csresnext50-panet-spp-original-optimal.cfg 11 KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048
  1. [net]
  2. # Testing
  3. #batch=1
  4. #subdivisions=1
  5. # Training
  6. batch=64
  7. subdivisions=8
  8. width=608
  9. height=608
  10. channels=3
  11. momentum=0.949
  12. decay=0.0005
  13. angle=0
  14. saturation = 1.5
  15. exposure = 1.5
  16. hue=.1
  17. learning_rate=0.00261
  18. burn_in=1000
  19. max_batches = 500500
  20. policy=steps
  21. steps=400000,450000
  22. scales=.1,.1
  23. #cutmix=1
  24. mosaic=1
  25. #19:104x104 38:52x52 65:26x26 80:13x13 for 416
  26. [convolutional]
  27. batch_normalize=1
  28. filters=64
  29. size=7
  30. stride=2
  31. pad=1
  32. activation=leaky
  33. [maxpool]
  34. size=2
  35. stride=2
  36. [convolutional]
  37. batch_normalize=1
  38. filters=128
  39. size=1
  40. stride=1
  41. pad=1
  42. activation=leaky
  43. [route]
  44. layers = -2
  45. [convolutional]
  46. batch_normalize=1
  47. filters=64
  48. size=1
  49. stride=1
  50. pad=1
  51. activation=leaky
  52. # 1-1
  53. [convolutional]
  54. batch_normalize=1
  55. filters=128
  56. size=1
  57. stride=1
  58. pad=1
  59. activation=leaky
  60. [convolutional]
  61. batch_normalize=1
  62. filters=128
  63. size=3
  64. groups=32
  65. stride=1
  66. pad=1
  67. activation=leaky
  68. [convolutional]
  69. batch_normalize=1
  70. filters=128
  71. size=1
  72. stride=1
  73. pad=1
  74. activation=linear
  75. [shortcut]
  76. from=-4
  77. activation=leaky
  78. # 1-2
  79. [convolutional]
  80. batch_normalize=1
  81. filters=128
  82. size=1
  83. stride=1
  84. pad=1
  85. activation=leaky
  86. [convolutional]
  87. batch_normalize=1
  88. filters=128
  89. size=3
  90. groups=32
  91. stride=1
  92. pad=1
  93. activation=leaky
  94. [convolutional]
  95. batch_normalize=1
  96. filters=128
  97. size=1
  98. stride=1
  99. pad=1
  100. activation=linear
  101. [shortcut]
  102. from=-4
  103. activation=leaky
  104. # 1-3
  105. [convolutional]
  106. batch_normalize=1
  107. filters=128
  108. size=1
  109. stride=1
  110. pad=1
  111. activation=leaky
  112. [convolutional]
  113. batch_normalize=1
  114. filters=128
  115. size=3
  116. groups=32
  117. stride=1
  118. pad=1
  119. activation=leaky
  120. [convolutional]
  121. batch_normalize=1
  122. filters=128
  123. size=1
  124. stride=1
  125. pad=1
  126. activation=linear
  127. [shortcut]
  128. from=-4
  129. activation=leaky
  130. # 1-T
  131. [convolutional]
  132. batch_normalize=1
  133. filters=128
  134. size=1
  135. stride=1
  136. pad=1
  137. activation=leaky
  138. [route]
  139. layers = -1,-16
  140. [convolutional]
  141. batch_normalize=1
  142. filters=256
  143. size=1
  144. stride=1
  145. pad=1
  146. activation=leaky
  147. [convolutional]
  148. batch_normalize=1
  149. filters=256
  150. size=3
  151. groups=32
  152. stride=2
  153. pad=1
  154. activation=leaky
  155. [convolutional]
  156. batch_normalize=1
  157. filters=256
  158. size=1
  159. stride=1
  160. pad=1
  161. activation=linear
  162. [route]
  163. layers = -2
  164. [convolutional]
  165. batch_normalize=1
  166. filters=256
  167. size=1
  168. stride=1
  169. pad=1
  170. activation=linear
  171. # 2-1
  172. [convolutional]
  173. batch_normalize=1
  174. filters=256
  175. size=1
  176. stride=1
  177. pad=1
  178. activation=leaky
  179. [convolutional]
