Gaussian_yolov3_BDD.cfg 8.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807
  1. [net]
  2. # Testing
  3. #batch=1
  4. #subdivisions=1
  5. # Training
  6. batch=64
  7. subdivisions=16
  8. width=512
  9. height=512
  10. channels=3
  11. momentum=0.9
  12. decay=0.0005
  13. angle=0
  14. saturation = 1.5
  15. exposure = 1.5
  16. hue=.1
  17. learning_rate=0.0001
  18. burn_in=1000
  19. max_batches = 500200
  20. policy=steps
  21. steps=400000,450000
  22. scales=.1,.1
  23. max_epochs = 300
  24. [convolutional]
  25. batch_normalize=1
  26. filters=32
  27. size=3
  28. stride=1
  29. pad=1
  30. activation=leaky
  31. # Downsample
  32. [convolutional]
  33. batch_normalize=1
  34. filters=64
  35. size=3
  36. stride=2
  37. pad=1
  38. activation=leaky
  39. [convolutional]
  40. batch_normalize=1
  41. filters=32
  42. size=1
  43. stride=1
  44. pad=1
  45. activation=leaky
  46. [convolutional]
  47. batch_normalize=1
  48. filters=64
  49. size=3
  50. stride=1
  51. pad=1
  52. activation=leaky
  53. [shortcut]
  54. from=-3
  55. activation=linear
  56. # Downsample
  57. [convolutional]
  58. batch_normalize=1
  59. filters=128
  60. size=3
  61. stride=2
  62. pad=1
  63. activation=leaky
  64. [convolutional]
  65. batch_normalize=1
  66. filters=64
  67. size=1
  68. stride=1
  69. pad=1
  70. activation=leaky
  71. [convolutional]
  72. batch_normalize=1
  73. filters=128
  74. size=3
  75. stride=1
  76. pad=1
  77. activation=leaky
  78. [shortcut]
  79. from=-3
  80. activation=linear
  81. [convolutional]
  82. batch_normalize=1
  83. filters=64
  84. size=1
  85. stride=1
  86. pad=1
  87. activation=leaky
  88. [convolutional]
  89. batch_normalize=1
  90. filters=128
  91. size=3
  92. stride=1
  93. pad=1
  94. activation=leaky
  95. [shortcut]
  96. from=-3
  97. activation=linear
  98. # Downsample
  99. [convolutional]
  100. batch_normalize=1
  101. filters=256
  102. size=3
  103. stride=2
  104. pad=1
  105. activation=leaky
  106. [convolutional]
  107. batch_normalize=1
  108. filters=128
  109. size=1
  110. stride=1
  111. pad=1
  112. activation=leaky
  113. [convolutional]
  114. batch_normalize=1
  115. filters=256
  116. size=3
  117. stride=1
  118. pad=1
  119. activation=leaky
  120. [shortcut]
  121. from=-3
  122. activation=linear
  123. [convolutional]
  124. batch_normalize=1
  125. filters=128
  126. size=1
  127. stride=1
  128. pad=1
  129. activation=leaky
  130. [convolutional]
  131. batch_normalize=1
  132. filters=256
  133. size=3
  134. stride=1
  135. pad=1
  136. activation=leaky
  137. [shortcut]
  138. from=-3
  139. activation=linear
  140. [convolutional]
  141. batch_normalize=1
  142. filters=128
  143. size=1
  144. stride=1
  145. pad=1
  146. activation=leaky
  147. [convolutional]
  148. batch_normalize=1
  149. filters=256
  150. size=3
  151. stride=1
  152. pad=1
  153. activation=leaky
  154. [shortcut]
  155. from=-3
  156. activation=linear
  157. [convolutional]
  158. batch_normalize=1
  159. filters=128
  160. size=1
  161. stride=1
  162. pad=1
  163. activation=leaky
  164. [convolutional]
  165. batch_normalize=1
  166. filters=256
  167. size=3
  168. stride=1
  169. pad=1
  170. activation=leaky
  171. [shortcut]
  172. from=-3
