123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200 |
- # --------------------------------------------------------
- # Fast/er R-CNN
- # Licensed under The MIT License [see LICENSE for details]
- # Written by Bharath Hariharan
- # --------------------------------------------------------
- import xml.etree.ElementTree as ET
- import os
- import cPickle
- import numpy as np
- def parse_rec(filename):
- """ Parse a PASCAL VOC xml file """
- tree = ET.parse(filename)
- objects = []
- for obj in tree.findall('object'):
- obj_struct = {}
- obj_struct['name'] = obj.find('name').text
- #obj_struct['pose'] = obj.find('pose').text
- #obj_struct['truncated'] = int(obj.find('truncated').text)
- obj_struct['difficult'] = int(obj.find('difficult').text)
- bbox = obj.find('bndbox')
- obj_struct['bbox'] = [int(bbox.find('xmin').text),
- int(bbox.find('ymin').text),
- int(bbox.find('xmax').text),
- int(bbox.find('ymax').text)]
- objects.append(obj_struct)
- return objects
- def voc_ap(rec, prec, use_07_metric=False):
- """ ap = voc_ap(rec, prec, [use_07_metric])
- Compute VOC AP given precision and recall.
- If use_07_metric is true, uses the
- VOC 07 11 point method (default:False).
- """
- if use_07_metric:
- # 11 point metric
- ap = 0.
- for t in np.arange(0., 1.1, 0.1):
- if np.sum(rec >= t) == 0:
- p = 0
- else:
- p = np.max(prec[rec >= t])
- ap = ap + p / 11.
- else:
- # correct AP calculation
- # first append sentinel values at the end
- mrec = np.concatenate(([0.], rec, [1.]))
- mpre = np.concatenate(([0.], prec, [0.]))
- # compute the precision envelope
- for i in range(mpre.size - 1, 0, -1):
- mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
- # to calculate area under PR curve, look for points
- # where X axis (recall) changes value
- i = np.where(mrec[1:] != mrec[:-1])[0]
- # and sum (\Delta recall) * prec
- ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
- return ap
- def voc_eval(detpath,
- annopath,
- imagesetfile,
- classname,
- cachedir,
- ovthresh=0.5,
- use_07_metric=False):
- """rec, prec, ap = voc_eval(detpath,
- annopath,
- imagesetfile,
- classname,
- [ovthresh],
- [use_07_metric])
- Top level function that does the PASCAL VOC evaluation.
- detpath: Path to detections
- detpath.format(classname) should produce the detection results file.
- annopath: Path to annotations
- annopath.format(imagename) should be the xml annotations file.
- imagesetfile: Text file containing the list of images, one image per line.
- classname: Category name (duh)
- cachedir: Directory for caching the annotations
- [ovthresh]: Overlap threshold (default = 0.5)
- [use_07_metric]: Whether to use VOC07's 11 point AP computation
- (default False)
- """
- # assumes detections are in detpath.format(classname)
- # assumes annotations are in annopath.format(imagename)
- # assumes imagesetfile is a text file with each line an image name
- # cachedir caches the annotations in a pickle file
- # first load gt
- if not os.path.isdir(cachedir):
- os.mkdir(cachedir)
- cachefile = os.path.join(cachedir, 'annots.pkl')
- # read list of images
- with open(imagesetfile, 'r') as f:
- lines = f.readlines()
- imagenames = [x.strip() for x in lines]
- if not os.path.isfile(cachefile):
- # load annots
- recs = {}
- for i, imagename in enumerate(imagenames):
- recs[imagename] = parse_rec(annopath.format(imagename))
- if i % 100 == 0:
- print 'Reading annotation for {:d}/{:d}'.format(
- i + 1, len(imagenames))
- # save
- print 'Saving cached annotations to {:s}'.format(cachefile)
- with open(cachefile, 'w') as f:
- cPickle.dump(recs, f)
- else:
- # load
- with open(cachefile, 'r') as f:
- recs = cPickle.load(f)
- # extract gt objects for this class
- class_recs = {}
- npos = 0
- for imagename in imagenames:
- R = [obj for obj in recs[imagename] if obj['name'] == classname]
- bbox = np.array([x['bbox'] for x in R])
- difficult = np.array([x['difficult'] for x in R]).astype(np.bool)
- det = [False] * len(R)
- npos = npos + sum(~difficult)
- class_recs[imagename] = {'bbox': bbox,
- 'difficult': difficult,
- 'det': det}
- # read dets
- detfile = detpath.format(classname)
- with open(detfile, 'r') as f:
- lines = f.readlines()
- splitlines = [x.strip().split(' ') for x in lines]
- image_ids = [x[0] for x in splitlines]
- confidence = np.array([float(x[1]) for x in splitlines])
- BB = np.array([[float(z) for z in x[2:]] for x in splitlines])
- # sort by confidence
- sorted_ind = np.argsort(-confidence)
- sorted_scores = np.sort(-confidence)
- BB = BB[sorted_ind, :]
- image_ids = [image_ids[x] for x in sorted_ind]
- # go down dets and mark TPs and FPs
- nd = len(image_ids)
- tp = np.zeros(nd)
- fp = np.zeros(nd)
- for d in range(nd):
- R = class_recs[image_ids[d]]
- bb = BB[d, :].astype(float)
- ovmax = -np.inf
- BBGT = R['bbox'].astype(float)
- if BBGT.size > 0:
- # compute overlaps
- # intersection
- ixmin = np.maximum(BBGT[:, 0], bb[0])
- iymin = np.maximum(BBGT[:, 1], bb[1])
- ixmax = np.minimum(BBGT[:, 2], bb[2])
- iymax = np.minimum(BBGT[:, 3], bb[3])
- iw = np.maximum(ixmax - ixmin + 1., 0.)
- ih = np.maximum(iymax - iymin + 1., 0.)
- inters = iw * ih
- # union
- uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) +
- (BBGT[:, 2] - BBGT[:, 0] + 1.) *
- (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters)
- overlaps = inters / uni
- ovmax = np.max(overlaps)
- jmax = np.argmax(overlaps)
- if ovmax > ovthresh:
- if not R['difficult'][jmax]:
- if not R['det'][jmax]:
- tp[d] = 1.
- R['det'][jmax] = 1
- else:
- fp[d] = 1.
- else:
- fp[d] = 1.
- # compute precision recall
- fp = np.cumsum(fp)
- tp = np.cumsum(tp)
- rec = tp / float(npos)
- # avoid divide by zero in case the first detection matches a difficult
- # ground truth
- prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps)
- ap = voc_ap(rec, prec, use_07_metric)
- return rec, prec, ap
|