      for (p=0; p < 2; ++p) {
+         for (k= p?best:0; k < 5; ++k) { // @TODO: clarity: rewrite this to go 0..5, and 'continue' the unwanted ones during 2nd pass
+            int type = mymap[k],est=0;
+            unsigned char *z = pixels + stride_bytes*j;
+            for (i=0; i < n; ++i)
+               switch (type) {
+                  case 0: line_buffer[i] = z[i]; break;
+                  case 1: line_buffer[i] = z[i]; break;
+                  case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break;
+                  case 3: line_buffer[i] = z[i] - (z[i-stride_bytes]>>1); break;
+                  case 4: line_buffer[i] = (signed char) (z[i] - stbiw__paeth(0,z[i-stride_bytes],0)); break;
+                  case 5: line_buffer[i] = z[i]; break;
+                  case 6: line_buffer[i] = z[i]; break;
+               }
+            for (i=n; i < x*n; ++i) {
+               switch (type) {
+                  case 0: line_buffer[i] = z[i]; break;
+                  case 1: line_buffer[i] = z[i] - z[i-n]; break;
+                  case 2: line_buffer[i] = z[i] - z[i-stride_bytes]; break;
+                  case 3: line_buffer[i] = z[i] - ((z[i-n] + z[i-stride_bytes])>>1); break;
+                  case 4: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], z[i-stride_bytes], z[i-stride_bytes-n]); break;
+                  case 5: line_buffer[i] = z[i] - (z[i-n]>>1); break;
+                  case 6: line_buffer[i] = z[i] - stbiw__paeth(z[i-n], 0,0); break;
+               }
+            }
+            if (p) break;
+            for (i=0; i < x*n; ++i)
+               est += abs((signed char) line_buffer[i]);
+            if (est < bestval) { bestval = est; best = k; }
+         }
+      }
+      // when we get here, best contains the filter type, and line_buffer contains the data
+      filt[j*(x*n+1)] = (unsigned char) best;
+      STBIW_MEMMOVE(filt+j*(x*n+1)+1, line_buffer, x*n);
+   }
+   STBIW_FREE(line_buffer);
+   zlib = stbi_zlib_compress(filt, y*( x*n+1), &zlen, 8); // increase 8 to get smaller but use more memory
+   STBIW_FREE(filt);
+   if (!zlib) return 0;
+
+   // each tag requires 12 bytes of overhead
+   out = (unsigned char *) STBIW_MALLOC(8 + 12+13 + 12+zlen + 12);
+   if (!out) return 0;
+   *out_len = 8 + 12+13 + 12+zlen + 12;
+
+   o=out;
+   STBIW_MEMMOVE(o,sig,8); o+= 8;
+   stbiw__wp32(o, 13); // header length
+   stbiw__wptag(o, "IHDR");
+   stbiw__wp32(o, x);
+   stbiw__wp32(o, y);
+   *o++ = 8;
+   *o++ = STBIW_UCHAR(ctype[n]);
+   *o++ = 0;
+   *o++ = 0;
+   *o++ = 0;
+   stbiw__wpcrc(&o,13);
+
+   stbiw__wp32(o, zlen);
+   stbiw__wptag(o, "IDAT");
+   STBIW_MEMMOVE(o, zlib, zlen);
+   o += zlen;
+   STBIW_FREE(zlib);
+   stbiw__wpcrc(&o, zlen);
+
+   stbiw__wp32(o,0);
+   stbiw__wptag(o, "IEND");
+   stbiw__wpcrc(&o,0);
+
+   STBIW_ASSERT(o == out + *out_len);
+
+   return out;
+}
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_png(char const *filename, int x, int y, int comp, const void *data, int stride_bytes)
+{
+   FILE *f;
+   int len;
+   unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len);
+   if (png == NULL) return 0;
+   f = fopen(filename, "wb");
+   if (!f) { STBIW_FREE(png); return 0; }
+   fwrite(png, 1, len, f);
+   fclose(f);
+   STBIW_FREE(png);
+   return 1;
+}
+#endif
+
+STBIWDEF int stbi_write_png_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int stride_bytes)
+{
+   int len;
+   unsigned char *png = stbi_write_png_to_mem((unsigned char *) data, stride_bytes, x, y, comp, &len);
+   if (png == NULL) return 0;
+   func(context, png, len);
+   STBIW_FREE(png);
+   return 1;
+}
+
+
+/* ***************************************************************************
+ *
+ * JPEG writer
+ *
+ * This is based on Jon Olick's jo_jpeg.cpp:
+ * public domain Simple, Minimalistic JPEG writer - http://www.jonolick.com/code.html
+ */
+
+static const unsigned char stbiw__jpg_ZigZag[] = { 0,1,5,6,14,15,27,28,2,4,7,13,16,26,29,42,3,8,12,17,25,30,41,43,9,11,18,
+      24,31,40,44,53,10,19,23,32,39,45,52,54,20,22,33,38,46,51,55,60,21,34,37,47,50,56,59,61,35,36,48,49,57,58,62,63 };
+
+static void stbiw__jpg_writeBits(stbi__write_context *s, int *bitBufP, int *bitCntP, const unsigned short *bs) {
+   int bitBuf = *bitBufP, bitCnt = *bitCntP;
+   bitCnt += bs[1];
+   bitBuf |= bs[0] << (24 - bitCnt);
+   while(bitCnt >= 8) {
+      unsigned char c = (bitBuf >> 16) & 255;
+      stbiw__putc(s, c);
+      if(c == 255) {
+         stbiw__putc(s, 0);
+      }
+      bitBuf <<= 8;
+      bitCnt -= 8;
+   }
+   *bitBufP = bitBuf;
+   *bitCntP = bitCnt;
+}
+
+static void stbiw__jpg_DCT(float *d0p, float *d1p, float *d2p, float *d3p, float *d4p, float *d5p, float *d6p, float *d7p) {
+   float d0 = *d0p, d1 = *d1p, d2 = *d2p, d3 = *d3p, d4 = *d4p, d5 = *d5p, d6 = *d6p, d7 = *d7p;
+   float z1, z2, z3, z4, z5, z11, z13;
+
+   float tmp0 = d0 + d7;
+   float tmp7 = d0 - d7;
+   float tmp1 = d1 + d6;
+   float tmp6 = d1 - d6;
+   float tmp2 = d2 + d5;
+   float tmp5 = d2 - d5;
+   float tmp3 = d3 + d4;
+   float tmp4 = d3 - d4;
+
+   // Even part
+   float tmp10 = tmp0 + tmp3;   // phase 2
+   float tmp13 = tmp0 - tmp3;
+   float tmp11 = tmp1 + tmp2;
+   float tmp12 = tmp1 - tmp2;
+
+   d0 = tmp10 + tmp11;       // phase 3
+   d4 = tmp10 - tmp11;
+
+   z1 = (tmp12 + tmp13) * 0.707106781f; // c4
+   d2 = tmp13 + z1;       // phase 5
+   d6 = tmp13 - z1;
+
+   // Odd part
+   tmp10 = tmp4 + tmp5;       // phase 2
+   tmp11 = tmp5 + tmp6;
+   tmp12 = tmp6 + tmp7;
+
+   // The rotator is modified from fig 4-8 to avoid extra negations.
+   z5 = (tmp10 - tmp12) * 0.382683433f; // c6
+   z2 = tmp10 * 0.541196100f + z5; // c2-c6
+   z4 = tmp12 * 1.306562965f + z5; // c2+c6
+   z3 = tmp11 * 0.707106781f; // c4
+
+   z11 = tmp7 + z3;      // phase 5
+   z13 = tmp7 - z3;
+
+   *d5p = z13 + z2;         // phase 6
+   *d3p = z13 - z2;
+   *d1p = z11 + z4;
+   *d7p = z11 - z4;
+
+   *d0p = d0;  *d2p = d2;  *d4p = d4;  *d6p = d6;
+}
+
+static void stbiw__jpg_calcBits(int val, unsigned short bits[2]) {
+   int tmp1 = val < 0 ? -val : val;
+   val = val < 0 ? val-1 : val;
+   bits[1] = 1;
+   while(tmp1 >>= 1) {
+      ++bits[1];
+   }
+   bits[0] = val & ((1<<bits[1])-1);
+}
+
+static int stbiw__jpg_processDU(stbi__write_context *s, int *bitBuf, int *bitCnt, float *CDU, float *fdtbl, int DC, const unsigned short HTDC[256][2], const unsigned short HTAC[256][2]) {
+   const unsigned short EOB[2] = { HTAC[0x00][0], HTAC[0x00][1] };
+   const unsigned short M16zeroes[2] = { HTAC[0xF0][0], HTAC[0xF0][1] };
+   int dataOff, i, diff, end0pos;
+   int DU[64];
+
+   // DCT rows
+   for(dataOff=0; dataOff<64; dataOff+=8) {
+      stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff+1], &CDU[dataOff+2], &CDU[dataOff+3], &CDU[dataOff+4], &CDU[dataOff+5], &CDU[dataOff+6], &CDU[dataOff+7]);
+   }
+   // DCT columns
+   for(dataOff=0; dataOff<8; ++dataOff) {
+      stbiw__jpg_DCT(&CDU[dataOff], &CDU[dataOff+8], &CDU[dataOff+16], &CDU[dataOff+24], &CDU[dataOff+32], &CDU[dataOff+40], &CDU[dataOff+48], &CDU[dataOff+56]);
+   }
+   // Quantize/descale/zigzag the coefficients
+   for(i=0; i<64; ++i) {
+      float v = CDU[i]*fdtbl[i];
+      // DU[stbiw__jpg_ZigZag[i]] = (int)(v < 0 ? ceilf(v - 0.5f) : floorf(v + 0.5f));
+      // ceilf() and floorf() are C99, not C89, but I /think/ they're not needed here anyway?
+      DU[stbiw__jpg_ZigZag[i]] = (int)(v < 0 ? v - 0.5f : v + 0.5f);
+   }
+
+   // Encode DC
+   diff = DU[0] - DC;
+   if (diff == 0) {
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[0]);
+   } else {
+      unsigned short bits[2];
+      stbiw__jpg_calcBits(diff, bits);
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTDC[bits[1]]);
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
+   }
+   // Encode ACs
+   end0pos = 63;
+   for(; (end0pos>0)&&(DU[end0pos]==0); --end0pos) {
+   }
+   // end0pos = first element in reverse order !=0
+   if(end0pos == 0) {
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
+      return DU[0];
+   }
+   for(i = 1; i <= end0pos; ++i) {
+      int startpos = i;
+      int nrzeroes;
+      unsigned short bits[2];
+      for (; DU[i]==0 && i<=end0pos; ++i) {
+      }
+      nrzeroes = i-startpos;
+      if ( nrzeroes >= 16 ) {
+         int lng = nrzeroes>>4;
+         int nrmarker;
+         for (nrmarker=1; nrmarker <= lng; ++nrmarker)
+            stbiw__jpg_writeBits(s, bitBuf, bitCnt, M16zeroes);
+         nrzeroes &= 15;
+      }
+      stbiw__jpg_calcBits(DU[i], bits);
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, HTAC[(nrzeroes<<4)+bits[1]]);
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, bits);
+   }
+   if(end0pos != 63) {
+      stbiw__jpg_writeBits(s, bitBuf, bitCnt, EOB);
+   }
+   return DU[0];
+}
+
+static int stbi_write_jpg_core(stbi__write_context *s, int width, int height, int comp, const void* data, int quality) {
+   // Constants that don't pollute global namespace
+   static const unsigned char std_dc_luminance_nrcodes[] = {0,0,1,5,1,1,1,1,1,1,0,0,0,0,0,0,0};
+   static const unsigned char std_dc_luminance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
+   static const unsigned char std_ac_luminance_nrcodes[] = {0,0,2,1,3,3,2,4,3,5,5,4,4,0,0,1,0x7d};
+   static const unsigned char std_ac_luminance_values[] = {
+      0x01,0x02,0x03,0x00,0x04,0x11,0x05,0x12,0x21,0x31,0x41,0x06,0x13,0x51,0x61,0x07,0x22,0x71,0x14,0x32,0x81,0x91,0xa1,0x08,
+      0x23,0x42,0xb1,0xc1,0x15,0x52,0xd1,0xf0,0x24,0x33,0x62,0x72,0x82,0x09,0x0a,0x16,0x17,0x18,0x19,0x1a,0x25,0x26,0x27,0x28,
+      0x29,0x2a,0x34,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,0x59,
+      0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x83,0x84,0x85,0x86,0x87,0x88,0x89,
+      0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,0xb5,0xb6,
+      0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,0xe1,0xe2,
+      0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
+   };
+   static const unsigned char std_dc_chrominance_nrcodes[] = {0,0,3,1,1,1,1,1,1,1,1,1,0,0,0,0,0};
+   static const unsigned char std_dc_chrominance_values[] = {0,1,2,3,4,5,6,7,8,9,10,11};
+   static const unsigned char std_ac_chrominance_nrcodes[] = {0,0,2,1,2,4,4,3,4,7,5,4,4,0,1,2,0x77};
+   static const unsigned char std_ac_chrominance_values[] = {
+      0x00,0x01,0x02,0x03,0x11,0x04,0x05,0x21,0x31,0x06,0x12,0x41,0x51,0x07,0x61,0x71,0x13,0x22,0x32,0x81,0x08,0x14,0x42,0x91,
+      0xa1,0xb1,0xc1,0x09,0x23,0x33,0x52,0xf0,0x15,0x62,0x72,0xd1,0x0a,0x16,0x24,0x34,0xe1,0x25,0xf1,0x17,0x18,0x19,0x1a,0x26,
+      0x27,0x28,0x29,0x2a,0x35,0x36,0x37,0x38,0x39,0x3a,0x43,0x44,0x45,0x46,0x47,0x48,0x49,0x4a,0x53,0x54,0x55,0x56,0x57,0x58,
+      0x59,0x5a,0x63,0x64,0x65,0x66,0x67,0x68,0x69,0x6a,0x73,0x74,0x75,0x76,0x77,0x78,0x79,0x7a,0x82,0x83,0x84,0x85,0x86,0x87,
+      0x88,0x89,0x8a,0x92,0x93,0x94,0x95,0x96,0x97,0x98,0x99,0x9a,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9,0xaa,0xb2,0xb3,0xb4,
+      0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xd2,0xd3,0xd4,0xd5,0xd6,0xd7,0xd8,0xd9,0xda,
+      0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8,0xe9,0xea,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7,0xf8,0xf9,0xfa
+   };
+   // Huffman tables
+   static const unsigned short YDC_HT[256][2] = { {0,2},{2,3},{3,3},{4,3},{5,3},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9}};
+   static const unsigned short UVDC_HT[256][2] = { {0,2},{1,2},{2,2},{6,3},{14,4},{30,5},{62,6},{126,7},{254,8},{510,9},{1022,10},{2046,11}};
+   static const unsigned short YAC_HT[256][2] = {
+      {10,4},{0,2},{1,2},{4,3},{11,4},{26,5},{120,7},{248,8},{1014,10},{65410,16},{65411,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {12,4},{27,5},{121,7},{502,9},{2038,11},{65412,16},{65413,16},{65414,16},{65415,16},{65416,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {28,5},{249,8},{1015,10},{4084,12},{65417,16},{65418,16},{65419,16},{65420,16},{65421,16},{65422,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {58,6},{503,9},{4085,12},{65423,16},{65424,16},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {59,6},{1016,10},{65430,16},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {122,7},{2039,11},{65438,16},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {123,7},{4086,12},{65446,16},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {250,8},{4087,12},{65454,16},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {504,9},{32704,15},{65462,16},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {505,9},{65470,16},{65471,16},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {506,9},{65479,16},{65480,16},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {1017,10},{65488,16},{65489,16},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {1018,10},{65497,16},{65498,16},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {2040,11},{65506,16},{65507,16},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {65515,16},{65516,16},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {2041,11},{65525,16},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
+   };
+   static const unsigned short UVAC_HT[256][2] = {
+      {0,2},{1,2},{4,3},{10,4},{24,5},{25,5},{56,6},{120,7},{500,9},{1014,10},{4084,12},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {11,4},{57,6},{246,8},{501,9},{2038,11},{4085,12},{65416,16},{65417,16},{65418,16},{65419,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {26,5},{247,8},{1015,10},{4086,12},{32706,15},{65420,16},{65421,16},{65422,16},{65423,16},{65424,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {27,5},{248,8},{1016,10},{4087,12},{65425,16},{65426,16},{65427,16},{65428,16},{65429,16},{65430,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {58,6},{502,9},{65431,16},{65432,16},{65433,16},{65434,16},{65435,16},{65436,16},{65437,16},{65438,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {59,6},{1017,10},{65439,16},{65440,16},{65441,16},{65442,16},{65443,16},{65444,16},{65445,16},{65446,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {121,7},{2039,11},{65447,16},{65448,16},{65449,16},{65450,16},{65451,16},{65452,16},{65453,16},{65454,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {122,7},{2040,11},{65455,16},{65456,16},{65457,16},{65458,16},{65459,16},{65460,16},{65461,16},{65462,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {249,8},{65463,16},{65464,16},{65465,16},{65466,16},{65467,16},{65468,16},{65469,16},{65470,16},{65471,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {503,9},{65472,16},{65473,16},{65474,16},{65475,16},{65476,16},{65477,16},{65478,16},{65479,16},{65480,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {504,9},{65481,16},{65482,16},{65483,16},{65484,16},{65485,16},{65486,16},{65487,16},{65488,16},{65489,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {505,9},{65490,16},{65491,16},{65492,16},{65493,16},{65494,16},{65495,16},{65496,16},{65497,16},{65498,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {506,9},{65499,16},{65500,16},{65501,16},{65502,16},{65503,16},{65504,16},{65505,16},{65506,16},{65507,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {2041,11},{65508,16},{65509,16},{65510,16},{65511,16},{65512,16},{65513,16},{65514,16},{65515,16},{65516,16},{0,0},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {16352,14},{65517,16},{65518,16},{65519,16},{65520,16},{65521,16},{65522,16},{65523,16},{65524,16},{65525,16},{0,0},{0,0},{0,0},{0,0},{0,0},
+      {1018,10},{32707,15},{65526,16},{65527,16},{65528,16},{65529,16},{65530,16},{65531,16},{65532,16},{65533,16},{65534,16},{0,0},{0,0},{0,0},{0,0},{0,0}
+   };
+   static const int YQT[] = {16,11,10,16,24,40,51,61,12,12,14,19,26,58,60,55,14,13,16,24,40,57,69,56,14,17,22,29,51,87,80,62,18,22,
+                             37,56,68,109,103,77,24,35,55,64,81,104,113,92,49,64,78,87,103,121,120,101,72,92,95,98,112,100,103,99};
+   static const int UVQT[] = {17,18,24,47,99,99,99,99,18,21,26,66,99,99,99,99,24,26,56,99,99,99,99,99,47,66,99,99,99,99,99,99,
+                              99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99,99};
+   static const float aasf[] = { 1.0f * 2.828427125f, 1.387039845f * 2.828427125f, 1.306562965f * 2.828427125f, 1.175875602f * 2.828427125f,
+                                 1.0f * 2.828427125f, 0.785694958f * 2.828427125f, 0.541196100f * 2.828427125f, 0.275899379f * 2.828427125f };
+
+   int row, col, i, k;
+   float fdtbl_Y[64], fdtbl_UV[64];
+   unsigned char YTable[64], UVTable[64];
+
+   if(!data || !width || !height || comp > 4 || comp < 1) {
+      return 0;
+   }
+
+   quality = quality ? quality : 90;
+   quality = quality < 1 ? 1 : quality > 100 ? 100 : quality;
+   quality = quality < 50 ? 5000 / quality : 200 - quality * 2;
+
+   for(i = 0; i < 64; ++i) {
+      int uvti, yti = (YQT[i]*quality+50)/100;
+      YTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (yti < 1 ? 1 : yti > 255 ? 255 : yti);
+      uvti = (UVQT[i]*quality+50)/100;
+      UVTable[stbiw__jpg_ZigZag[i]] = (unsigned char) (uvti < 1 ? 1 : uvti > 255 ? 255 : uvti);
+   }
+
+   for(row = 0, k = 0; row < 8; ++row) {
+      for(col = 0; col < 8; ++col, ++k) {
+         fdtbl_Y[k]  = 1 / (YTable [stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
+         fdtbl_UV[k] = 1 / (UVTable[stbiw__jpg_ZigZag[k]] * aasf[row] * aasf[col]);
+      }
+   }
+
+   // Write Headers
+   {
+      static const unsigned char head0[] = { 0xFF,0xD8,0xFF,0xE0,0,0x10,'J','F','I','F',0,1,1,0,0,1,0,1,0,0,0xFF,0xDB,0,0x84,0 };
+      static const unsigned char head2[] = { 0xFF,0xDA,0,0xC,3,1,0,2,0x11,3,0x11,0,0x3F,0 };
+      const unsigned char head1[] = { 0xFF,0xC0,0,0x11,8,(unsigned char)(height>>8),STBIW_UCHAR(height),(unsigned char)(width>>8),STBIW_UCHAR(width),
+                                      3,1,0x11,0,2,0x11,1,3,0x11,1,0xFF,0xC4,0x01,0xA2,0 };
+      s->func(s->context, (void*)head0, sizeof(head0));
+      s->func(s->context, (void*)YTable, sizeof(YTable));
+      stbiw__putc(s, 1);
+      s->func(s->context, UVTable, sizeof(UVTable));
+      s->func(s->context, (void*)head1, sizeof(head1));
+      s->func(s->context, (void*)(std_dc_luminance_nrcodes+1), sizeof(std_dc_luminance_nrcodes)-1);
+      s->func(s->context, (void*)std_dc_luminance_values, sizeof(std_dc_luminance_values));
+      stbiw__putc(s, 0x10); // HTYACinfo
+      s->func(s->context, (void*)(std_ac_luminance_nrcodes+1), sizeof(std_ac_luminance_nrcodes)-1);
+      s->func(s->context, (void*)std_ac_luminance_values, sizeof(std_ac_luminance_values));
+      stbiw__putc(s, 1); // HTUDCinfo
+      s->func(s->context, (void*)(std_dc_chrominance_nrcodes+1), sizeof(std_dc_chrominance_nrcodes)-1);
+      s->func(s->context, (void*)std_dc_chrominance_values, sizeof(std_dc_chrominance_values));
+      stbiw__putc(s, 0x11); // HTUACinfo
+      s->func(s->context, (void*)(std_ac_chrominance_nrcodes+1), sizeof(std_ac_chrominance_nrcodes)-1);
+      s->func(s->context, (void*)std_ac_chrominance_values, sizeof(std_ac_chrominance_values));
+      s->func(s->context, (void*)head2, sizeof(head2));
+   }
+
+   // Encode 8x8 macroblocks
+   {
+      static const unsigned short fillBits[] = {0x7F, 7};
+      const unsigned char *imageData = (const unsigned char *)data;
+      int DCY=0, DCU=0, DCV=0;
+      int bitBuf=0, bitCnt=0;
+      // comp == 2 is grey+alpha (alpha is ignored)
+      int ofsG = comp > 2 ? 1 : 0, ofsB = comp > 2 ? 2 : 0;
+      int x, y, pos;
+      for(y = 0; y < height; y += 8) {
+         for(x = 0; x < width; x += 8) {
+            float YDU[64], UDU[64], VDU[64];
+            for(row = y, pos = 0; row < y+8; ++row) {
+               for(col = x; col < x+8; ++col, ++pos) {
+                  int p = row*width*comp + col*comp;
+                  float r, g, b;
+                  if(row >= height) {
+                     p -= width*comp*(row+1 - height);
+                  }
+                  if(col >= width) {
+                     p -= comp*(col+1 - width);
+                  }
+
+                  r = imageData[p+0];
+                  g = imageData[p+ofsG];
+                  b = imageData[p+ofsB];
+                  YDU[pos]=+0.29900f*r+0.58700f*g+0.11400f*b-128;
+                  UDU[pos]=-0.16874f*r-0.33126f*g+0.50000f*b;
+                  VDU[pos]=+0.50000f*r-0.41869f*g-0.08131f*b;
+               }
+            }
+
+            DCY = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, YDU, fdtbl_Y, DCY, YDC_HT, YAC_HT);
+            DCU = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, UDU, fdtbl_UV, DCU, UVDC_HT, UVAC_HT);
+            DCV = stbiw__jpg_processDU(s, &bitBuf, &bitCnt, VDU, fdtbl_UV, DCV, UVDC_HT, UVAC_HT);
+         }
+      }
+
+      // Do the bit alignment of the EOI marker
+      stbiw__jpg_writeBits(s, &bitBuf, &bitCnt, fillBits);
+   }
+
+   // EOI
+   stbiw__putc(s, 0xFF);
+   stbiw__putc(s, 0xD9);
+
+   return 1;
+}
+
+STBIWDEF int stbi_write_jpg_to_func(stbi_write_func *func, void *context, int x, int y, int comp, const void *data, int quality)
+{
+   stbi__write_context s;
+   stbi__start_write_callbacks(&s, func, context);
+   return stbi_write_jpg_core(&s, x, y, comp, (void *) data, quality);
+}
+
+
+#ifndef STBI_WRITE_NO_STDIO
+STBIWDEF int stbi_write_jpg(char const *filename, int x, int y, int comp, const void *data, int quality)
+{
+   stbi__write_context s;
+   if (stbi__start_write_file(&s,filename)) {
+      int r = stbi_write_jpg_core(&s, x, y, comp, data, quality);
+      stbi__end_write_file(&s);
+      return r;
+   } else
+      return 0;
+}
+#endif
+
+#endif // STB_IMAGE_WRITE_IMPLEMENTATION
+
+/* Revision history
+      1.07  (2017-07-24)
+             doc fix
+      1.06 (2017-07-23)
+             writing JPEG (using Jon Olick's code)
+      1.05   ???
+      1.04 (2017-03-03)
+             monochrome BMP expansion
+      1.03   ???
+      1.02 (2016-04-02)
+             avoid allocating large structures on the stack
+      1.01 (2016-01-16)
+             STBIW_REALLOC_SIZED: support allocators with no realloc support
+             avoid race-condition in crc initialization
+             minor compile issues
+      1.00 (2015-09-14)
+             installable file IO function
+      0.99 (2015-09-13)
+             warning fixes; TGA rle support
+      0.98 (2015-04-08)
+             added STBIW_MALLOC, STBIW_ASSERT etc
+      0.97 (2015-01-18)
+             fixed HDR asserts, rewrote HDR rle logic
+      0.96 (2015-01-17)
+             add HDR output
+             fix monochrome BMP
+      0.95 (2014-08-17)
+		       add monochrome TGA output
+      0.94 (2014-05-31)
+             rename private functions to avoid conflicts with stb_image.h
+      0.93 (2014-05-27)
+             warning fixes
+      0.92 (2010-08-01)
+             casts to unsigned char to fix warnings
+      0.91 (2010-07-17)
+             first public release
+      0.90   first internal release
+*/
+
+/*
+------------------------------------------------------------------------------
+This software is available under 2 licenses -- choose whichever you prefer.
+------------------------------------------------------------------------------
+ALTERNATIVE A - MIT License
+Copyright (c) 2017 Sean Barrett
+Permission is hereby granted, free of charge, to any person obtaining a copy of
+this software and associated documentation files (the "Software"), to deal in
+the Software without restriction, including without limitation the rights to
+use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
+of the Software, and to permit persons to whom the Software is furnished to do
+so, subject to the following conditions:
+The above copyright notice and this permission notice shall be included in all
+copies or substantial portions of the Software.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+SOFTWARE.
+------------------------------------------------------------------------------
+ALTERNATIVE B - Public Domain (www.unlicense.org)
+This is free and unencumbered software released into the public domain.
+Anyone is free to copy, modify, publish, use, compile, sell, or distribute this
+software, either in source code form or as a compiled binary, for any purpose,
+commercial or non-commercial, and by any means.
+In jurisdictions that recognize copyright laws, the author or authors of this
+software dedicate any and all copyright interest in the software to the public
+domain. We make this dedication for the benefit of the public at large and to
+the detriment of our heirs and successors. We intend this dedication to be an
+overt act of relinquishment in perpetuity of all present and future rights to
+this software under copyright law.
+THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
+ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
+WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
+------------------------------------------------------------------------------
+*/