  173. activation=linear
  174. [convolutional]
  175. batch_normalize=1
  176. filters=128
  177. size=1
  178. stride=1
  179. pad=1
  180. activation=leaky
  181. [convolutional]
  182. batch_normalize=1
  183. filters=256
  184. size=3
  185. stride=1
  186. pad=1
  187. activation=leaky
  188. [shortcut]
  189. from=-3
  190. activation=linear
  191. [convolutional]
  192. batch_normalize=1
  193. filters=128
  194. size=1
  195. stride=1
  196. pad=1
  197. activation=leaky
  198. [convolutional]
  199. batch_normalize=1
  200. filters=256
  201. size=3
  202. stride=1
  203. pad=1
  204. activation=leaky
  205. [shortcut]
  206. from=-3
  207. activation=linear
  208. [convolutional]
  209. batch_normalize=1
  210. filters=128
  211. size=1
  212. stride=1
  213. pad=1
  214. activation=leaky
  215. [convolutional]
  216. batch_normalize=1
  217. filters=256
  218. size=3
  219. stride=1
  220. pad=1
  221. activation=leaky
  222. [shortcut]
  223. from=-3
  224. activation=linear
  225. [convolutional]
  226. batch_normalize=1
  227. filters=128
  228. size=1
  229. stride=1
  230. pad=1
  231. activation=leaky
  232. [convolutional]
  233. batch_normalize=1
  234. filters=256
  235. size=3
  236. stride=1
  237. pad=1
  238. activation=leaky
  239. [shortcut]
  240. from=-3
  241. activation=linear
  242. # Downsample
  243. [convolutional]
  244. batch_normalize=1
  245. filters=512
  246. size=3
  247. stride=2
  248. pad=1
  249. activation=leaky
  250. [convolutional]
  251. batch_normalize=1
  252. filters=256
  253. size=1
  254. stride=1
  255. pad=1
  256. activation=leaky
  257. [convolutional]
  258. batch_normalize=1
  259. filters=512
  260. size=3
  261. stride=1
  262. pad=1
  263. activation=leaky
  264. [shortcut]
  265. from=-3
  266. activation=linear
  267. [convolutional]
  268. batch_normalize=1
  269. filters=256
  270. size=1
  271. stride=1
  272. pad=1
  273. activation=leaky
  274. [convolutional]
  275. batch_normalize=1
  276. filters=512
  277. size=3
  278. stride=1
  279. pad=1
  280. activation=leaky
  281. [shortcut]
  282. from=-3
  283. activation=linear
  284. [convolutional]
  285. batch_normalize=1
  286. filters=256
  287. size=1
  288. stride=1
  289. pad=1
  290. activation=leaky
  291. [convolutional]
  292. batch_normalize=1
  293. filters=512
  294. size=3
  295. stride=1
  296. pad=1
  297. activation=leaky
  298. [shortcut]
  299. from=-3
  300. activation=linear
  301. [convolutional]
  302. batch_normalize=1
  303. filters=256
  304. size=1
  305. stride=1
  306. pad=1
  307. activation=leaky
  308. [convolutional]
  309. batch_normalize=1
  310. filters=512
  311. size=3
  312. stride=1
  313. pad=1
  314. activation=leaky
  315. [shortcut]
  316. from=-3
  317. activation=linear
  318. [convolutional]
  319. batch_normalize=1
  320. filters=256
  321. size=1
  322. stride=1
  323. pad=1
  324. activation=leaky
  325. [convolutional]
  326. batch_normalize=1
  327. filters=512
  328. size=3
  329. stride=1
  330. pad=1
  331. activation=leaky
  332. [shortcut]
  333. from=-3
  334. activation=linear
  335. [convolutional]
  336. batch_normalize=1
  337. filters=256
  338. size=1
  339. stride=1
  340. pad=1
  341. activation=leaky
  342. [convolutional]
  343. batch_normalize=1
  344. filters=512
