123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449 |
- #!python3
- """
- Python 3 wrapper for identifying objects in images
- Requires DLL compilation
- Both the GPU and no-GPU version should be compiled; the no-GPU version should be renamed "yolo_cpp_dll_nogpu.dll".
- On a GPU system, you can force CPU evaluation by any of:
- - Set global variable DARKNET_FORCE_CPU to True
- - Set environment variable CUDA_VISIBLE_DEVICES to -1
- - Set environment variable "FORCE_CPU" to "true"
- To use, either run performDetect() after import, or modify the end of this file.
- See the docstring of performDetect() for parameters.
- Directly viewing or returning bounding-boxed images requires scikit-image to be installed (`pip install scikit-image`)
- Original *nix 2.7: https://github.com/pjreddie/darknet/blob/0f110834f4e18b30d5f101bf8f1724c34b7b83db/python/darknet.py
- Windows Python 2.7 version: https://github.com/AlexeyAB/darknet/blob/fc496d52bf22a0bb257300d3c79be9cd80e722cb/build/darknet/x64/darknet.py
- @author: Philip Kahn
- @date: 20180503
- """
- #pylint: disable=R, W0401, W0614, W0703
- from ctypes import *
- import math
- import random
- import os
- def sample(probs):
- s = sum(probs)
- probs = [a/s for a in probs]
- r = random.uniform(0, 1)
- for i in range(len(probs)):
- r = r - probs[i]
- if r <= 0:
- return i
- return len(probs)-1
- def c_array(ctype, values):
- arr = (ctype*len(values))()
- arr[:] = values
- return arr
- class BOX(Structure):
- _fields_ = [("x", c_float),
- ("y", c_float),
- ("w", c_float),
- ("h", c_float)]
- class DETECTION(Structure):
- _fields_ = [("bbox", BOX),
- ("classes", c_int),
- ("prob", POINTER(c_float)),
- ("mask", POINTER(c_float)),
- ("objectness", c_float),
- ("sort_class", c_int),
- ("uc", POINTER(c_float)),
- ("points", c_int)]
- class IMAGE(Structure):
- _fields_ = [("w", c_int),
- ("h", c_int),
- ("c", c_int),
- ("data", POINTER(c_float))]
- class METADATA(Structure):
- _fields_ = [("classes", c_int),
- ("names", POINTER(c_char_p))]
- #lib = CDLL("/home/pjreddie/documents/darknet/libdarknet.so", RTLD_GLOBAL)
- #lib = CDLL("libdarknet.so", RTLD_GLOBAL)
- hasGPU = True
- if os.name == "nt":
- cwd = os.path.dirname(__file__)
- os.environ['PATH'] = cwd + ';' + os.environ['PATH']
- winGPUdll = os.path.join(cwd, "yolo_cpp_dll.dll")
- winNoGPUdll = os.path.join(cwd, "yolo_cpp_dll_nogpu.dll")
- envKeys = list()
- for k, v in os.environ.items():
- envKeys.append(k)
- try:
- try:
- tmp = os.environ["FORCE_CPU"].lower()
- if tmp in ["1", "true", "yes", "on"]:
- raise ValueError("ForceCPU")
- else:
- print("Flag value '"+tmp+"' not forcing CPU mode")
- except KeyError:
- # We never set the flag
- if 'CUDA_VISIBLE_DEVICES' in envKeys:
- if int(os.environ['CUDA_VISIBLE_DEVICES']) < 0:
- raise ValueError("ForceCPU")
- try:
- global DARKNET_FORCE_CPU
- if DARKNET_FORCE_CPU:
- raise ValueError("ForceCPU")
- except NameError:
- pass
- # print(os.environ.keys())
- # print("FORCE_CPU flag undefined, proceeding with GPU")
- if not os.path.exists(winGPUdll):
- raise ValueError("NoDLL")
- lib = CDLL(winGPUdll, RTLD_GLOBAL)
- except (KeyError, ValueError):
- hasGPU = False
- if os.path.exists(winNoGPUdll):
- lib = CDLL(winNoGPUdll, RTLD_GLOBAL)
- print("Notice: CPU-only mode")
- else:
- # Try the other way, in case no_gpu was
- # compile but not renamed
- lib = CDLL(winGPUdll, RTLD_GLOBAL)
- print("Environment variables indicated a CPU run, but we didn't find `"+winNoGPUdll+"`. Trying a GPU run anyway.")