+ 467 - 0
CMakeLists.txt

@@ -0,0 +1,467 @@
+cmake_minimum_required(VERSION 3.8)
+
+set(Darknet_MAJOR_VERSION 0)
+set(Darknet_MINOR_VERSION 2)
+set(Darknet_PATCH_VERSION 5)
+set(Darknet_TWEAK_VERSION 1)
+set(Darknet_VERSION ${Darknet_MAJOR_VERSION}.${Darknet_MINOR_VERSION}.${Darknet_PATCH_VERSION}.${Darknet_TWEAK_VERSION})
+
+option(CMAKE_VERBOSE_MAKEFILE "Create verbose makefile" OFF)
+option(CUDA_VERBOSE_BUILD "Create verbose CUDA build" OFF)
+option(BUILD_SHARED_LIBS "Create dark as a shared library" ON)
+option(BUILD_AS_CPP "Build Darknet using C++ compiler also for C files" OFF)
+option(BUILD_USELIB_TRACK "Build uselib_track" ON)
+option(MANUALLY_EXPORT_TRACK_OPTFLOW "Manually export the TRACK_OPTFLOW=1 define" OFF)
+option(ENABLE_OPENCV "Enable OpenCV integration" ON)
+option(ENABLE_CUDA "Enable CUDA support" ON)
+option(ENABLE_CUDNN "Enable CUDNN" ON)
+option(ENABLE_CUDNN_HALF "Enable CUDNN Half precision" ON)
+option(ENABLE_ZED_CAMERA "Enable ZED Camera support" ON)
+option(ENABLE_VCPKG_INTEGRATION "Enable VCPKG integration" ON)
+
+if(ENABLE_VCPKG_INTEGRATION AND DEFINED ENV{VCPKG_ROOT} AND NOT DEFINED CMAKE_TOOLCHAIN_FILE)
+  set(CMAKE_TOOLCHAIN_FILE "$ENV{VCPKG_ROOT}/scripts/buildsystems/vcpkg.cmake" CACHE STRING "")
+  message(STATUS "VCPKG found: $ENV{VCPKG_ROOT}")
+  message(STATUS "Using VCPKG integration")
+endif()
+
+project(Darknet VERSION ${Darknet_VERSION})
+
+if(WIN32 AND NOT DEFINED CMAKE_TOOLCHAIN_FILE)
+  set(USE_INTEGRATED_LIBS "TRUE" CACHE BOOL "Use libs distributed with this repo")
+else()
+  set(USE_INTEGRATED_LIBS "FALSE" CACHE BOOL "Use libs distributed with this repo")
+endif()
+
+enable_language(C)
+enable_language(CXX)
+
+set(CMAKE_CXX_STANDARD 11)
+set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_LIST_DIR}/cmake/Modules/" ${CMAKE_MODULE_PATH})
+
+if (CMAKE_INSTALL_PREFIX_INITIALIZED_TO_DEFAULT)
+  set(CMAKE_INSTALL_PREFIX "${CMAKE_CURRENT_LIST_DIR}" CACHE PATH "Install prefix" FORCE)
+endif()
+
+set(INSTALL_BIN_DIR      "${CMAKE_CURRENT_LIST_DIR}" CACHE PATH "Path where exe and dll will be installed")
+set(INSTALL_LIB_DIR      "${CMAKE_CURRENT_LIST_DIR}" CACHE PATH "Path where lib will be installed")
+set(INSTALL_INCLUDE_DIR  "include/darknet"           CACHE PATH "Path where headers will be installed")
+set(INSTALL_CMAKE_DIR    "share/darknet"             CACHE PATH "Path where cmake configs will be installed")
+
+if(${CMAKE_VERSION} VERSION_LESS "3.9.0")
+  message(WARNING "To build with CUDA support you need CMake 3.9.0+")
+  set(ENABLE_CUDA "FALSE" CACHE BOOL "Enable CUDA support" FORCE)
+else()
+  include(CheckLanguage)
+  check_language(CUDA)
+  if(CMAKE_CUDA_COMPILER AND ENABLE_CUDA)
+    set(CUDA_ARCHITECTURES "Auto" CACHE STRING "\"Auto\" detects local machine GPU compute arch at runtime, \"Common\" and \"All\" cover common and entire subsets of architectures, \"Names\" is a list of architectures to enable by name, \"Numbers\" is a list of compute capabilities (version number) to enable")
+    set_property(CACHE CUDA_ARCHITECTURES PROPERTY STRINGS "Auto" "Common" "All" "Kepler Maxwell Kepler+Tegra Maxwell+Tegra Pascal" "3.0 7.5")
+    enable_language(CUDA)
+    find_package(CUDA REQUIRED)
+    if(CUDA_VERSION VERSION_LESS "9.0")
+      message(STATUS "Unsupported CUDA version, please upgrade to CUDA 9+. Disabling CUDA support")
+      set(ENABLE_CUDA "FALSE" CACHE BOOL "Enable CUDA support" FORCE)
+    else()
+      cuda_select_nvcc_arch_flags(CUDA_ARCH_FLAGS ${CUDA_ARCHITECTURES})
+      message(STATUS "Building with CUDA flags: " "${CUDA_ARCH_FLAGS}")
+      if (NOT "arch=compute_75,code=sm_75" IN_LIST CUDA_ARCH_FLAGS)
+        set(ENABLE_CUDNN_HALF "FALSE" CACHE BOOL "Enable CUDNN Half precision" FORCE)
+        message(STATUS "Your setup does not supports half precision (it requires CC >= 7.5)")
+      endif()
+    endif()
+  else()
+    set(ENABLE_CUDA "FALSE" CACHE BOOL "Enable CUDA support" FORCE)
+  endif()
+endif()
+
+if (WIN32 AND ENABLE_CUDA AND CMAKE_MAKE_PROGRAM MATCHES "ninja")
+  option(SELECT_OPENCV_MODULES "Use only few selected OpenCV modules to circumvent 8192 char limit when using Ninja on Windows" ON)
+else()
+  option(SELECT_OPENCV_MODULES "Use only few selected OpenCV modules to circumvent 8192 char limit when using Ninja on Windows" OFF)
+endif()
+
+if(USE_INTEGRATED_LIBS)
+  set(PThreads_windows_DIR ${CMAKE_CURRENT_LIST_DIR}/3rdparty/pthreads CACHE PATH "Path where pthreads for windows can be located")
+endif()
+set(Stb_DIR ${CMAKE_CURRENT_LIST_DIR}/3rdparty/stb CACHE PATH "Path where Stb image library can be located")
+
+set(CMAKE_DEBUG_POSTFIX d)
+set(CMAKE_THREAD_PREFER_PTHREAD ON)
+find_package(Threads REQUIRED)
+if(MSVC)
+  find_package(PThreads_windows REQUIRED)
+endif()
+if(ENABLE_OPENCV)
+  find_package(OpenCV)
+  if(OpenCV_FOUND)
+    if(SELECT_OPENCV_MODULES)
+      if(TARGET opencv_world)
+        list(APPEND OpenCV_LINKED_COMPONENTS "opencv_world")
+      else()
+        if(TARGET opencv_core)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_core")
+        endif()
+        if(TARGET opencv_highgui)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_highgui")
+        endif()
+        if(TARGET opencv_imgproc)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_imgproc")
+        endif()
+        if(TARGET opencv_video)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_video")
+        endif()
+        if(TARGET opencv_videoio)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_videoio")
+        endif()
+        if(TARGET opencv_imgcodecs)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_imgcodecs")
+        endif()
+        if(TARGET opencv_text)
+          list(APPEND OpenCV_LINKED_COMPONENTS "opencv_text")
+        endif()
+      endif()
+    else()
+      list(APPEND OpenCV_LINKED_COMPONENTS ${OpenCV_LIBS})
+    endif()
+  endif()
+endif()
+find_package(Stb REQUIRED)
+if(${CMAKE_VERSION} VERSION_LESS "3.11.0")
+  message(WARNING "To build with OpenMP support you need CMake 3.11.0+")
+else()
+  find_package(OpenMP)
+endif()
+
+set(ADDITIONAL_CXX_FLAGS "-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -Wno-deprecated-declarations -Wno-write-strings")
+set(ADDITIONAL_C_FLAGS "-Wall -Wno-unused-result -Wno-unknown-pragmas -Wfatal-errors -Wno-deprecated-declarations -Wno-write-strings")
+
+if(MSVC)
+  set(ADDITIONAL_CXX_FLAGS "/wd4013 /wd4018 /wd4028 /wd4047 /wd4068 /wd4090 /wd4101 /wd4113 /wd4133 /wd4190 /wd4244 /wd4267 /wd4305 /wd4477 /wd4996 /wd4819 /fp:fast")
+  set(ADDITIONAL_C_FLAGS "/wd4013 /wd4018 /wd4028 /wd4047 /wd4068 /wd4090 /wd4101 /wd4113 /wd4133 /wd4190 /wd4244 /wd4267 /wd4305 /wd4477 /wd4996 /wd4819 /fp:fast")
+  set(CMAKE_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} ${CMAKE_CXX_FLAGS}")
+  set(CMAKE_C_FLAGS "${ADDITIONAL_C_FLAGS} ${CMAKE_C_FLAGS}")
+  string(REGEX REPLACE "/O2" "/Ox" CMAKE_CXX_FLAGS_RELEASE ${CMAKE_CXX_FLAGS_RELEASE})
+  string(REGEX REPLACE "/O2" "/Ox" CMAKE_C_FLAGS_RELEASE ${CMAKE_C_FLAGS_RELEASE})
+endif()
+
+if(CMAKE_COMPILER_IS_GNUCC OR "${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
+  if ("${CMAKE_CXX_COMPILER_ID}" MATCHES "Clang")
+    if (UNIX AND NOT APPLE)
+      set(CMAKE_CXX_FLAGS "-pthread ${CMAKE_CXX_FLAGS}")  #force pthread to avoid bugs in some cmake setups
+      set(CMAKE_C_FLAGS "-pthread ${CMAKE_C_FLAGS}")
+    endif()
+  endif()
+  set(CMAKE_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} ${CMAKE_CXX_FLAGS}")
+  set(CMAKE_C_FLAGS "${ADDITIONAL_C_FLAGS} ${CMAKE_C_FLAGS}")
+  string(REGEX REPLACE "-O0" "-Og" CMAKE_CXX_FLAGS_DEBUG ${CMAKE_CXX_FLAGS_DEBUG})
+  string(REGEX REPLACE "-O3" "-Ofast" CMAKE_CXX_FLAGS_RELEASE ${CMAKE_CXX_FLAGS_RELEASE})
+  string(REGEX REPLACE "-O0" "-Og" CMAKE_C_FLAGS_DEBUG ${CMAKE_C_FLAGS_DEBUG})
+  string(REGEX REPLACE "-O3" "-Ofast" CMAKE_C_FLAGS_RELEASE ${CMAKE_C_FLAGS_RELEASE})
+  set(CMAKE_CXX_FLAGS_RELEASE "${CMAKE_CXX_FLAGS_RELEASE} -ffp-contract=fast -mavx -mavx2 -msse3 -msse4.1 -msse4.2 -msse4a")
+  set(CMAKE_C_FLAGS_RELEASE "${CMAKE_C_FLAGS_RELEASE} -ffp-contract=fast -mavx -mavx2 -msse3 -msse4.1 -msse4.2 -msse4a")
+endif()
+
+if(OpenCV_FOUND)
+  if(ENABLE_CUDA AND NOT OpenCV_CUDA_VERSION)
+    set(BUILD_USELIB_TRACK "FALSE" CACHE BOOL "Build uselib_track" FORCE)
+    message(STATUS "  ->  darknet is fine for now, but uselib_track has been disabled!")
+    message(STATUS "  ->  Please rebuild OpenCV from sources with CUDA support to enable it")
+  elseif(ENABLE_CUDA AND OpenCV_CUDA_VERSION)
+    if(TARGET opencv_cudaoptflow)
+      list(APPEND OpenCV_LINKED_COMPONENTS "opencv_cudaoptflow")
+    endif()
+    if(TARGET opencv_cudaimgproc)
+      list(APPEND OpenCV_LINKED_COMPONENTS "opencv_cudaimgproc")
+    endif()
+  endif()
+endif()
+
+if(ENABLE_CUDA)
+  find_package(CUDNN)
+  if(NOT CUDNN_FOUND)
+    set(ENABLE_CUDNN "FALSE" CACHE BOOL "Enable CUDNN" FORCE)
+  endif()
+endif()
+
+if(ENABLE_CUDA)
+  if (MSVC)
+    set(ADDITIONAL_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} /DGPU")
+    if(CUDNN_FOUND)
+      set(ADDITIONAL_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} /DCUDNN")
+    endif()
+    if(OpenCV_FOUND)
+      set(ADDITIONAL_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} /DOPENCV")
+    endif()
+    string(REPLACE " " "," ADDITIONAL_CXX_FLAGS_COMMA_SEPARATED "${ADDITIONAL_CXX_FLAGS}")
+    set(CUDA_HOST_COMPILER_FLAGS "-Wno-deprecated-declarations -Xcompiler=\"${ADDITIONAL_CXX_FLAGS_COMMA_SEPARATED}\"")
+  else()
+    set(ADDITIONAL_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} -DGPU")
+    if(CUDNN_FOUND)
+      set(ADDITIONAL_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} -DCUDNN")
+    endif()
+    if(OpenCV_FOUND)
+      set(ADDITIONAL_CXX_FLAGS "${ADDITIONAL_CXX_FLAGS} -DOPENCV")
+    endif()
+    set(CUDA_HOST_COMPILER_FLAGS "--compiler-options \" ${ADDITIONAL_CXX_FLAGS} -fPIC -fopenmp -Ofast \"")
+  endif()
+
+  string (REPLACE ";" " " CUDA_ARCH_FLAGS_SPACE_SEPARATED "${CUDA_ARCH_FLAGS}")
+  set(CMAKE_CUDA_FLAGS "${CUDA_ARCH_FLAGS_SPACE_SEPARATED} ${CUDA_HOST_COMPILER_FLAGS} ${CMAKE_CUDA_FLAGS}")
+  message(STATUS "CMAKE_CUDA_FLAGS: ${CMAKE_CUDA_FLAGS}")
+endif()
+
+if(ENABLE_CUDA)
+  if(ENABLE_ZED_CAMERA)
+    find_package(ZED 2 QUIET)
+    if(ZED_FOUND)
+      include_directories(${ZED_INCLUDE_DIRS})
+      link_directories(${ZED_LIBRARY_DIR})
+      message(STATUS "ZED SDK enabled")
+    else()
+      message(STATUS "ZED SDK not found")
+      set(ENABLE_ZED_CAMERA "FALSE" CACHE BOOL "Enable ZED Camera support" FORCE)
+    endif()
+  endif()
+else()
+  message(STATUS "ZED SDK not enabled, since it requires CUDA")
+  set(ENABLE_ZED_CAMERA "FALSE" CACHE BOOL "Enable ZED Camera support" FORCE)
+endif()
+
+set(DARKNET_INSTALL_INCLUDE_DIR ${INSTALL_INCLUDE_DIR})
+# Make relative paths absolute (needed later on)
+foreach(p LIB BIN INCLUDE CMAKE)
+  set(var INSTALL_${p}_DIR)
+  if(NOT IS_ABSOLUTE "${${var}}")
+    set(${var} "${CMAKE_INSTALL_PREFIX}/${${var}}")
+  endif()
+endforeach()
+
+configure_file(
+  "${CMAKE_CURRENT_LIST_DIR}/src/version.h.in"
+  "${CMAKE_CURRENT_LIST_DIR}/src/version.h"
+)
+
+#look for all *.h files in src folder
+file(GLOB headers "${CMAKE_CURRENT_LIST_DIR}/src/*.h")
+#add also files in the include folder
+list(APPEND headers
+  ${CMAKE_CURRENT_LIST_DIR}/include/darknet.h
+)
+#remove windows only files
+if(NOT WIN32)
+  list(REMOVE_ITEM headers
+    ${CMAKE_CURRENT_LIST_DIR}/src/gettimeofday.h
+    ${CMAKE_CURRENT_LIST_DIR}/src/getopt.h
+  )
+endif()
+#set(exported_headers ${headers})
+
+#look for all *.c files in src folder
+file(GLOB sources "${CMAKE_CURRENT_LIST_DIR}/src/*.c")
+#add also .cpp files
+list(APPEND sources
+  ${CMAKE_CURRENT_LIST_DIR}/src/http_stream.cpp
+  ${CMAKE_CURRENT_LIST_DIR}/src/image_opencv.cpp
+)
+#remove darknet.c file which is necessary only for the executable, not for the lib
+list(REMOVE_ITEM sources
+  ${CMAKE_CURRENT_LIST_DIR}/src/darknet.c
+)
+#remove windows only files
+if(NOT WIN32)
+  list(REMOVE_ITEM sources
+    ${CMAKE_CURRENT_LIST_DIR}/src/gettimeofday.c
+    ${CMAKE_CURRENT_LIST_DIR}/src/getopt.c
+  )
+endif()
+
+if(ENABLE_CUDA)
+  file(GLOB cuda_sources "${CMAKE_CURRENT_LIST_DIR}/src/*.cu")
+endif()
+
+if(BUILD_AS_CPP)
+  set_source_files_properties(${sources} PROPERTIES LANGUAGE CXX)
+endif()
+
+add_library(dark ${CMAKE_CURRENT_LIST_DIR}/include/yolo_v2_class.hpp ${CMAKE_CURRENT_LIST_DIR}/src/yolo_v2_class.cpp ${sources} ${headers} ${cuda_sources})
+set_target_properties(dark PROPERTIES POSITION_INDEPENDENT_CODE ON)
+if(ENABLE_CUDA)
+  set_target_properties(dark PROPERTIES CUDA_SEPARABLE_COMPILATION ON)
+endif()
+if(BUILD_SHARED_LIBS)
+  target_compile_definitions(dark PRIVATE LIB_EXPORTS=1)
+endif()
+if(BUILD_AS_CPP)
+  set_target_properties(dark PROPERTIES LINKER_LANGUAGE CXX)
+endif()
+
+if(OpenCV_FOUND AND OpenCV_VERSION VERSION_GREATER "3.0" AND BUILD_USELIB_TRACK)
+  add_executable(uselib_track ${CMAKE_CURRENT_LIST_DIR}/src/yolo_console_dll.cpp)
+endif()
+
+add_executable(uselib ${CMAKE_CURRENT_LIST_DIR}/src/yolo_console_dll.cpp)
+if(BUILD_AS_CPP)
+  set_target_properties(uselib PROPERTIES LINKER_LANGUAGE CXX)
+endif()
+
+add_executable(darknet ${CMAKE_CURRENT_LIST_DIR}/src/darknet.c ${sources} ${headers} ${cuda_sources})
+if(BUILD_AS_CPP)
+  set_source_files_properties(${CMAKE_CURRENT_LIST_DIR}/src/darknet.c PROPERTIES LANGUAGE CXX)
+  set_target_properties(darknet PROPERTIES LINKER_LANGUAGE CXX)
+endif()
+
+target_include_directories(darknet PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}/src> $<INSTALL_INTERFACE:${DARKNET_INSTALL_INCLUDE_DIR}> $<BUILD_INTERFACE:${Stb_INCLUDE_DIR}>)
+target_include_directories(dark PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}/src> $<INSTALL_INTERFACE:${DARKNET_INSTALL_INCLUDE_DIR}> $<BUILD_INTERFACE:${Stb_INCLUDE_DIR}>)
+target_include_directories(uselib PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}/include> $<BUILD_INTERFACE:${CMAKE_CURRENT_LIST_DIR}/src> $<INSTALL_INTERFACE:${DARKNET_INSTALL_INCLUDE_DIR}> $<BUILD_INTERFACE:${Stb_INCLUDE_DIR}>)
+
+target_compile_definitions(darknet PRIVATE -DUSE_CMAKE_LIBS)
+target_compile_definitions(dark PRIVATE -DUSE_CMAKE_LIBS)
+target_compile_definitions(uselib PRIVATE -DUSE_CMAKE_LIBS)
+
+if(OpenCV_FOUND AND OpenCV_VERSION VERSION_GREATER "3.0" AND BUILD_USELIB_TRACK AND NOT MANUALLY_EXPORT_TRACK_OPTFLOW)
+  target_compile_definitions(dark PUBLIC TRACK_OPTFLOW=1)
+endif()
+
+if(CUDNN_FOUND)
+  target_link_libraries(darknet PRIVATE CuDNN::CuDNN)
+  target_link_libraries(dark PRIVATE CuDNN::CuDNN)
+  target_compile_definitions(darknet PRIVATE -DCUDNN)
+  target_compile_definitions(dark PUBLIC -DCUDNN)
+  if(ENABLE_CUDNN_HALF)
+    target_compile_definitions(darknet PRIVATE -DCUDNN_HALF)
+    target_compile_definitions(dark PUBLIC -DCUDNN_HALF)
+  endif()
+endif()
+
+if(OpenCV_FOUND)
+  target_link_libraries(darknet PRIVATE ${OpenCV_LINKED_COMPONENTS})
+  target_link_libraries(uselib PRIVATE ${OpenCV_LINKED_COMPONENTS})
+  target_link_libraries(dark PUBLIC ${OpenCV_LINKED_COMPONENTS})
+  target_include_directories(dark PUBLIC ${OpenCV_INCLUDE_DIRS})
+  target_compile_definitions(darknet PRIVATE -DOPENCV)
+  target_compile_definitions(dark PUBLIC -DOPENCV)
+endif()
+
+if(OPENMP_FOUND)
+  target_link_libraries(darknet PRIVATE OpenMP::OpenMP_CXX)
+  target_link_libraries(darknet PRIVATE OpenMP::OpenMP_C)
+  target_link_libraries(dark PUBLIC OpenMP::OpenMP_CXX)
+  target_link_libraries(dark PUBLIC OpenMP::OpenMP_C)
+endif()
+
+if(CMAKE_COMPILER_IS_GNUCC)
+  target_link_libraries(darknet PRIVATE m)
+  target_link_libraries(dark PUBLIC m)
+endif()
+
+if(MSVC)
+  target_link_libraries(darknet PRIVATE PThreads_windows::PThreads_windows)
+  target_link_libraries(darknet PRIVATE wsock32 ws2_32)
+  target_link_libraries(dark PUBLIC PThreads_windows::PThreads_windows)
+  target_link_libraries(dark PUBLIC wsock32 ws2_32)
+  target_link_libraries(uselib PRIVATE PThreads_windows::PThreads_windows)
+  target_compile_definitions(darknet PRIVATE -D_CRT_RAND_S -DNOMINMAX -D_USE_MATH_DEFINES)
+  target_compile_definitions(dark PRIVATE -D_CRT_RAND_S -DNOMINMAX -D_USE_MATH_DEFINES)
+  target_compile_definitions(dark PUBLIC -D_CRT_SECURE_NO_WARNINGS)
+  target_compile_definitions(uselib PRIVATE -D_CRT_RAND_S -DNOMINMAX -D_USE_MATH_DEFINES)
+endif()
+
+target_link_libraries(darknet PRIVATE Threads::Threads)
+target_link_libraries(dark PUBLIC Threads::Threads)
+target_link_libraries(uselib PRIVATE Threads::Threads)
+
+if(ENABLE_ZED_CAMERA)
+  target_link_libraries(darknet PRIVATE ${ZED_LIBRARIES})
+  target_link_libraries(dark PUBLIC ${ZED_LIBRARIES})
+  target_link_libraries(uselib PRIVATE ${ZED_LIBRARIES})
+  target_compile_definitions(darknet PRIVATE -DZED_STEREO)
+  target_compile_definitions(uselib PRIVATE -DZED_STEREO)
+  target_compile_definitions(dark PUBLIC -DZED_STEREO)
+endif()
+
+if(ENABLE_CUDA)
+  target_include_directories(darknet PRIVATE ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
+  target_include_directories(dark PUBLIC ${CMAKE_CUDA_TOOLKIT_INCLUDE_DIRECTORIES})
+  target_link_libraries(darknet PRIVATE curand cublas cuda)
+  target_link_libraries(dark PRIVATE curand cublas cuda)
+  set_target_properties(dark PROPERTIES CUDA_RESOLVE_DEVICE_SYMBOLS ON)
+  target_compile_definitions(darknet PRIVATE -DGPU)
+  target_compile_definitions(dark PUBLIC -DGPU)
+endif()
+
+if(USE_INTEGRATED_LIBS)
+  target_compile_definitions(darknet PRIVATE -D_TIMESPEC_DEFINED)
+  target_compile_definitions(dark PRIVATE -D_TIMESPEC_DEFINED)
+endif()
+
+target_link_libraries(uselib PRIVATE dark)
+if(OpenCV_FOUND AND OpenCV_VERSION VERSION_GREATER "3.0" AND BUILD_USELIB_TRACK)
+  target_link_libraries(uselib_track PRIVATE dark)
+  target_compile_definitions(uselib_track PRIVATE TRACK_OPTFLOW=1)
+  target_compile_definitions(uselib_track PRIVATE -DUSE_CMAKE_LIBS)
+  if(BUILD_AS_CPP)
+    set_target_properties(uselib_track PROPERTIES LINKER_LANGUAGE CXX)
+  endif()
+  target_include_directories(uselib_track PRIVATE ${CMAKE_CURRENT_LIST_DIR}/include)
+  target_link_libraries(uselib_track PRIVATE ${OpenCV_LINKED_COMPONENTS})
+  if(ENABLE_ZED_CAMERA)
+    target_link_libraries(uselib_track PRIVATE ${ZED_LIBRARIES})
+    target_compile_definitions(uselib_track PRIVATE -DZED_STEREO)
+  endif()
+  if(MSVC)
+    target_link_libraries(uselib_track PRIVATE PThreads_windows::PThreads_windows)
+    target_compile_definitions(uselib_track PRIVATE -D_CRT_RAND_S -DNOMINMAX -D_USE_MATH_DEFINES)
+  endif()
+  target_link_libraries(uselib_track PRIVATE Threads::Threads)
+endif()
+
+#set_target_properties(dark PROPERTIES PUBLIC_HEADER "${exported_headers};${CMAKE_CURRENT_LIST_DIR}/include/yolo_v2_class.hpp")
+set_target_properties(dark PROPERTIES PUBLIC_HEADER "${CMAKE_CURRENT_LIST_DIR}/include/darknet.h;${CMAKE_CURRENT_LIST_DIR}/include/yolo_v2_class.hpp")
+
+set_target_properties(dark PROPERTIES CXX_VISIBILITY_PRESET hidden)
+
+install(TARGETS dark EXPORT DarknetTargets
+  RUNTIME DESTINATION "${INSTALL_BIN_DIR}"
+  LIBRARY DESTINATION "${INSTALL_LIB_DIR}"
+  ARCHIVE DESTINATION "${INSTALL_LIB_DIR}"
+  PUBLIC_HEADER DESTINATION "${INSTALL_INCLUDE_DIR}"
+  COMPONENT dev
+)
+install(TARGETS uselib darknet
+  DESTINATION "${INSTALL_BIN_DIR}"
+)
+if(OpenCV_FOUND AND OpenCV_VERSION VERSION_GREATER "3.0" AND BUILD_USELIB_TRACK)
+  install(TARGETS uselib_track
+    DESTINATION "${INSTALL_BIN_DIR}"
+  )
+endif()
+
+install(EXPORT DarknetTargets
+  FILE DarknetTargets.cmake
+  NAMESPACE Darknet::
+  DESTINATION "${INSTALL_CMAKE_DIR}"
+)
+
+# Export the package for use from the build-tree (this registers the build-tree with a global CMake-registry)
+export(PACKAGE Darknet)
+
+# Create the DarknetConfig.cmake
+# First of all we compute the relative path between the cmake config file and the include path
+file(RELATIVE_PATH REL_INCLUDE_DIR "${INSTALL_CMAKE_DIR}" "${INSTALL_INCLUDE_DIR}")
+set(CONF_INCLUDE_DIRS "${PROJECT_SOURCE_DIR}" "${PROJECT_BINARY_DIR}")
+configure_file(DarknetConfig.cmake.in "${PROJECT_BINARY_DIR}/DarknetConfig.cmake" @ONLY)
+set(CONF_INCLUDE_DIRS "\${Darknet_CMAKE_DIR}/${REL_INCLUDE_DIR}")
+configure_file(DarknetConfig.cmake.in "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/DarknetConfig.cmake" @ONLY)
+
+# Create the DarknetConfigVersion.cmake
+include(CMakePackageConfigHelpers)
+write_basic_package_version_file("${PROJECT_BINARY_DIR}/DarknetConfigVersion.cmake"
+  COMPATIBILITY SameMajorVersion
+)
+
+install(FILES
+  "${PROJECT_BINARY_DIR}${CMAKE_FILES_DIRECTORY}/DarknetConfig.cmake"
+  "${PROJECT_BINARY_DIR}/DarknetConfigVersion.cmake"
+  DESTINATION "${INSTALL_CMAKE_DIR}"
+)

+ 45 - 0
DarknetConfig.cmake.in

@@ -0,0 +1,45 @@
+# Config file for the Darknet package
+
+get_filename_component(Darknet_CMAKE_DIR "${CMAKE_CURRENT_LIST_FILE}" PATH)
+list(APPEND CMAKE_MODULE_PATH "${Darknet_CMAKE_DIR}")
+
+include(CMakeFindDependencyMacro)
+
+if(@OpenCV_FOUND@)
+  find_dependency(OpenCV)
+endif()
+
+if(@ENABLE_CUDA@)
+  include(CheckLanguage)
+  check_language(CUDA)
+  if(NOT CMAKE_CUDA_COMPILER)
+    message(STATUS " --> WARNING: Unable to find native CUDA integration!")
+  endif()
+  find_dependency(CUDA)
+  cuda_select_nvcc_arch_flags(CUDA_ARCH_FLAGS ${CUDA_ARCHITECTURES})
+  if(@CUDNN_FOUND@)
+    find_dependency(CUDNN)
+  endif()
+endif()
+
+set(CMAKE_THREAD_PREFER_PTHREAD ON)
+find_dependency(Threads)
+
+if(MSVC)
+  find_dependency(PThreads_windows)
+  set(CMAKE_CXX_FLAGS "/wd4018 /wd4244 /wd4267 /wd4305 ${CMAKE_CXX_FLAGS}")
+endif()
+
+if(@OPENMP_FOUND@)
+  find_dependency(OpenMP)
+endif()
+
+# Our library dependencies (contains definitions for IMPORTED targets)
+include("${Darknet_CMAKE_DIR}/DarknetTargets.cmake")
+include("${Darknet_CMAKE_DIR}/DarknetConfigVersion.cmake")
+
+get_target_property(FULL_DARKNET_INCLUDE_DIRS Darknet::dark INTERFACE_INCLUDE_DIRECTORIES)
+list(GET FULL_DARKNET_INCLUDE_DIRS 0 Darknet_INCLUDE_DIR)
+get_filename_component(Darknet_INCLUDE_DIR "${Darknet_INCLUDE_DIR}" REALPATH)
+
+find_package_handle_standard_args(Darknet REQUIRED_VARS Darknet_INCLUDE_DIR VERSION_VAR PACKAGE_VERSION)

+ 12 - 0
LICENSE

@@ -0,0 +1,12 @@
+                                  YOLO LICENSE
+                             Version 2, July 29 2016
+
+THIS SOFTWARE LICENSE IS PROVIDED "ALL CAPS" SO THAT YOU KNOW IT IS SUPER
+SERIOUS AND YOU DON'T MESS AROUND WITH COPYRIGHT LAW BECAUSE YOU WILL GET IN
+TROUBLE HERE ARE SOME OTHER BUZZWORDS COMMONLY IN THESE THINGS WARRANTIES
+LIABILITY CONTRACT TORT LIABLE CLAIMS RESTRICTION MERCHANTABILITY. NOW HERE'S
+THE REAL LICENSE:
+
+0. Darknet is public domain.
+1. Do whatever you want with it.
+2. Stop emailing me about it!