  180. batch_normalize=1
  181. filters=256
  182. size=3
  183. groups=32
  184. stride=1
  185. pad=1
  186. activation=leaky
  187. [convolutional]
  188. batch_normalize=1
  189. filters=256
  190. size=1
  191. stride=1
  192. pad=1
  193. activation=linear
  194. [shortcut]
  195. from=-4
  196. activation=leaky
  197. # 2-2
  198. [convolutional]
  199. batch_normalize=1
  200. filters=256
  201. size=1
  202. stride=1
  203. pad=1
  204. activation=leaky
  205. [convolutional]
  206. batch_normalize=1
  207. filters=256
  208. size=3
  209. groups=32
  210. stride=1
  211. pad=1
  212. activation=leaky
  213. [convolutional]
  214. batch_normalize=1
  215. filters=256
  216. size=1
  217. stride=1
  218. pad=1
  219. activation=linear
  220. [shortcut]
  221. from=-4
  222. activation=leaky
  223. # 2-3
  224. [convolutional]
  225. batch_normalize=1
  226. filters=256
  227. size=1
  228. stride=1
  229. pad=1
  230. activation=leaky
  231. [convolutional]
  232. batch_normalize=1
  233. filters=256
  234. size=3
  235. groups=32
  236. stride=1
  237. pad=1
  238. activation=leaky
  239. [convolutional]
  240. batch_normalize=1
  241. filters=256
  242. size=1
  243. stride=1
  244. pad=1
  245. activation=linear
  246. [shortcut]
  247. from=-4
  248. activation=leaky
  249. # 2-T
  250. [convolutional]
  251. batch_normalize=1
  252. filters=256
  253. size=1
  254. stride=1
  255. pad=1
  256. activation=leaky
  257. [route]
  258. layers = -1,-16
  259. [convolutional]
  260. batch_normalize=1
  261. filters=512
  262. size=1
  263. stride=1
  264. pad=1
  265. activation=leaky
  266. [convolutional]
  267. batch_normalize=1
  268. filters=512
  269. size=3
  270. groups=32
  271. stride=2
  272. pad=1
  273. activation=leaky
  274. [convolutional]
  275. batch_normalize=1
  276. filters=512
  277. size=1
  278. stride=1
  279. pad=1
  280. activation=linear
  281. [route]
  282. layers = -2
  283. [convolutional]
  284. batch_normalize=1
  285. filters=512
  286. size=1
  287. stride=1
  288. pad=1
  289. activation=linear
  290. # 3-1
  291. [convolutional]
  292. batch_normalize=1
  293. filters=512
  294. size=1
  295. stride=1
  296. pad=1
  297. activation=leaky
  298. [convolutional]
  299. batch_normalize=1
  300. filters=512
  301. size=3
  302. groups=32
  303. stride=1
  304. pad=1
  305. activation=leaky
  306. [convolutional]
  307. batch_normalize=1
  308. filters=512
  309. size=1
  310. stride=1
  311. pad=1
  312. activation=linear
  313. [shortcut]
  314. from=-4
  315. activation=leaky
  316. # 3-2
  317. [convolutional]
  318. batch_normalize=1
  319. filters=512
  320. size=1
  321. stride=1
  322. pad=1
  323. activation=leaky
  324. [convolutional]
  325. batch_normalize=1
  326. filters=512
  327. size=3
  328. groups=32
  329. stride=1
  330. pad=1
  331. activation=leaky
  332. [convolutional]
  333. batch_normalize=1
  334. filters=512
  335. size=1
  336. stride=1
  337. pad=1
  338. activation=linear
  339. [shortcut]
  340. from=-4
  341. activation=leaky
  342. # 3-3
  343. [convolutional]
  344. batch_normalize=1
  345. filters=512
  346. size=1
  347. stride=1
  348. pad=1
  349. activation=leaky
  350. [convolutional]
  351. batch_normalize=1
  352. filters=512
  353. size=3
  354. groups=32
  355. stride=1
  356. pad=1
  357. activation=leaky
  358. [convolutional]
  359. batch_normalize=1
