resnet50_yolo.cfg 5.4 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520
  1. [net]
  2. batch=64
  3. subdivisions=32
  4. height=416
  5. width=416
  6. channels=3
  7. momentum=0.9
  8. decay=0.0005
  9. angle=0
  10. saturation = 1.5
  11. exposure = 1.5
  12. hue=.1
  13. learning_rate=0.0001
  14. max_batches = 45000
  15. policy=steps
  16. steps=100,25000,35000
  17. scales=10,.1,.1
  18. [convolutional]
  19. batch_normalize=1
  20. filters=64
  21. size=7
  22. stride=2
  23. pad=1
  24. activation=leaky
  25. [maxpool]
  26. size=2
  27. stride=2
  28. [convolutional]
  29. batch_normalize=1
  30. filters=64
  31. size=1
  32. stride=1
  33. pad=1
  34. activation=leaky
  35. [convolutional]
  36. batch_normalize=1
  37. filters=64
  38. size=3
  39. stride=1
  40. pad=1
  41. activation=leaky
  42. [convolutional]
  43. batch_normalize=1
  44. filters=256
  45. size=1
  46. stride=1
  47. pad=1
  48. activation=linear
  49. [shortcut]
  50. from=-4
  51. activation=leaky
  52. [convolutional]
  53. batch_normalize=1
  54. filters=64
  55. size=1
  56. stride=1
  57. pad=1
  58. activation=leaky
  59. [convolutional]
  60. batch_normalize=1
  61. filters=64
  62. size=3
  63. stride=1
  64. pad=1
  65. activation=leaky
  66. [convolutional]
  67. batch_normalize=1
  68. filters=256
  69. size=1
  70. stride=1
  71. pad=1
  72. activation=linear
  73. [shortcut]
  74. from=-4
  75. activation=leaky
  76. [convolutional]
  77. batch_normalize=1
  78. filters=64
  79. size=1
  80. stride=1
  81. pad=1
  82. activation=leaky
  83. [convolutional]
  84. batch_normalize=1
  85. filters=64
  86. size=3
  87. stride=1
  88. pad=1
  89. activation=leaky
  90. [convolutional]
  91. batch_normalize=1
  92. filters=256
  93. size=1
  94. stride=1
  95. pad=1
  96. activation=linear
  97. [shortcut]
  98. from=-4
  99. activation=leaky
  100. [convolutional]
  101. batch_normalize=1
  102. filters=128
  103. size=1
  104. stride=1
  105. pad=1
  106. activation=leaky
  107. [convolutional]
  108. batch_normalize=1
  109. filters=128
  110. size=3
  111. stride=2
  112. pad=1
  113. activation=leaky
  114. [convolutional]
  115. batch_normalize=1
  116. filters=512
  117. size=1
  118. stride=1
  119. pad=1
  120. activation=linear
  121. [shortcut]
  122. from=-4
  123. activation=leaky
  124. [convolutional]
  125. batch_normalize=1
  126. filters=128
  127. size=1
  128. stride=1
  129. pad=1
  130. activation=leaky
  131. [convolutional]
  132. batch_normalize=1
  133. filters=128
  134. size=3
  135. stride=1
  136. pad=1
  137. activation=leaky
  138. [convolutional]
  139. batch_normalize=1
  140. filters=512
  141. size=1
  142. stride=1
  143. pad=1
  144. activation=linear
  145. [shortcut]
  146. from=-4
  147. activation=leaky
  148. [convolutional]
  149. batch_normalize=1
  150. filters=128
  151. size=1
  152. stride=1
  153. pad=1
  154. activation=leaky
  155. [convolutional]
  156. batch_normalize=1
  157. filters=128
  158. size=3
  159. stride=1
  160. pad=1
  161. activation=leaky
  162. [convolutional]
  163. batch_normalize=1
  164. filters=512
  165. size=1
  166. stride=1
  167. pad=1
  168. activation=linear
  169. [shortcut]
  170. from=-4
  171. activation=leaky
  172. [convolutional]
  173. batch_normalize=1
  174. filters=128
  175. size=1
  176. stride=1
  177. pad=1
  178. activation=leaky
  179. [convolutional]
  180. batch_normalize=1
  181. filters=128
  182. size=3
  183. stride=1
  184. pad=1
  185. activation=leaky
  186. [convolutional]
  187. batch_normalize=1
  188. filters=512
  189. size=1
  190. stride=1
  191. pad=1
  192. activation=linear
  193. [shortcut]
  194. from=-4
  195. activation=leaky
  196. # Conv 4
  197. [convolutional]
  198. batch_normalize=1
  199. filters=256
  200. size=1
  201. stride=1
  202. pad=1
  203. activation=leaky
  204. [convolutional]
  205. batch_normalize=1
  206. filters=256
  207. size=3
  208. stride=2
  209. pad=1
  210. activation=leaky
  211. [convolutional]
  212. batch_normalize=1
  213. filters=1024
  214. size=1
  215. stride=1
  216. pad=1
  217. activation=linear
  218. [shortcut]
  219. from=-4
  220. activation=leaky
  221. [convolutional]
  222. batch_normalize=1
  223. filters=256
  224. size=1