+ 176 - 0
Makefile

@@ -0,0 +1,176 @@
+GPU=1
+CUDNN=1
+CUDNN_HALF=0
+OPENCV=0
+AVX=0
+OPENMP=0
+LIBSO=0
+ZED_CAMERA=0
+
+# set GPU=1 and CUDNN=1 to speedup on GPU
+# set CUDNN_HALF=1 to further speedup 3 x times (Mixed-precision on Tensor Cores) GPU: Volta, Xavier, Turing and higher
+# set AVX=1 and OPENMP=1 to speedup on CPU (if error occurs then set AVX=0)
+
+USE_CPP=0
+DEBUG=0
+
+ARCH= -gencode arch=compute_30,code=sm_30 \
+      -gencode arch=compute_35,code=sm_35 \
+      -gencode arch=compute_50,code=[sm_50,compute_50] \
+      -gencode arch=compute_52,code=[sm_52,compute_52] \
+	  -gencode arch=compute_61,code=[sm_61,compute_61]
+
+OS := $(shell uname)
+
+# Tesla V100
+# ARCH= -gencode arch=compute_70,code=[sm_70,compute_70]
+
+# GeForce RTX 2080 Ti, RTX 2080, RTX 2070, Quadro RTX 8000, Quadro RTX 6000, Quadro RTX 5000, Tesla T4, XNOR Tensor Cores
+# ARCH= -gencode arch=compute_75,code=[sm_75,compute_75]
+
+# Jetson XAVIER
+# ARCH= -gencode arch=compute_72,code=[sm_72,compute_72]
+
+# GTX 1080, GTX 1070, GTX 1060, GTX 1050, GTX 1030, Titan Xp, Tesla P40, Tesla P4
+# ARCH= -gencode arch=compute_61,code=sm_61 -gencode arch=compute_61,code=compute_61
+
+# GP100/Tesla P100 - DGX-1
+# ARCH= -gencode arch=compute_60,code=sm_60
+
+# For Jetson TX1, Tegra X1, DRIVE CX, DRIVE PX - uncomment:
+# ARCH= -gencode arch=compute_53,code=[sm_53,compute_53]
+
+# For Jetson Tx2 or Drive-PX2 uncomment:
+# ARCH= -gencode arch=compute_62,code=[sm_62,compute_62]
+
+
+VPATH=./src/
+EXEC=darknet
+OBJDIR=./obj/
+
+ifeq ($(LIBSO), 1)
+LIBNAMESO=libdarknet.so
+APPNAMESO=uselib
+endif
+
+ifeq ($(USE_CPP), 1)
+CC=g++
+else
+CC=gcc
+endif
+
+CPP=g++
+NVCC=nvcc
+OPTS=-Ofast
+LDFLAGS= -lm -pthread
+COMMON= -Iinclude/ -I3rdparty/stb/include
+CFLAGS=-Wall -Wfatal-errors -Wno-unused-result -Wno-unknown-pragmas -fPIC -std=c99
+
+ifeq ($(DEBUG), 1)
+#OPTS= -O0 -g
+#OPTS= -Og -g
+COMMON+= -DDEBUG
+CFLAGS+= -DDEBUG
+else
+ifeq ($(AVX), 1)
+CFLAGS+= -ffp-contract=fast -mavx -mavx2 -msse3 -msse4.1 -msse4.2 -msse4a
+endif
+endif
+
+CFLAGS+=$(OPTS)
+
+ifneq (,$(findstring MSYS_NT,$(OS)))
+LDFLAGS+=-lws2_32
+endif
+
+ifeq ($(OPENCV), 1)
+COMMON+= -DOPENCV
+CFLAGS+= -DOPENCV
+LDFLAGS+= `pkg-config --libs opencv`
+COMMON+= `pkg-config --cflags opencv`
+endif
+
+ifeq ($(OPENMP), 1)
+CFLAGS+= -fopenmp
+LDFLAGS+= -lgomp
+endif
+
+ifeq ($(GPU), 1)
+COMMON+= -DGPU -I/usr/local/cuda/include/
+CFLAGS+= -DGPU
+ifeq ($(OS),Darwin) #MAC
+LDFLAGS+= -L/usr/local/cuda/lib -lcuda -lcudart -lcublas -lcurand
+else
+LDFLAGS+= -L/usr/local/cuda/lib64 -lcuda -lcudart -lcublas -lcurand
+endif
+endif
+
+ifeq ($(CUDNN), 1)
+COMMON+= -DCUDNN
+ifeq ($(OS),Darwin) #MAC
+CFLAGS+= -DCUDNN -I/usr/local/cuda/include
+LDFLAGS+= -L/usr/local/cuda/lib -lcudnn
+else
+CFLAGS+= -DCUDNN -I/usr/local/cudnn/include
+LDFLAGS+= -L/usr/local/cudnn/lib64 -lcudnn
+endif
+endif
+
+ifeq ($(CUDNN_HALF), 1)
+COMMON+= -DCUDNN_HALF
+CFLAGS+= -DCUDNN_HALF
+ARCH+= -gencode arch=compute_70,code=[sm_70,compute_70]
+endif
+
+ifeq ($(ZED_CAMERA), 1)
+CFLAGS+= -DZED_STEREO -I/usr/local/zed/include
+LDFLAGS+= -L/usr/local/zed/lib -lsl_core -lsl_input -lsl_zed
+#-lstdc++ -D_GLIBCXX_USE_CXX11_ABI=0 
+endif
+
+OBJ=image_opencv.o http_stream.o gemm.o utils.o dark_cuda.o convolutional_layer.o list.o image.o activations.o im2col.o col2im.o blas.o crop_layer.o dropout_layer.o maxpool_layer.o softmax_layer.o data.o matrix.o network.o connected_layer.o cost_layer.o parser.o option_list.o darknet.o detection_layer.o captcha.o route_layer.o writing.o box.o nightmare.o normalization_layer.o avgpool_layer.o coco.o dice.o yolo.o detector.o layer.o compare.o classifier.o local_layer.o swag.o shortcut_layer.o activation_layer.o rnn_layer.o gru_layer.o rnn.o rnn_vid.o crnn_layer.o demo.o tag.o cifar.o go.o batchnorm_layer.o art.o region_layer.o reorg_layer.o reorg_old_layer.o super.o voxel.o tree.o yolo_layer.o gaussian_yolo_layer.o upsample_layer.o lstm_layer.o conv_lstm_layer.o scale_channels_layer.o sam_layer.o
+ifeq ($(GPU), 1) 
+LDFLAGS+= -lstdc++ 
+OBJ+=convolutional_kernels.o activation_kernels.o im2col_kernels.o col2im_kernels.o blas_kernels.o crop_layer_kernels.o dropout_layer_kernels.o maxpool_layer_kernels.o network_kernels.o avgpool_layer_kernels.o
+endif
+
+OBJS = $(addprefix $(OBJDIR), $(OBJ))
+DEPS = $(wildcard src/*.h) Makefile include/darknet.h
+
+all: $(OBJDIR) backup results setchmod $(EXEC) $(LIBNAMESO) $(APPNAMESO)
+
+ifeq ($(LIBSO), 1)
+CFLAGS+= -fPIC
+
+$(LIBNAMESO): $(OBJDIR) $(OBJS) include/yolo_v2_class.hpp src/yolo_v2_class.cpp
+	$(CPP) -shared -std=c++11 -fvisibility=hidden -DLIB_EXPORTS $(COMMON) $(CFLAGS) $(OBJS) src/yolo_v2_class.cpp -o $@ $(LDFLAGS)
+
+$(APPNAMESO): $(LIBNAMESO) include/yolo_v2_class.hpp src/yolo_console_dll.cpp
+	$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -o $@ src/yolo_console_dll.cpp $(LDFLAGS) -L ./ -l:$(LIBNAMESO)
+endif
+
+$(EXEC): $(OBJS)
+	$(CPP) -std=c++11 $(COMMON) $(CFLAGS) $^ -o $@ $(LDFLAGS)
+
+$(OBJDIR)%.o: %.c $(DEPS)
+	$(CC) $(COMMON) $(CFLAGS) -c $< -o $@
+
+$(OBJDIR)%.o: %.cpp $(DEPS)
+	$(CPP) -std=c++11 $(COMMON) $(CFLAGS) -c $< -o $@
+
+$(OBJDIR)%.o: %.cu $(DEPS)
+	$(NVCC) $(ARCH) $(COMMON) --compiler-options "$(CFLAGS)" -c $< -o $@
+
+$(OBJDIR):
+	mkdir -p $(OBJDIR)
+backup:
+	mkdir -p backup
+results:
+	mkdir -p results
+setchmod:
+	chmod +x *.sh
+
+.PHONY: clean
+
+clean:
+	rm -rf $(OBJS) $(EXEC) $(LIBNAMESO) $(APPNAMESO)