- else:
- lib = CDLL("./libdarknet.so", RTLD_GLOBAL)
- lib.network_width.argtypes = [c_void_p]
- lib.network_width.restype = c_int
- lib.network_height.argtypes = [c_void_p]
- lib.network_height.restype = c_int
- copy_image_from_bytes = lib.copy_image_from_bytes
- copy_image_from_bytes.argtypes = [IMAGE,c_char_p]
- def network_width(net):
- return lib.network_width(net)
- def network_height(net):
- return lib.network_height(net)
- predict = lib.network_predict_ptr
- predict.argtypes = [c_void_p, POINTER(c_float)]
- predict.restype = POINTER(c_float)
- if hasGPU:
- set_gpu = lib.cuda_set_device
- set_gpu.argtypes = [c_int]
- init_cpu = lib.init_cpu
- make_image = lib.make_image
- make_image.argtypes = [c_int, c_int, c_int]
- make_image.restype = IMAGE
- get_network_boxes = lib.get_network_boxes
- get_network_boxes.argtypes = [c_void_p, c_int, c_int, c_float, c_float, POINTER(c_int), c_int, POINTER(c_int), c_int]
- get_network_boxes.restype = POINTER(DETECTION)
- make_network_boxes = lib.make_network_boxes
- make_network_boxes.argtypes = [c_void_p]
- make_network_boxes.restype = POINTER(DETECTION)
- free_detections = lib.free_detections
- free_detections.argtypes = [POINTER(DETECTION), c_int]
- free_ptrs = lib.free_ptrs
- free_ptrs.argtypes = [POINTER(c_void_p), c_int]
- network_predict = lib.network_predict_ptr
- network_predict.argtypes = [c_void_p, POINTER(c_float)]
- reset_rnn = lib.reset_rnn
- reset_rnn.argtypes = [c_void_p]
- load_net = lib.load_network
- load_net.argtypes = [c_char_p, c_char_p, c_int]
- load_net.restype = c_void_p
- load_net_custom = lib.load_network_custom
- load_net_custom.argtypes = [c_char_p, c_char_p, c_int, c_int]
- load_net_custom.restype = c_void_p
- do_nms_obj = lib.do_nms_obj
- do_nms_obj.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
- do_nms_sort = lib.do_nms_sort
- do_nms_sort.argtypes = [POINTER(DETECTION), c_int, c_int, c_float]
- free_image = lib.free_image
- free_image.argtypes = [IMAGE]
- letterbox_image = lib.letterbox_image
- letterbox_image.argtypes = [IMAGE, c_int, c_int]
- letterbox_image.restype = IMAGE
- load_meta = lib.get_metadata
- lib.get_metadata.argtypes = [c_char_p]
- lib.get_metadata.restype = METADATA
- load_image = lib.load_image_color
- load_image.argtypes = [c_char_p, c_int, c_int]
- load_image.restype = IMAGE
- rgbgr_image = lib.rgbgr_image
- rgbgr_image.argtypes = [IMAGE]
- predict_image = lib.network_predict_image
- predict_image.argtypes = [c_void_p, IMAGE]
- predict_image.restype = POINTER(c_float)
- predict_image_letterbox = lib.network_predict_image_letterbox
- predict_image_letterbox.argtypes = [c_void_p, IMAGE]
- predict_image_letterbox.restype = POINTER(c_float)
- def array_to_image(arr):
- import numpy as np
- # need to return old values to avoid python freeing memory
- arr = arr.transpose(2,0,1)
- c = arr.shape[0]
- h = arr.shape[1]
- w = arr.shape[2]
- arr = np.ascontiguousarray(arr.flat, dtype=np.float32) / 255.0
- data = arr.ctypes.data_as(POINTER(c_float))
- im = IMAGE(w,h,c,data)
- return im, arr
- def classify(net, meta, im):
- out = predict_image(net, im)
- res = []
- for i in range(meta.classes):
- if altNames is None:
- nameTag = meta.names[i]
- else:
- nameTag = altNames[i]
- res.append((nameTag, out[i]))
- res = sorted(res, key=lambda x: -x[1])
- return res
- def detect(net, meta, image, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
- """
- Performs the meat of the detection
- """
- #pylint: disable= C0321
- im = load_image(image, 0, 0)
- if debug: print("Loaded image")
