darknet53_448_xnor.cfg 6.1 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619
  1. [net]
  2. # Training - start training with darknet53.weights
  3. batch=120
  4. subdivisions=20
  5. # Testing
  6. #batch=1
  7. #subdivisions=1
  8. height=448
  9. width=448
  10. channels=3
  11. min_crop=448
  12. max_crop=512
  13. burn_in=1000
  14. learning_rate=0.1
  15. policy=poly
  16. power=4
  17. max_batches=100000
  18. momentum=0.9
  19. decay=0.0005
  20. [convolutional]
  21. batch_normalize=1
  22. filters=32
  23. size=3
  24. stride=1
  25. pad=1
  26. activation=leaky
  27. # Downsample
  28. [convolutional]
  29. xnor=1
  30. batch_normalize=1
  31. filters=64
  32. size=3
  33. stride=2
  34. pad=1
  35. activation=leaky
  36. [convolutional]
  37. xnor=1
  38. batch_normalize=1
  39. filters=32
  40. size=1
  41. stride=1
  42. pad=1
  43. activation=leaky
  44. [convolutional]
  45. xnor=1
  46. batch_normalize=1
  47. filters=64
  48. size=3
  49. stride=1
  50. pad=1
  51. activation=leaky
  52. [shortcut]
  53. from=-3
  54. activation=linear
  55. # Downsample
  56. [convolutional]
  57. xnor=1
  58. batch_normalize=1
  59. filters=128
  60. size=3
  61. stride=2
  62. pad=1
  63. activation=leaky
  64. [convolutional]
  65. xnor=1
  66. batch_normalize=1
  67. filters=64
  68. size=1
  69. stride=1
  70. pad=1
  71. activation=leaky
  72. [convolutional]
  73. xnor=1
  74. batch_normalize=1
  75. filters=128
  76. size=3
  77. stride=1
  78. pad=1
  79. activation=leaky
  80. [shortcut]
  81. from=-3
  82. activation=linear
  83. [convolutional]
  84. xnor=1
  85. batch_normalize=1
  86. filters=64
  87. size=1
  88. stride=1
  89. pad=1
  90. activation=leaky
  91. [convolutional]
  92. xnor=1
  93. batch_normalize=1
  94. filters=128
  95. size=3
  96. stride=1
  97. pad=1
  98. activation=leaky
  99. [shortcut]
  100. from=-3
  101. activation=linear
  102. # Downsample
  103. [convolutional]
  104. xnor=1
  105. batch_normalize=1
  106. filters=256
  107. size=3
  108. stride=2
  109. pad=1
  110. activation=leaky
  111. [convolutional]
  112. xnor=1
  113. batch_normalize=1
  114. filters=128
  115. size=1
  116. stride=1
  117. pad=1
  118. activation=leaky
  119. [convolutional]
  120. xnor=1
  121. batch_normalize=1
  122. filters=256
  123. size=3
  124. stride=1
  125. pad=1
  126. activation=leaky
  127. [shortcut]
  128. from=-3
  129. activation=linear
  130. [convolutional]
  131. xnor=1
  132. batch_normalize=1
  133. filters=128
  134. size=1
  135. stride=1
  136. pad=1
  137. activation=leaky
  138. [convolutional]
  139. xnor=1
  140. batch_normalize=1
  141. filters=256
  142. size=3
  143. stride=1
  144. pad=1
  145. activation=leaky
  146. [shortcut]
  147. from=-3
  148. activation=linear
  149. [convolutional]
  150. xnor=1
  151. batch_normalize=1
  152. filters=128
  153. size=1
  154. stride=1
  155. pad=1
  156. activation=leaky
  157. [convolutional]
  158. xnor=1
  159. batch_normalize=1
  160. filters=256
  161. size=3
  162. stride=1
  163. pad=1
  164. activation=leaky
  165. [shortcut]
  166. from=-3
  167. activation=linear
  168. [convolutional]
  169. xnor=1
  170. batch_normalize=1
  171. filters=128
  172. size=1
  173. stride=1
  174. pad=1