  345. size=3
  346. stride=1
  347. pad=1
  348. activation=leaky
  349. [shortcut]
  350. from=-3
  351. activation=linear
  352. [convolutional]
  353. batch_normalize=1
  354. filters=256
  355. size=1
  356. stride=1
  357. pad=1
  358. activation=leaky
  359. [convolutional]
  360. batch_normalize=1
  361. filters=512
  362. size=3
  363. stride=1
  364. pad=1
  365. activation=leaky
  366. [shortcut]
  367. from=-3
  368. activation=linear
  369. [convolutional]
  370. batch_normalize=1
  371. filters=256
  372. size=1
  373. stride=1
  374. pad=1
  375. activation=leaky
  376. [convolutional]
  377. batch_normalize=1
  378. filters=512
  379. size=3
  380. stride=1
  381. pad=1
  382. activation=leaky
  383. [shortcut]
  384. from=-3
  385. activation=linear
  386. # Downsample
  387. [convolutional]
  388. batch_normalize=1
  389. filters=1024
  390. size=3
  391. stride=2
  392. pad=1
  393. activation=leaky
  394. [convolutional]
  395. batch_normalize=1
  396. filters=512
  397. size=1
  398. stride=1
  399. pad=1
  400. activation=leaky
  401. [convolutional]
  402. batch_normalize=1
  403. filters=1024
  404. size=3
  405. stride=1
  406. pad=1
  407. activation=leaky
  408. [shortcut]
  409. from=-3
  410. activation=linear
  411. [convolutional]
  412. batch_normalize=1
  413. filters=512
  414. size=1
  415. stride=1
  416. pad=1
  417. activation=leaky
  418. [convolutional]
  419. batch_normalize=1
  420. filters=1024
  421. size=3
  422. stride=1
  423. pad=1
  424. activation=leaky
  425. [shortcut]
  426. from=-3
  427. activation=linear
  428. [convolutional]
  429. batch_normalize=1
  430. filters=512
  431. size=1
  432. stride=1
  433. pad=1
  434. activation=leaky
  435. [convolutional]
  436. batch_normalize=1
  437. filters=1024
  438. size=3
  439. stride=1
  440. pad=1
  441. activation=leaky
  442. [shortcut]
  443. from=-3
  444. activation=linear
  445. [convolutional]
  446. batch_normalize=1
  447. filters=512
  448. size=1
  449. stride=1
  450. pad=1
  451. activation=leaky
  452. [convolutional]
  453. batch_normalize=1
  454. filters=1024
  455. size=3
  456. stride=1
  457. pad=1
  458. activation=leaky
  459. [shortcut]
  460. from=-3
  461. activation=linear
  462. ######################
  463. [convolutional]
  464. batch_normalize=1
  465. filters=512
  466. size=1
  467. stride=1
  468. pad=1
  469. activation=leaky
  470. [convolutional]
  471. batch_normalize=1
  472. size=3
  473. stride=1
  474. pad=1
  475. filters=1024
  476. activation=leaky
  477. [convolutional]
  478. batch_normalize=1
  479. filters=512
  480. size=1
  481. stride=1
  482. pad=1
  483. activation=leaky
  484. [convolutional]
  485. batch_normalize=1
  486. size=3
  487. stride=1
  488. pad=1
  489. filters=1024
  490. activation=leaky
  491. [convolutional]
  492. batch_normalize=1
  493. filters=512
  494. size=1
  495. stride=1
  496. pad=1
  497. activation=leaky
  498. [convolutional]
  499. batch_normalize=1
  500. size=3
  501. stride=1
  502. pad=1
  503. filters=1024
  504. activation=leaky
  505. [convolutional]
  506. size=1
  507. stride=1
  508. pad=1
  509. filters=57
  510. activation=linear
  511. [Gaussian_yolo]
  512. mask = 6,7,8
  513. anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