  360. filters=512
  361. size=1
  362. stride=1
  363. pad=1
  364. activation=linear
  365. [shortcut]
  366. from=-4
  367. activation=leaky
  368. # 3-4
  369. [convolutional]
  370. batch_normalize=1
  371. filters=512
  372. size=1
  373. stride=1
  374. pad=1
  375. activation=leaky
  376. [convolutional]
  377. batch_normalize=1
  378. filters=512
  379. size=3
  380. groups=32
  381. stride=1
  382. pad=1
  383. activation=leaky
  384. [convolutional]
  385. batch_normalize=1
  386. filters=512
  387. size=1
  388. stride=1
  389. pad=1
  390. activation=linear
  391. [shortcut]
  392. from=-4
  393. activation=leaky
  394. # 3-5
  395. [convolutional]
  396. batch_normalize=1
  397. filters=512
  398. size=1
  399. stride=1
  400. pad=1
  401. activation=leaky
  402. [convolutional]
  403. batch_normalize=1
  404. filters=512
  405. size=3
  406. groups=32
  407. stride=1
  408. pad=1
  409. activation=leaky
  410. [convolutional]
  411. batch_normalize=1
  412. filters=512
  413. size=1
  414. stride=1
  415. pad=1
  416. activation=linear
  417. [shortcut]
  418. from=-4
  419. activation=leaky
  420. # 3-T
  421. [convolutional]
  422. batch_normalize=1
  423. filters=512
  424. size=1
  425. stride=1
  426. pad=1
  427. activation=leaky
  428. [route]
  429. layers = -1,-24
  430. [convolutional]
  431. batch_normalize=1
  432. filters=1024
  433. size=1
  434. stride=1
  435. pad=1
  436. activation=leaky
  437. [convolutional]
  438. batch_normalize=1
  439. filters=1024
  440. size=3
  441. groups=32
  442. stride=2
  443. pad=1
  444. activation=leaky
  445. [convolutional]
  446. batch_normalize=1
  447. filters=1024
  448. size=1
  449. stride=1
  450. pad=1
  451. activation=leaky
  452. [route]
  453. layers = -2
  454. [convolutional]
  455. batch_normalize=1
  456. filters=1024
  457. size=1
  458. stride=1
  459. pad=1
  460. activation=leaky
  461. # 4-1
  462. [convolutional]
  463. batch_normalize=1
  464. filters=1024
  465. size=1
  466. stride=1
  467. pad=1
  468. activation=leaky
  469. [convolutional]
  470. batch_normalize=1
  471. filters=1024
  472. size=3
  473. groups=32
  474. stride=1
  475. pad=1
  476. activation=leaky
  477. [convolutional]
  478. batch_normalize=1
  479. filters=1024
  480. size=1
  481. stride=1
  482. pad=1
  483. activation=linear
  484. [shortcut]
  485. from=-4
  486. activation=leaky
  487. # 4-2
  488. [convolutional]
  489. batch_normalize=1
  490. filters=1024
  491. size=1
  492. stride=1
  493. pad=1
  494. activation=leaky
  495. [convolutional]
  496. batch_normalize=1
  497. filters=1024
  498. size=3
  499. groups=32
  500. stride=1
  501. pad=1
  502. activation=leaky
  503. [convolutional]
  504. batch_normalize=1
  505. filters=1024
  506. size=1
  507. stride=1
  508. pad=1
  509. activation=linear
  510. [shortcut]
  511. from=-4
  512. activation=leaky
  513. # 4-T
  514. [convolutional]
  515. batch_normalize=1
  516. filters=1024
  517. size=1
  518. stride=1
  519. pad=1
  520. activation=leaky
  521. [route]
  522. layers = -1,-12
  523. [convolutional]
  524. batch_normalize=1
  525. filters=2048
  526. size=1
  527. stride=1
  528. pad=1
  529. activation=leaky
  530. ##########################
  531. [convolutional]
  532. batch_normalize=1
  533. filters=512
  534. size=1
  535. stride=1
  536. pad=1
  537. activation=leaky
  538. [convolutional]