+ 752 - 0
README.md

@@ -0,0 +1,752 @@
+# Yolo-v3 and Yolo-v2 for Windows and Linux
+### (neural network for object detection) - Tensor Cores can be used on [Linux](https://github.com/AlexeyAB/darknet#how-to-compile-on-linux) and [Windows](https://github.com/AlexeyAB/darknet#how-to-compile-on-windows-using-vcpkg)
+
+More details: http://pjreddie.com/darknet/yolo/
+
+
+[![CircleCI](https://circleci.com/gh/AlexeyAB/darknet.svg?style=svg)](https://circleci.com/gh/AlexeyAB/darknet)
+[![TravisCI](https://travis-ci.org/AlexeyAB/darknet.svg?branch=master)](https://travis-ci.org/AlexeyAB/darknet)
+[![AppveyorCI](https://ci.appveyor.com/api/projects/status/594bwb5uoc1fxwiu/branch/master?svg=true)](https://ci.appveyor.com/project/AlexeyAB/darknet/branch/master)
+[![Contributors](https://img.shields.io/github/contributors/AlexeyAB/Darknet.svg)](https://github.com/AlexeyAB/darknet/graphs/contributors)
+[![License: Unlicense](https://img.shields.io/badge/license-Unlicense-blue.svg)](https://github.com/AlexeyAB/darknet/blob/master/LICENSE)  
+
+
+* [Requirements (and how to install dependecies)](#requirements)
+* [Pre-trained models](#pre-trained-models)
+* [Explanations in issues](https://github.com/AlexeyAB/darknet/issues?q=is%3Aopen+is%3Aissue+label%3AExplanations)
+* [Yolo v3 in other frameworks (TensorRT, TensorFlow, PyTorch, OpenVINO, OpenCV-dnn, TVM,...)](#yolo-v3-in-other-frameworks)
+* [Datasets](#datasets)
+
+0.  [Improvements in this repository](#improvements-in-this-repository)
+1.  [How to use](#how-to-use-on-the-command-line)
+2.  How to compile on Linux
+    * [Using cmake](#how-to-compile-on-linux-using-cmake)
+    * [Using make](#how-to-compile-on-linux-using-make)
+3.  How to compile on Windows
+    * [Using CMake-GUI](#how-to-compile-on-windows-using-cmake-gui)
+    * [Using vcpkg](#how-to-compile-on-windows-using-vcpkg)
+    * [Legacy way](#how-to-compile-on-windows-legacy-way)
+4.  [How to train (Pascal VOC Data)](#how-to-train-pascal-voc-data)
+5.  [How to train with multi-GPU:](#how-to-train-with-multi-gpu)
+6.  [How to train (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+7.  [How to train tiny-yolo (to detect your custom objects)](#how-to-train-tiny-yolo-to-detect-your-custom-objects)
+8.  [When should I stop training](#when-should-i-stop-training)
+9.  [How to calculate mAP on PascalVOC 2007](#how-to-calculate-map-on-pascalvoc-2007)
+10.  [How to improve object detection](#how-to-improve-object-detection)
+11.  [How to mark bounded boxes of objects and create annotation files](#how-to-mark-bounded-boxes-of-objects-and-create-annotation-files)
+12. [How to use Yolo as DLL and SO libraries](#how-to-use-yolo-as-dll-and-so-libraries)
+
+|  ![Darknet Logo](http://pjreddie.com/media/files/darknet-black-small.png) | &nbsp; ![map_fps](https://user-images.githubusercontent.com/4096485/71702416-6645dc00-2de0-11ea-8d65-de7d4b604021.png) mAP@0.5 (AP50) - FPS (GeForce 1080 Ti) https://arxiv.org/abs/1911.11929 https://github.com/WongKinYiu/CrossStagePartialNetworks - more models |
+|---|---|
+
+* Yolo v3 on MS COCO: [Speed / Accuracy (mAP@0.5) chart](https://user-images.githubusercontent.com/4096485/52151356-e5d4a380-2683-11e9-9d7d-ac7bc192c477.jpg)
+* Yolo v3 on MS COCO (Yolo v3 vs RetinaNet) - Figure 3: https://arxiv.org/pdf/1804.02767v1.pdf
+* Yolo v2 on Pascal VOC 2007: https://hsto.org/files/a24/21e/068/a2421e0689fb43f08584de9d44c2215f.jpg
+* Yolo v2 on Pascal VOC 2012 (comp4): https://hsto.org/files/3a6/fdf/b53/3a6fdfb533f34cee9b52bdd9bb0b19d9.jpg
+
+#### Pre-trained models
+
+There are weights-file for different cfg-files (trained for MS COCO dataset):
+
+FPS on GeForce 1080Ti:
+
+* [csresnext50-panet-spp-original-optimal.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/csresnext50-panet-spp-original-optimal.cfg) - **65.4% mAP@0.5 (43.2% AP@0.5..0.95) - 35 FPS** - 100.5 BFlops - 217 MB: [csresnext50-panet-spp-original-optimal_final.weights](https://drive.google.com/open?id=1_NnfVgj0EDtb_WLNoXV8Mo7WKgwdYZCc)
+
+* [yolov3-spp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-spp.cfg) - **60.6% mAP@0.5 - 30 FPS** - 141.5 BFlops - 240 MB: [yolov3-spp.weights](https://pjreddie.com/media/files/yolov3-spp.weights)
+
+* [yolov3-tiny-prn.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny-prn.cfg) - **33.1% mAP@0.5 - 400 FPS** - 3.5 BFlops - 18.8 MB: [yolov3-tiny-prn.weights](https://drive.google.com/file/d/18yYZWyKbo4XSDVyztmsEcF9B_6bxrhUY/view?usp=sharing)
+
+* [enet-coco.cfg (EfficientNetB0-Yolov3)](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/enet-coco.cfg) - **45.5% mAP@0.5 - 60 FPS** - 3.7 BFlops - 18.3 MB: [enetb0-coco_final.weights](https://drive.google.com/file/d/1FlHeQjWEQVJt0ay1PVsiuuMzmtNyv36m/view)
+
+* [yolov3-openimages.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-openimages.cfg) - 247 MB - OpenImages dataset: [yolov3-openimages.weights](https://pjreddie.com/media/files/yolov3-openimages.weights)
+
+<details><summary><b>CLICK ME</b> - Yolo v3 models</summary>
+
+* [csresnext50-panet-spp.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/csresnext50-panet-spp.cfg) - **60.0% mAP@0.5 - 44 FPS** - 71.3 BFlops - 217 MB: [csresnext50-panet-spp_final.weights](https://drive.google.com/file/d/1aNXdM8qVy11nqTcd2oaVB3mf7ckr258-/view?usp=sharing)
+
+* [yolov3.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3.cfg) - **55.3% mAP@0.5 - 46 FPS** - 65.9 BFlops - 236 MB: [yolov3.weights](https://pjreddie.com/media/files/yolov3.weights)
+
+* [yolov3-tiny.cfg](https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny.cfg) - **33.1% mAP@0.5 - 330 FPS** - 5.6 BFlops - 33.7 MB: [yolov3-tiny.weights](https://pjreddie.com/media/files/yolov3-tiny.weights)
+
+</details>
+
+<details><summary><b>CLICK ME</b> - Yolo v2 models</summary>
+
+* `yolov2.cfg` (194 MB COCO Yolo v2) - requires 4 GB GPU-RAM: https://pjreddie.com/media/files/yolov2.weights
+* `yolo-voc.cfg` (194 MB VOC Yolo v2) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo-voc.weights
+* `yolov2-tiny.cfg` (43 MB COCO Yolo v2) - requires 1 GB GPU-RAM: https://pjreddie.com/media/files/yolov2-tiny.weights
+* `yolov2-tiny-voc.cfg` (60 MB VOC Yolo v2) - requires 1 GB GPU-RAM: http://pjreddie.com/media/files/yolov2-tiny-voc.weights
+* `yolo9000.cfg` (186 MB Yolo9000-model) - requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+
+</details>
+
+Put it near compiled: darknet.exe
+
+You can get cfg-files by path: `darknet/cfg/`
+
+### Requirements
+
+* Windows or Linux
+* **CMake >= 3.8** for modern CUDA support: https://cmake.org/download/
+* **CUDA 10.0**: https://developer.nvidia.com/cuda-toolkit-archive (on Linux do [Post-installation Actions](https://docs.nvidia.com/cuda/cuda-installation-guide-linux/index.html#post-installation-actions))
+* **OpenCV >= 2.4**: use your preferred package manager (brew, apt), build from source using [vcpkg](https://github.com/Microsoft/vcpkg) or download from [OpenCV official site](https://opencv.org/releases.html) (on Windows set system variable `OpenCV_DIR` = `C:\opencv\build` - where are the `include` and `x64` folders [image](https://user-images.githubusercontent.com/4096485/53249516-5130f480-36c9-11e9-8238-a6e82e48c6f2.png))
+* **cuDNN >= 7.0 for CUDA 10.0** https://developer.nvidia.com/rdp/cudnn-archive (on **Linux** copy `cudnn.h`,`libcudnn.so`... as desribed here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installlinux-tar , on **Windows** copy `cudnn.h`,`cudnn64_7.dll`, `cudnn64_7.lib` as desribed here https://docs.nvidia.com/deeplearning/sdk/cudnn-install/index.html#installwindows )
+* **GPU with CC >= 3.0**: https://en.wikipedia.org/wiki/CUDA#GPUs_supported
+* on Linux **GCC or Clang**, on Windows **MSVC 2015/2017/2019** https://visualstudio.microsoft.com/thank-you-downloading-visual-studio/?sku=Community
+
+
+#### Yolo v3 in other frameworks
+
+* **TensorFlow:** convert `yolov3.weights`/`cfg` files to `yolov3.ckpt`/`pb/meta`: by using [mystic123](https://github.com/mystic123/tensorflow-yolo-v3) or [jinyu121](https://github.com/jinyu121/DW2TF) projects, and [TensorFlow-lite](https://www.tensorflow.org/lite/guide/get_started#2_convert_the_model_format)
+* **Intel OpenVINO 2019 R1:** (Myriad X / USB Neural Compute Stick / Arria FPGA): read this [manual](https://software.intel.com/en-us/articles/OpenVINO-Using-TensorFlow#converting-a-darknet-yolo-model)
+* **OpenCV-dnn** the fastest implementation for CPU (x86/ARM-Android), OpenCV can be compiled with [OpenVINO-backend](https://github.com/opencv/opencv/wiki/Intel's-Deep-Learning-Inference-Engine-backend) for running on (Myriad X / USB Neural Compute Stick / Arria FPGA), use `yolov3.weights`/`cfg` with: [C++ example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.cpp#L192-L221) or [Python example](https://github.com/opencv/opencv/blob/8c25a8eb7b10fb50cda323ee6bec68aa1a9ce43c/samples/dnn/object_detection.py#L129-L150)
+* **PyTorch > ONNX > CoreML > iOS** how to convert cfg/weights-files to pt-file: [ultralytics/yolov3](https://github.com/ultralytics/yolov3#darknet-conversion) and [iOS App](https://itunes.apple.com/app/id1452689527)
+* **TensorRT** for YOLOv3 (-70% faster inference): [Yolo is natively supported in DeepStream 4.0](https://news.developer.nvidia.com/deepstream-sdk-4-now-available/)
+* **TVM** - compilation of deep learning models (Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet) into minimum deployable modules on diverse hardware backends (CPUs, GPUs, FPGA, and specialized accelerators): https://tvm.ai/about
+* **Netron** - Visualizer for neural networks: https://github.com/lutzroeder/netron
+
+#### Datasets
+
+* MS COCO: use `./scripts/get_coco_dataset.sh` to get labeled MS COCO detection dataset
+* OpenImages: use `python ./scripts/get_openimages_dataset.py` for labeling train detection dataset
+* Pascal VOC: use `python ./scripts/voc_label.py` for labeling Train/Test/Val detection datasets
+* ILSVRC2012 (ImageNet classification): use `./scripts/get_imagenet_train.sh` (also `imagenet_label.sh` for labeling valid set)
+* German/Belgium/Russian/LISA/MASTIF Traffic Sign Datasets for Detection - use this parsers: https://github.com/angeligareta/Datasets2Darknet#detection-task
+* List of other datasets: https://github.com/AlexeyAB/darknet/tree/master/scripts#datasets
+
+##### Examples of results
+
+[![Yolo v3](http://img.youtube.com/vi/VOC3huqHrss/0.jpg)](https://www.youtube.com/watch?v=MPU2HistivI "Yolo v3")
+
+Others: https://www.youtube.com/user/pjreddie/videos
+
+### Improvements in this repository
+
+* added support for Windows
+* added State-of-Art models: CSP, PRN, EfficientNet
+* added layers: [conv_lstm], [scale_channels] SE/ASFF/BiFPN, [local_avgpool], [sam], [Gaussian_yolo], [reorg3d] (fixed [reorg]), fixed [batchnorm]
+* added the ability for training recurrent models (with layers conv-lstm`[conv_lstm]`/conv-rnn`[crnn]`) for accurate detection on video
+* added data augmentation: `[net] mixup=1 cutmix=1 mosaic=1 blur=1`. Added activations: SWISH, MISH, NORM_CHAN, NORM_CHAN_SOFTMAX
+* added the ability for training with GPU-processing using CPU-RAM to increase the mini_batch_size and increase accuracy (instead of batch-norm sync)
+* improved binary neural network performance **2x-4x times** for Detection on CPU and GPU if you trained your own weights by using this XNOR-net model (bit-1 inference) : https://github.com/AlexeyAB/darknet/blob/master/cfg/yolov3-tiny_xnor.cfg
+* improved neural network performance **~7%** by fusing 2 layers into 1: Convolutional + Batch-norm
+* improved performance: Detection **2x times**, on GPU Volta/Turing (Tesla V100, GeForce RTX, ...) using Tensor Cores if `CUDNN_HALF` defined in the `Makefile` or `darknet.sln`
+* improved performance **~1.2x** times on FullHD, **~2x** times on 4K, for detection on the video (file/stream) using `darknet detector demo`... 
+* improved performance **3.5 X times** of data augmentation for training (using OpenCV SSE/AVX functions instead of hand-written functions) - removes bottleneck for training on multi-GPU or GPU Volta
+* improved performance of detection and training on Intel CPU with AVX (Yolo v3 **~85%**)
+* optimized memory allocation during network resizing when `random=1`
+* optimized GPU initialization for detection - we use batch=1 initially instead of re-init with batch=1
+* added correct calculation of **mAP, F1, IoU, Precision-Recall** using command `darknet detector map`...
+* added drawing of chart of average-Loss and accuracy-mAP (`-map` flag) during training
+* run `./darknet detector demo ... -json_port 8070 -mjpeg_port 8090` as JSON and MJPEG server to get results online over the network by using your soft or Web-browser
+* added calculation of anchors for training
+* added example of Detection and Tracking objects: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+* run-time tips and warnings if you use incorrect cfg-file or dataset
+* many other fixes of code...
+
+And added manual - [How to train Yolo v3/v2 (to detect your custom objects)](#how-to-train-to-detect-your-custom-objects)
+
+Also, you might be interested in using a simplified repository where is implemented INT8-quantization (+30% speedup and -1% mAP reduced): https://github.com/AlexeyAB/yolo2_light
+
+#### How to use on the command line
+
+On Linux use `./darknet` instead of `darknet.exe`, like this:`./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
+
+On Linux find executable file `./darknet` in the root directory, while on Windows find it in the directory `\build\darknet\x64` 
+
+* Yolo v3 COCO - **image**: `darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25`
+* **Output coordinates** of objects: `darknet.exe detector test cfg/coco.data yolov3.cfg yolov3.weights -ext_output dog.jpg`
+* Yolo v3 COCO - **video**: `darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output test.mp4`
+* Yolo v3 COCO - **WebCam 0**: `darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights -c 0`
+* Yolo v3 COCO for **net-videocam** - Smart WebCam: `darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg`
+* Yolo v3 - **save result videofile res.avi**: `darknet.exe detector demo cfg/coco.data cfg/yolov3.cfg yolov3.weights test.mp4 -out_filename res.avi`
+* Yolo v3 **Tiny** COCO - video: `darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights test.mp4`
+* **JSON and MJPEG server** that allows multiple connections from your soft or Web-browser `ip-address:8070` and 8090: `./darknet detector demo ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights test50.mp4 -json_port 8070 -mjpeg_port 8090 -ext_output`
+* Yolo v3 Tiny **on GPU #1**: `darknet.exe detector demo cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -i 1 test.mp4`
+* Alternative method Yolo v3 COCO - image: `darknet.exe detect cfg/yolov3.cfg yolov3.weights -i 0 -thresh 0.25`
+* Train on **Amazon EC2**, to see mAP & Loss-chart using URL like: `http://ec2-35-160-228-91.us-west-2.compute.amazonaws.com:8090` in the Chrome/Firefox (**Darknet should be compiled with OpenCV**): 
+    `./darknet detector train cfg/coco.data yolov3.cfg darknet53.conv.74 -dont_show -mjpeg_port 8090 -map`
+* 186 MB Yolo9000 - image: `darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights`
+* Remeber to put data/9k.tree and data/coco9k.map under the same folder of your app if you use the cpp api to build an app
+* To process a list of images `data/train.txt` and save results of detection to `result.json` file use: 
+    `darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -ext_output -dont_show -out result.json < data/train.txt`
+* To process a list of images `data/train.txt` and save results of detection to `result.txt` use:                             
+    `darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -dont_show -ext_output < data/train.txt > result.txt`
+* Pseudo-lableing - to process a list of images `data/new_train.txt` and save results of detection in Yolo training format for each image as label `<image_name>.txt` (in this way you can increase the amount of training data) use:
+    `darknet.exe detector test cfg/coco.data cfg/yolov3.cfg yolov3.weights -thresh 0.25 -dont_show -save_labels < data/new_train.txt`
+* To calculate anchors: `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416`
+* To check accuracy mAP@IoU=50: `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
+* To check accuracy mAP@IoU=75: `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights -iou_thresh 0.75`
+
+##### For using network video-camera mjpeg-stream with any Android smartphone
+
+1. Download for Android phone mjpeg-stream soft: IP Webcam / Smart WebCam
+
+    * Smart WebCam - preferably: https://play.google.com/store/apps/details?id=com.acontech.android.SmartWebCam2
+    * IP Webcam: https://play.google.com/store/apps/details?id=com.pas.webcam
+
+2. Connect your Android phone to computer by WiFi (through a WiFi-router) or USB
+3. Start Smart WebCam on your phone
+4. Replace the address below, on shown in the phone application (Smart WebCam) and launch:
+
+* Yolo v3 COCO-model: `darknet.exe detector demo data/coco.data yolov3.cfg yolov3.weights http://192.168.0.80:8080/video?dummy=param.mjpg -i 0`
+
+### How to compile on Linux (using `cmake`)
+
+The `CMakeLists.txt` will attempt to find installed optional dependencies like
+CUDA, cudnn, ZED and build against those. It will also create a shared object
+library file to use `darknet` for code development.
+
+Do inside the cloned repository:
+
+```
+mkdir build-release
+cd build-release
+cmake ..
+make
+make install
+```
+
+### How to compile on Linux (using `make`)
+
+Just do `make` in the darknet directory.
+Before make, you can set such options in the `Makefile`: [link](https://github.com/AlexeyAB/darknet/blob/9c1b9a2cf6363546c152251be578a21f3c3caec6/Makefile#L1)
+
+* `GPU=1` to build with CUDA to accelerate by using GPU (CUDA should be in `/usr/local/cuda`)
+* `CUDNN=1` to build with cuDNN v5-v7 to accelerate training by using GPU (cuDNN should be in `/usr/local/cudnn`)
+* `CUDNN_HALF=1` to build for Tensor Cores (on Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x
+* `OPENCV=1` to build with OpenCV 4.x/3.x/2.4.x - allows to detect on video files and video streams from network cameras or web-cams
+* `DEBUG=1` to bould debug version of Yolo
+* `OPENMP=1` to build with OpenMP support to accelerate Yolo by using multi-core CPU
+* `LIBSO=1` to build a library `darknet.so` and binary runable file `uselib` that uses this library. Or you can try to run so `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib test.mp4` How to use this SO-library from your own code - you can look at C++ example: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+    or use in such a way: `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights test.mp4`
+* `ZED_CAMERA=1` to build a library with ZED-3D-camera support (should be ZED SDK installed), then run
+    `LD_LIBRARY_PATH=./:$LD_LIBRARY_PATH ./uselib data/coco.names cfg/yolov3.cfg yolov3.weights zed_camera`
+
+To run Darknet on Linux use examples from this article, just use `./darknet` instead of `darknet.exe`, i.e. use this command: `./darknet detector test ./cfg/coco.data ./cfg/yolov3.cfg ./yolov3.weights`
+
+### How to compile on Windows (using `CMake-GUI`)
+
+This is the recommended approach to build Darknet on Windows if you have already
+installed Visual Studio 2015/2017/2019, CUDA > 10.0, cuDNN > 7.0, and
+OpenCV > 2.4.
+
+Use `CMake-GUI` as shown here on this [**IMAGE**](https://user-images.githubusercontent.com/4096485/55107892-6becf380-50e3-11e9-9a0a-556a943c429a.png):
+
+1. Configure
+2. Optional platform for generator (Set: x64)
+3. Finish
+4. Generate
+5. Open Project
+6. Set: x64 & Release
+7. Build
+8. Build solution
+
+### How to compile on Windows (using `vcpkg`)
+
+If you have already installed Visual Studio 2015/2017/2019, CUDA > 10.0,
+cuDNN > 7.0, OpenCV > 2.4, then to compile Darknet it is recommended to use
+[CMake-GUI](#how-to-compile-on-windows-using-cmake-gui).
+
+Otherwise, follow these steps:
+
+1. Install or update Visual Studio to at least version 2017, making sure to have it fully patched (run again the installer if not sure to automatically update to latest version). If you need to install from scratch, download VS from here: [Visual Studio Community](http://visualstudio.com)
+
+2. Install CUDA and cuDNN
+
+3. Install `git` and `cmake`. Make sure they are on the Path at least for the current account
+
+4. Install [vcpkg](https://github.com/Microsoft/vcpkg) and try to install a test library to make sure everything is working, for example `vcpkg install opengl`
+
+5. Define an environment variables, `VCPKG_ROOT`, pointing to the install path of `vcpkg`
+
+6. Define another environment variable, with name `VCPKG_DEFAULT_TRIPLET` and value `x64-windows`
+
+7. Open Powershell and type these commands:
+
+```PowerShell
+PS \>                  cd $env:VCPKG_ROOT
+PS Code\vcpkg>         .\vcpkg install pthreads opencv[ffmpeg] #replace with opencv[cuda,ffmpeg] in case you want to use cuda-accelerated openCV
+```
+
+8.  Open Powershell, go to the `darknet` folder and build with the command `.\build.ps1`. If you want to use Visual Studio, you will find two custom solutions created for you by CMake after the build, one in `build_win_debug` and the other in `build_win_release`, containing all the appropriate config flags for your system.
+
+### How to compile on Windows (legacy way)
+
+1. If you have **CUDA 10.0, cuDNN 7.4 and OpenCV 3.x** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then open `build\darknet\darknet.sln`, set **x64** and **Release** https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg and do the: Build -> Build darknet. Also add Windows system variable `CUDNN` with path to CUDNN: https://user-images.githubusercontent.com/4096485/53249764-019ef880-36ca-11e9-8ffe-d9cf47e7e462.jpg
+
+    1.1. Find files `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` (or `opencv_world340.dll` and `opencv_ffmpeg340_64.dll`) in `C:\opencv_3.0\opencv\build\x64\vc14\bin` and put it near with `darknet.exe`
+    
+    1.2 Check that there are `bin` and `include` folders in the `C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.0` if aren't, then copy them to this folder from the path where is CUDA installed
+    
+    1.3. To install CUDNN (speedup neural network), do the following:
+      
+    * download and install **cuDNN v7.4.1 for CUDA 10.0**: https://developer.nvidia.com/rdp/cudnn-archive
+      
+    * add Windows system variable `CUDNN` with path to CUDNN: https://user-images.githubusercontent.com/4096485/53249764-019ef880-36ca-11e9-8ffe-d9cf47e7e462.jpg
+    
+    * copy file `cudnn64_7.dll` to the folder `\build\darknet\x64` near with `darknet.exe`
+    
+    1.4. If you want to build **without CUDNN** then: open `\darknet.sln` -> (right click on project) -> properties  -> C/C++ -> Preprocessor -> Preprocessor Definitions, and remove this: `CUDNN;`
+
+2. If you have other version of **CUDA (not 10.0)** then open `build\darknet\darknet.vcxproj` by using Notepad, find 2 places with "CUDA 10.0" and change it to your CUDA-version. Then open `\darknet.sln` -> (right click on project) -> properties  -> CUDA C/C++ -> Device and remove there `;compute_75,sm_75`. Then do step 1
+
+3. If you **don't have GPU**, but have **OpenCV 3.0** (with paths: `C:\opencv_3.0\opencv\build\include` & `C:\opencv_3.0\opencv\build\x64\vc14\lib`), then open `build\darknet\darknet_no_gpu.sln`, set **x64** and **Release**, and do the: Build -> Build darknet_no_gpu
+
+4. If you have **OpenCV 2.4.13** instead of 3.0 then you should change paths after `\darknet.sln` is opened
+
+    4.1 (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories:  `C:\opencv_2.4.13\opencv\build\include`
+  
+    4.2 (right click on project) -> properties  -> Linker -> General -> Additional Library Directories: `C:\opencv_2.4.13\opencv\build\x64\vc14\lib`
+    
+5. If you have GPU with Tensor Cores (nVidia Titan V / Tesla V100 / DGX-2 and later) speedup Detection 3x, Training 2x:
+    `\darknet.sln` -> (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add here: `CUDNN_HALF;`
+    
+    **Note:** CUDA must be installed only after Visual Studio has been installed.
+
+### How to compile (custom):
+
+Also, you can to create your own `darknet.sln` & `darknet.vcxproj`, this example for CUDA 9.1 and OpenCV 3.0
+
+Then add to your created project:
+- (right click on project) -> properties  -> C/C++ -> General -> Additional Include Directories, put here: 
+
+`C:\opencv_3.0\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include`
+- (right click on project) -> Build dependecies -> Build Customizations -> set check on CUDA 9.1 or what version you have - for example as here: http://devblogs.nvidia.com/parallelforall/wp-content/uploads/2015/01/VS2013-R-5.jpg
+- add to project:
+    * all `.c` files
+    * all `.cu` files 
+    * file `http_stream.cpp` from `\src` directory
+    * file `darknet.h` from `\include` directory
+- (right click on project) -> properties  -> Linker -> General -> Additional Library Directories, put here: 
+
+`C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;%(AdditionalLibraryDirectories)`
+
+-  (right click on project) -> properties  -> Linker -> Input -> Additional dependecies, put here: 
+
+`..\..\3rdparty\lib\x64\pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;cudnn.lib;%(AdditionalDependencies)`
+- (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions
+
+`OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)`
+
+- compile to .exe (X64 & Release) and put .dll-s near with .exe: https://hsto.org/webt/uh/fk/-e/uhfk-eb0q-hwd9hsxhrikbokd6u.jpeg
+
+    * `pthreadVC2.dll, pthreadGC2.dll` from \3rdparty\dll\x64
+
+    * `cusolver64_91.dll, curand64_91.dll, cudart64_91.dll, cublas64_91.dll` - 91 for CUDA 9.1 or your version, from C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v9.1\bin
+
+    * For OpenCV 3.2: `opencv_world320.dll` and `opencv_ffmpeg320_64.dll` from `C:\opencv_3.0\opencv\build\x64\vc14\bin` 
+    * For OpenCV 2.4.13: `opencv_core2413.dll`, `opencv_highgui2413.dll` and `opencv_ffmpeg2413_64.dll` from  `C:\opencv_2.4.13\opencv\build\x64\vc14\bin`
+
+## How to train (Pascal VOC Data):
+
+1. Download pre-trained weights for the convolutional layers (154 MB): http://pjreddie.com/media/files/darknet53.conv.74 and put to the directory `build\darknet\x64`
+
+2. Download The Pascal VOC Data and unpack it to directory `build\darknet\x64\data\voc` will be created dir `build\darknet\x64\data\voc\VOCdevkit\`:
+    * http://pjreddie.com/media/files/VOCtrainval_11-May-2012.tar
+    * http://pjreddie.com/media/files/VOCtrainval_06-Nov-2007.tar
+    * http://pjreddie.com/media/files/VOCtest_06-Nov-2007.tar
+    
+    2.1 Download file `voc_label.py` to dir `build\darknet\x64\data\voc`: http://pjreddie.com/media/files/voc_label.py
+
+3. Download and install Python for Windows: https://www.python.org/ftp/python/3.5.2/python-3.5.2-amd64.exe
+
+4. Run command: `python build\darknet\x64\data\voc\voc_label.py` (to generate files: 2007_test.txt, 2007_train.txt, 2007_val.txt, 2012_train.txt, 2012_val.txt)
+
+5. Run command: `type 2007_train.txt 2007_val.txt 2012_*.txt > train.txt`
+
+6. Set `batch=64` and `subdivisions=8` in the file `yolov3-voc.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/ee38c6e1513fb089b35be4ffa692afd9b3f65747/cfg/yolov3-voc.cfg#L3-L4)
+
+7. Start training by using `train_voc.cmd` or by using the command line: 
+
+    `darknet.exe detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74` 
+
+(**Note:** To disable Loss-Window use flag `-dont_show`. If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.)
+
+If required change paths in the file `build\darknet\cfg\voc.data`
+
+More information about training by the link: http://pjreddie.com/darknet/yolo/#train-voc
+
+ **Note:** If during training you see `nan` values for `avg` (loss) field - then training goes wrong, but if `nan` is in some other lines - then training goes well.
+
+## How to train with multi-GPU:
+
+1. Train it first on 1 GPU for like 1000 iterations: `darknet.exe detector train cfg/voc.data cfg/yolov3-voc.cfg darknet53.conv.74`
+
+2. Then stop and by using partially-trained model `/backup/yolov3-voc_1000.weights` run training with multigpu (up to 4 GPUs): `darknet.exe detector train cfg/voc.data cfg/yolov3-voc.cfg /backup/yolov3-voc_1000.weights -gpus 0,1,2,3`
+
+Only for small datasets sometimes better to decrease learning rate, for 4 GPUs set `learning_rate = 0.00025` (i.e. learning_rate = 0.001 / GPUs). In this case also increase 4x times `burn_in =` and `max_batches =` in your cfg-file. I.e. use `burn_in = 4000` instead of `1000`. Same goes for `steps=` if `policy=steps` is set.
+
+https://groups.google.com/d/msg/darknet/NbJqonJBTSY/Te5PfIpuCAAJ
+
+## How to train (to detect your custom objects):
+(to train old Yolo v2 `yolov2-voc.cfg`, `yolov2-tiny-voc.cfg`, `yolo-voc.cfg`, `yolo-voc.2.0.cfg`, ... [click by the link](https://github.com/AlexeyAB/darknet/tree/47c7af1cea5bbdedf1184963355e6418cb8b1b4f#how-to-train-pascal-voc-data))
+
+Training Yolo v3:
+
+1. Create file `yolo-obj.cfg` with the same content as in `yolov3.cfg` (or copy `yolov3.cfg` to `yolo-obj.cfg)` and:
+
+  * change line batch to [`batch=64`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L3)
+  * change line subdivisions to [`subdivisions=16`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+  * change line max_batches to (`classes*2000` but not less than `4000`), f.e. [`max_batches=6000`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L20) if you train for 3 classes
+  * change line steps to 80% and 90% of max_batches, f.e. [`steps=4800,5400`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L22)
+  * set network size `width=416 height=416` or any value multiple of 32: https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9
+  * change line `classes=80` to your number of objects in each of 3 `[yolo]`-layers:
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L610
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L696
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L783
+  * change [`filters=255`] to filters=(classes + 5)x3 in the 3 `[convolutional]` before each `[yolo]` layer
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L603
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L689
+      * https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L776
+  * when using [`[Gaussian_yolo]`](https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L608)  layers, change [`filters=57`] filters=(classes + 9)x3 in the 3 `[convolutional]` before each `[Gaussian_yolo]` layer
+      * https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L604
+      * https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L696
+      * https://github.com/AlexeyAB/darknet/blob/6e5bdf1282ad6b06ed0e962c3f5be67cf63d96dc/cfg/Gaussian_yolov3_BDD.cfg#L789
+      
+  So if `classes=1` then should be `filters=18`. If `classes=2` then write `filters=21`.
+  
+  **(Do not write in the cfg-file: filters=(classes + 5)x3)**
+  
+  (Generally `filters` depends on the `classes`, `coords` and number of `mask`s, i.e. filters=`(classes + coords + 1)*<number of mask>`, where `mask` is indices of anchors. If `mask` is absence, then filters=`(classes + coords + 1)*num`)
+
+  So for example, for 2 objects, your file `yolo-obj.cfg` should differ from `yolov3.cfg` in such lines in each of **3** [yolo]-layers:
+
+  ```
+  [convolutional]
+  filters=21
+
+  [region]
+  classes=2
+  ```
+
+2. Create file `obj.names` in the directory `build\darknet\x64\data\`, with objects names - each in new line
+
+3. Create file `obj.data` in the directory `build\darknet\x64\data\`, containing (where **classes = number of objects**):
+
+  ```
+  classes= 2
+  train  = data/train.txt
+  valid  = data/test.txt
+  names = data/obj.names
+  backup = backup/
+  ```
+
+4. Put image-files (.jpg) of your objects in the directory `build\darknet\x64\data\obj\`
+
+5. You should label each object on images from your dataset. Use this visual GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
+
+It will create `.txt`-file for each `.jpg`-image-file - in the same directory and with the same name, but with `.txt`-extension, and put to file: object number and object coordinates on this image, for each object in new line: 
+
+`<object-class> <x_center> <y_center> <width> <height>`
+
+  Where: 
+  * `<object-class>` - integer object number from `0` to `(classes-1)`
+  * `<x_center> <y_center> <width> <height>` - float values **relative** to width and height of image, it can be equal from `(0.0 to 1.0]`
+  * for example: `<x> = <absolute_x> / <image_width>` or `<height> = <absolute_height> / <image_height>`
+  * atention: `<x_center> <y_center>` - are center of rectangle (are not top-left corner)
+
+  For example for `img1.jpg` you will be created `img1.txt` containing:
+
+  ```
+  1 0.716797 0.395833 0.216406 0.147222
+  0 0.687109 0.379167 0.255469 0.158333
+  1 0.420312 0.395833 0.140625 0.166667
+  ```
+
+6. Create file `train.txt` in directory `build\darknet\x64\data\`, with filenames of your images, each filename in new line, with path relative to `darknet.exe`, for example containing:
+
+  ```
+  data/obj/img1.jpg
+  data/obj/img2.jpg
+  data/obj/img3.jpg
+  ```
+
+7. Download pre-trained weights for the convolutional layers and put to the directory `build\darknet\x64`
+    * for `csresnext50-panet-spp.cfg` (133 MB): [csresnext50-panet-spp.conv.112](https://drive.google.com/file/d/16yMYCLQTY_oDlCIZPfn_sab6KD3zgzGq/view?usp=sharing)
+    * for `yolov3.cfg, yolov3-spp.cfg` (154 MB): [darknet53.conv.74](https://pjreddie.com/media/files/darknet53.conv.74)
+    * for `yolov3-tiny-prn.cfg , yolov3-tiny.cfg` (6 MB): [yolov3-tiny.conv.11](https://drive.google.com/file/d/18v36esoXCh-PsOKwyP2GWrpYDptDY8Zf/view?usp=sharing)
+    * for `enet-coco.cfg (EfficientNetB0-Yolov3)` (14 MB): [enetb0-coco.conv.132](https://drive.google.com/file/d/1uhh3D6RSn0ekgmsaTcl-ZW53WBaUDo6j/view?usp=sharing)
+    
+
+8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74`
+     
+   To train on Linux use command: `./darknet detector train data/obj.data yolo-obj.cfg darknet53.conv.74` (just use `./darknet` instead of `darknet.exe`)
+     
+   * (file `yolo-obj_last.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations)
+   * (file `yolo-obj_xxxx.weights` will be saved to the `build\darknet\x64\backup\` for each 1000 iterations)
+   * (to disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show`, if you train on computer without monitor like a cloud Amazon EC2)
+   * (to see the mAP & Loss-chart during training on remote server without GUI, use command `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -dont_show -mjpeg_port 8090 -map` then open URL `http://ip-address:8090` in Chrome/Firefox browser)
+
+8.1. For training with mAP (mean average precisions) calculation for each 4 Epochs (set `valid=valid.txt` or `train.txt` in `obj.data` file) and run: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -map`
+
+9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\`
+
+ * After each 100 iterations you can stop and later start training from this point. For example, after 2000 iterations you can stop training, and later just start training using: `darknet.exe detector train data/obj.data yolo-obj.cfg backup\yolo-obj_2000.weights`
+
+    (in the original repository https://github.com/pjreddie/darknet the weights-file is saved only once every 10 000 iterations `if(iterations > 1000)`)
+
+ * Also you can get result earlier than all 45000 iterations.
+ 
+ **Note:** If during training you see `nan` values for `avg` (loss) field - then training goes wrong, but if `nan` is in some other lines - then training goes well.
+ 
+ **Note:** If you changed width= or height= in your cfg-file, then new width and height must be divisible by 32.
+ 
+ **Note:** After training use such command for detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+ 
+  **Note:** if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+ 
+### How to train tiny-yolo (to detect your custom objects):
+
+Do all the same steps as for the full yolo model as described above. With the exception of:
+* Download default weights file for yolov3-tiny: https://pjreddie.com/media/files/yolov3-tiny.weights
+* Get pre-trained weights `yolov3-tiny.conv.15` using command: `darknet.exe partial cfg/yolov3-tiny.cfg yolov3-tiny.weights yolov3-tiny.conv.15 15`
+* Make your custom model `yolov3-tiny-obj.cfg` based on `cfg/yolov3-tiny_obj.cfg` instead of `yolov3.cfg`
+* Start training: `darknet.exe detector train data/obj.data yolov3-tiny-obj.cfg yolov3-tiny.conv.15`
+
+For training Yolo based on other models ([DenseNet201-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/densenet201_yolo.cfg) or [ResNet50-Yolo](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/resnet50_yolo.cfg)), you can download and get pre-trained weights as showed in this file: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/partial.cmd
+If you made you custom model that isn't based on other models, then you can train it without pre-trained weights, then will be used random initial weights.
+ 
+## When should I stop training:
+
+Usually sufficient 2000 iterations for each class(object), but not less than 4000 iterations in total. But for a more precise definition when you should stop training, use the following manual:
+
+1. During training, you will see varying indicators of error, and you should stop when no longer decreases **0.XXXXXXX avg**:
+
+  > Region Avg IOU: 0.798363, Class: 0.893232, Obj: 0.700808, No Obj: 0.004567, Avg Recall: 1.000000,  count: 8
+  > Region Avg IOU: 0.800677, Class: 0.892181, Obj: 0.701590, No Obj: 0.004574, Avg Recall: 1.000000,  count: 8
+  >
+  > **9002**: 0.211667, **0.60730 avg**, 0.001000 rate, 3.868000 seconds, 576128 images
+  > Loaded: 0.000000 seconds
+
+  * **9002** - iteration number (number of batch)
+  * **0.60730 avg** - average loss (error) - **the lower, the better**
+
+  When you see that average loss **0.xxxxxx avg** no longer decreases at many iterations then you should stop training. The final avgerage loss can be from `0.05` (for a small model and easy dataset) to `3.0` (for a big model and a difficult dataset).
+
+2. Once training is stopped, you should take some of last `.weights`-files from `darknet\build\darknet\x64\backup` and choose the best of them:
+
+For example, you stopped training after 9000 iterations, but the best result can give one of previous weights (7000, 8000, 9000). It can happen due to overfitting. **Overfitting** - is case when you can detect objects on images from training-dataset, but can't detect objects on any others images. You should get weights from **Early Stopping Point**:
+
+![Overfitting](https://hsto.org/files/5dc/7ae/7fa/5dc7ae7fad9d4e3eb3a484c58bfc1ff5.png) 
+
+To get weights from Early Stopping Point:
+
+  2.1. At first, in your file `obj.data` you must specify the path to the validation dataset `valid = valid.txt` (format of `valid.txt` as in `train.txt`), and if you haven't validation images, just copy `data\train.txt` to `data\valid.txt`.
+
+  2.2 If training is stopped after 9000 iterations, to validate some of previous weights use this commands:
+
+(If you use another GitHub repository, then use `darknet.exe detector recall`... instead of `darknet.exe detector map`...)
+
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_7000.weights`
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_8000.weights`
+* `darknet.exe detector map data/obj.data yolo-obj.cfg backup\yolo-obj_9000.weights`
+
+And comapre last output lines for each weights (7000, 8000, 9000):
+
+Choose weights-file **with the highest mAP (mean average precision)** or IoU (intersect over union)
+
+For example, **bigger mAP** gives weights `yolo-obj_8000.weights` - then **use this weights for detection**.
+
+Or just train with `-map` flag: 
+
+`darknet.exe detector train data/obj.data yolo-obj.cfg darknet53.conv.74 -map` 
+
+So you will see mAP-chart (red-line) in the Loss-chart Window. mAP will be calculated for each 4 Epochs using `valid=valid.txt` file that is specified in `obj.data` file (`1 Epoch = images_in_train_txt / batch` iterations)
+
+(to change the max x-axis value - change [`max_batches=`](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L20) parameter to `2000*classes`, f.e. `max_batches=6000` for 3 classes)
+
+![loss_chart_map_chart](https://hsto.org/webt/yd/vl/ag/ydvlagutof2zcnjodstgroen8ac.jpeg)
+
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
+* **IoU** (intersect over union) - average instersect over union of objects and detections for a certain threshold = 0.24
+
+* **mAP** (mean average precision) - mean value of `average precisions` for each class, where `average precision` is average value of 11 points on PR-curve for each possible threshold (each probability of detection) for the same class (Precision-Recall in terms of PascalVOC, where Precision=TP/(TP+FP) and Recall=TP/(TP+FN) ), page-11: http://homepages.inf.ed.ac.uk/ckiw/postscript/ijcv_voc09.pdf
+
+**mAP** is default metric of precision in the PascalVOC competition, **this is the same as AP50** metric in the MS COCO competition.
+In terms of Wiki, indicators Precision and Recall have a slightly different meaning than in the PascalVOC competition, but **IoU always has the same meaning**.
+
+![precision_recall_iou](https://hsto.org/files/ca8/866/d76/ca8866d76fb840228940dbf442a7f06a.jpg)
+
+### How to calculate mAP on PascalVOC 2007:
+
+1. To calculate mAP (mean average precision) on PascalVOC-2007-test:
+* Download PascalVOC dataset, install Python 3.x and get file `2007_test.txt` as described here: https://github.com/AlexeyAB/darknet#how-to-train-pascal-voc-data
+* Then download file https://raw.githubusercontent.com/AlexeyAB/darknet/master/scripts/voc_label_difficult.py to the dir `build\darknet\x64\data\` then run `voc_label_difficult.py` to get the file `difficult_2007_test.txt`
+* Remove symbol `#` from this line to un-comment it: https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/data/voc.data#L4
+* Then there are 2 ways to get mAP:
+    1. Using Darknet + Python: run the file `build/darknet/x64/calc_mAP_voc_py.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.9%
+    2. Using this fork of Darknet: run the file `build/darknet/x64/calc_mAP.cmd` - you will get mAP for `yolo-voc.cfg` model, mAP = 75.8%
+    
+ (The article specifies the value of mAP = 76.8% for YOLOv2 416×416, page-4 table-3: https://arxiv.org/pdf/1612.08242v1.pdf. We get values lower - perhaps due to the fact that the model was trained on a slightly different source code than the code on which the detection is was done)
+
+* if you want to get mAP for `tiny-yolo-voc.cfg` model, then un-comment line for tiny-yolo-voc.cfg and comment line for yolo-voc.cfg in the .cmd-file
+* if you have Python 2.x instead of Python 3.x, and if you use Darknet+Python-way to get mAP, then in your cmd-file use `reval_voc.py` and `voc_eval.py` instead of `reval_voc_py3.py` and `voc_eval_py3.py` from this directory: https://github.com/AlexeyAB/darknet/tree/master/scripts
+
+### Custom object detection:
+
+Example of custom object detection: `darknet.exe detector test data/obj.data yolo-obj.cfg yolo-obj_8000.weights`
+
+| ![Yolo_v2_training](https://hsto.org/files/d12/1e7/515/d121e7515f6a4eb694913f10de5f2b61.jpg) | ![Yolo_v2_training](https://hsto.org/files/727/c7e/5e9/727c7e5e99bf4d4aa34027bb6a5e4bab.jpg) |
+|---|---|
+
+## How to improve object detection:
+
+1. Before training:
+  * set flag `random=1` in your `.cfg`-file - it will increase precision by training Yolo for different resolutions: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L788)
+
+  * increase network resolution in your `.cfg`-file (`height=608`, `width=608` or any value multiple of 32) - it will increase precision
+
+
+  * check that each object that you want to detect is mandatory labeled in your dataset - no one object in your data set should not be without label. In the most training issues - there are wrong labels in your dataset (got labels by using some conversion script, marked with a third-party tool, ...). Always check your dataset by using: https://github.com/AlexeyAB/Yolo_mark
+
+  * my Loss is very high and mAP is very low, is training wrong? Run training with ` -show_imgs` flag at the end of training command, do you see correct bounded boxes of objects (in windows or in files `aug_...jpg`)? If no - your training dataset is wrong.
+
+  * for each object which you want to detect - there must be at least 1 similar object in the Training dataset with about the same: shape, side of object, relative size, angle of rotation, tilt, illumination. So desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides, on different backgrounds - you should preferably have 2000 different images for each class or more, and you should train `2000*classes` iterations or more
+
+  * desirable that your training dataset include images with non-labeled objects that you do not want to detect - negative samples without bounded box (empty `.txt` files) - use as many images of negative samples as there are images with objects
+
+  * What is the best way to mark objects: label only the visible part of the object, or label the visible and overlapped part of the object, or label a little more than the entire object (with a little gap)? Mark as you like - how would you like it to be detected.
+
+  * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last `[yolo]`-layer or `[region]`-layer in your cfg-file (the global maximum number of objects that can be detected by YoloV3 is `0,0615234375*(width*height)` where are width and height are parameters from `[net]` section in cfg-file) 
+  
+  * for training for small objects (smaller than 16x16 after the image is resized to 416x416) - set `layers = -1, 11` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L720
+      and set `stride=4` instead of https://github.com/AlexeyAB/darknet/blob/6390a5a2ab61a0bdf6f1a9a6b4a739c16b36e0d7/cfg/yolov3.cfg#L717
+  
+  * for training for both small and large objects use modified models:
+      * Full-model: 5 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3_5l.cfg
+      * Tiny-model: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-tiny_3l.cfg
+      * Spatial-full-model: 3 yolo layers: https://raw.githubusercontent.com/AlexeyAB/darknet/master/cfg/yolov3-spp.cfg
+  
+  * If you train the model to distinguish Left and Right objects as separate classes (left/right hand, left/right-turn on road signs, ...) then for disabling flip data augmentation - add `flip=0` here: https://github.com/AlexeyAB/darknet/blob/3d2d0a7c98dbc8923d9ff705b81ff4f7940ea6ff/cfg/yolov3.cfg#L17
+  
+  * General rule - your training dataset should include such a set of relative sizes of objects that you want to detect: 
+
+    * `train_network_width * train_obj_width / train_image_width ~= detection_network_width * detection_obj_width / detection_image_width`
+    * `train_network_height * train_obj_height / train_image_height ~= detection_network_height * detection_obj_height / detection_image_height`
+    
+    I.e. for each object from Test dataset there must be at least 1 object in the Training dataset with the same class_id and about the same relative size:
+
+    `object width in percent from Training dataset` ~= `object width in percent from Test dataset` 
+   
+    That is, if only objects that occupied 80-90% of the image were present in the training set, then the trained network will not be able to detect objects that occupy 1-10% of the image.
+    
+  * to speedup training (with decreasing detection accuracy) do Fine-Tuning instead of Transfer-Learning, set param `stopbackward=1` here: https://github.com/AlexeyAB/darknet/blob/6d44529cf93211c319813c90e0c1adb34426abe5/cfg/yolov3.cfg#L548
+    then do this command: `./darknet partial cfg/yolov3.cfg yolov3.weights yolov3.conv.81 81` will be created file `yolov3.conv.81`,
+    then train by using weights file `yolov3.conv.81` instead of `darknet53.conv.74`
+
+  * each: `model of object, side, illimination, scale, each 30 grad` of the turn and inclination angles - these are *different objects* from an internal perspective of the neural network. So the more *different objects* you want to detect, the more complex network model should be used.
+
+  * to make the detected bounded boxes more accurate, you can add 3 parameters `ignore_thresh = .9 iou_normalizer=0.5 iou_loss=giou` to each `[yolo]` layer and train, it will increase mAP@0.9, but decrease mAP@0.5.
+
+  * Only if you are an **expert** in neural detection networks - recalculate anchors for your dataset for `width` and `height` from cfg-file:
+  `darknet.exe detector calc_anchors data/obj.data -num_of_clusters 9 -width 416 -height 416`
+   then set the same 9 `anchors` in each of 3 `[yolo]`-layers in your cfg-file. But you should change indexes of anchors `masks=` for each [yolo]-layer, so that 1st-[yolo]-layer has anchors larger than 60x60, 2nd larger than 30x30, 3rd remaining. Also you should change the `filters=(classes + 5)*<number of mask>` before each [yolo]-layer. If many of the calculated anchors do not fit under the appropriate layers - then just try using all the default anchors.
+
+
+2. After training - for detection:
+
+  * Increase network-resolution by set in your `.cfg`-file (`height=608` and `width=608`) or (`height=832` and `width=832`) or (any value multiple of 32) - this increases the precision and makes it possible to detect small objects: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L8-L9)
+  
+    * it is not necessary to train the network again, just use `.weights`-file already trained for 416x416 resolution
+    * but to get even greater accuracy you should train with higher resolution 608x608 or 832x832, note: if error `Out of memory` occurs then in `.cfg`-file you should increase `subdivisions=16`, 32 or 64: [link](https://github.com/AlexeyAB/darknet/blob/0039fd26786ab5f71d5af725fc18b3f521e7acfd/cfg/yolov3.cfg#L4)
+
+## How to mark bounded boxes of objects and create annotation files:
+
+Here you can find repository with GUI-software for marking bounded boxes of objects and generating annotation files for Yolo v2 & v3: https://github.com/AlexeyAB/Yolo_mark
+
+With example of: `train.txt`, `obj.names`, `obj.data`, `yolo-obj.cfg`, `air`1-6`.txt`, `bird`1-4`.txt` for 2 classes of objects (air, bird) and `train_obj.cmd` with example how to train this image-set with Yolo v2 & v3
+
+Different tools for marking objects in images:
+1. in C++: https://github.com/AlexeyAB/Yolo_mark 
+2. in Python: https://github.com/tzutalin/labelImg
+3. in Python: https://github.com/Cartucho/OpenLabeling
+4. in C++: https://www.ccoderun.ca/darkmark/
+5. in JavaScript: https://github.com/opencv/cvat
+
+
+## Using Yolo9000
+
+ Simultaneous detection and classification of 9000 objects: `darknet.exe detector test cfg/combine9k.data cfg/yolo9000.cfg yolo9000.weights data/dog.jpg`
+
+* `yolo9000.weights` - (186 MB Yolo9000 Model) requires 4 GB GPU-RAM: http://pjreddie.com/media/files/yolo9000.weights
+
+* `yolo9000.cfg` - cfg-file of the Yolo9000, also there are paths to the `9k.tree` and `coco9k.map`  https://github.com/AlexeyAB/darknet/blob/617cf313ccb1fe005db3f7d88dec04a04bd97cc2/cfg/yolo9000.cfg#L217-L218
+
+    * `9k.tree` - **WordTree** of 9418 categories  - `<label> <parent_it>`, if `parent_id == -1` then this label hasn't parent: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.tree
+
+    * `coco9k.map` - map 80 categories from MSCOCO to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/coco9k.map
+
+* `combine9k.data` - data file, there are paths to: `9k.labels`, `9k.names`, `inet9k.map`, (change path to your `combine9k.train.list`): https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/combine9k.data
+
+    * `9k.labels` - 9418 labels of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.labels
+
+    * `9k.names` -
+9418 names of objects: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/9k.names
+
+    * `inet9k.map` - map 200 categories from ImageNet to WordTree `9k.tree`: https://raw.githubusercontent.com/AlexeyAB/darknet/master/build/darknet/x64/data/inet9k.map
+
+
+## How to use Yolo as DLL and SO libraries
+
+* on Linux
+    * using `build.sh` or
+    * build `darknet` using `cmake` or
+    * set `LIBSO=1` in the `Makefile` and do `make`
+* on Windows
+    * using `build.ps1` or
+    * build `darknet` using `cmake` or
+    * compile `build\darknet\yolo_cpp_dll.sln` solution or `build\darknet\yolo_cpp_dll_no_gpu.sln` solution
+
+There are 2 APIs:
+* C API: https://github.com/AlexeyAB/darknet/blob/master/include/darknet.h
+    * Python examples using the C API::     
+         * https://github.com/AlexeyAB/darknet/blob/master/darknet.py	
+         * https://github.com/AlexeyAB/darknet/blob/master/darknet_video.py
+    
+* C++ API: https://github.com/AlexeyAB/darknet/blob/master/include/yolo_v2_class.hpp
+    * C++ example that uses C++ API: https://github.com/AlexeyAB/darknet/blob/master/src/yolo_console_dll.cpp
+    
+----
+
+1. To compile Yolo as C++ DLL-file `yolo_cpp_dll.dll` - open the solution `build\darknet\yolo_cpp_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_cpp_dll
+    * You should have installed **CUDA 10.0**
+    * To use cuDNN do: (right click on project) -> properties -> C/C++ -> Preprocessor -> Preprocessor Definitions, and add at the beginning of line: `CUDNN;`
+
+2. To use Yolo as DLL-file in your C++ console application - open the solution `build\darknet\yolo_console_dll.sln`, set **x64** and **Release**, and do the: Build -> Build yolo_console_dll
+
+    * you can run your console application from Windows Explorer `build\darknet\x64\yolo_console_dll.exe`
+    **use this command**: `yolo_console_dll.exe data/coco.names yolov3.cfg yolov3.weights test.mp4`
+    
+    * after launching your console application and entering the image file name - you will see info for each object: 
+    `<obj_id> <left_x> <top_y> <width> <height> <probability>`
+    * to use simple OpenCV-GUI you should uncomment line `//#define OPENCV` in `yolo_console_dll.cpp`-file: [link](https://github.com/AlexeyAB/darknet/blob/a6cbaeecde40f91ddc3ea09aa26a03ab5bbf8ba8/src/yolo_console_dll.cpp#L5)
+    * you can see source code of simple example for detection on the video file: [link](https://github.com/AlexeyAB/darknet/blob/ab1c5f9e57b4175f29a6ef39e7e68987d3e98704/src/yolo_console_dll.cpp#L75)
+   
+`yolo_cpp_dll.dll`-API: [link](https://github.com/AlexeyAB/darknet/blob/master/src/yolo_v2_class.hpp#L42)
+```
+struct bbox_t {
+    unsigned int x, y, w, h;    // (x,y) - top-left corner, (w, h) - width & height of bounded box
+    float prob;                    // confidence - probability that the object was found correctly
+    unsigned int obj_id;        // class of object - from range [0, classes-1]
+    unsigned int track_id;        // tracking id for video (0 - untracked, 1 - inf - tracked object)
+    unsigned int frames_counter;// counter of frames on which the object was detected
+};
+
+class Detector {
+public:
+        Detector(std::string cfg_filename, std::string weight_filename, int gpu_id = 0);
+        ~Detector();
+
+        std::vector<bbox_t> detect(std::string image_filename, float thresh = 0.2, bool use_mean = false);
+        std::vector<bbox_t> detect(image_t img, float thresh = 0.2, bool use_mean = false);
+        static image_t load_image(std::string image_filename);
+        static void free_image(image_t m);
+
+#ifdef OPENCV
+        std::vector<bbox_t> detect(cv::Mat mat, float thresh = 0.2, bool use_mean = false);
+	std::shared_ptr<image_t> mat_to_image_resize(cv::Mat mat) const;
+#endif
+};
+```

