yolo-voc.2.0.cfg 2.5 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244
  1. [net]
  2. batch=64
  3. subdivisions=8
  4. height=416
  5. width=416
  6. channels=3
  7. momentum=0.9
  8. decay=0.0005
  9. angle=0
  10. saturation = 1.5
  11. exposure = 1.5
  12. hue=.1
  13. learning_rate=0.0001
  14. max_batches = 45000
  15. policy=steps
  16. steps=100,25000,35000
  17. scales=10,.1,.1
  18. [convolutional]
  19. batch_normalize=1
  20. filters=32
  21. size=3
  22. stride=1
  23. pad=1
  24. activation=leaky
  25. [maxpool]
  26. size=2
  27. stride=2
  28. [convolutional]
  29. batch_normalize=1
  30. filters=64
  31. size=3
  32. stride=1
  33. pad=1
  34. activation=leaky
  35. [maxpool]
  36. size=2
  37. stride=2
  38. [convolutional]
  39. batch_normalize=1
  40. filters=128
  41. size=3
  42. stride=1
  43. pad=1
  44. activation=leaky
  45. [convolutional]
  46. batch_normalize=1
  47. filters=64
  48. size=1
  49. stride=1
  50. pad=1
  51. activation=leaky
  52. [convolutional]
  53. batch_normalize=1
  54. filters=128
  55. size=3
  56. stride=1
  57. pad=1
  58. activation=leaky
  59. [maxpool]
  60. size=2
  61. stride=2
  62. [convolutional]
  63. batch_normalize=1
  64. filters=256
  65. size=3
  66. stride=1
  67. pad=1
  68. activation=leaky
  69. [convolutional]
  70. batch_normalize=1
  71. filters=128
  72. size=1
  73. stride=1
  74. pad=1
  75. activation=leaky
  76. [convolutional]
  77. batch_normalize=1
  78. filters=256
  79. size=3
  80. stride=1
  81. pad=1
  82. activation=leaky
  83. [maxpool]
  84. size=2
  85. stride=2
  86. [convolutional]
  87. batch_normalize=1
  88. filters=512
  89. size=3
  90. stride=1
  91. pad=1
  92. activation=leaky
  93. [convolutional]
  94. batch_normalize=1
  95. filters=256
  96. size=1
  97. stride=1
  98. pad=1
  99. activation=leaky
  100. [convolutional]
  101. batch_normalize=1
  102. filters=512
  103. size=3
  104. stride=1
  105. pad=1
  106. activation=leaky
  107. [convolutional]
  108. batch_normalize=1
  109. filters=256
  110. size=1
  111. stride=1
  112. pad=1
  113. activation=leaky
  114. [convolutional]
  115. batch_normalize=1
  116. filters=512
  117. size=3
  118. stride=1
  119. pad=1
  120. activation=leaky
  121. [maxpool]
  122. size=2
  123. stride=2
  124. [convolutional]
  125. batch_normalize=1
  126. filters=1024
  127. size=3
  128. stride=1
  129. pad=1
  130. activation=leaky
  131. [convolutional]
  132. batch_normalize=1
  133. filters=512
  134. size=1
  135. stride=1
  136. pad=1
  137. activation=leaky
  138. [convolutional]
  139. batch_normalize=1
  140. filters=1024
  141. size=3
  142. stride=1
  143. pad=1
  144. activation=leaky
  145. [convolutional]
  146. batch_normalize=1
  147. filters=512
  148. size=1
  149. stride=1
  150. pad=1
  151. activation=leaky
  152. [convolutional]
  153. batch_normalize=1
  154. filters=1024
  155. size=3
  156. stride=1
  157. pad=1
  158. activation=leaky
  159. #######
  160. [convolutional]
  161. batch_normalize=1
  162. size=3
  163. stride=1
  164. pad=1
  165. filters=1024
  166. activation=leaky
  167. [convolutional]
  168. batch_normalize=1
  169. size=3
  170. stride=1
  171. pad=1
  172. filters=1024
  173. activation=leaky
  174. [route]
  175. layers=-9
  176. [reorg]
  177. stride=2
  178. [route]
  179. layers=-1,-3
  180. [convolutional]
  181. batch_normalize=1
  182. size=3
  183. stride=1
  184. pad=1
  185. filters=1024
  186. activation=leaky
  187. [convolutional]
  188. size=1
  189. stride=1
  190. pad=1
  191. filters=125
  192. activation=linear
  193. [region]
  194. anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52
  195. bias_match=1
  196. classes=20
  197. coords=4
  198. num=5
  199. softmax=1
  200. jitter=.2
  201. rescore=1
  202. object_scale=5
  203. noobject_scale=1
  204. class_scale=1
  205. coord_scale=1
  206. absolute=1
  207. thresh = .6
  208. random=0