123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136 |
- #include <cuda_runtime.h>
- #include <curand.h>
- #include <cublas_v2.h>
- #include "col2im.h"
- #include "dark_cuda.h"
- // src: https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
- // You may also want to read: https://github.com/BVLC/caffe/blob/master/LICENSE
- __global__ void col2im_gpu_kernel(const int n, const float* data_col,
- const int height, const int width, const int ksize,
- const int pad,
- const int stride,
- const int height_col, const int width_col,
- float *data_im) {
- int index = blockIdx.x*blockDim.x+threadIdx.x;
- for(; index < n; index += blockDim.x*gridDim.x){
- float val = 0;
- int w = index % width + pad;
- int h = (index / width) % height + pad;
- int c = index / (width * height);
- // compute the start and end of the output
- int w_col_start = (w < ksize) ? 0 : (w - ksize) / stride + 1;
- int w_col_end = min(w / stride + 1, width_col);
- int h_col_start = (h < ksize) ? 0 : (h - ksize) / stride + 1;
- int h_col_end = min(h / stride + 1, height_col);
- // equivalent implementation
- int offset =
- (c * ksize * ksize + h * ksize + w) * height_col * width_col;
- int coeff_h_col = (1 - stride * ksize * height_col) * width_col;
- int coeff_w_col = (1 - stride * height_col * width_col);
- for (int h_col = h_col_start; h_col < h_col_end; ++h_col) {
- for (int w_col = w_col_start; w_col < w_col_end; ++w_col) {
- val += data_col[offset + h_col * coeff_h_col + w_col * coeff_w_col];
- }
- }
- data_im[index] += val;
- }
- }
- void col2im_ongpu(float *data_col,
- int channels, int height, int width,
- int ksize, int stride, int pad, float *data_im){
- // We are going to launch channels * height_col * width_col kernels, each
- // kernel responsible for copying a single-channel grid.
- int height_col = (height + 2 * pad - ksize) / stride + 1;
- int width_col = (width + 2 * pad - ksize) / stride + 1;
- int num_kernels = channels * height * width;
- col2im_gpu_kernel<<<(num_kernels+BLOCK-1)/BLOCK,
- BLOCK, 0, get_cuda_stream() >>>(
- num_kernels, data_col, height, width, ksize, pad,
- stride, height_col,
- width_col, data_im);
- CHECK_CUDA(cudaPeekAtLastError());
- }
- // -----------------------------------------
- // CUDA: use 512 threads per block
- const int CAFFE_CUDA_NUM_THREADS = 512;
- // CUDA: number of blocks for threads.
- inline int CAFFE_GET_BLOCKS(const int N) {
- return (N + CAFFE_CUDA_NUM_THREADS - 1) / CAFFE_CUDA_NUM_THREADS;
- }
- // CUDA: grid stride looping
- #define CUDA_KERNEL_LOOP(i, n) \
- for (int i = blockIdx.x * blockDim.x + threadIdx.x; \
- i < (n); \
- i += blockDim.x * gridDim.x)
- // https://github.com/BVLC/caffe/blob/master/src/caffe/util/im2col.cu
- __global__ void col2im_gpu_kernel_ext(const int n, const float* data_col,
- const int height, const int width, const int channels,
- const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w,
- const int stride_h, const int stride_w,
- const int dilation_h, const int dilation_w,
- const int height_col, const int width_col,
- float* data_im) {
- CUDA_KERNEL_LOOP(index, n) {
- float val = 0;
- const int w_im = index % width + pad_w;
- const int h_im = (index / width) % height + pad_h;
- const int c_im = index / (width * height);
- int kernel_extent_w = (kernel_w - 1) * dilation_w + 1;
- int kernel_extent_h = (kernel_h - 1) * dilation_h + 1;
- // compute the start and end of the output
- const int w_col_start =
- (w_im < kernel_extent_w) ? 0 : (w_im - kernel_extent_w) / stride_w + 1;
- const int w_col_end = min(w_im / stride_w + 1, width_col);
- const int h_col_start =
- (h_im < kernel_extent_h) ? 0 : (h_im - kernel_extent_h) / stride_h + 1;
- const int h_col_end = min(h_im / stride_h + 1, height_col);
- // TODO: use LCM of stride and dilation to avoid unnecessary loops
- for (int h_col = h_col_start; h_col < h_col_end; h_col += 1) {
- for (int w_col = w_col_start; w_col < w_col_end; w_col += 1) {
- int h_k = (h_im - h_col * stride_h);
- int w_k = (w_im - w_col * stride_w);
- if (h_k % dilation_h == 0 && w_k % dilation_w == 0) {
- h_k /= dilation_h;
- w_k /= dilation_w;
- int data_col_index = (((c_im * kernel_h + h_k) * kernel_w + w_k) *
- height_col + h_col) * width_col + w_col;
- val += data_col[data_col_index];
- }
- }
- }
- data_im[index] = val;
- }
- }
- void col2im_gpu_ext(const float* data_col, const int channels,
- const int height, const int width, const int kernel_h, const int kernel_w,
- const int pad_h, const int pad_w, const int stride_h,
- const int stride_w, const int dilation_h, const int dilation_w,
- float* data_im)
- {
- int height_col = (height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) /
- stride_h + 1;
- int width_col = (width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) /
- stride_w + 1;
- int num_kernels = channels * height * width;
- // To avoid involving atomic operations, we will launch one kernel per
- // bottom dimension, and then in the kernel add up the top dimensions.
- // NOLINT_NEXT_LINE(whitespace/operators)
- col2im_gpu_kernel_ext<< <CAFFE_GET_BLOCKS(num_kernels),
- CAFFE_CUDA_NUM_THREADS >> >(
- num_kernels, data_col, height, width, channels, kernel_h, kernel_w,
- pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w,
- height_col, width_col, data_im);
- CHECK_CUDA(cudaPeekAtLastError());
- }
|