+ 87 - 0
appveyor.yml

@@ -0,0 +1,87 @@
+image: Visual Studio 2017
+clone_folder: c:\projects\darknet
+cache: C:\Tools\vcpkg\installed\
+
+environment:
+    WORKSPACE: C:\projects
+    matrix:
+    - platform: Cygwin64
+      COMPILER: cygwin
+      CYGWIN_NOWINPATH: yes
+      CYGSH: C:\cygwin64\bin\bash -c
+    - platform: Win64
+      USE_CUDA: yes
+      COMPILER: vs
+      configuration: Release
+      VCPKG_ROOT: C:\Tools\vcpkg
+      VCPKG_DEFAULT_TRIPLET: x64-windows
+    - platform: Win64
+      USE_CUDA: no
+      COMPILER: vs
+      configuration: Release
+      VCPKG_ROOT: C:\Tools\vcpkg
+      VCPKG_DEFAULT_TRIPLET: x64-windows
+    - platform: Win64
+      COMPILER: vs
+      configuration: Release
+      USE_INTEGRATED_LIBS: yes
+    - platform: Win64
+      COMPILER: vs
+      configuration: Release
+      USE_INTEGRATED_LIBS: yes
+      FORCE_CPP: yes
+
+install:
+  - if [%COMPILER%]==[vs] cinst cmake ninja
+  - if [%COMPILER%]==[vs] SET "PATH=C:\Program Files\CMake\bin;%PATH%"
+  - if [%COMPILER%]==[vs] call "C:\Program Files (x86)\Microsoft Visual Studio\2017\Community\VC\Auxiliary\Build\vcvarsall.bat" x64
+  - if [%COMPILER%]==[cygwin] SET "PATH=C:\cygwin64\usr\local\bin;C:\cygwin64\bin;C:\cygwin64\usr\bin;%PATH%"
+  - if [%COMPILER%]==[cygwin] SET PATH=%PATH:C:\Program Files\Git\usr\bin;=%
+  - git submodule -q update --init --recursive
+  - cd %WORKSPACE%\
+  - if [%USE_CUDA%]==[yes] curl -L https://developer.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.105_418.96_win10.exe -o setup.exe
+  - if [%USE_CUDA%]==[yes] .\setup.exe -s nvcc_10.1 cuobjdump_10.1 nvprune_10.1 cupti_10.1 gpu_library_advisor_10.1 memcheck_10.1 nvdisasm_10.1 nvprof_10.1 visual_profiler_10.1 visual_studio_integration_10.1 cublas_10.1 cublas_dev_10.1 cudart_10.1 cufft_10.1 cufft_dev_10.1 curand_10.1 curand_dev_10.1 cusolver_10.1 cusolver_dev_10.1 cusparse_10.1 cusparse_dev_10.1 nvgraph_10.1 nvgraph_dev_10.1 npp_10.1 npp_dev_10.1 nvrtc_10.1 nvrtc_dev_10.1 nvml_dev_10.1 occupancy_calculator_10.1 fortran_examples_10.1
+  - if [%USE_CUDA%]==[yes] set CUDA_PATH=%ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v10.1
+  - if [%USE_CUDA%]==[yes] set CUDA_PATH_V10_1=%CUDA_PATH%
+  - if [%USE_CUDA%]==[yes] set CUDA_TOOLKIT_ROOT_DIR=%CUDA_PATH%
+  - if [%USE_CUDA%]==[yes] set PATH=%CUDA_PATH%\bin;%PATH%
+  - cd %WORKSPACE%\
+  - mkdir cygwin-downloads
+  - ps: if($env:COMPILER -eq "cygwin") { Invoke-WebRequest https://cygwin.com/setup-x86_64.exe -OutFile $env:WORKSPACE\cygwin-setup.exe }
+  - if [%COMPILER%]==[cygwin] %WORKSPACE%\cygwin-setup.exe --quiet-mode --no-shortcuts --no-startmenu --no-desktop --upgrade-also --root C:\cygwin64 --local-package-dir %WORKSPACE%\cygwin-downloads --packages gcc-g++,cmake,libopencv-devel,libncurses-devel
+  - ps: if($env:COMPILER -eq "cygwin") { Invoke-WebRequest https://github.com/Kitware/CMake/releases/download/v3.14.0/cmake-3.14.0.tar.gz -OutFile $env:WORKSPACE\cmake-3.14.0.tar.gz }
+  - if [%COMPILER%]==[cygwin] %CYGSH% 'tar zxvf cmake-3.14.0.tar.gz'
+  - if [%COMPILER%]==[cygwin] cd %WORKSPACE%\cmake-3.14.0
+  - if [%COMPILER%]==[cygwin] %CYGSH% 'cmake .'
+  - if [%COMPILER%]==[cygwin] %CYGSH% 'make -j8'
+  - if [%COMPILER%]==[cygwin] %CYGSH% 'make install'
+  - if [%COMPILER%]==[cygwin] cd %WORKSPACE%
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] cd %VCPKG_ROOT%
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] git checkout .
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] git pull
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] .\bootstrap-vcpkg.bat
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] echo set(VCPKG_BUILD_TYPE release) >> triplets\%VCPKG_DEFAULT_TRIPLET%.cmake
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] if [%USE_CUDA%]==[yes] vcpkg install cuda --recurse
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] vcpkg install stb pthreads --recurse
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] vcpkg install ffmpeg --recurse
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] vcpkg install opencv[ffmpeg] --recurse ## opencv[ffmpeg,cuda] is too big to build, timing out (>1h). We use plain openCV also for CUDA builds (toolchain can manage this strange situation anyway)
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] rmdir "buildtrees" /S /Q
+  - cd %WORKSPACE%\darknet\
+  - if [%COMPILER%]==[cygwin] mkdir build_debug && cd build_debug
+  - if [%COMPILER%]==[cygwin] %CYGSH% 'cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE="Debug"'
+  - if [%COMPILER%]==[cygwin] cd ..
+  - mkdir build_release && cd build_release
+  - if [%COMPILER%]==[cygwin] %CYGSH% 'cmake .. -G "Unix Makefiles" -DCMAKE_BUILD_TYPE="Release"'
+  - if [%COMPILER%]==[vs] if NOT [%USE_INTEGRATED_LIBS%]==[yes] if [%configuration%]==[Release] cmake -G "Visual Studio 15 2017" -T "host=x64" -A "x64" "-DCMAKE_TOOLCHAIN_FILE=%VCPKG_ROOT%\scripts\buildsystems\vcpkg.cmake" "-DVCPKG_TARGET_TRIPLET=%VCPKG_DEFAULT_TRIPLET%" -DCMAKE_BUILD_TYPE="Release" ..
+  - if [%COMPILER%]==[vs] if     [%USE_INTEGRATED_LIBS%]==[yes] if [%FORCE_CPP%]==[yes]         cmake -G "Visual Studio 15 2017" -T "host=x64" -A "x64" -DCMAKE_BUILD_TYPE="Release" "-DBUILD_AS_CPP:BOOL=TRUE" ..
+  - if [%COMPILER%]==[vs] if     [%USE_INTEGRATED_LIBS%]==[yes]                                 cmake -G "Visual Studio 15 2017" -T "host=x64" -A "x64" -DCMAKE_BUILD_TYPE="Release" ..
+  - cd ..
+
+build_script:
+  - if [%COMPILER%]==[cygwin]                                                                   cd build_debug   && %CYGSH% 'cmake --build . --target install -- -j8'              && cd ..
+  - if [%COMPILER%]==[cygwin]                                                                   cd build_release && %CYGSH% 'cmake --build . --target install -- -j8'              && cd ..
+  - if [%COMPILER%]==[vs]                                       if [%configuration%]==[Release] cd build_release && cmake --build . --config Release --parallel 8 --target install && cd ..
+
+artifacts:
+  - path: lib
+  - path: '*.exe'

+ 3 - 0
bad.list

@@ -0,0 +1,3 @@
+/home/ubuntu/backend/aws-training-demo/toolkit/test/coco-logo-20210305150237/coco-logo-20210305150237_test.jpg
+./dataset/cuhk/school_badge_converted_1.jpg
+./dataset/go-202103311140592C/labeled-dataset-go-202103311140592C/go-20.jpg

+ 224 - 0
build.ps1

@@ -0,0 +1,224 @@
+#!/usr/bin/env pwsh
+
+$number_of_build_workers=8
+$use_vcpkg=$true
+$use_ninja=$false
+$force_cpp_build=$false
+
+function getProgramFiles32bit() {
+  $out = ${env:PROGRAMFILES(X86)}
+  if ($null -eq $out) {
+    $out = ${env:PROGRAMFILES}
+  }
+
+  if ($null -eq $out) {
+    throw "Could not find [Program Files 32-bit]"
+  }
+
+  return $out
+}
+
+function getLatestVisualStudioWithDesktopWorkloadPath() {
+  $programFiles = getProgramFiles32bit
+  $vswhereExe = "$programFiles\Microsoft Visual Studio\Installer\vswhere.exe"
+  if (Test-Path $vswhereExe) {
+    $output = & $vswhereExe -products * -latest -requires Microsoft.VisualStudio.Workload.NativeDesktop -format xml
+    [xml]$asXml = $output
+    foreach ($instance in $asXml.instances.instance) {
+      $installationPath = $instance.InstallationPath -replace "\\$" # Remove potential trailing backslash
+    }
+    if (!$installationPath) {
+      Write-Host "Warning: no full Visual Studio setup has been found, extending search to include also partial installations" -ForegroundColor Yellow
+      $output = & $vswhereExe -products * -latest -format xml
+      [xml]$asXml = $output
+      foreach ($instance in $asXml.instances.instance) {
+        $installationPath = $instance.InstallationPath -replace "\\$" # Remove potential trailing backslash
+      }
+    }
+    if (!$installationPath) {
+      Throw "Could not locate any installation of Visual Studio"
+    }
+  }
+  else {
+    Throw "Could not locate vswhere at $vswhereExe"
+  }
+  return $installationPath
+}
+
+
+function getLatestVisualStudioWithDesktopWorkloadVersion() {
+  $programFiles = getProgramFiles32bit
+  $vswhereExe = "$programFiles\Microsoft Visual Studio\Installer\vswhere.exe"
+  if (Test-Path $vswhereExe) {
+    $output = & $vswhereExe -products * -latest -requires Microsoft.VisualStudio.Workload.NativeDesktop -format xml
+    [xml]$asXml = $output
+    foreach ($instance in $asXml.instances.instance) {
+      $installationVersion = $instance.InstallationVersion
+    }
+    if (!$installationVersion) {
+      Write-Host "Warning: no full Visual Studio setup has been found, extending search to include also partial installations" -ForegroundColor Yellow
+      $output = & $vswhereExe -products * -latest -format xml
+      [xml]$asXml = $output
+      foreach ($instance in $asXml.instances.instance) {
+        $installationVersion = $instance.installationVersion
+      }
+    }
+    if (!$installationVersion) {
+      Throw "Could not locate any installation of Visual Studio"
+    }
+  }
+  else {
+    Throw "Could not locate vswhere at $vswhereExe"
+  }
+  return $installationVersion
+}
+
+
+if ((Test-Path env:VCPKG_ROOT) -and $use_vcpkg) {
+  $vcpkg_path = "$env:VCPKG_ROOT"
+  Write-Host "Found vcpkg in VCPKG_ROOT: $vcpkg_path"
+}
+elseif ((Test-Path "${env:WORKSPACE}\vcpkg") -and $use_vcpkg) {
+  $vcpkg_path = "${env:WORKSPACE}\vcpkg"
+  Write-Host "Found vcpkg in WORKSPACE\vcpkg: $vcpkg_path"
+}
+else {
+  Write-Host "Skipping vcpkg-enabled builds because the VCPKG_ROOT environment variable is not defined or you requested to avoid VCPKG, using self-distributed libs`n" -ForegroundColor Yellow
+}
+
+if ($null -eq $env:VCPKG_DEFAULT_TRIPLET -and $use_vcpkg) {
+  Write-Host "No default triplet has been set-up for vcpkg. Defaulting to x64-windows" -ForegroundColor Yellow
+  $vcpkg_triplet = "x64-windows"
+}
+elseif ($use_vcpkg) {
+  $vcpkg_triplet = $env:VCPKG_DEFAULT_TRIPLET
+}
+
+if ($vcpkg_triplet -Match "x86" -and $use_vcpkg) {
+  Throw "darknet is supported only in x64 builds!"
+}
+
+if ($null -eq (Get-Command "cl.exe" -ErrorAction SilentlyContinue)) {
+  $vsfound = getLatestVisualStudioWithDesktopWorkloadPath
+  Write-Host "Found VS in ${vsfound}"
+  Push-Location "${vsfound}\Common7\Tools"
+  cmd.exe /c "VsDevCmd.bat -arch=x64 & set" |
+  ForEach-Object {
+    if ($_ -match "=") {
+      $v = $_.split("="); Set-Item -force -path "ENV:\$($v[0])"  -value "$($v[1])"
+    }
+  }
+  Pop-Location
+  Write-Host "Visual Studio Command Prompt variables set" -ForegroundColor Yellow
+}
+
+$tokens = getLatestVisualStudioWithDesktopWorkloadVersion
+$tokens = $tokens.split('.')
+if($use_ninja) {
+  $generator = "Ninja"
+}
+else {
+  if ($tokens[0] -eq "14") {
+    $generator = "Visual Studio 14 2015"
+  }
+  elseif ($tokens[0] -eq "15") {
+    $generator = "Visual Studio 15 2017"
+  }
+  elseif ($tokens[0] -eq "16") {
+    $generator = "Visual Studio 16 2019"
+  }
+  else {
+    throw "Unknown Visual Studio version, unsupported configuration"
+  }
+}
+Write-Host "Setting up environment to use CMake generator: $generator" -ForegroundColor Yellow
+
+if ($null -eq (Get-Command "nvcc.exe" -ErrorAction SilentlyContinue)) {
+  if (Test-Path env:CUDA_PATH) {
+    $env:PATH += ";${env:CUDA_PATH}\bin"
+    Write-Host "Found cuda in ${env:CUDA_PATH}" -ForegroundColor Yellow
+  }
+  else {
+    Write-Host "Unable to find CUDA, if necessary please install it or define a CUDA_PATH env variable pointing to the install folder" -ForegroundColor Yellow
+  }
+}
+
+if (Test-Path env:CUDA_PATH) {
+  if (-Not(Test-Path env:CUDA_TOOLKIT_ROOT_DIR)) {
+    $env:CUDA_TOOLKIT_ROOT_DIR = "${env:CUDA_PATH}"
+    Write-Host "Added missing env variable CUDA_TOOLKIT_ROOT_DIR" -ForegroundColor Yellow
+  }
+}
+
+if($force_cpp_build) {
+  $additional_build_setup="-DBUILD_AS_CPP:BOOL=TRUE"
+}
+
+if ($use_vcpkg) {
+  ## DEBUG
+  #New-Item -Path .\build_win_debug -ItemType directory -Force
+  #Set-Location build_win_debug
+  #if ($use_ninja) {
+    #cmake -G "$generator" "-DCMAKE_TOOLCHAIN_FILE=$vcpkg_path\scripts\buildsystems\vcpkg.cmake" "-DVCPKG_TARGET_TRIPLET=$vcpkg_triplet" #"-DCMAKE_BUILD_TYPE=Debug" $additional_build_setup ..
+    #$dllfolder = "."
+  #}
+  #else {
+    #cmake -G "$generator" -T "host=x64" -A "x64" "-DCMAKE_TOOLCHAIN_FILE=$vcpkg_path\scripts\buildsystems\vcpkg.cmake" "-DVCPKG_TARGET_TRIPLET=$vcpkg_triplet" "-DCMAKE_BUILD_TYPE=Debug" $additional_build_setup ..
+    #$dllfolder = "Debug"
+  #}
+  #cmake --build . --config Debug --target install
+  ##cmake --build . --config Debug --parallel ${number_of_build_workers} --target install  #valid only for CMake 3.12+
+  #Remove-Item DarknetConfig.cmake
+  #Remove-Item DarknetConfigVersion.cmake
+  #$dllfiles = Get-ChildItem ${dllfolder}\*.dll
+  #if ($dllfiles) {
+  #  Copy-Item $dllfiles ..
+  #}
+  #Set-Location ..
+  #Copy-Item cmake\Modules\*.cmake share\darknet\
+
+  # RELEASE
+  New-Item -Path .\build_win_release -ItemType directory -Force
+  Set-Location build_win_release
+  if($use_ninja) {
+    cmake -G "$generator" "-DCMAKE_TOOLCHAIN_FILE=$vcpkg_path\scripts\buildsystems\vcpkg.cmake" "-DVCPKG_TARGET_TRIPLET=$vcpkg_triplet" "-DCMAKE_BUILD_TYPE=Release" $additional_build_setup ..
+    $dllfolder = "."
+  }
+  else {
+    cmake -G "$generator" -T "host=x64" -A "x64" "-DCMAKE_TOOLCHAIN_FILE=$vcpkg_path\scripts\buildsystems\vcpkg.cmake" "-DVCPKG_TARGET_TRIPLET=$vcpkg_triplet" "-DCMAKE_BUILD_TYPE=Release" $additional_build_setup ..
+    $dllfolder = "Release"
+  }
+  cmake --build . --config Release --target install
+  #cmake --build . --config Release --parallel ${number_of_build_workers} --target install  #valid only for CMake 3.12+
+  Remove-Item DarknetConfig.cmake
+  Remove-Item DarknetConfigVersion.cmake
+  $dllfiles = Get-ChildItem ${dllfolder}\*.dll
+  if ($dllfiles) {
+    Copy-Item $dllfiles ..
+  }
+  Set-Location ..
+  Copy-Item cmake\Modules\*.cmake share\darknet\
+}
+else {
+  # USE LOCAL PTHREAD LIB AND LOCAL STB HEADER, NO VCPKG, ONLY RELEASE MODE SUPPORTED
+  # if you want to manually force this case, remove VCPKG_ROOT env variable and remember to use "vcpkg integrate remove" in case you had enabled user-wide vcpkg integration
+  New-Item -Path .\build_win_release_novcpkg -ItemType directory -Force
+  Set-Location build_win_release_novcpkg
+  if($use_ninja) {
+    cmake -G "$generator" $additional_build_setup ..
+  }
+  else {
+    cmake -G "$generator" -T "host=x64" -A "x64" $additional_build_setup ..
+  }
+  cmake --build . --config Release --target install
+  #cmake --build . --config Release --parallel ${number_of_build_workers} --target install  #valid only for CMake 3.12+
+  Remove-Item DarknetConfig.cmake
+  Remove-Item DarknetConfigVersion.cmake
+  $dllfolder = "..\3rdparty\pthreads\bin"
+  $dllfiles = Get-ChildItem ${dllfolder}\*.dll
+  if ($dllfiles) {
+    Copy-Item $dllfiles ..
+  }
+  Set-Location ..
+  Copy-Item cmake\Modules\*.cmake share\darknet\
+}

+ 57 - 0
build.sh

@@ -0,0 +1,57 @@
+#!/usr/bin/env bash
+
+number_of_build_workers=8
+bypass_vcpkg=true
+force_cpp_build=false
+
+if [[ "$OSTYPE" == "darwin"* ]]; then
+  vcpkg_triplet="x64-osx"
+else
+  vcpkg_triplet="x64-linux"
+fi
+
+if [[ ! -z "${VCPKG_ROOT}" ]] && [ -d ${VCPKG_ROOT} ] && [ ! "$bypass_vcpkg" = true ]
+then
+  vcpkg_path="${VCPKG_ROOT}"
+  vcpkg_define="-DCMAKE_TOOLCHAIN_FILE=${vcpkg_path}/scripts/buildsystems/vcpkg.cmake"
+  vcpkg_triplet_define="-DVCPKG_TARGET_TRIPLET=$vcpkg_triplet"
+  echo "Found vcpkg in VCPKG_ROOT: ${vcpkg_path}"
+  additional_defines="-DBUILD_SHARED_LIBS=OFF"
+elif [[ ! -z "${WORKSPACE}" ]] && [ -d ${WORKSPACE}/vcpkg ] && [ ! "$bypass_vcpkg" = true ]
+then
+  vcpkg_path="${WORKSPACE}/vcpkg"
+  vcpkg_define="-DCMAKE_TOOLCHAIN_FILE=${vcpkg_path}/scripts/buildsystems/vcpkg.cmake"
+  vcpkg_triplet_define="-DVCPKG_TARGET_TRIPLET=$vcpkg_triplet"
+  echo "Found vcpkg in WORKSPACE/vcpkg: ${vcpkg_path}"
+  additional_defines="-DBUILD_SHARED_LIBS=OFF"
+elif [ ! "$bypass_vcpkg" = true ]
+then
+  (>&2 echo "darknet is unsupported without vcpkg, use at your own risk!")
+fi
+
+if [ "$force_cpp_build" = true ]
+then
+  additional_build_setup="-DBUILD_AS_CPP:BOOL=TRUE"
+fi
+
+## DEBUG
+#mkdir -p build_debug
+#cd build_debug
+#cmake .. -DCMAKE_BUILD_TYPE=Debug ${vcpkg_define} ${vcpkg_triplet_define} ${additional_defines} ${additional_build_setup}
+#cmake --build . --target install -- -j${number_of_build_workers}
+##cmake --build . --target install --parallel ${number_of_build_workers}  #valid only for CMake 3.12+
+#rm -f DarknetConfig.cmake
+#rm -f DarknetConfigVersion.cmake
+#cd ..
+#cp cmake/Modules/*.cmake share/darknet/
+
+# RELEASE
+mkdir -p build_release
+cd build_release
+cmake .. -DCMAKE_BUILD_TYPE=Release ${vcpkg_define} ${vcpkg_triplet_define} ${additional_defines} ${additional_build_setup}
+cmake --build . --target install -- -j${number_of_build_workers}
+#cmake --build . --target install --parallel ${number_of_build_workers}  #valid only for CMake 3.12+
+rm -f DarknetConfig.cmake
+rm -f DarknetConfigVersion.cmake
+cd ..
+cp cmake/Modules/*.cmake share/darknet/

