vgg-conv.cfg 1.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123
  1. [net]
  2. batch=1
  3. subdivisions=1
  4. width=112
  5. height=112
  6. #width=224
  7. #height=224
  8. channels=3
  9. learning_rate=0.00001
  10. momentum=0.9
  11. decay=0.0005
  12. [convolutional]
  13. filters=64
  14. size=3
  15. stride=1
  16. pad=1
  17. activation=relu
  18. [convolutional]
  19. filters=64
  20. size=3
  21. stride=1
  22. pad=1
  23. activation=relu
  24. [maxpool]
  25. size=2
  26. stride=2
  27. [convolutional]
  28. filters=128
  29. size=3
  30. stride=1
  31. pad=1
  32. activation=relu
  33. [convolutional]
  34. filters=128
  35. size=3
  36. stride=1
  37. pad=1
  38. activation=relu
  39. [maxpool]
  40. size=2
  41. stride=2
  42. [convolutional]
  43. filters=256
  44. size=3
  45. stride=1
  46. pad=1
  47. activation=relu
  48. [convolutional]
  49. filters=256
  50. size=3
  51. stride=1
  52. pad=1
  53. activation=relu
  54. [convolutional]
  55. filters=256
  56. size=3
  57. stride=1
  58. pad=1
  59. activation=relu
  60. [maxpool]
  61. size=2
  62. stride=2
  63. [convolutional]
  64. filters=512
  65. size=3
  66. stride=1
  67. pad=1
  68. activation=relu
  69. [convolutional]
  70. filters=512
  71. size=3
  72. stride=1
  73. pad=1
  74. activation=relu
  75. [convolutional]
  76. filters=512
  77. size=3
  78. stride=1
  79. pad=1
  80. activation=relu
  81. [maxpool]
  82. size=2
  83. stride=2
  84. [convolutional]
  85. filters=512
  86. size=3
  87. stride=1
  88. pad=1
  89. activation=relu
  90. [convolutional]
  91. filters=512
  92. size=3
  93. stride=1
  94. pad=1
  95. activation=relu
  96. [convolutional]
  97. filters=512
  98. size=3
  99. stride=1
  100. pad=1
  101. activation=relu
  102. [maxpool]
  103. size=2
  104. stride=2