yolo-small.cfg 2.3 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239
  1. [net]
  2. batch=64
  3. subdivisions=64
  4. height=448
  5. width=448
  6. channels=3
  7. momentum=0.9
  8. decay=0.0005
  9. learning_rate=0.001
  10. policy=steps
  11. steps=200,400,600,20000,30000
  12. scales=2.5,2,2,.1,.1
  13. max_batches = 40000
  14. [crop]
  15. crop_width=448
  16. crop_height=448
  17. flip=0
  18. angle=0
  19. saturation = 1.5
  20. exposure = 1.5
  21. [convolutional]
  22. filters=64
  23. size=7
  24. stride=2
  25. pad=1
  26. activation=leaky
  27. [maxpool]
  28. size=2
  29. stride=2
  30. [convolutional]
  31. filters=192
  32. size=3
  33. stride=1
  34. pad=1
  35. activation=leaky
  36. [maxpool]
  37. size=2
  38. stride=2
  39. [convolutional]
  40. filters=128
  41. size=1
  42. stride=1
  43. pad=1
  44. activation=leaky
  45. [convolutional]
  46. filters=256
  47. size=3
  48. stride=1
  49. pad=1
  50. activation=leaky
  51. [convolutional]
  52. filters=256
  53. size=1
  54. stride=1
  55. pad=1
  56. activation=leaky
  57. [convolutional]
  58. filters=512
  59. size=3
  60. stride=1
  61. pad=1
  62. activation=leaky
  63. [maxpool]
  64. size=2
  65. stride=2
  66. [convolutional]
  67. filters=256
  68. size=1
  69. stride=1
  70. pad=1
  71. activation=leaky
  72. [convolutional]
  73. filters=512
  74. size=3
  75. stride=1
  76. pad=1
  77. activation=leaky
  78. [convolutional]
  79. filters=256
  80. size=1
  81. stride=1
  82. pad=1
  83. activation=leaky
  84. [convolutional]
  85. filters=512
  86. size=3
  87. stride=1
  88. pad=1
  89. activation=leaky
  90. [convolutional]
  91. filters=256
  92. size=1
  93. stride=1
  94. pad=1
  95. activation=leaky
  96. [convolutional]
  97. filters=512
  98. size=3
  99. stride=1
  100. pad=1
  101. activation=leaky
  102. [convolutional]
  103. filters=256
  104. size=1
  105. stride=1
  106. pad=1
  107. activation=leaky
  108. [convolutional]
  109. filters=512
  110. size=3
  111. stride=1
  112. pad=1
  113. activation=leaky
  114. [convolutional]
  115. filters=512
  116. size=1
  117. stride=1
  118. pad=1
  119. activation=leaky
  120. [convolutional]
  121. filters=1024
  122. size=3
  123. stride=1
  124. pad=1
  125. activation=leaky
  126. [maxpool]
  127. size=2
  128. stride=2
  129. [convolutional]
  130. filters=512
  131. size=1
  132. stride=1
  133. pad=1
  134. activation=leaky
  135. [convolutional]
  136. filters=1024
  137. size=3
  138. stride=1
  139. pad=1
  140. activation=leaky
  141. [convolutional]
  142. filters=512
  143. size=1
  144. stride=1
  145. pad=1
  146. activation=leaky
  147. [convolutional]
  148. filters=1024
  149. size=3
  150. stride=1
  151. pad=1
  152. activation=leaky
  153. #######
  154. [convolutional]
  155. size=3
  156. stride=1
  157. pad=1
  158. filters=1024
  159. activation=leaky
  160. [convolutional]
  161. size=3
  162. stride=2
  163. pad=1
  164. filters=1024
  165. activation=leaky
  166. [convolutional]
  167. size=3
  168. stride=1
  169. pad=1
  170. filters=1024
  171. activation=leaky
  172. [convolutional]
  173. size=3
  174. stride=1
  175. pad=1
  176. filters=1024
  177. activation=leaky
  178. [connected]
  179. output=512
  180. activation=leaky
  181. [connected]
  182. output=4096
  183. activation=leaky
  184. [dropout]
  185. probability=.5
  186. [connected]
  187. output= 1470
  188. activation=linear
  189. [detection]
  190. classes=20
  191. coords=4
  192. rescore=1
  193. side=7
  194. num=2
  195. softmax=0
  196. sqrt=1
  197. jitter=.2
  198. object_scale=1
  199. noobject_scale=.5
  200. class_scale=1
  201. coord_scale=5