+ 89 - 0
build/darknet/YoloWrapper.cs

@@ -0,0 +1,89 @@
+using System;
+using System.Runtime.InteropServices;
+
+namespace Darknet
+{
+    public class YoloWrapper : IDisposable
+    {
+        private const string YoloLibraryName = "yolo_cpp_dll.dll";
+        private const int MaxObjects = 1000;
+
+        [DllImport(YoloLibraryName, EntryPoint = "init")]
+        private static extern int InitializeYolo(string configurationFilename, string weightsFilename, int gpu);
+
+        [DllImport(YoloLibraryName, EntryPoint = "detect_image")]
+        private static extern int DetectImage(string filename, ref BboxContainer container);
+
+        [DllImport(YoloLibraryName, EntryPoint = "detect_mat")]
+        private static extern int DetectImage(IntPtr pArray, int nSize, ref BboxContainer container);
+
+        [DllImport(YoloLibraryName, EntryPoint = "dispose")]
+        private static extern int DisposeYolo();
+
+        [StructLayout(LayoutKind.Sequential)]
+        public struct bbox_t
+        {
+            public UInt32 x, y, w, h;    // (x,y) - top-left corner, (w, h) - width & height of bounded box
+            public float prob;           // confidence - probability that the object was found correctly
+            public UInt32 obj_id;        // class of object - from range [0, classes-1]
+            public UInt32 track_id;      // tracking id for video (0 - untracked, 1 - inf - tracked object)
+            public UInt32 frames_counter;
+            public float x_3d, y_3d, z_3d;  // 3-D coordinates, if there is used 3D-stereo camera
+        };
+
+        [StructLayout(LayoutKind.Sequential)]
+        public struct BboxContainer
+        {
+            [MarshalAs(UnmanagedType.ByValArray, SizeConst = MaxObjects)]
+            public bbox_t[] candidates;
+        }
+
+        public YoloWrapper(string configurationFilename, string weightsFilename, int gpu)
+        {
+            InitializeYolo(configurationFilename, weightsFilename, gpu);
+        }
+
+        public void Dispose()
+        {
+            DisposeYolo();
+        }
+
+        public bbox_t[] Detect(string filename)
+        {
+            var container = new BboxContainer();
+            var count = DetectImage(filename, ref container);
+
+            return container.candidates;
+        }
+
+        public bbox_t[] Detect(byte[] imageData)
+        {
+            var container = new BboxContainer();
+
+            var size = Marshal.SizeOf(imageData[0]) * imageData.Length;
+            var pnt = Marshal.AllocHGlobal(size);
+
+            try
+            {
+                // Copy the array to unmanaged memory.
+                Marshal.Copy(imageData, 0, pnt, imageData.Length);
+                var count = DetectImage(pnt, imageData.Length, ref container);
+                if (count == -1)
+                {
+                    throw new NotSupportedException($"{YoloLibraryName} has no OpenCV support");
+                }
+            }
+            catch (Exception exception)
+            {
+                return null;
+            }
+            finally
+            {
+                // Free the unmanaged memory.
+                Marshal.FreeHGlobal(pnt);
+            }
+
+            return container.candidates;
+        }
+    }
+}

+ 28 - 0
build/darknet/darknet.sln

@@ -0,0 +1,28 @@
+
+Microsoft Visual Studio Solution File, Format Version 12.00
+# Visual Studio 14
+VisualStudioVersion = 14.0.25420.1
+MinimumVisualStudioVersion = 10.0.40219.1
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "darknet", "darknet.vcxproj", "{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}"
+EndProject
+Global
+	GlobalSection(SolutionConfigurationPlatforms) = preSolution
+		Debug|Win32 = Debug|Win32
+		Debug|x64 = Debug|x64
+		Release|Win32 = Release|Win32
+		Release|x64 = Release|x64
+	EndGlobalSection
+	GlobalSection(ProjectConfigurationPlatforms) = postSolution
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|Win32.ActiveCfg = Debug|Win32
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|Win32.Build.0 = Debug|Win32
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.ActiveCfg = Debug|x64
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Debug|x64.Build.0 = Debug|x64
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|Win32.ActiveCfg = Release|Win32
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|Win32.Build.0 = Release|Win32
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.ActiveCfg = Release|x64
+		{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}.Release|x64.Build.0 = Release|x64
+	EndGlobalSection
+	GlobalSection(SolutionProperties) = preSolution
+		HideSolutionNode = FALSE
+	EndGlobalSection
+EndGlobal

+ 307 - 0
build/darknet/darknet.vcxproj

@@ -0,0 +1,307 @@
+<?xml version="1.0" encoding="utf-8"?>
+<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
+  <ItemGroup Label="ProjectConfigurations">
+    <ProjectConfiguration Include="Debug|Win32">
+      <Configuration>Debug</Configuration>
+      <Platform>Win32</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Debug|x64">
+      <Configuration>Debug</Configuration>
+      <Platform>x64</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Release|Win32">
+      <Configuration>Release</Configuration>
+      <Platform>Win32</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Release|x64">
+      <Configuration>Release</Configuration>
+      <Platform>x64</Platform>
+    </ProjectConfiguration>
+  </ItemGroup>
+  <PropertyGroup Label="Globals">
+    <ProjectGuid>{4CF5694F-12A5-4012-8D94-9A0915E9FEB5}</ProjectGuid>
+    <RootNamespace>darknet</RootNamespace>
+    <WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
+  </PropertyGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>true</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>true</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>false</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <WholeProgramOptimization>true</WholeProgramOptimization>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>false</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <WholeProgramOptimization>true</WholeProgramOptimization>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
+  <ImportGroup Label="ExtensionSettings">
+    <Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 10.0.props" />
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <PropertyGroup Label="UserMacros" />
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <OutDir>$(SolutionDir)$(Platform)\</OutDir>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <OutDir>$(SolutionDir)$(Platform)\</OutDir>
+  </PropertyGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>Disabled</Optimization>
+      <SDLCheck>true</SDLCheck>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>Disabled</Optimization>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>$(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>CUDNN_HALF;CUDNN;_CRTDBG_MAP_ALLOC;_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;GPU;WIN32;DEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <UndefinePreprocessorDefinitions>OPENCV;</UndefinePreprocessorDefinitions>
+      <MultiProcessorCompilation>true</MultiProcessorCompilation>
+      <ForcedIncludeFiles>stdlib.h;crtdbg.h;%(ForcedIncludeFiles)</ForcedIncludeFiles>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <AdditionalLibraryDirectories>$(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <OutputFile>$(OutDir)\$(TargetName)$(TargetExt)</OutputFile>
+      <AdditionalDependencies>pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;%(AdditionalDependencies)</AdditionalDependencies>
+      <AssemblyDebug>true</AssemblyDebug>
+    </Link>
+    <CudaCompile>
+      <CodeGeneration>compute_30,sm_30;compute_75,sm_75</CodeGeneration>
+      <TargetMachinePlatform>64</TargetMachinePlatform>
+    </CudaCompile>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>MaxSpeed</Optimization>
+      <FunctionLevelLinking>true</FunctionLevelLinking>
+      <IntrinsicFunctions>true</IntrinsicFunctions>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>C:\opencv_2.4.9\opencv\build\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(cudnn)\include</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>OPENCV;_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;GPU;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <MultiProcessorCompilation>true</MultiProcessorCompilation>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableCOMDATFolding>true</EnableCOMDATFolding>
+      <OptimizeReferences>true</OptimizeReferences>
+      <AdditionalLibraryDirectories>C:\opencv_2.4.9\opencv\build\x86\vc14\lib;C:\opencv_2.4.9\opencv\build\x86\vc12\lib;$(CUDA_PATH)lib\$(PlatformName);$(cudnn)\lib\x64;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <AdditionalDependencies>..\..\3rdparty\lib\x86\pthreadVC2.lib;cudart.lib;cublas.lib;curand.lib;%(AdditionalDependencies)</AdditionalDependencies>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>MaxSpeed</Optimization>
+      <FunctionLevelLinking>true</FunctionLevelLinking>
+      <IntrinsicFunctions>true</IntrinsicFunctions>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>$(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories);$(CudaToolkitIncludeDir);$(CUDNN)\include;$(cudnn)\include</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>OPENCV;CUDNN_HALF;CUDNN;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;GPU;WIN32;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <CLanguageStandard>c11</CLanguageStandard>
+      <CppLanguageStandard>c++1y</CppLanguageStandard>
+      <PrecompiledHeaderCompileAs>CompileAsCpp</PrecompiledHeaderCompileAs>
+      <CompileAs>Default</CompileAs>
+      <UndefinePreprocessorDefinitions>NDEBUG</UndefinePreprocessorDefinitions>
+      <MultiProcessorCompilation>true</MultiProcessorCompilation>
+      <AdditionalUsingDirectories>
+      </AdditionalUsingDirectories>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableCOMDATFolding>true</EnableCOMDATFolding>
+      <OptimizeReferences>true</OptimizeReferences>
+      <AdditionalLibraryDirectories>$(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;$(CUDA_PATH)\lib\$(PlatformName);$(CUDNN)\lib\x64;$(cudnn)\lib\x64;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <AdditionalDependencies>pthreadVC2.lib;cublas.lib;curand.lib;cudart.lib;%(AdditionalDependencies)</AdditionalDependencies>
+      <OutputFile>$(OutDir)\$(TargetName)$(TargetExt)</OutputFile>
+    </Link>
+    <CudaCompile>
+      <TargetMachinePlatform>64</TargetMachinePlatform>
+      <CodeGeneration>compute_30,sm_30;compute_75,sm_75</CodeGeneration>
+    </CudaCompile>
+  </ItemDefinitionGroup>
+  <ItemGroup>
+    <CudaCompile Include="..\..\src\activation_kernels.cu" />
+    <CudaCompile Include="..\..\src\avgpool_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\blas_kernels.cu" />
+    <CudaCompile Include="..\..\src\col2im_kernels.cu" />
+    <CudaCompile Include="..\..\src\convolutional_kernels.cu" />
+    <CudaCompile Include="..\..\src\crop_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\deconvolutional_kernels.cu" />
+    <CudaCompile Include="..\..\src\dropout_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\im2col_kernels.cu" />
+    <CudaCompile Include="..\..\src\maxpool_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\network_kernels.cu" />
+  </ItemGroup>
+  <ItemGroup>
+    <ClCompile Include="..\..\src\activations.c" />
+    <ClCompile Include="..\..\src\activation_layer.c" />
+    <ClCompile Include="..\..\src\art.c" />
+    <ClCompile Include="..\..\src\avgpool_layer.c" />
+    <ClCompile Include="..\..\src\batchnorm_layer.c" />
+    <ClCompile Include="..\..\src\blas.c" />
+    <ClCompile Include="..\..\src\box.c" />
+    <ClCompile Include="..\..\src\captcha.c" />
+    <ClCompile Include="..\..\src\cifar.c" />
+    <ClCompile Include="..\..\src\classifier.c" />
+    <ClCompile Include="..\..\src\coco.c" />
+    <ClCompile Include="..\..\src\col2im.c" />
+    <ClCompile Include="..\..\src\compare.c" />
+    <ClCompile Include="..\..\src\connected_layer.c" />
+    <ClCompile Include="..\..\src\convolutional_layer.c" />
+    <ClCompile Include="..\..\src\conv_lstm_layer.c" />
+    <ClCompile Include="..\..\src\cost_layer.c" />
+    <ClCompile Include="..\..\src\cpu_gemm.c" />
+    <ClCompile Include="..\..\src\crnn_layer.c" />
+    <ClCompile Include="..\..\src\crop_layer.c" />
+    <ClCompile Include="..\..\src\darknet.c" />
+    <ClCompile Include="..\..\src\dark_cuda.c" />
+    <ClCompile Include="..\..\src\data.c" />
+    <ClCompile Include="..\..\src\deconvolutional_layer.c" />
+    <ClCompile Include="..\..\src\demo.c" />
+    <ClCompile Include="..\..\src\detection_layer.c" />
+    <ClCompile Include="..\..\src\detector.c" />
+    <ClCompile Include="..\..\src\dice.c" />
+    <ClCompile Include="..\..\src\dropout_layer.c" />
+    <ClCompile Include="..\..\src\gaussian_yolo_layer.c" />
+    <ClCompile Include="..\..\src\gemm.c" />
+    <ClCompile Include="..\..\src\getopt.c" />
+    <ClCompile Include="..\..\src\gettimeofday.c" />
+    <ClCompile Include="..\..\src\go.c" />
+    <ClCompile Include="..\..\src\gru_layer.c" />
+    <ClCompile Include="..\..\src\http_stream.cpp" />
+    <ClCompile Include="..\..\src\im2col.c" />
+    <ClCompile Include="..\..\src\image.c" />
+    <ClCompile Include="..\..\src\image_opencv.cpp" />
+    <ClCompile Include="..\..\src\layer.c" />
+    <ClCompile Include="..\..\src\list.c" />
+    <ClCompile Include="..\..\src\local_layer.c" />
+    <ClCompile Include="..\..\src\lstm_layer.c" />
+    <ClCompile Include="..\..\src\matrix.c" />
+    <ClCompile Include="..\..\src\maxpool_layer.c" />
+    <ClCompile Include="..\..\src\network.c" />
+    <ClCompile Include="..\..\src\nightmare.c" />
+    <ClCompile Include="..\..\src\normalization_layer.c" />
+    <ClCompile Include="..\..\src\option_list.c" />
+    <ClCompile Include="..\..\src\parser.c" />
+    <ClCompile Include="..\..\src\region_layer.c" />
+    <ClCompile Include="..\..\src\reorg_layer.c" />
+    <ClCompile Include="..\..\src\reorg_old_layer.c" />
+    <ClCompile Include="..\..\src\rnn.c" />
+    <ClCompile Include="..\..\src\rnn_layer.c" />
+    <ClCompile Include="..\..\src\rnn_vid.c" />
+    <ClCompile Include="..\..\src\route_layer.c" />
+    <ClCompile Include="..\..\src\sam_layer.c" />
+    <ClCompile Include="..\..\src\scale_channels_layer.c" />
+    <ClCompile Include="..\..\src\shortcut_layer.c" />
+    <ClCompile Include="..\..\src\softmax_layer.c" />
+    <ClCompile Include="..\..\src\super.c" />
+    <ClCompile Include="..\..\src\swag.c" />
+    <ClCompile Include="..\..\src\tag.c" />
+    <ClCompile Include="..\..\src\tree.c" />
+    <ClCompile Include="..\..\src\upsample_layer.c" />
+    <ClCompile Include="..\..\src\utils.c" />
+    <ClCompile Include="..\..\src\voxel.c" />
+    <ClCompile Include="..\..\src\writing.c" />
+    <ClCompile Include="..\..\src\yolo.c" />
+    <ClCompile Include="..\..\src\yolo_layer.c" />
+  </ItemGroup>
+  <ItemGroup>
+    <ClInclude Include="..\..\include\darknet.h" />
+    <ClInclude Include="..\..\src\activations.h" />
+    <ClInclude Include="..\..\src\activation_layer.h" />
+    <ClInclude Include="..\..\src\avgpool_layer.h" />
+    <ClInclude Include="..\..\src\batchnorm_layer.h" />
+    <ClInclude Include="..\..\src\blas.h" />
+    <ClInclude Include="..\..\src\box.h" />
+    <ClInclude Include="..\..\src\classifier.h" />
+    <ClInclude Include="..\..\src\col2im.h" />
+    <ClInclude Include="..\..\src\connected_layer.h" />
+    <ClInclude Include="..\..\src\convolutional_layer.h" />
+    <ClInclude Include="..\..\src\conv_lstm_layer.h" />
+    <ClInclude Include="..\..\src\cost_layer.h" />
+    <ClInclude Include="..\..\src\crnn_layer.h" />
+    <ClInclude Include="..\..\src\crop_layer.h" />
+    <ClInclude Include="..\..\src\dark_cuda.h" />
+    <ClInclude Include="..\..\src\data.h" />
+    <ClInclude Include="..\..\src\deconvolutional_layer.h" />
+    <ClInclude Include="..\..\src\demo.h" />
+    <ClInclude Include="..\..\src\detection_layer.h" />
+    <ClInclude Include="..\..\src\dropout_layer.h" />
+    <ClInclude Include="..\..\src\gaussian_yolo_layer.h" />
+    <ClInclude Include="..\..\src\gemm.h" />
+    <ClInclude Include="..\..\src\getopt.h" />
+    <ClInclude Include="..\..\src\gettimeofday.h" />
+    <ClInclude Include="..\..\src\gru_layer.h" />
+    <ClInclude Include="..\..\src\http_stream.h" />
+    <ClInclude Include="..\..\src\im2col.h" />
+    <ClInclude Include="..\..\src\image.h" />
+    <ClInclude Include="..\..\src\image_opencv.h" />
+    <ClInclude Include="..\..\src\layer.h" />
+    <ClInclude Include="..\..\src\list.h" />
+    <ClInclude Include="..\..\src\local_layer.h" />
+    <ClInclude Include="..\..\src\lstm_layer.h" />
+    <ClInclude Include="..\..\src\matrix.h" />
+    <ClInclude Include="..\..\src\maxpool_layer.h" />
+    <ClInclude Include="..\..\src\network.h" />
+    <ClInclude Include="..\..\src\normalization_layer.h" />
+    <ClInclude Include="..\..\src\option_list.h" />
+    <ClInclude Include="..\..\src\parser.h" />
+    <ClInclude Include="..\..\src\region_layer.h" />
+    <ClInclude Include="..\..\src\reorg_layer.h" />
+    <ClInclude Include="..\..\src\reorg_old_layer.h" />
+    <ClInclude Include="..\..\src\rnn_layer.h" />
+    <ClInclude Include="..\..\src\route_layer.h" />
+    <ClInclude Include="..\..\src\sam_layer.h" />
+    <ClInclude Include="..\..\src\scale_channels_layer.h" />
+    <ClInclude Include="..\..\src\shortcut_layer.h" />
+    <ClInclude Include="..\..\src\softmax_layer.h" />
+    <ClInclude Include="..\..\src\stb_image.h" />
+    <ClInclude Include="..\..\src\stb_image_write.h" />
+    <ClInclude Include="..\..\src\tree.h" />
+    <ClInclude Include="..\..\src\unistd.h" />
+    <ClInclude Include="..\..\src\upsample_layer.h" />
+    <ClInclude Include="..\..\src\utils.h" />
+    <ClInclude Include="..\..\src\yolo_layer.h" />
+  </ItemGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
+  <ImportGroup Label="ExtensionTargets">
+    <Import Project="$(VCTargetsPath)\BuildCustomizations\CUDA 10.0.targets" />
+  </ImportGroup>
+</Project>

+ 28 - 0
build/darknet/darknet_no_gpu.sln

@@ -0,0 +1,28 @@
+
+Microsoft Visual Studio Solution File, Format Version 12.00
+# Visual Studio 14
+VisualStudioVersion = 14.0.25420.1
+MinimumVisualStudioVersion = 10.0.40219.1
+Project("{8BC9CEB8-8B4A-11D0-8D11-00A0C91BC942}") = "darknet_no_gpu", "darknet_no_gpu.vcxproj", "{621B3914-936D-4BD9-843A-AD50F22B178D}"
+EndProject
+Global
+	GlobalSection(SolutionConfigurationPlatforms) = preSolution
+		Debug|x64 = Debug|x64
+		Debug|x86 = Debug|x86
+		Release|x64 = Release|x64
+		Release|x86 = Release|x86
+	EndGlobalSection
+	GlobalSection(ProjectConfigurationPlatforms) = postSolution
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x64.ActiveCfg = Debug|x64
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x64.Build.0 = Debug|x64
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x86.ActiveCfg = Debug|Win32
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Debug|x86.Build.0 = Debug|Win32
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x64.ActiveCfg = Release|x64
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x64.Build.0 = Release|x64
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x86.ActiveCfg = Release|Win32
+		{621B3914-936D-4BD9-843A-AD50F22B178D}.Release|x86.Build.0 = Release|Win32
+	EndGlobalSection
+	GlobalSection(SolutionProperties) = preSolution
+		HideSolutionNode = FALSE
+	EndGlobalSection
+EndGlobal

+ 309 - 0
build/darknet/darknet_no_gpu.vcxproj

@@ -0,0 +1,309 @@
+<?xml version="1.0" encoding="utf-8"?>
+<Project DefaultTargets="Build" ToolsVersion="14.0" xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
+  <ItemGroup Label="ProjectConfigurations">
+    <ProjectConfiguration Include="Debug|Win32">
+      <Configuration>Debug</Configuration>
+      <Platform>Win32</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Debug|x64">
+      <Configuration>Debug</Configuration>
+      <Platform>x64</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Release|Win32">
+      <Configuration>Release</Configuration>
+      <Platform>Win32</Platform>
+    </ProjectConfiguration>
+    <ProjectConfiguration Include="Release|x64">
+      <Configuration>Release</Configuration>
+      <Platform>x64</Platform>
+    </ProjectConfiguration>
+  </ItemGroup>
+  <PropertyGroup Label="Globals">
+    <ProjectGuid>{621B3914-936D-4BD9-843A-AD50F22B178D}</ProjectGuid>
+    <RootNamespace>darknet</RootNamespace>
+    <WindowsTargetPlatformVersion>8.1</WindowsTargetPlatformVersion>
+  </PropertyGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.Default.props" />
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>true</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>true</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>false</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <WholeProgramOptimization>true</WholeProgramOptimization>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="Configuration">
+    <ConfigurationType>Application</ConfigurationType>
+    <UseDebugLibraries>false</UseDebugLibraries>
+    <PlatformToolset>v140</PlatformToolset>
+    <WholeProgramOptimization>true</WholeProgramOptimization>
+    <CharacterSet>MultiByte</CharacterSet>
+  </PropertyGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.props" />
+  <ImportGroup Label="ExtensionSettings" />
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'" Label="PropertySheets">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Label="PropertySheets" Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <ImportGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'" Label="PropertySheets">
+    <Import Project="$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props" Condition="exists('$(UserRootDir)\Microsoft.Cpp.$(Platform).user.props')" Label="LocalAppDataPlatform" />
+  </ImportGroup>
+  <PropertyGroup Label="UserMacros" />
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <OutDir>$(SolutionDir)$(Platform)\</OutDir>
+    <IntDir>$(Platform)\nogpu_$(Configuration)\</IntDir>
+  </PropertyGroup>
+  <PropertyGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <OutDir>$(SolutionDir)$(Platform)\</OutDir>
+    <IntDir>$(Platform)\nogpu_$(Configuration)\</IntDir>
+  </PropertyGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|Win32'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>Disabled</Optimization>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>_CRTDBG_MAP_ALLOC;_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <UndefinePreprocessorDefinitions>OPENCV;</UndefinePreprocessorDefinitions>
+      <ForcedIncludeFiles>stdlib.h;crtdbg.h;%(ForcedIncludeFiles)</ForcedIncludeFiles>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <AdditionalLibraryDirectories>C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <AdditionalDependencies>..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies)</AdditionalDependencies>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Debug|x64'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>Disabled</Optimization>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>$(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>_MBCS;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <UndefinePreprocessorDefinitions>OPENCV;CUDNN</UndefinePreprocessorDefinitions>
+      <OpenMPSupport>true</OpenMPSupport>
+      <ForcedIncludeFiles>stdlib.h;crtdbg.h;%(ForcedIncludeFiles)</ForcedIncludeFiles>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <AdditionalLibraryDirectories>$(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <OutputFile>$(OutDir)\$(TargetName)$(TargetExt)</OutputFile>
+      <AdditionalDependencies>pthreadVC2.lib;%(AdditionalDependencies)</AdditionalDependencies>
+    </Link>
+    <CudaCompile>
+      <CodeGeneration>compute_30,sm_30;compute_52,sm_52</CodeGeneration>
+      <TargetMachinePlatform>64</TargetMachinePlatform>
+    </CudaCompile>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|Win32'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>MaxSpeed</Optimization>
+      <FunctionLevelLinking>true</FunctionLevelLinking>
+      <IntrinsicFunctions>true</IntrinsicFunctions>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\include;%(AdditionalIncludeDirectories);</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>_TIMESPEC_DEFINED;_CRT_SECURE_NO_WARNINGS;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <UndefinePreprocessorDefinitions>
+      </UndefinePreprocessorDefinitions>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableCOMDATFolding>true</EnableCOMDATFolding>
+      <OptimizeReferences>true</OptimizeReferences>
+      <AdditionalLibraryDirectories>C:\opencv_3.0\opencv\build\x64\vc14\lib;C:\opencv_2.4.13\opencv\build\x64\vc12\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <AdditionalDependencies>..\..\3rdparty\lib\x86\pthreadVC2.lib;%(AdditionalDependencies)</AdditionalDependencies>
+    </Link>
+  </ItemDefinitionGroup>
+  <ItemDefinitionGroup Condition="'$(Configuration)|$(Platform)'=='Release|x64'">
+    <ClCompile>
+      <WarningLevel>Level3</WarningLevel>
+      <Optimization>MaxSpeed</Optimization>
+      <FunctionLevelLinking>true</FunctionLevelLinking>
+      <IntrinsicFunctions>true</IntrinsicFunctions>
+      <SDLCheck>true</SDLCheck>
+      <AdditionalIncludeDirectories>$(OPENCV_DIR)\include;C:\opencv_3.0\opencv\build\include;..\..\include;..\..\3rdparty\stb\include;..\..\3rdparty\pthreads\include;%(AdditionalIncludeDirectories)</AdditionalIncludeDirectories>
+      <PreprocessorDefinitions>OPENCV;_TIMESPEC_DEFINED;_SCL_SECURE_NO_WARNINGS;_CRT_SECURE_NO_WARNINGS;_CRT_RAND_S;WIN32;NDEBUG;_CONSOLE;_LIB;%(PreprocessorDefinitions)</PreprocessorDefinitions>
+      <CLanguageStandard>c11</CLanguageStandard>
+      <CppLanguageStandard>c++1y</CppLanguageStandard>
+      <PrecompiledHeaderCompileAs>CompileAsCpp</PrecompiledHeaderCompileAs>
+      <CompileAs>Default</CompileAs>
+      <UndefinePreprocessorDefinitions>CUDNN</UndefinePreprocessorDefinitions>
+      <OpenMPSupport>true</OpenMPSupport>
+    </ClCompile>
+    <Link>
+      <GenerateDebugInformation>true</GenerateDebugInformation>
+      <EnableCOMDATFolding>true</EnableCOMDATFolding>
+      <OptimizeReferences>true</OptimizeReferences>
+      <AdditionalLibraryDirectories>$(OPENCV_DIR)\x64\vc15\lib;$(OPENCV_DIR)\x64\vc14\lib;C:\opencv_3.0\opencv\build\x64\vc14\lib;..\..\3rdparty\pthreads\lib;%(AdditionalLibraryDirectories)</AdditionalLibraryDirectories>
+      <AdditionalDependencies>pthreadVC2.lib;%(AdditionalDependencies)</AdditionalDependencies>
+      <OutputFile>$(OutDir)\$(TargetName)$(TargetExt)</OutputFile>
+    </Link>
+    <CudaCompile>
+      <TargetMachinePlatform>64</TargetMachinePlatform>
+      <CodeGeneration>compute_30,sm_30;compute_52,sm_52</CodeGeneration>
+    </CudaCompile>
+  </ItemDefinitionGroup>
+  <ItemGroup>
+    <CudaCompile Include="..\..\src\activation_kernels.cu" />
+    <CudaCompile Include="..\..\src\avgpool_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\blas_kernels.cu" />
+    <CudaCompile Include="..\..\src\col2im_kernels.cu" />
+    <CudaCompile Include="..\..\src\convolutional_kernels.cu" />
+    <CudaCompile Include="..\..\src\crop_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\deconvolutional_kernels.cu" />
+    <CudaCompile Include="..\..\src\dropout_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\im2col_kernels.cu" />
+    <CudaCompile Include="..\..\src\maxpool_layer_kernels.cu" />
+    <CudaCompile Include="..\..\src\network_kernels.cu" />
+  </ItemGroup>
+  <ItemGroup>
+    <ClCompile Include="..\..\src\activations.c" />
+    <ClCompile Include="..\..\src\activation_layer.c" />
+    <ClCompile Include="..\..\src\art.c" />
+    <ClCompile Include="..\..\src\avgpool_layer.c" />
+    <ClCompile Include="..\..\src\batchnorm_layer.c" />
+    <ClCompile Include="..\..\src\blas.c" />
+    <ClCompile Include="..\..\src\box.c" />
+    <ClCompile Include="..\..\src\captcha.c" />
+    <ClCompile Include="..\..\src\cifar.c" />
+    <ClCompile Include="..\..\src\classifier.c" />
+    <ClCompile Include="..\..\src\coco.c" />
+    <ClCompile Include="..\..\src\col2im.c" />
+    <ClCompile Include="..\..\src\compare.c" />
+    <ClCompile Include="..\..\src\connected_layer.c" />
+    <ClCompile Include="..\..\src\convolutional_layer.c" />
+    <ClCompile Include="..\..\src\conv_lstm_layer.c" />
+    <ClCompile Include="..\..\src\cost_layer.c" />
+    <ClCompile Include="..\..\src\cpu_gemm.c" />
+    <ClCompile Include="..\..\src\crnn_layer.c" />
+    <ClCompile Include="..\..\src\crop_layer.c" />
+    <ClCompile Include="..\..\src\darknet.c" />
+    <ClCompile Include="..\..\src\dark_cuda.c" />
+    <ClCompile Include="..\..\src\data.c" />
+    <ClCompile Include="..\..\src\deconvolutional_layer.c" />
+    <ClCompile Include="..\..\src\demo.c" />
+    <ClCompile Include="..\..\src\detection_layer.c" />
+    <ClCompile Include="..\..\src\detector.c" />
+    <ClCompile Include="..\..\src\dice.c" />
+    <ClCompile Include="..\..\src\dropout_layer.c" />
+    <ClCompile Include="..\..\src\gaussian_yolo_layer.c" />
+    <ClCompile Include="..\..\src\gemm.c" />
+    <ClCompile Include="..\..\src\getopt.c" />
+    <ClCompile Include="..\..\src\gettimeofday.c" />
+    <ClCompile Include="..\..\src\go.c" />
+    <ClCompile Include="..\..\src\gru_layer.c" />
+    <ClCompile Include="..\..\src\http_stream.cpp" />
+    <ClCompile Include="..\..\src\im2col.c" />
+    <ClCompile Include="..\..\src\image.c" />
+    <ClCompile Include="..\..\src\image_opencv.cpp" />
+    <ClCompile Include="..\..\src\layer.c" />
+    <ClCompile Include="..\..\src\list.c" />
+    <ClCompile Include="..\..\src\local_layer.c" />
+    <ClCompile Include="..\..\src\lstm_layer.c" />
+    <ClCompile Include="..\..\src\matrix.c" />
+    <ClCompile Include="..\..\src\maxpool_layer.c" />
+    <ClCompile Include="..\..\src\network.c" />
+    <ClCompile Include="..\..\src\nightmare.c" />
+    <ClCompile Include="..\..\src\normalization_layer.c" />
+    <ClCompile Include="..\..\src\option_list.c" />
+    <ClCompile Include="..\..\src\parser.c" />
+    <ClCompile Include="..\..\src\region_layer.c" />
+    <ClCompile Include="..\..\src\reorg_layer.c" />
+    <ClCompile Include="..\..\src\reorg_old_layer.c" />
+    <ClCompile Include="..\..\src\rnn.c" />
+    <ClCompile Include="..\..\src\rnn_layer.c" />
+    <ClCompile Include="..\..\src\rnn_vid.c" />
+    <ClCompile Include="..\..\src\route_layer.c" />
+    <ClCompile Include="..\..\src\sam_layer.c" />
+    <ClCompile Include="..\..\src\scale_channels_layer.c" />
+    <ClCompile Include="..\..\src\shortcut_layer.c" />
+    <ClCompile Include="..\..\src\softmax_layer.c" />
+    <ClCompile Include="..\..\src\super.c" />
+    <ClCompile Include="..\..\src\swag.c" />
+    <ClCompile Include="..\..\src\tag.c" />
+    <ClCompile Include="..\..\src\tree.c" />
+    <ClCompile Include="..\..\src\upsample_layer.c" />
+    <ClCompile Include="..\..\src\utils.c" />
+    <ClCompile Include="..\..\src\voxel.c" />
+    <ClCompile Include="..\..\src\writing.c" />
+    <ClCompile Include="..\..\src\yolo.c" />
+    <ClCompile Include="..\..\src\yolo_layer.c" />
+  </ItemGroup>
+  <ItemGroup>
+    <ClInclude Include="..\..\include\darknet.h" />
+    <ClInclude Include="..\..\src\activations.h" />
+    <ClInclude Include="..\..\src\activation_layer.h" />
+    <ClInclude Include="..\..\src\avgpool_layer.h" />
+    <ClInclude Include="..\..\src\batchnorm_layer.h" />
+    <ClInclude Include="..\..\src\blas.h" />
+    <ClInclude Include="..\..\src\box.h" />
+    <ClInclude Include="..\..\src\classifier.h" />
+    <ClInclude Include="..\..\src\col2im.h" />
+    <ClInclude Include="..\..\src\connected_layer.h" />
+    <ClInclude Include="..\..\src\convolutional_layer.h" />
+    <ClInclude Include="..\..\src\conv_lstm_layer.h" />
+    <ClInclude Include="..\..\src\cost_layer.h" />
+    <ClInclude Include="..\..\src\crnn_layer.h" />
+    <ClInclude Include="..\..\src\crop_layer.h" />
+    <ClInclude Include="..\..\src\dark_cuda.h" />
+    <ClInclude Include="..\..\src\data.h" />
+    <ClInclude Include="..\..\src\deconvolutional_layer.h" />
+    <ClInclude Include="..\..\src\demo.h" />
+    <ClInclude Include="..\..\src\detection_layer.h" />
+    <ClInclude Include="..\..\src\dropout_layer.h" />
+    <ClInclude Include="..\..\src\gaussian_yolo_layer.h" />
+    <ClInclude Include="..\..\src\gemm.h" />
+    <ClInclude Include="..\..\src\getopt.h" />
+    <ClInclude Include="..\..\src\gettimeofday.h" />
+    <ClInclude Include="..\..\src\gru_layer.h" />
+    <ClInclude Include="..\..\src\http_stream.h" />
+    <ClInclude Include="..\..\src\im2col.h" />
+    <ClInclude Include="..\..\src\image.h" />
+    <ClInclude Include="..\..\src\image_opencv.h" />
+    <ClInclude Include="..\..\src\layer.h" />
+    <ClInclude Include="..\..\src\list.h" />
+    <ClInclude Include="..\..\src\local_layer.h" />
+    <ClInclude Include="..\..\src\lstm_layer.h" />
+    <ClInclude Include="..\..\src\matrix.h" />
+    <ClInclude Include="..\..\src\maxpool_layer.h" />
+    <ClInclude Include="..\..\src\network.h" />
+    <ClInclude Include="..\..\src\normalization_layer.h" />
+    <ClInclude Include="..\..\src\option_list.h" />
+    <ClInclude Include="..\..\src\parser.h" />
+    <ClInclude Include="..\..\src\region_layer.h" />
+    <ClInclude Include="..\..\src\reorg_layer.h" />
+    <ClInclude Include="..\..\src\reorg_old_layer.h" />
+    <ClInclude Include="..\..\src\rnn_layer.h" />
+    <ClInclude Include="..\..\src\route_layer.h" />
+    <ClInclude Include="..\..\src\sam_layer.h" />
+    <ClInclude Include="..\..\src\scale_channels_layer.h" />
+    <ClInclude Include="..\..\src\shortcut_layer.h" />
+    <ClInclude Include="..\..\src\softmax_layer.h" />
+    <ClInclude Include="..\..\src\stb_image.h" />
+    <ClInclude Include="..\..\src\stb_image_write.h" />
+    <ClInclude Include="..\..\src\tree.h" />
+    <ClInclude Include="..\..\src\unistd.h" />
+    <ClInclude Include="..\..\src\upsample_layer.h" />
+    <ClInclude Include="..\..\src\utils.h" />
+    <ClInclude Include="..\..\src\yolo_layer.h" />
+  </ItemGroup>
+  <Import Project="$(VCTargetsPath)\Microsoft.Cpp.targets" />
+  <ImportGroup Label="ExtensionTargets" />
+</Project>