  175. activation=leaky
  176. [convolutional]
  177. xnor=1
  178. batch_normalize=1
  179. filters=256
  180. size=3
  181. stride=1
  182. pad=1
  183. activation=leaky
  184. [shortcut]
  185. from=-3
  186. activation=linear
  187. [convolutional]
  188. xnor=1
  189. batch_normalize=1
  190. filters=128
  191. size=1
  192. stride=1
  193. pad=1
  194. activation=leaky
  195. [convolutional]
  196. xnor=1
  197. batch_normalize=1
  198. filters=256
  199. size=3
  200. stride=1
  201. pad=1
  202. activation=leaky
  203. [shortcut]
  204. from=-3
  205. activation=linear
  206. [convolutional]
  207. xnor=1
  208. batch_normalize=1
  209. filters=128
  210. size=1
  211. stride=1
  212. pad=1
  213. activation=leaky
  214. [convolutional]
  215. xnor=1
  216. batch_normalize=1
  217. filters=256
  218. size=3
  219. stride=1
  220. pad=1
  221. activation=leaky
  222. [shortcut]
  223. from=-3
  224. activation=linear
  225. [convolutional]
  226. xnor=1
  227. batch_normalize=1
  228. filters=128
  229. size=1
  230. stride=1
  231. pad=1
  232. activation=leaky
  233. [convolutional]
  234. xnor=1
  235. batch_normalize=1
  236. filters=256
  237. size=3
  238. stride=1
  239. pad=1
  240. activation=leaky
  241. [shortcut]
  242. from=-3
  243. activation=linear
  244. [convolutional]
  245. xnor=1
  246. batch_normalize=1
  247. filters=128
  248. size=1
  249. stride=1
  250. pad=1
  251. activation=leaky
  252. [convolutional]
  253. xnor=1
  254. batch_normalize=1
  255. filters=256
  256. size=3
  257. stride=1
  258. pad=1
  259. activation=leaky
  260. [shortcut]
  261. from=-3
  262. activation=linear
  263. # Downsample
  264. [convolutional]
  265. xnor=1
  266. batch_normalize=1
  267. filters=512
  268. size=3
  269. stride=2
  270. pad=1
  271. activation=leaky
  272. [convolutional]
  273. xnor=1
  274. batch_normalize=1
  275. filters=256
  276. size=1
  277. stride=1
  278. pad=1
  279. activation=leaky
  280. [convolutional]
  281. xnor=1
  282. batch_normalize=1
  283. filters=512
  284. size=3
  285. stride=1
  286. pad=1
  287. activation=leaky
  288. [shortcut]
  289. from=-3
  290. activation=linear
  291. [convolutional]
  292. xnor=1
  293. batch_normalize=1
  294. filters=256
  295. size=1
  296. stride=1
  297. pad=1
  298. activation=leaky
  299. [convolutional]
  300. xnor=1
  301. batch_normalize=1
  302. filters=512
  303. size=3
  304. stride=1
  305. pad=1
  306. activation=leaky
  307. [shortcut]
  308. from=-3
  309. activation=linear
  310. [convolutional]
  311. xnor=1
  312. batch_normalize=1
  313. filters=256
  314. size=1
  315. stride=1
  316. pad=1
  317. activation=leaky
  318. [convolutional]
  319. xnor=1
  320. batch_normalize=1
  321. filters=512
  322. size=3
  323. stride=1
  324. pad=1
  325. activation=leaky
  326. [shortcut]
  327. from=-3
  328. activation=linear
  329. [convolutional]
  330. xnor=1
  331. batch_normalize=1
  332. filters=256
  333. size=1
  334. stride=1
  335. pad=1
  336. activation=leaky
  337. [convolutional]
  338. xnor=1
  339. batch_normalize=1
  340. filters=512
  341. size=3
  342. stride=1
  343. pad=1
  344. activation=leaky
  345. [shortcut]
  346. from=-3
  347. activation=linear
  348. [convolutional]
  349. xnor=1