- ret = detect_image(net, meta, im, thresh, hier_thresh, nms, debug)
- free_image(im)
- if debug: print("freed image")
- return ret
- def detect_image(net, meta, im, thresh=.5, hier_thresh=.5, nms=.45, debug= False):
- #import cv2
- #custom_image_bgr = cv2.imread(image) # use: detect(,,imagePath,)
- #custom_image = cv2.cvtColor(custom_image_bgr, cv2.COLOR_BGR2RGB)
- #custom_image = cv2.resize(custom_image,(lib.network_width(net), lib.network_height(net)), interpolation = cv2.INTER_LINEAR)
- #import scipy.misc
- #custom_image = scipy.misc.imread(image)
- #im, arr = array_to_image(custom_image) # you should comment line below: free_image(im)
- num = c_int(0)
- if debug: print("Assigned num")
- pnum = pointer(num)
- if debug: print("Assigned pnum")
- predict_image(net, im)
- letter_box = 0
- #predict_image_letterbox(net, im)
- #letter_box = 1
- if debug: print("did prediction")
- #dets = get_network_boxes(net, custom_image_bgr.shape[1], custom_image_bgr.shape[0], thresh, hier_thresh, None, 0, pnum, letter_box) # OpenCV
- dets = get_network_boxes(net, im.w, im.h, thresh, hier_thresh, None, 0, pnum, letter_box)
- if debug: print("Got dets")
- num = pnum[0]
- if debug: print("got zeroth index of pnum")
- if nms:
- do_nms_sort(dets, num, meta.classes, nms)
- if debug: print("did sort")
- res = []
- if debug: print("about to range")
- for j in range(num):
- if debug: print("Ranging on "+str(j)+" of "+str(num))
- if debug: print("Classes: "+str(meta), meta.classes, meta.names)
- for i in range(meta.classes):
- if debug: print("Class-ranging on "+str(i)+" of "+str(meta.classes)+"= "+str(dets[j].prob[i]))
- if dets[j].prob[i] > 0:
- b = dets[j].bbox
- if altNames is None:
- nameTag = meta.names[i]
- else:
- nameTag = altNames[i]
- if debug:
- print("Got bbox", b)
- print(nameTag)
- print(dets[j].prob[i])
- print((b.x, b.y, b.w, b.h))
- res.append((nameTag, dets[j].prob[i], (b.x, b.y, b.w, b.h)))
- if debug: print("did range")
- res = sorted(res, key=lambda x: -x[1])
- if debug: print("did sort")
- free_detections(dets, num)
- if debug: print("freed detections")
- return res
- netMain = None
- metaMain = None
- altNames = None
- def performDetect(imagePath="data/dog.jpg", thresh= 0.25, configPath = "./cfg/yolov3.cfg", weightPath = "yolov3.weights", metaPath= "./cfg/coco.data", showImage= True, makeImageOnly = False, initOnly= False):
- """
- Convenience function to handle the detection and returns of objects.
- Displaying bounding boxes requires libraries scikit-image and numpy
- Parameters
- ----------------
- imagePath: str
- Path to the image to evaluate. Raises ValueError if not found
- thresh: float (default= 0.25)
- The detection threshold
- configPath: str
- Path to the configuration file. Raises ValueError if not found
- weightPath: str
- Path to the weights file. Raises ValueError if not found
- metaPath: str
- Path to the data file. Raises ValueError if not found
- showImage: bool (default= True)
- Compute (and show) bounding boxes. Changes return.
- makeImageOnly: bool (default= False)
- If showImage is True, this won't actually *show* the image, but will create the array and return it.
- initOnly: bool (default= False)
- Only initialize globals. Don't actually run a prediction.
- Returns
- ----------------------
- When showImage is False, list of tuples like
- ('obj_label', confidence, (bounding_box_x_px, bounding_box_y_px, bounding_box_width_px, bounding_box_height_px))
- The X and Y coordinates are from the center of the bounding box. Subtract half the width or height to get the lower corner.