  225. stride=1
  226. pad=1
  227. activation=leaky
  228. [convolutional]
  229. batch_normalize=1
  230. filters=256
  231. size=3
  232. stride=1
  233. pad=1
  234. activation=leaky
  235. [convolutional]
  236. batch_normalize=1
  237. filters=1024
  238. size=1
  239. stride=1
  240. pad=1
  241. activation=linear
  242. [shortcut]
  243. from=-4
  244. activation=leaky
  245. [convolutional]
  246. batch_normalize=1
  247. filters=256
  248. size=1
  249. stride=1
  250. pad=1
  251. activation=leaky
  252. [convolutional]
  253. batch_normalize=1
  254. filters=256
  255. size=3
  256. stride=1
  257. pad=1
  258. activation=leaky
  259. [convolutional]
  260. batch_normalize=1
  261. filters=1024
  262. size=1
  263. stride=1
  264. pad=1
  265. activation=linear
  266. [shortcut]
  267. from=-4
  268. activation=leaky
  269. [convolutional]
  270. batch_normalize=1
  271. filters=256
  272. size=1
  273. stride=1
  274. pad=1
  275. activation=leaky
  276. [convolutional]
  277. batch_normalize=1
  278. filters=256
  279. size=3
  280. stride=1
  281. pad=1
  282. activation=leaky
  283. [convolutional]
  284. batch_normalize=1
  285. filters=1024
  286. size=1
  287. stride=1
  288. pad=1
  289. activation=linear
  290. [shortcut]
  291. from=-4
  292. activation=leaky
  293. [convolutional]
  294. batch_normalize=1
  295. filters=256
  296. size=1
  297. stride=1
  298. pad=1
  299. activation=leaky
  300. [convolutional]
  301. batch_normalize=1
  302. filters=256
  303. size=3
  304. stride=1
  305. pad=1
  306. activation=leaky
  307. [convolutional]
  308. batch_normalize=1
  309. filters=1024
  310. size=1
  311. stride=1
  312. pad=1
  313. activation=linear
  314. [shortcut]
  315. from=-4
  316. activation=leaky
  317. [convolutional]
  318. batch_normalize=1
  319. filters=256
  320. size=1
  321. stride=1
  322. pad=1
  323. activation=leaky
  324. [convolutional]
  325. batch_normalize=1
  326. filters=256
  327. size=3
  328. stride=1
  329. pad=1
  330. activation=leaky
  331. [convolutional]
  332. batch_normalize=1
  333. filters=1024
  334. size=1
  335. stride=1
  336. pad=1
  337. activation=linear
  338. [shortcut]
  339. from=-4
  340. activation=leaky
  341. #Conv 5
  342. [convolutional]
  343. batch_normalize=1
  344. filters=512
  345. size=1
  346. stride=1
  347. pad=1
  348. activation=leaky
  349. [convolutional]
  350. batch_normalize=1
  351. filters=512
  352. size=3
  353. stride=2
  354. pad=1
  355. activation=leaky
  356. [convolutional]
  357. batch_normalize=1
  358. filters=2048
  359. size=1
  360. stride=1
  361. pad=1
  362. activation=linear
  363. [shortcut]
  364. from=-4
  365. activation=leaky
  366. [convolutional]
  367. batch_normalize=1
  368. filters=512
  369. size=1
  370. stride=1
  371. pad=1
  372. activation=leaky
  373. [convolutional]
  374. batch_normalize=1
  375. filters=512
  376. size=3
  377. stride=1
  378. pad=1
  379. activation=leaky
  380. [convolutional]
  381. batch_normalize=1
  382. filters=2048
  383. size=1
  384. stride=1
  385. pad=1
  386. activation=linear
  387. [shortcut]
  388. from=-4
  389. activation=leaky
  390. [convolutional]
  391. batch_normalize=1
  392. filters=512
  393. size=1
  394. stride=1
  395. pad=1
  396. activation=leaky
  397. [convolutional]
  398. batch_normalize=1
  399. filters=512
  400. size=3
  401. stride=1
  402. pad=1
  403. activation=leaky
  404. [convolutional]
  405. batch_normalize=1
  406. filters=2048
  407. size=1
  408. stride=1
  409. pad=1
  410. activation=linear
  411. [shortcut]
  412. from=-4
  413. activation=leaky
  414. #stopbackward=1
  415. [convolutional]
  416. batch_normalize=1
  417. size=1
  418. stride=1
  419. pad=1
  420. filters=1024
  421. activation=leaky
  422. [convolutional]
  423. size=1
  424. stride=1
  425. pad=1
  426. filters=125
  427. activation=linear
  428. [region]
  429. anchors = 1.3221, 1.73145, 3.19275, 4.00944, 5.05587, 8.09892, 9.47112, 4.84053, 11.2364, 10.0071
  430. bias_match=1
  431. classes=20
  432. coords=4
  433. num=5
  434. softmax=1
  435. jitter=.3
  436. rescore=1
  437. object_scale=5
  438. noobject_scale=1
  439. class_scale=1
  440. coord_scale=1
  441. absolute=1
  442. thresh = .6
  443. random=1