  514. classes=10
  515. num=9
  516. jitter=.3
  517. ignore_thresh = .5
  518. truth_thresh = 1
  519. iou_thresh=0.213
  520. uc_normalizer=1.0
  521. cls_normalizer=1.0
  522. iou_normalizer=0.5
  523. iou_loss=giou
  524. scale_x_y=1.0
  525. random=1
  526. [route]
  527. layers = -4
  528. [convolutional]
  529. batch_normalize=1
  530. filters=256
  531. size=1
  532. stride=1
  533. pad=1
  534. activation=leaky
  535. [upsample]
  536. stride=2
  537. [route]
  538. layers = -1, 61
  539. [convolutional]
  540. batch_normalize=1
  541. filters=256
  542. size=1
  543. stride=1
  544. pad=1
  545. activation=leaky
  546. [convolutional]
  547. batch_normalize=1
  548. size=3
  549. stride=1
  550. pad=1
  551. filters=512
  552. activation=leaky
  553. [convolutional]
  554. batch_normalize=1
  555. filters=256
  556. size=1
  557. stride=1
  558. pad=1
  559. activation=leaky
  560. [convolutional]
  561. batch_normalize=1
  562. size=3
  563. stride=1
  564. pad=1
  565. filters=512
  566. activation=leaky
  567. [convolutional]
  568. batch_normalize=1
  569. filters=256
  570. size=1
  571. stride=1
  572. pad=1
  573. activation=leaky
  574. [convolutional]
  575. batch_normalize=1
  576. size=3
  577. stride=1
  578. pad=1
  579. filters=512
  580. activation=leaky
  581. [convolutional]
  582. size=1
  583. stride=1
  584. pad=1
  585. filters=57
  586. activation=linear
  587. [Gaussian_yolo]
  588. mask = 3,4,5
  589. anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
  590. classes=10
  591. num=9
  592. jitter=.3
  593. ignore_thresh = .5
  594. truth_thresh = 1
  595. iou_thresh=0.213
  596. uc_normalizer=1.0
  597. cls_normalizer=1.0
  598. iou_normalizer=0.5
  599. iou_loss=giou
  600. scale_x_y=1.0
  601. random=1
  602. [route]
  603. layers = -4
  604. [convolutional]
  605. batch_normalize=1
  606. filters=128
  607. size=1
  608. stride=1
  609. pad=1
  610. activation=leaky
  611. [upsample]
  612. stride=2
  613. [route]
  614. layers = -1, 36
  615. [convolutional]
  616. batch_normalize=1
  617. filters=128
  618. size=1
  619. stride=1
  620. pad=1
  621. activation=leaky
  622. [convolutional]
  623. batch_normalize=1
  624. size=3
  625. stride=1
  626. pad=1
  627. filters=256
  628. activation=leaky
  629. [convolutional]
  630. batch_normalize=1
  631. filters=128
  632. size=1
  633. stride=1
  634. pad=1
  635. activation=leaky
  636. [convolutional]
  637. batch_normalize=1
  638. size=3
  639. stride=1
  640. pad=1
  641. filters=256
  642. activation=leaky
  643. [convolutional]
  644. batch_normalize=1
  645. filters=128
  646. size=1
  647. stride=1
  648. pad=1
  649. activation=leaky
  650. [convolutional]
  651. batch_normalize=1
  652. size=3
  653. stride=1
  654. pad=1
  655. filters=256
  656. activation=leaky
  657. [convolutional]
  658. size=1
  659. stride=1
  660. pad=1
  661. filters=57
  662. activation=linear
  663. [Gaussian_yolo]
  664. mask = 0,1,2
  665. anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291
  666. classes=10
  667. num=9
  668. jitter=.3
  669. ignore_thresh = .5
  670. truth_thresh = 1
  671. iou_thresh=0.213
  672. uc_normalizer=1.0
  673. cls_normalizer=1.0
  674. iou_normalizer=0.5
  675. iou_loss=giou
  676. scale_x_y=1.0
  677. random=1