- Otherwise, a dict with
- {
- "detections": as above
- "image": a numpy array representing an image, compatible with scikit-image
- "caption": an image caption
- }
- """
- # Import the global variables. This lets us instance Darknet once, then just call performDetect() again without instancing again
- global metaMain, netMain, altNames #pylint: disable=W0603
- assert 0 < thresh < 1, "Threshold should be a float between zero and one (non-inclusive)"
- if not os.path.exists(configPath):
- raise ValueError("Invalid config path `"+os.path.abspath(configPath)+"`")
- if not os.path.exists(weightPath):
- raise ValueError("Invalid weight path `"+os.path.abspath(weightPath)+"`")
- if not os.path.exists(metaPath):
- raise ValueError("Invalid data file path `"+os.path.abspath(metaPath)+"`")
- if netMain is None:
- netMain = load_net_custom(configPath.encode("ascii"), weightPath.encode("ascii"), 0, 1) # batch size = 1
- if metaMain is None:
- metaMain = load_meta(metaPath.encode("ascii"))
- if altNames is None:
- # In Python 3, the metafile default access craps out on Windows (but not Linux)
- # Read the names file and create a list to feed to detect
- try:
- with open(metaPath) as metaFH:
- metaContents = metaFH.read()
- import re
- match = re.search("names *= *(.*)$", metaContents, re.IGNORECASE | re.MULTILINE)
- if match:
- result = match.group(1)
- else:
- result = None
- try:
- if os.path.exists(result):
- with open(result) as namesFH:
- namesList = namesFH.read().strip().split("\n")
- altNames = [x.strip() for x in namesList]
- except TypeError:
- pass
- except Exception:
- pass
- if initOnly:
- print("Initialized detector")
- return None
- if not os.path.exists(imagePath):
- raise ValueError("Invalid image path `"+os.path.abspath(imagePath)+"`")
- # Do the detection
- #detections = detect(netMain, metaMain, imagePath, thresh) # if is used cv2.imread(image)
- detections = detect(netMain, metaMain, imagePath.encode("ascii"), thresh)
- if showImage:
- try:
- from skimage import io, draw
- import numpy as np
- image = io.imread(imagePath)
- print("*** "+str(len(detections))+" Results, color coded by confidence ***")
- imcaption = []
- for detection in detections:
- label = detection[0]
- confidence = detection[1]
- pstring = label+": "+str(np.rint(100 * confidence))+"%"
- imcaption.append(pstring)
- print(pstring)
- bounds = detection[2]
- shape = image.shape
- # x = shape[1]
- # xExtent = int(x * bounds[2] / 100)
- # y = shape[0]
- # yExtent = int(y * bounds[3] / 100)
- yExtent = int(bounds[3])
- xEntent = int(bounds[2])
- # Coordinates are around the center
- xCoord = int(bounds[0] - bounds[2]/2)
- yCoord = int(bounds[1] - bounds[3]/2)
- boundingBox = [
- [xCoord, yCoord],
- [xCoord, yCoord + yExtent],
- [xCoord + xEntent, yCoord + yExtent],
- [xCoord + xEntent, yCoord]
- ]
- # Wiggle it around to make a 3px border
- rr, cc = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
- rr2, cc2 = draw.polygon_perimeter([x[1] + 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
- rr3, cc3 = draw.polygon_perimeter([x[1] - 1 for x in boundingBox], [x[0] for x in boundingBox], shape= shape)
- rr4, cc4 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] + 1 for x in boundingBox], shape= shape)
- rr5, cc5 = draw.polygon_perimeter([x[1] for x in boundingBox], [x[0] - 1 for x in boundingBox], shape= shape)
- boxColor = (int(255 * (1 - (confidence ** 2))), int(255 * (confidence ** 2)), 0)
- draw.set_color(image, (rr, cc), boxColor, alpha= 0.8)
- draw.set_color(image, (rr2, cc2), boxColor, alpha= 0.8)
- draw.set_color(image, (rr3, cc3), boxColor, alpha= 0.8)
- draw.set_color(image, (rr4, cc4), boxColor, alpha= 0.8)
- draw.set_color(image, (rr5, cc5), boxColor, alpha= 0.8)
- if not makeImageOnly:
- io.imshow(image)
- io.show()
- detections = {
- "detections": detections,
- "image": image,
- "caption": "\n<br/>".join(imcaption)
- }
- except Exception as e:
- print("Unable to show image: "+str(e))
- return detections
- if __name__ == "__main__":
- print(performDetect())
|