+ 0 - 0
build/darknet/x64/backup/tmp.txt


+ 12 - 0
build/darknet/x64/calc_anchors.cmd

@@ -0,0 +1,12 @@
+rem # How to calculate Yolo v2 anchors using K-means++
+
+
+darknet.exe detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416
+
+
+rem darknet.exe detector calc_anchors data/voc.data -num_of_clusters 9 -width 416 -height 416 -show
+
+
+
+
+pause

+ 11 - 0
build/darknet/x64/calc_mAP.cmd

@@ -0,0 +1,11 @@
+rem # How to calculate mAP (mean average precision)
+
+
+rem darknet.exe detector map cfg/voc.data cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights -points 11
+
+
+darknet.exe detector map cfg/voc.data cfg/yolov2-voc.cfg yolo-voc.weights -points 11
+
+
+
+pause

+ 16 - 0
build/darknet/x64/calc_mAP_coco.cmd

@@ -0,0 +1,16 @@
+rem # How to calculate Yolo v3 mAP on MS COCO
+
+rem darknet.exe detector map cfg/coco.data cfg/yolov3-tiny.cfg yolov3-tiny.weights -points 101
+
+
+darknet.exe detector map cfg/coco.data cfg/yolov3-spp.cfg yolov3-spp.weights -points 101
+
+
+rem darknet.exe detector map cfg/coco.data cfg/yolov3.cfg yolov3.weights -points 101
+
+
+rem darknet.exe detector map cfg/coco.data cfg/yolov3.cfg yolov3.weights -iou_thresh 0.75 -points 101
+
+
+
+pause

+ 16 - 0
build/darknet/x64/calc_mAP_voc_py.cmd

@@ -0,0 +1,16 @@
+rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install numpy
+rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install cPickle
+rem C:\Users\Alex\AppData\Local\Programs\Python\Python36\Scripts\pip install _pickle
+
+
+rem darknet.exe detector valid cfg/voc.data cfg/yolov2-tiny-voc.cfg yolov2-tiny-voc.weights
+
+darknet.exe detector valid cfg/voc.data cfg/yolov2-voc.cfg yolo-voc.weights
+
+
+reval_voc_py3.py --year 2007 --classes data\voc.names --image_set test --voc_dir E:\VOC2007_2012\VOCtrainval_11-May-2012\VOCdevkit results
+
+
+
+
+pause

+ 807 - 0
build/darknet/x64/cfg/Gaussian_yolov3_BDD.cfg

@@ -0,0 +1,807 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=512
+height=512
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.0001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+max_epochs = 300
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=57
+activation=linear
+
+
+[Gaussian_yolo]
+mask = 6,7,8
+anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
+classes=10
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+iou_thresh=0.213
+uc_normalizer=1.0
+cls_normalizer=1.0
+iou_normalizer=0.5
+iou_loss=giou
+scale_x_y=1.0
+random=1
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=57
+activation=linear
+
+
+[Gaussian_yolo]
+mask = 3,4,5
+anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
+classes=10
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+iou_thresh=0.213
+uc_normalizer=1.0
+cls_normalizer=1.0
+iou_normalizer=0.5
+iou_loss=giou
+scale_x_y=1.0
+random=1
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=57
+activation=linear
+
+
+[Gaussian_yolo]
+mask = 0,1,2
+anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
+classes=10
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+iou_thresh=0.213
+uc_normalizer=1.0
+cls_normalizer=1.0
+iou_normalizer=0.5
+iou_loss=giou
+scale_x_y=1.0
+random=1

+ 95 - 0
build/darknet/x64/cfg/alexnet.cfg

@@ -0,0 +1,95 @@
+[net]
+batch=128
+subdivisions=1
+height=227
+width=227
+channels=3
+momentum=0.9
+decay=0.0005
+max_crop=256
+
+learning_rate=0.01
+policy=poly
+power=4
+max_batches=800000
+
+angle=7
+hue = .1
+saturation=.75
+exposure=.75
+aspect=.75
+
+[convolutional]
+filters=96
+size=11
+stride=4
+pad=0
+activation=relu
+
+[maxpool]
+size=3
+stride=2
+padding=0
+
+[convolutional]
+filters=256
+size=5
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=3
+stride=2
+padding=0
+
+[convolutional]
+filters=384
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=384
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=3
+stride=2
+padding=0
+
+[connected]
+output=4096
+activation=relu
+
+[dropout]
+probability=.5
+
+[connected]
+output=4096
+activation=relu
+
+[dropout]
+probability=.5
+
+[connected]
+output=1000
+activation=linear
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 126 - 0
build/darknet/x64/cfg/cifar.cfg

@@ -0,0 +1,126 @@
+[net]
+batch=128
+subdivisions=1
+height=32
+width=32
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.4
+policy=poly
+power=4
+max_batches = 50000
+
+[crop]
+crop_width=28
+crop_height=28
+flip=1
+angle=0
+saturation = 1
+exposure = 1
+noadjust=1
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[dropout]
+probability=.5
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[dropout]
+probability=.5
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[dropout]
+probability=.5
+
+[convolutional]
+filters=10
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+

+ 119 - 0
build/darknet/x64/cfg/cifar.test.cfg

@@ -0,0 +1,119 @@
+[net]
+batch=128
+subdivisions=1
+height=32
+width=32
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.4
+policy=poly
+power=4
+max_batches = 50000
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[dropout]
+probability=.5
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[dropout]
+probability=.5
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[dropout]
+probability=.5
+
+[convolutional]
+filters=10
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[softmax]
+groups=1
+temperature=3
+
+[cost]
+

+ 8 - 0
build/darknet/x64/cfg/coco.data

@@ -0,0 +1,8 @@
+classes= 80
+train  = E:/MSCOCO/trainvalno5k.txt
+#train = E:/MSCOCO/5k.txt
+valid  = E:/MSCOCO/5k.txt
+names = data/coco.names
+backup = backup
+eval=coco
+

+ 10 - 0
build/darknet/x64/cfg/combine9k.data

@@ -0,0 +1,10 @@
+classes= 9418
+#train  = /home/pjreddie/data/coco/trainvalno5k.txt
+train  = data/combine9k.train.list
+valid  = /home/pjreddie/data/imagenet/det.val.files
+labels = data/9k.labels
+names  = data/9k.names
+backup = backup/
+map = data/inet9k.map
+eval = imagenet
+results = results

+ 52 - 0
build/darknet/x64/cfg/crnn.train.cfg

@@ -0,0 +1,52 @@
+[net]
+subdivisions=8
+inputs=256
+batch = 128
+momentum=0.9
+decay=0.001
+max_batches = 2000
+time_steps=576
+learning_rate=0.1
+policy=steps
+steps=1000,1500
+scales=.1,.1
+
+try_fix_nan=1
+
+[connected]
+output=256
+activation=leaky
+
+[crnn]
+batch_normalize=1
+size=1
+pad=0
+output = 1024
+hidden=1024
+activation=leaky
+
+[crnn]
+batch_normalize=1
+size=1
+pad=0
+output = 1024
+hidden=1024
+activation=leaky
+
+[crnn]
+batch_normalize=1
+size=1
+pad=0
+output = 1024
+hidden=1024
+activation=leaky
+
+[connected]
+output=256
+activation=leaky
+
+[softmax]
+
+[cost]
+type=sse
+

+ 1048 - 0
build/darknet/x64/cfg/csresnext50-panet-spp-original-optimal.cfg

@@ -0,0 +1,1048 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=608
+height=608
+channels=3
+momentum=0.949
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.00261
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+#cutmix=1
+mosaic=1
+
+#19:104x104 38:52x52 65:26x26 80:13x13 for 416
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+# 1-1
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 1-2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 1-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 1-T
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-16
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+# 2-1
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 2-2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 2-3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 2-T
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-16
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+# 3-1
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-3
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-4
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-5
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-T
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-24
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+groups=32
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+# 4-1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 4-2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 4-T
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-12
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=leaky
+
+##########################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = 65
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = 38
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+##########################
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.2
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+uc_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+beta1=0.6
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=leaky
+
+[route]
+layers = -1, -16
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.1
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+uc_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+beta1=0.6
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=leaky
+
+[route]
+layers = -1, -37
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+scale_x_y = 1.05
+iou_thresh=0.213
+cls_normalizer=1.0
+iou_normalizer=0.07
+uc_normalizer=0.07
+iou_loss=ciou
+nms_kind=greedynms
+beta_nms=0.6
+beta1=0.6

+ 1018 - 0
build/darknet/x64/cfg/csresnext50-panet-spp.cfg

@@ -0,0 +1,1018 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=512
+height=512
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500500
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+#19:104x104 38:52x52 65:26x26 80:13x13 for 416
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+# 1-1
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 1-2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 1-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 1-T
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-16
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+# 2-1
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 2-2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 2-3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 2-T
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-16
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+# 3-1
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-3
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-4
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-5
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 3-T
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-24
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+groups=32
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+# 4-1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 4-2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+groups=32
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+# 4-T
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1,-12
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=leaky
+
+##########################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = 65
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = 38
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers = -1, -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+##########################
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=256
+activation=leaky
+
+[route]
+layers = -1, -16
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=2
+pad=1
+filters=512
+activation=leaky
+
+[route]
+layers = -1, -37
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1

+ 111 - 0
build/darknet/x64/cfg/darknet.cfg

@@ -0,0 +1,111 @@
+[net]
+batch=128
+subdivisions=1
+height=224
+width=224
+channels=3
+momentum=0.9
+decay=0.0005
+max_crop=320
+
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+padding=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 194 - 0
build/darknet/x64/cfg/darknet19.cfg

@@ -0,0 +1,194 @@
+[net]
+batch=128
+subdivisions=1
+height=224
+width=224
+channels=3
+momentum=0.9
+decay=0.0005
+max_crop=448
+
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 202 - 0
build/darknet/x64/cfg/darknet19_448.cfg

@@ -0,0 +1,202 @@
+[net]
+#batch=128
+#subdivisions=4
+batch=1
+subdivisions=1
+height=448
+width=448
+max_crop=512
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.001
+policy=poly
+power=4
+max_batches=100000
+
+angle=7
+hue = .1
+saturation=.75
+exposure=.75
+aspect=.75
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 566 - 0
build/darknet/x64/cfg/darknet53.cfg

@@ -0,0 +1,566 @@
+[net]
+# Training
+batch=128
+subdivisions=8
+
+# Testing
+#batch=1
+#subdivisions=1
+
+height=256
+width=256
+channels=3
+min_crop=128
+max_crop=448
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=800000
+momentum=0.9
+decay=0.0005
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[avgpool]
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[softmax]
+groups=1
+

+ 619 - 0
build/darknet/x64/cfg/darknet53_448_xnor.cfg

@@ -0,0 +1,619 @@
+[net]
+# Training - start training with darknet53.weights
+batch=120
+subdivisions=20
+
+# Testing
+#batch=1
+#subdivisions=1
+
+height=448
+width=448
+channels=3
+min_crop=448
+max_crop=512
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=100000
+momentum=0.9
+decay=0.0005
+
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[softmax]
+groups=1
+

+ 1954 - 0
build/darknet/x64/cfg/densenet201.cfg

@@ -0,0 +1,1954 @@
+[net]
+# Training
+# batch=128
+# subdivisions=4
+
+# Testing
+batch=1
+subdivisions=1
+
+height=256
+width=256
+max_crop=448
+channels=3
+momentum=0.9
+decay=0.0005
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[route]
+layers=-1,-3
+
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 1009 - 0
build/darknet/x64/cfg/efficientnet_b0.cfg

@@ -0,0 +1,1009 @@
+[net]
+# Training
+batch=120
+subdivisions=4
+# Testing
+#batch=1
+#subdivisions=1
+height=224
+width=224
+channels=3
+momentum=0.9
+decay=0.0005
+max_crop=256
+#mixup=4
+blur=1
+cutmix=1
+mosaic=1
+
+burn_in=1000
+#burn_in=100
+learning_rate=0.256
+policy=poly
+power=4
+max_batches=800000
+momentum=0.9
+decay=0.00005
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+
+### CONV1 - 1 (1)
+# conv1
+[convolutional]
+filters=32
+size=3
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+### CONV2 - MBConv1 - 1 (1)
+# conv2_1_expand
+[convolutional]
+filters=32
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv2_1_dwise
+[convolutional]
+groups=32
+filters=32
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=4 (recommended r=16)
+[convolutional]
+filters=8
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv2_1_linear
+[convolutional]
+filters=16
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV3 - MBConv6 - 1 (2)
+# conv2_2_expand
+[convolutional]
+filters=96
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv2_2_dwise
+[convolutional]
+groups=96
+filters=96
+size=3
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=8 (recommended r=16)
+[convolutional]
+filters=16
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=96
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv2_2_linear
+[convolutional]
+filters=24
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV3 - MBConv6 - 2 (2)
+# conv3_1_expand
+[convolutional]
+filters=144
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv3_1_dwise
+[convolutional]
+groups=144
+filters=144
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=8
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=144
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv3_1_linear
+[convolutional]
+filters=24
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV4 - MBConv6 - 1 (2)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_3_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_3_2_expand
+[convolutional]
+filters=144
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_3_2_dwise
+[convolutional]
+groups=144
+filters=144
+size=5
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=8
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=144
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_3_2_linear
+[convolutional]
+filters=40
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV4 - MBConv6 - 2 (2)
+# conv_4_1_expand
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_1_dwise
+[convolutional]
+groups=192
+filters=192
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=16
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=192
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_1_linear
+[convolutional]
+filters=40
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+
+### CONV5 - MBConv6 - 1 (3)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_4_2
+[shortcut]
+from=-9
+activation=linear
+
+# conv_4_3_expand
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_3_dwise
+[convolutional]
+groups=192
+filters=192
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=16
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=192
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_3_linear
+[convolutional]
+filters=80
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV5 - MBConv6 - 2 (3)
+# conv_4_4_expand
+[convolutional]
+filters=384
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_4_dwise
+[convolutional]
+groups=384
+filters=384
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=24
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=384
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_4_linear
+[convolutional]
+filters=80
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV5 - MBConv6 - 3 (3)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_4_4
+[shortcut]
+from=-9
+activation=linear
+
+# conv_4_5_expand
+[convolutional]
+filters=384
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_5_dwise
+[convolutional]
+groups=384
+filters=384
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=24
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=384
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_5_linear
+[convolutional]
+filters=80
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV6 - MBConv6 - 1 (3)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_4_6
+[shortcut]
+from=-9
+activation=linear
+
+# conv_4_7_expand
+[convolutional]
+filters=384
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_7_dwise
+[convolutional]
+groups=384
+filters=384
+size=5
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=24
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=384
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_7_linear
+[convolutional]
+filters=112
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV6 - MBConv6 - 2 (3)
+# conv_5_1_expand
+[convolutional]
+filters=576
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_5_1_dwise
+[convolutional]
+groups=576
+filters=576
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=576
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_5_1_linear
+[convolutional]
+filters=112
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV6 - MBConv6 - 3 (3)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_5_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_5_2_expand
+[convolutional]
+filters=576
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_5_2_dwise
+[convolutional]
+groups=576
+filters=576
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=576
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_5_2_linear
+[convolutional]
+filters=112
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 1 (4)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_5_2
+[shortcut]
+from=-9
+activation=linear
+
+# conv_5_3_expand
+[convolutional]
+filters=576
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_5_3_dwise
+[convolutional]
+groups=576
+filters=576
+size=5
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=576
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_5_3_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 2 (4)
+# conv_6_1_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_1_dwise
+[convolutional]
+groups=960
+filters=960
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_1_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 3 (4)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_6_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_6_2_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_2_dwise
+[convolutional]
+groups=960
+filters=960
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_2_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 4 (4)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_6_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_6_2_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_2_dwise
+[convolutional]
+groups=960
+filters=960
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_2_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV8 - MBConv6 - 1 (1)
+# dropout only before residual connection
+[dropout]
+probability=.2
+
+# block_6_2
+[shortcut]
+from=-9
+activation=linear
+
+# conv_6_3_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_3_dwise
+[convolutional]
+groups=960
+filters=960
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_3_linear
+[convolutional]
+filters=320
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV9 - Conv2d 1x1
+# conv_6_4
+[convolutional]
+filters=1280
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+
+[avgpool]
+
+[dropout]
+probability=.2
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=0
+activation=linear
+
+[softmax]
+groups=1
+
+#[cost]
+#type=sse
+

+ 1072 - 0
build/darknet/x64/cfg/enet-coco.cfg

@@ -0,0 +1,1072 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+### CONV1 - 1 (1)
+# conv1
+[convolutional]
+filters=32
+size=3
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+### CONV2 - MBConv1 - 1 (1)
+# conv2_1_expand
+[convolutional]
+filters=32
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv2_1_dwise
+[convolutional]
+groups=32
+filters=32
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=4 (recommended r=16)
+[convolutional]
+filters=8
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv2_1_linear
+[convolutional]
+filters=16
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV3 - MBConv6 - 1 (2)
+# conv2_2_expand
+[convolutional]
+filters=96
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv2_2_dwise
+[convolutional]
+groups=96
+filters=96
+size=3
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=8 (recommended r=16)
+[convolutional]
+filters=16
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=96
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv2_2_linear
+[convolutional]
+filters=24
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV3 - MBConv6 - 2 (2)
+# conv3_1_expand
+[convolutional]
+filters=144
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv3_1_dwise
+[convolutional]
+groups=144
+filters=144
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=8
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=144
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv3_1_linear
+[convolutional]
+filters=24
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV4 - MBConv6 - 1 (2)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_3_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_3_2_expand
+[convolutional]
+filters=144
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_3_2_dwise
+[convolutional]
+groups=144
+filters=144
+size=5
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=8
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=144
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_3_2_linear
+[convolutional]
+filters=40
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV4 - MBConv6 - 2 (2)
+# conv_4_1_expand
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_1_dwise
+[convolutional]
+groups=192
+filters=192
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=16
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=192
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_1_linear
+[convolutional]
+filters=40
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+
+### CONV5 - MBConv6 - 1 (3)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_4_2
+[shortcut]
+from=-9
+activation=linear
+
+# conv_4_3_expand
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_3_dwise
+[convolutional]
+groups=192
+filters=192
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=16
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=192
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_3_linear
+[convolutional]
+filters=80
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV5 - MBConv6 - 2 (3)
+# conv_4_4_expand
+[convolutional]
+filters=384
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_4_dwise
+[convolutional]
+groups=384
+filters=384
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=24
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=384
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_4_linear
+[convolutional]
+filters=80
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV5 - MBConv6 - 3 (3)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_4_4
+[shortcut]
+from=-9
+activation=linear
+
+# conv_4_5_expand
+[convolutional]
+filters=384
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_5_dwise
+[convolutional]
+groups=384
+filters=384
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=24
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=384
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_5_linear
+[convolutional]
+filters=80
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV6 - MBConv6 - 1 (3)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_4_6
+[shortcut]
+from=-9
+activation=linear
+
+# conv_4_7_expand
+[convolutional]
+filters=384
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_4_7_dwise
+[convolutional]
+groups=384
+filters=384
+size=5
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=24
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=384
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_4_7_linear
+[convolutional]
+filters=112
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV6 - MBConv6 - 2 (3)
+# conv_5_1_expand
+[convolutional]
+filters=576
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_5_1_dwise
+[convolutional]
+groups=576
+filters=576
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=576
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_5_1_linear
+[convolutional]
+filters=112
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV6 - MBConv6 - 3 (3)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_5_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_5_2_expand
+[convolutional]
+filters=576
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_5_2_dwise
+[convolutional]
+groups=576
+filters=576
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=576
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_5_2_linear
+[convolutional]
+filters=112
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 1 (4)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_5_2
+[shortcut]
+from=-9
+activation=linear
+
+# conv_5_3_expand
+[convolutional]
+filters=576
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_5_3_dwise
+[convolutional]
+groups=576
+filters=576
+size=5
+pad=1
+stride=2
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=32
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=576
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_5_3_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 2 (4)
+# conv_6_1_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_1_dwise
+[convolutional]
+groups=960
+filters=960
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_1_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 3 (4)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_6_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_6_2_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_2_dwise
+[convolutional]
+groups=960
+filters=960
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_2_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV7 - MBConv6 - 4 (4)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_6_1
+[shortcut]
+from=-9
+activation=linear
+
+# conv_6_2_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_2_dwise
+[convolutional]
+groups=960
+filters=960
+size=5
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_2_linear
+[convolutional]
+filters=192
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+
+### CONV8 - MBConv6 - 1 (1)
+# dropout only before residual connection
+[dropout]
+probability=.0
+
+# block_6_2
+[shortcut]
+from=-9
+activation=linear
+
+# conv_6_3_expand
+[convolutional]
+filters=960
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+# conv_6_3_dwise
+[convolutional]
+groups=960
+filters=960
+size=3
+stride=1
+pad=1
+batch_normalize=1
+activation=swish
+
+
+#squeeze-n-excitation
+[avgpool]
+
+# squeeze ratio r=16 (recommended r=16)
+[convolutional]
+filters=64
+size=1
+stride=1
+activation=swish
+
+# excitation
+[convolutional]
+filters=960
+size=1
+stride=1
+activation=logistic
+
+# multiply channels
+[scale_channels]
+from=-4
+
+
+# conv_6_3_linear
+[convolutional]
+filters=320
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=linear
+
+
+### CONV9 - Conv2d 1x1
+# conv_6_4
+[convolutional]
+filters=1280
+size=1
+stride=1
+pad=0
+batch_normalize=1
+activation=swish
+
+##########################
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+activation=leaky
+from=-2
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[shortcut]
+activation=leaky
+from=90
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+activation=leaky
+from=-3
+
+[shortcut]
+activation=leaky
+from=90
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 1,2,3
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0
+

+ 206 - 0
build/darknet/x64/cfg/extraction.cfg

@@ -0,0 +1,206 @@
+[net]
+batch=128
+subdivisions=1
+height=224
+width=224
+max_crop=320
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 179 - 0
build/darknet/x64/cfg/extraction.conv.cfg

@@ -0,0 +1,179 @@
+[net]
+batch=1
+subdivisions=1
+height=256
+width=256
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.5
+policy=poly
+power=6
+max_batches=500000
+
+[convolutional]
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[connected]
+output=1000
+activation=leaky
+
+[softmax]
+groups=1
+

+ 209 - 0
build/darknet/x64/cfg/extraction22k.cfg

@@ -0,0 +1,209 @@
+[net]
+batch=128
+subdivisions=1
+height=224
+width=224
+max_crop=320
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.01
+max_batches = 0
+policy=steps
+steps=444000,590000,970000
+scales=.5,.2,.1
+
+#policy=sigmoid
+#gamma=.00008
+#step=100000
+#max_batches=200000
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=192
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[avgpool]
+
+[connected]
+output=21842
+activation=leaky
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 131 - 0
build/darknet/x64/cfg/go.test.cfg