  350. batch_normalize=1
  351. filters=256
  352. size=1
  353. stride=1
  354. pad=1
  355. activation=leaky
  356. [convolutional]
  357. xnor=1
  358. batch_normalize=1
  359. filters=512
  360. size=3
  361. stride=1
  362. pad=1
  363. activation=leaky
  364. [shortcut]
  365. from=-3
  366. activation=linear
  367. [convolutional]
  368. xnor=1
  369. batch_normalize=1
  370. filters=256
  371. size=1
  372. stride=1
  373. pad=1
  374. activation=leaky
  375. [convolutional]
  376. xnor=1
  377. batch_normalize=1
  378. filters=512
  379. size=3
  380. stride=1
  381. pad=1
  382. activation=leaky
  383. [shortcut]
  384. from=-3
  385. activation=linear
  386. [convolutional]
  387. xnor=1
  388. batch_normalize=1
  389. filters=256
  390. size=1
  391. stride=1
  392. pad=1
  393. activation=leaky
  394. [convolutional]
  395. xnor=1
  396. batch_normalize=1
  397. filters=512
  398. size=3
  399. stride=1
  400. pad=1
  401. activation=leaky
  402. [shortcut]
  403. from=-3
  404. activation=linear
  405. [convolutional]
  406. xnor=1
  407. batch_normalize=1
  408. filters=256
  409. size=1
  410. stride=1
  411. pad=1
  412. activation=leaky
  413. [convolutional]
  414. xnor=1
  415. batch_normalize=1
  416. filters=512
  417. size=3
  418. stride=1
  419. pad=1
  420. activation=leaky
  421. [shortcut]
  422. from=-3
  423. activation=linear
  424. # Downsample
  425. [convolutional]
  426. xnor=1
  427. batch_normalize=1
  428. filters=1024
  429. size=3
  430. stride=2
  431. pad=1
  432. activation=leaky
  433. [convolutional]
  434. xnor=1
  435. batch_normalize=1
  436. filters=512
  437. size=1
  438. stride=1
  439. pad=1
  440. activation=leaky
  441. [convolutional]
  442. xnor=1
  443. batch_normalize=1
  444. filters=1024
  445. size=3
  446. stride=1
  447. pad=1
  448. activation=leaky
  449. [shortcut]
  450. from=-3
  451. activation=linear
  452. [convolutional]
  453. xnor=1
  454. batch_normalize=1
  455. filters=512
  456. size=1
  457. stride=1
  458. pad=1
  459. activation=leaky
  460. [convolutional]
  461. xnor=1
  462. batch_normalize=1
  463. filters=1024
  464. size=3
  465. stride=1
  466. pad=1
  467. activation=leaky
  468. [shortcut]
  469. from=-3
  470. activation=linear
  471. [convolutional]
  472. xnor=1
  473. batch_normalize=1
  474. filters=512
  475. size=1
  476. stride=1
  477. pad=1
  478. activation=leaky
  479. [convolutional]
  480. xnor=1
  481. batch_normalize=1
  482. filters=1024
  483. size=3
  484. stride=1
  485. pad=1
  486. activation=leaky
  487. [shortcut]
  488. from=-3
  489. activation=linear
  490. [convolutional]
  491. xnor=1
  492. batch_normalize=1
  493. filters=512
  494. size=1
  495. stride=1
  496. pad=1
  497. activation=leaky
  498. [convolutional]
  499. xnor=1
  500. batch_normalize=1
  501. filters=1024
  502. size=3
  503. stride=1
  504. pad=1
  505. activation=leaky
  506. [shortcut]
  507. from=-3
  508. activation=linear
  509. [convolutional]
  510. batch_normalize=1
  511. filters=512
  512. size=1
  513. stride=1
  514. pad=1
  515. activation=leaky
  516. [avgpool]
  517. [convolutional]
  518. filters=1000
  519. size=1
  520. stride=1
  521. pad=1
  522. activation=linear
  523. [softmax]
  524. groups=1