  539. batch_normalize=1
  540. size=3
  541. stride=1
  542. pad=1
  543. filters=1024
  544. activation=leaky
  545. [convolutional]
  546. batch_normalize=1
  547. filters=512
  548. size=1
  549. stride=1
  550. pad=1
  551. activation=leaky
  552. ### SPP ###
  553. [maxpool]
  554. stride=1
  555. size=5
  556. [route]
  557. layers=-2
  558. [maxpool]
  559. stride=1
  560. size=9
  561. [route]
  562. layers=-4
  563. [maxpool]
  564. stride=1
  565. size=13
  566. [route]
  567. layers=-1,-3,-5,-6
  568. ### End SPP ###
  569. [convolutional]
  570. batch_normalize=1
  571. filters=512
  572. size=1
  573. stride=1
  574. pad=1
  575. activation=leaky
  576. [convolutional]
  577. batch_normalize=1
  578. size=3
  579. stride=1
  580. pad=1
  581. filters=1024
  582. activation=leaky
  583. [convolutional]
  584. batch_normalize=1
  585. filters=512
  586. size=1
  587. stride=1
  588. pad=1
  589. activation=leaky
  590. [convolutional]
  591. batch_normalize=1
  592. filters=256
  593. size=1
  594. stride=1
  595. pad=1
  596. activation=leaky
  597. [upsample]
  598. stride=2
  599. [route]
  600. layers = 65
  601. [convolutional]
  602. batch_normalize=1
  603. filters=256
  604. size=1
  605. stride=1
  606. pad=1
  607. activation=leaky
  608. [route]
  609. layers = -1, -3
  610. [convolutional]
  611. batch_normalize=1
  612. filters=256
  613. size=1
  614. stride=1
  615. pad=1
  616. activation=leaky
  617. [convolutional]
  618. batch_normalize=1
  619. size=3
  620. stride=1
  621. pad=1
  622. filters=512
  623. activation=leaky
  624. [convolutional]
  625. batch_normalize=1
  626. filters=256
  627. size=1
  628. stride=1
  629. pad=1
  630. activation=leaky
  631. [convolutional]
  632. batch_normalize=1
  633. size=3
  634. stride=1
  635. pad=1
  636. filters=512
  637. activation=leaky
  638. [convolutional]
  639. batch_normalize=1
  640. filters=256
  641. size=1
  642. stride=1
  643. pad=1
  644. activation=leaky
  645. [convolutional]
  646. batch_normalize=1
  647. filters=128
  648. size=1
  649. stride=1
  650. pad=1
  651. activation=leaky
  652. [upsample]
  653. stride=2
  654. [route]
  655. layers = 38
  656. [convolutional]
  657. batch_normalize=1
  658. filters=128
  659. size=1
  660. stride=1
  661. pad=1
  662. activation=leaky
  663. [route]
  664. layers = -1, -3
  665. [convolutional]
  666. batch_normalize=1
  667. filters=128
  668. size=1
  669. stride=1
  670. pad=1
  671. activation=leaky
  672. [convolutional]
  673. batch_normalize=1
  674. size=3
  675. stride=1
  676. pad=1
  677. filters=256
  678. activation=leaky
  679. [convolutional]
  680. batch_normalize=1
  681. filters=128
  682. size=1
  683. stride=1
  684. pad=1
  685. activation=leaky
  686. [convolutional]
  687. batch_normalize=1
  688. size=3
  689. stride=1
  690. pad=1
  691. filters=256
  692. activation=leaky
  693. [convolutional]
  694. batch_normalize=1
  695. filters=128
  696. size=1
  697. stride=1
  698. pad=1
  699. activation=leaky
  700. ##########################
  701. [convolutional]
  702. batch_normalize=1
  703. size=3
  704. stride=1
  705. pad=1
  706. filters=256
  707. activation=leaky
  708. [convolutional]
  709. size=1
  710. stride=1
  711. pad=1
  712. filters=255
  713. activation=linear
  714. [yolo]
  715. mask = 0,1,2
  716. anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