@@ -0,0 +1,131 @@
+[net]
+batch=1
+subdivisions=1
+height=19
+width=19
+channels=1
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=400000
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+[convolutional]
+filters=192
+size=3
+stride=1
+pad=1
+activation=relu
+batch_normalize=1
+
+
+[convolutional]
+filters=1
+size=1
+stride=1
+pad=1
+activation=linear
+
+[softmax]
+
+[cost]
+type=sse
+

+ 34 - 0
build/darknet/x64/cfg/gru.cfg

@@ -0,0 +1,34 @@
+[net]
+subdivisions=1
+inputs=256
+batch = 1
+momentum=0.9
+decay=0.001
+time_steps=1
+learning_rate=0.5
+
+policy=poly
+power=4
+max_batches=2000
+
+[gru]
+batch_normalize=1
+output = 1024
+
+[gru]
+batch_normalize=1
+output = 1024
+
+[gru]
+batch_normalize=1
+output = 1024
+
+[connected]
+output=256
+activation=linear
+
+[softmax]
+
+[cost]
+type=sse
+

+ 9 - 0
build/darknet/x64/cfg/imagenet1k.data

@@ -0,0 +1,9 @@
+classes=1000
+train  = data/imagenet1k.train.list
+#train  = data/inet.val.list
+valid  = data/inet.val.list
+backup = backup
+labels = data/imagenet.labels.list
+names  = data/imagenet.shortnames.list
+top=5
+

+ 8 - 0
build/darknet/x64/cfg/imagenet22k.dataset

@@ -0,0 +1,8 @@
+classes=21842
+train  = /data/imagenet/imagenet22k.train.list
+valid  = /data/imagenet/imagenet22k.valid.list
+backup = /home/pjreddie/backup/
+labels = data/imagenet.labels.list
+names  = data/imagenet.shortnames.list
+top = 5
+

+ 9 - 0
build/darknet/x64/cfg/imagenet9k.hierarchy.dataset

@@ -0,0 +1,9 @@
+classes=9418
+train  = data/9k.train.list
+valid  = /data/imagenet/imagenet1k.valid.list
+leaves = data/imagenet1k.labels
+backup = /home/pjreddie/backup/
+labels = data/9k.labels
+names  = data/9k.names
+top=5
+

+ 118 - 0
build/darknet/x64/cfg/jnet-conv.cfg

@@ -0,0 +1,118 @@
+[net]
+batch=1
+subdivisions=1
+height=10
+width=10
+channels=3
+learning_rate=0.01
+momentum=0.9
+decay=0.0005
+
+[convolutional]
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+stride=2
+size=2
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+stride=2
+size=2
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+stride=2
+size=2
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+stride=2
+size=2
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+stride=2
+size=2
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+

+ 35 - 0
build/darknet/x64/cfg/lstm.train.cfg

@@ -0,0 +1,35 @@
+[net]
+subdivisions=8
+inputs=256
+batch = 128
+momentum=0.9
+decay=0.001
+max_batches = 2000
+time_steps=576
+learning_rate=0.5
+policy=steps
+burn_in=10
+steps=1000,1500
+scales=.1,.1
+
+[lstm]
+batch_normalize=1
+output = 1024
+
+[lstm]
+batch_normalize=1
+output = 1024
+
+[lstm]
+batch_normalize=1
+output = 1024
+
+[connected]
+output=256
+activation=leaky
+
+[softmax]
+
+[cost]
+type=sse
+

+ 8 - 0
build/darknet/x64/cfg/openimages.data

@@ -0,0 +1,8 @@
+classes= 601
+train  = /home/pjreddie/data/openimsv4/openimages.train.list
+#valid  = coco_testdev
+valid = data/coco_val_5k.list
+names = data/openimages.names
+backup = /home/pjreddie/backup/
+eval=coco
+

+ 990 - 0
build/darknet/x64/cfg/resnet101.cfg

@@ -0,0 +1,990 @@
+[net]
+# Training
+batch=128
+subdivisions=2
+
+# Testing
+#batch=1
+#subdivisions=1
+
+height=256
+width=256
+channels=3
+min_crop=128
+max_crop=448
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=800000
+momentum=0.9
+decay=0.0005
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+# Conv 4
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+#Conv 5
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+
+
+
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 1463 - 0
build/darknet/x64/cfg/resnet152.cfg

@@ -0,0 +1,1463 @@
+[net]
+# Training
+# batch=128
+# subdivisions=8
+
+# Testing
+batch=1
+subdivisions=1
+
+height=256
+width=256
+max_crop=448
+channels=3
+momentum=0.9
+decay=0.0005
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+# Conv 4
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+#Conv 5
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+
+
+
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 2177 - 0
build/darknet/x64/cfg/resnet152_trident.cfg

@@ -0,0 +1,2177 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=64
+width=608
+height=608
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 10000
+
+policy=sgdr
+sgdr_cycle=1000
+sgdr_mult=2
+steps=4000,6000,8000,9000
+#scales=1, 1, 0.1, 0.1
+
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+# Conv 4
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+
+
+### TridentNet - large objects - Start
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+## Conv 5
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+dilation=3
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=2048
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=24
+activation=linear
+
+[yolo]
+mask = 8,9,10,11
+anchors = 8,8, 10,13, 16,30, 33,23,  32,32, 30,61, 62,45, 59,119,   80,80, 116,90, 156,198, 373,326
+classes=1
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0
+
+### TridentNet - large objects - End
+
+
+
+
+
+
+
+### TridentNet - medium objects - Start
+
+[route]
+layers = 165
+
+[convolutional]
+share_index=166
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=167
+dilation=2
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=168
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=170
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=171
+dilation=2
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=172
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=174
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=175
+dilation=2
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=176
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=178
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=179
+dilation=2
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=180
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=182
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=183
+dilation=2
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=184
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=186
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=187
+dilation=2
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=188
+dilation=2
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+## Conv 5
+[convolutional]
+share_index=190
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=191
+dilation=2
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=192
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=194
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=195
+dilation=2
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=196
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=198
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=199
+dilation=2
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=200
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 49
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=24
+activation=linear
+
+[yolo]
+mask = 4,5,6,7
+anchors = 8,8, 10,13, 16,30, 33,23,  32,32, 30,61, 62,45, 64,64,  59,119, 116,90, 156,198, 373,326
+classes=1
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0
+
+### TridentNet - medium objects - End
+
+
+
+
+
+
+
+
+
+
+
+### TridentNet - small objects - Start
+
+[route]
+layers = 165
+
+[convolutional]
+share_index=166
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=167
+dilation=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=168
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=170
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=171
+dilation=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=172
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=174
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=175
+dilation=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=176
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=178
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=179
+dilation=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=180
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=182
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=183
+dilation=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=184
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=186
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=187
+dilation=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=188
+dilation=1
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+## Conv 5
+[convolutional]
+share_index=190
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=191
+dilation=1
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=192
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=194
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=195
+dilation=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=196
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+share_index=198
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=199
+dilation=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+share_index=200
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[upsample]
+stride=4
+
+[route]
+layers = -1, 17
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=24
+activation=linear
+
+[yolo]
+mask = 0,1,2,3
+anchors = 8,8, 10,13, 16,30, 33,23,  32,32, 30,61, 62,45, 64,64,  59,119, 116,90, 156,198, 373,326
+classes=1
+num=12
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0
+
+### TridentNet - small objects - End
+

+ 511 - 0
build/darknet/x64/cfg/resnet50.cfg

@@ -0,0 +1,511 @@
+[net]
+# Training
+# batch=128
+# subdivisions=4
+
+# Testing
+batch=1
+subdivisions=1
+
+height=256
+width=256
+max_crop=448
+channels=3
+momentum=0.9
+decay=0.0005
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+# Conv 4
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+#Conv 5
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+
+
+
+
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 1562 - 0
build/darknet/x64/cfg/resnext152-32x4d.cfg

@@ -0,0 +1,1562 @@
+[net]
+# Training
+# batch=128
+# subdivisions=16
+
+# Testing
+batch=1
+subdivisions=1
+
+height=256
+width=256
+channels=3
+min_crop=128
+max_crop=448
+
+burn_in=1000
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=800000
+momentum=0.9
+decay=0.0005
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=7
+stride=2
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=2048
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=4096
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=4096
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+groups = 32
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=4096
+size=1
+stride=1
+pad=1
+activation=linear
+
+[shortcut]
+from=-4
+activation=leaky
+
+    
+
+
+[avgpool]
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[softmax]
+groups=1
+

+ 40 - 0
build/darknet/x64/cfg/rnn.cfg

@@ -0,0 +1,40 @@
+[net]
+subdivisions=1
+inputs=256
+batch = 1
+momentum=0.9
+decay=0.001
+max_batches = 2000
+time_steps=1
+learning_rate=0.1
+policy=steps
+steps=1000,1500
+scales=.1,.1
+
+[rnn]
+batch_normalize=1
+output = 1024
+hidden=1024
+activation=leaky
+
+[rnn]
+batch_normalize=1
+output = 1024
+hidden=1024
+activation=leaky
+
+[rnn]
+batch_normalize=1
+output = 1024
+hidden=1024
+activation=leaky
+
+[connected]
+output=256
+activation=leaky
+
+[softmax]
+
+[cost]
+type=sse
+

+ 40 - 0
build/darknet/x64/cfg/rnn.train.cfg

@@ -0,0 +1,40 @@
+[net]
+subdivisions=8
+inputs=256
+batch = 128
+momentum=0.9
+decay=0.001
+max_batches = 2000
+time_steps=576
+learning_rate=0.1
+policy=steps
+steps=1000,1500
+scales=.1,.1
+
+[rnn]
+batch_normalize=1
+output = 1024
+hidden=1024
+activation=leaky
+
+[rnn]
+batch_normalize=1
+output = 1024
+hidden=1024
+activation=leaky
+
+[rnn]
+batch_normalize=1
+output = 1024
+hidden=1024
+activation=leaky
+
+[connected]
+output=256
+activation=leaky
+
+[softmax]
+
+[cost]
+type=sse
+

+ 185 - 0
build/darknet/x64/cfg/strided.cfg

@@ -0,0 +1,185 @@
+[net]
+batch=128
+subdivisions=4
+height=256
+width=256
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.01
+policy=steps
+scales=.1,.1,.1
+steps=200000,300000,400000
+max_batches=800000
+
+
+[crop]
+crop_height=224
+crop_width=224
+flip=1
+angle=0
+saturation=1
+exposure=1
+shift=.2
+
+[convolutional]
+filters=64
+size=7
+stride=2
+pad=1
+activation=ramp
+
+[convolutional]
+filters=192
+size=3
+stride=2
+pad=1
+activation=ramp
+
+[convolutional]
+filters=128
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=3
+stride=2
+pad=1
+activation=ramp
+
+[convolutional]
+filters=128
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=128
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=512
+size=3
+stride=2
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=256
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=1024
+size=3
+stride=2
+pad=1
+activation=ramp
+
+[convolutional]
+filters=512
+size=1
+stride=1
+pad=1
+activation=ramp
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=ramp
+
+[maxpool]
+size=3
+stride=2
+
+[connected]
+output=4096
+activation=ramp
+
+[dropout]
+probability=0.5
+
+[connected]
+output=1000
+activation=ramp
+
+[softmax]
+
+[cost]
+type=sse
+

+ 117 - 0
build/darknet/x64/cfg/t1.test.cfg

@@ -0,0 +1,117 @@
+[net]
+batch=1
+subdivisions=1
+height=224
+width=224
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.0005
+policy=steps
+steps=200,400,600,20000,30000
+scales=2.5,2,2,.1,.1
+max_batches = 40000
+
+[convolutional]
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[connected]
+output= 1470
+activation=linear
+
+[detection]
+classes=20
+coords=4
+rescore=1
+side=7
+num=2
+softmax=0
+sqrt=1
+jitter=.2
+
+object_scale=1
+noobject_scale=.5
+class_scale=1
+coord_scale=5
+

+ 134 - 0
build/darknet/x64/cfg/tiny-yolo-voc.cfg

@@ -0,0 +1,134 @@
+[net]
+batch=64
+subdivisions=8
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+max_batches = 40200
+policy=steps
+steps=-1,100,20000,30000
+scales=.1,10,.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=125
+activation=linear
+
+[region]
+anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
+bias_match=1
+classes=20
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 134 - 0
build/darknet/x64/cfg/tiny-yolo.cfg

@@ -0,0 +1,134 @@
+[net]
+batch=64
+subdivisions=8
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+max_batches = 120000
+policy=steps
+steps=-1,100,80000,100000
+scales=.1,10,.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=425
+activation=linear
+
+[region]
+anchors = 0.738768,0.874946,  2.42204,2.65704,  4.30971,7.04493,  10.246,4.59428,  12.6868,11.8741
+bias_match=1
+classes=80
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 148 - 0
build/darknet/x64/cfg/tiny-yolo_xnor.cfg

@@ -0,0 +1,148 @@
+[net]
+batch=64
+subdivisions=8
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+max_batches = 40200
+policy=steps
+steps=-1,100,20000,30000
+scales=.1,10,.1,.1
+
+[convolutional]
+#xnor=1
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+xnor=1
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=425
+activation=linear
+
+[region]
+anchors = 0.738768,0.874946,  2.42204,2.65704,  4.30971,7.04493,  10.246,4.59428,  12.6868,11.8741
+bias_match=1
+classes=80
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 172 - 0
build/darknet/x64/cfg/tiny.cfg

@@ -0,0 +1,172 @@
+[net]
+batch=128
+subdivisions=1
+height=224
+width=224
+channels=3
+momentum=0.9
+decay=0.0005
+max_crop=320
+
+learning_rate=0.1
+policy=poly
+power=4
+max_batches=1600000
+
+angle=7
+hue=.1
+saturation=.75
+exposure=.75
+aspect=.75
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1000
+size=1
+stride=1
+pad=1
+activation=linear
+
+[avgpool]
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 153 - 0
build/darknet/x64/cfg/vgg-16.cfg

@@ -0,0 +1,153 @@
+[net]
+batch=128
+subdivisions=4
+height=256
+width=256
+channels=3
+learning_rate=0.00001
+momentum=0.9
+decay=0.0005
+
+[crop]
+crop_height=224
+crop_width=224
+flip=1
+exposure=1
+saturation=1
+angle=0
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[connected]
+output=4096
+activation=relu
+
+[dropout]
+probability=.5
+
+[connected]
+output=4096
+activation=relu
+
+[dropout]
+probability=.5
+
+[connected]
+output=1000
+activation=linear
+
+[softmax]
+groups=1
+
+[cost]
+type=sse
+

+ 123 - 0
build/darknet/x64/cfg/vgg-conv.cfg

@@ -0,0 +1,123 @@
+[net]
+batch=1
+subdivisions=1
+width=112
+height=112
+#width=224
+#height=224
+channels=3
+learning_rate=0.00001
+momentum=0.9
+decay=0.0005
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=64
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=128
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=256
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[convolutional]
+filters=512
+size=3
+stride=1
+pad=1
+activation=relu
+
+[maxpool]
+size=2
+stride=2
+

+ 7 - 0
build/darknet/x64/cfg/voc.data

@@ -0,0 +1,7 @@
+classes= 20
+train  = data/train_voc.txt
+valid  = data/2007_test.txt
+#difficult = data/difficult_2007_test.txt
+names = data/voc.names
+backup = backup/
+

+ 41 - 0
build/darknet/x64/cfg/writing.cfg

@@ -0,0 +1,41 @@
+[net]
+batch=128
+subdivisions=2
+height=256
+width=256
+channels=3
+learning_rate=0.00000001
+momentum=0.9
+decay=0.0005
+seen=0
+
+[convolutional]
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=1
+size=3
+stride=1
+pad=1
+activation=logistic
+
+[cost]
+

+ 244 - 0
build/darknet/x64/cfg/yolo-voc.2.0.cfg

@@ -0,0 +1,244 @@
+[net]
+batch=64
+subdivisions=8
+height=416
+width=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.0001
+max_batches = 45000
+policy=steps
+steps=100,25000,35000
+scales=10,.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+#######
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[route]
+layers=-9
+
+[reorg]
+stride=2
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=125
+activation=linear
+
+[region]
+anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
+bias_match=1
+classes=20
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=0

+ 258 - 0
build/darknet/x64/cfg/yolo-voc.cfg

@@ -0,0 +1,258 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=8
+height=416
+width=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 80200
+policy=steps
+steps=40000,60000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+#######
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[route]
+layers=-9
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[reorg]
+stride=2
+
+[route]
+layers=-1,-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=125
+activation=linear
+
+
+[region]
+anchors =  1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
+bias_match=1
+classes=20
+coords=4
+num=5
+softmax=1
+jitter=.3
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 244 - 0
build/darknet/x64/cfg/yolo.2.0.cfg

@@ -0,0 +1,244 @@
+[net]
+batch=1
+subdivisions=1
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+max_batches = 120000
+policy=steps
+steps=-1,100,80000,100000
+scales=.1,10,.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+#######
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[route]
+layers=-9
+
+[reorg]
+stride=2
+
+[route]
+layers=-1,-3
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=425
+activation=linear
+
+[region]
+anchors = 0.738768,0.874946,  2.42204,2.65704,  4.30971,7.04493,  10.246,4.59428,  12.6868,11.8741
+bias_match=1
+classes=80
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=0

+ 258 - 0
build/darknet/x64/cfg/yolo.cfg

@@ -0,0 +1,258 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=8
+height=416
+width=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+#######
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[route]
+layers=-9
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[reorg]
+stride=2
+
+[route]
+layers=-1,-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=425
+activation=linear
+
+
+[region]
+anchors =  0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
+bias_match=1
+classes=80
+coords=4
+num=5
+softmax=1
+jitter=.3
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 218 - 0
build/darknet/x64/cfg/yolo9000.cfg

@@ -0,0 +1,218 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=8
+batch=1
+subdivisions=1
+height=544
+width=544
+channels=3
+momentum=0.9
+decay=0.0005
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+hue=.1
+saturation=.75
+exposure=.75
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+filters=28269
+size=1
+stride=1
+pad=1
+activation=linear
+
+[region]
+anchors = 0.77871, 1.14074, 3.00525, 4.31277, 9.22725, 9.61974
+bias_match=1
+classes=9418
+coords=4
+num=3
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+thresh = .6
+absolute=1
+random=1
+
+tree=data/9k.tree
+map = data/coco9k.map

+ 138 - 0
build/darknet/x64/cfg/yolov2-tiny-voc.cfg

@@ -0,0 +1,138 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=2
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+max_batches = 40200
+policy=steps
+steps=-1,100,20000,30000
+scales=.1,10,.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=125
+activation=linear
+
+[region]
+anchors = 1.08,1.19,  3.42,4.41,  6.63,11.38,  9.42,5.11,  16.62,10.52
+bias_match=1
+classes=20
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 139 - 0
build/darknet/x64/cfg/yolov2-tiny.cfg

@@ -0,0 +1,139 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=2
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=425
+activation=linear
+
+[region]
+anchors =  0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
+bias_match=1
+classes=80
+coords=4
+num=5
+softmax=1
+jitter=.2
+rescore=0
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 258 - 0
build/darknet/x64/cfg/yolov2-voc.cfg

@@ -0,0 +1,258 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=8
+height=416
+width=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 80200
+policy=steps
+steps=40000,60000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+#######
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[route]
+layers=-9
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[reorg]
+stride=2
+
+[route]
+layers=-1,-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=125
+activation=linear
+
+
+[region]
+anchors =  1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
+bias_match=1
+classes=20
+coords=4
+num=5
+softmax=1
+jitter=.3
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 258 - 0
build/darknet/x64/cfg/yolov2.cfg

@@ -0,0 +1,258 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=8
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+#######
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[route]
+layers=-9
+
+[convolutional]
+batch_normalize=1
+size=1
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[reorg]
+stride=2
+
+[route]
+layers=-1,-4
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=425
+activation=linear
+
+
+[region]
+anchors =  0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828
+bias_match=1
+classes=80
+coords=4
+num=5
+softmax=1
+jitter=.3
+rescore=1
+
+object_scale=5
+noobject_scale=1
+class_scale=1
+coord_scale=1
+
+absolute=1
+thresh = .6
+random=1

+ 789 - 0
build/darknet/x64/cfg/yolov3-openimages.cfg

@@ -0,0 +1,789 @@
+[net]
+# Testing
+ batch=1
+ subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=608
+height=608
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=5000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=1818
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=601
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=1818
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=601
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=1818
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=601
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+

+ 822 - 0
build/darknet/x64/cfg/yolov3-spp.cfg

@@ -0,0 +1,822 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=16
+width=608
+height=608
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+### SPP ###
+[maxpool]
+stride=1
+size=5
+
+[route]
+layers=-2
+
+[maxpool]
+stride=1
+size=9
+
+[route]
+layers=-4
+
+[maxpool]
+stride=1
+size=13
+
+[route]
+layers=-1,-3,-5,-6
+
+### End SPP ###
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+

+ 199 - 0
build/darknet/x64/cfg/yolov3-tiny-prn.cfg

@@ -0,0 +1,199 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=8
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+activation=leaky
+from=-3
+
+###########
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+activation=leaky
+from=-2
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[shortcut]
+activation=leaky
+from=8
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+activation=leaky
+from=-3
+
+[shortcut]
+activation=leaky
+from=8
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 1,2,3
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1

+ 182 - 0
build/darknet/x64/cfg/yolov3-tiny.cfg

@@ -0,0 +1,182 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=2
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 8
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1

+ 227 - 0
build/darknet/x64/cfg/yolov3-tiny_3l.cfg

@@ -0,0 +1,227 @@
+[net]
+# Testing
+# batch=1
+# subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=608
+height=608
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 200000
+policy=steps
+steps=180000,190000
+scales=.1,.1
+
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=21
+activation=linear
+
+
+
+[yolo]
+mask = 6,7,8
+anchors = 4,7, 7,15, 13,25,   25,42, 41,67, 75,94,   91,162, 158,205, 250,332
+classes=2
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 8
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=21
+activation=linear
+
+[yolo]
+mask = 3,4,5
+anchors = 4,7, 7,15, 13,25,   25,42, 41,67, 75,94,   91,162, 158,205, 250,332
+classes=2
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+[route]
+layers = -3
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 6
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=21
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 4,7, 7,15, 13,25,   25,42, 41,67, 75,94,   91,162, 158,205, 250,332
+classes=2
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1

+ 182 - 0
build/darknet/x64/cfg/yolov3-tiny_obj.cfg

@@ -0,0 +1,182 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=2
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 8
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1

+ 218 - 0
build/darknet/x64/cfg/yolov3-tiny_occlusion_track.cfg

@@ -0,0 +1,218 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=8
+subdivisions=4
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+track=1
+time_steps=20
+augment_speed=3
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 10000
+policy=steps
+steps=9000,9500
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+
+[crnn]
+batch_normalize=1
+size=3
+pad=1
+output=512
+hidden=256
+activation=leaky
+
+#[shortcut]
+#from=-2
+#activation=linear
+
+###########
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=18
+activation=linear
+
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=1
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 8
+
+[crnn]
+batch_normalize=1
+size=3
+pad=1
+output=256
+hidden=128
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=18
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=1
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=0

+ 197 - 0
build/darknet/x64/cfg/yolov3-tiny_xnor.cfg

@@ -0,0 +1,197 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=2
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=16
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=2
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[maxpool]
+size=2
+stride=1
+
+[convolutional]
+xnor=1
+bin_output=1
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+###########
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 8
+
+[convolutional]
+xnor=1
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 10,14,  23,27,  37,58,  81,82,  135,169,  344,319
+classes=80
+num=6
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1

+ 785 - 0
build/darknet/x64/cfg/yolov3-voc.cfg

@@ -0,0 +1,785 @@
+[net]
+# Testing
+ batch=1
+ subdivisions=1
+# Training
+# batch=64
+# subdivisions=16
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 50200
+policy=steps
+steps=40000,45000
+scales=.1,.1
+
+
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=75
+activation=linear
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=20
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=75
+activation=linear
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=20
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+random=1
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=75
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=20
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+random=1
+

+ 808 - 0
build/darknet/x64/cfg/yolov3-voc.yolov3-giou-40.cfg

@@ -0,0 +1,808 @@
+[net]
+# Testing
+# batch=1
+# subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+## single gpu
+learning_rate=0.001
+burn_in=1000
+max_batches = 100400
+
+## 2x
+#learning_rate=0.0005
+#burn_in=2000
+#max_batches = 100400
+#max_batches = 200800
+
+## 4x
+#learning_rate=0.00025
+#burn_in=4000
+#max_batches = 50200
+##max_batches = 200800
+
+policy=steps
+steps=40000,45000
+scales=.1,.1
+
+
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=75
+activation=linear
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=20
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+random=1
+iou_normalizer=0.25
+cls_normalizer=1.0
+iou_loss=giou
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=75
+activation=linear
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=20
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+random=1
+iou_normalizer=0.25
+cls_normalizer=1.0
+iou_loss=giou
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=75
+activation=linear
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=20
+num=9
+jitter=.3
+ignore_thresh = .5
+truth_thresh = 1
+random=1
+iou_normalizer=0.25
+cls_normalizer=1.0
+iou_loss=giou
+

+ 789 - 0
build/darknet/x64/cfg/yolov3.cfg

@@ -0,0 +1,789 @@
+[net]
+# Testing
+batch=1
+subdivisions=1
+# Training
+# batch=64
+# subdivisions=16
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+

+ 806 - 0
build/darknet/x64/cfg/yolov3.coco-giou-12.cfg

@@ -0,0 +1,806 @@
+[net]
+# Testing
+# batch=1
+# subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=608
+height=608
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+## single gpu
+learning_rate=0.001
+burn_in=1000
+max_batches = 550400
+
+## 2 gpu
+#learning_rate=0.0005
+#burn_in=2000
+#max_batches = 500200
+
+## 4 gpu
+#learning_rate=0.00025
+#burn_in=4000
+#max_batches = 500200
+###max_batches = 2000800
+
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+iou_normalizer=0.5
+iou_loss=giou
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+iou_normalizer=0.5
+iou_loss=giou
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=9
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+iou_normalizer=0.5
+iou_loss=giou

+ 968 - 0
build/darknet/x64/cfg/yolov3_5l.cfg

@@ -0,0 +1,968 @@
+[net]
+# Testing
+#batch=1
+#subdivisions=1
+# Training
+batch=64
+subdivisions=16
+width=416
+height=416
+channels=3
+momentum=0.9
+decay=0.0005
+angle=0
+saturation = 1.5
+exposure = 1.5
+hue=.1
+
+learning_rate=0.001
+burn_in=1000
+max_batches = 500200
+policy=steps
+steps=400000,450000
+scales=.1,.1
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=3
+stride=1
+pad=1
+activation=leaky
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+# Downsample
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=2
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=1024
+size=3
+stride=1
+pad=1
+activation=leaky
+
+[shortcut]
+from=-3
+activation=linear
+
+######################
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=512
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=1024
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 12,13,14
+anchors = 4,4,  5,5,  6,6, 7,7,  8,8,  9,9, 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=15
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 61
+
+
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=256
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=512
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 9,10,11
+anchors = 4,4,  5,5,  6,6, 7,7,  8,8,  9,9, 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=15
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 36
+
+
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=256
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 6,7,8
+anchors = 4,4,  5,5,  6,6, 7,7,  8,8,  9,9, 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=15
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+###############
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 11
+
+
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=64
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=128
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 3,4,5
+anchors = 4,4,  5,5,  6,6, 7,7,  8,8,  9,9, 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=15
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+
+
+
+
+
+[route]
+layers = -4
+
+[convolutional]
+batch_normalize=1
+filters=128
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[upsample]
+stride=2
+
+[route]
+layers = -1, 4
+
+
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+filters=32
+size=1
+stride=1
+pad=1
+activation=leaky
+
+[convolutional]
+batch_normalize=1
+size=3
+stride=1
+pad=1
+filters=64
+activation=leaky
+
+[convolutional]
+size=1
+stride=1
+pad=1
+filters=255
+activation=linear
+
+
+[yolo]
+mask = 0,1,2
+anchors = 4,4,  5,5,  6,6, 7,7,  8,8,  9,9, 10,13,  16,30,  33,23,  30,61,  62,45,  59,119,  116,90,  156,198,  373,326
+classes=80
+num=15
+jitter=.3
+ignore_thresh = .7
+truth_thresh = 1
+random=1
+

+ 6 - 0
build/darknet/x64/classifier_densenet201.cmd

@@ -0,0 +1,6 @@
+darknet.exe classifier predict cfg/imagenet1k.data cfg/densenet201.cfg densenet201.weights
+
+
+pause
+
+REM Download weights for DenseNet201 and ResNet50 by this link: https://pjreddie.com/darknet/imagenet/

+ 8 - 0
build/darknet/x64/classifier_resnet50.cmd

@@ -0,0 +1,8 @@
+darknet.exe classifier predict cfg/imagenet1k.data cfg/resnet50.cfg resnet50.weights
+
+rem darknet.exe classifier predict cfg/imagenet1k.data cfg/resnet152.cfg resnet152.weights
+
+
+pause
+
+REM Download weights for DenseNet201, ResNet50 and ResNet152 by this link: https://pjreddie.com/darknet/imagenet/

Einige Dateien werden nicht angezeigt, da zu viele Dateien in diesem Diff geändert wurden.