  717. classes=80
  718. num=9
  719. jitter=.3
  720. ignore_thresh = .7
  721. truth_thresh = 1
  722. random=1
  723. scale_x_y = 1.2
  724. iou_thresh=0.213
  725. cls_normalizer=1.0
  726. iou_normalizer=0.07
  727. uc_normalizer=0.07
  728. iou_loss=ciou
  729. nms_kind=greedynms
  730. beta_nms=0.6
  731. beta1=0.6
  732. [route]
  733. layers = -4
  734. [convolutional]
  735. batch_normalize=1
  736. size=3
  737. stride=2
  738. pad=1
  739. filters=256
  740. activation=leaky
  741. [route]
  742. layers = -1, -16
  743. [convolutional]
  744. batch_normalize=1
  745. filters=256
  746. size=1
  747. stride=1
  748. pad=1
  749. activation=leaky
  750. [convolutional]
  751. batch_normalize=1
  752. size=3
  753. stride=1
  754. pad=1
  755. filters=512
  756. activation=leaky
  757. [convolutional]
  758. batch_normalize=1
  759. filters=256
  760. size=1
  761. stride=1
  762. pad=1
  763. activation=leaky
  764. [convolutional]
  765. batch_normalize=1
  766. size=3
  767. stride=1
  768. pad=1
  769. filters=512
  770. activation=leaky
  771. [convolutional]
  772. batch_normalize=1
  773. filters=256
  774. size=1
  775. stride=1
  776. pad=1
  777. activation=leaky
  778. [convolutional]
  779. batch_normalize=1
  780. size=3
  781. stride=1
  782. pad=1
  783. filters=512
  784. activation=leaky
  785. [convolutional]
  786. size=1
  787. stride=1
  788. pad=1
  789. filters=255
  790. activation=linear
  791. [yolo]
  792. mask = 3,4,5
  793. anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
  794. classes=80
  795. num=9
  796. jitter=.3
  797. ignore_thresh = .7
  798. truth_thresh = 1
  799. random=1
  800. scale_x_y = 1.1
  801. iou_thresh=0.213
  802. cls_normalizer=1.0
  803. iou_normalizer=0.07
  804. uc_normalizer=0.07
  805. iou_loss=ciou
  806. nms_kind=greedynms
  807. beta_nms=0.6
  808. beta1=0.6
  809. [route]
  810. layers = -4
  811. [convolutional]
  812. batch_normalize=1
  813. size=3
  814. stride=2
  815. pad=1
  816. filters=512
  817. activation=leaky
  818. [route]
  819. layers = -1, -37
  820. [convolutional]
  821. batch_normalize=1
  822. filters=512
  823. size=1
  824. stride=1
  825. pad=1
  826. activation=leaky
  827. [convolutional]
  828. batch_normalize=1
  829. size=3
  830. stride=1
  831. pad=1
  832. filters=1024
  833. activation=leaky
  834. [convolutional]
  835. batch_normalize=1
  836. filters=512
  837. size=1
  838. stride=1
  839. pad=1
  840. activation=leaky
  841. [convolutional]
  842. batch_normalize=1
  843. size=3
  844. stride=1
  845. pad=1
  846. filters=1024
  847. activation=leaky
  848. [convolutional]
  849. batch_normalize=1
  850. filters=512
  851. size=1
  852. stride=1
  853. pad=1
  854. activation=leaky
  855. [convolutional]
  856. batch_normalize=1
  857. size=3
  858. stride=1
  859. pad=1
  860. filters=1024
  861. activation=leaky
  862. [convolutional]
  863. size=1
  864. stride=1
  865. pad=1
  866. filters=255
  867. activation=linear
  868. [yolo]
  869. mask = 6,7,8
  870. anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401
  871. classes=80
  872. num=9
  873. jitter=.3
  874. ignore_thresh = .7
  875. truth_thresh = 1
  876. random=1
  877. scale_x_y = 1.05
  878. iou_thresh=0.213
  879. cls_normalizer=1.0
  880. iou_normalizer=0.07
  881. uc_normalizer=0.07
  882. iou_loss=ciou
  883. nms_kind=greedynms
  884. beta_nms=0.6
  885. beta1=0.6