123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539 |
- #include "convolutional_layer.h"
- #include "utils.h"
- #include "batchnorm_layer.h"
- #include "im2col.h"
- #include "col2im.h"
- #include "blas.h"
- #include "gemm.h"
- #include "box.h"
- #include <stdio.h>
- #include <time.h>
- #ifdef AI2
- #include "xnor_layer.h"
- #endif
- #ifdef __cplusplus
- #define PUT_IN_REGISTER
- #else
- #define PUT_IN_REGISTER register
- #endif
- #ifndef AI2
- #define AI2 0
- void forward_xnor_layer(layer l, network_state state);
- #endif
- void swap_binary(convolutional_layer *l)
- {
- float *swap = l->weights;
- l->weights = l->binary_weights;
- l->binary_weights = swap;
- #ifdef GPU
- swap = l->weights_gpu;
- l->weights_gpu = l->binary_weights_gpu;
- l->binary_weights_gpu = swap;
- #endif
- }
- void binarize_weights(float *weights, int n, int size, float *binary)
- {
- int i, f;
- for(f = 0; f < n; ++f){
- float mean = 0;
- for(i = 0; i < size; ++i){
- mean += fabs(weights[f*size + i]);
- }
- mean = mean / size;
- for(i = 0; i < size; ++i){
- binary[f*size + i] = (weights[f*size + i] > 0) ? mean: -mean;
- }
- }
- }
- void binarize_cpu(float *input, int n, float *binary)
- {
- int i;
- for(i = 0; i < n; ++i){
- binary[i] = (input[i] > 0) ? 1 : -1;
- }
- }
- void binarize_input(float *input, int n, int size, float *binary)
- {
- int i, s;
- for(s = 0; s < size; ++s){
- float mean = 0;
- for(i = 0; i < n; ++i){
- mean += fabs(input[i*size + s]);
- }
- mean = mean / n;
- for(i = 0; i < n; ++i){
- binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean;
- }
- }
- }
- int convolutional_out_height(convolutional_layer l)
- {
- return (l.h + 2*l.pad - l.size) / l.stride_y + 1;
- }
- int convolutional_out_width(convolutional_layer l)
- {
- return (l.w + 2*l.pad - l.size) / l.stride_x + 1;
- }
- image get_convolutional_image(convolutional_layer l)
- {
- int h,w,c;
- h = convolutional_out_height(l);
- w = convolutional_out_width(l);
- c = l.n;
- return float_to_image(w,h,c,l.output);
- }
- image get_convolutional_delta(convolutional_layer l)
- {
- int h,w,c;
- h = convolutional_out_height(l);
- w = convolutional_out_width(l);
- c = l.n;
- return float_to_image(w,h,c,l.delta);
- }
- size_t get_workspace_size32(layer l){
- #ifdef CUDNN
- if(gpu_index >= 0){
- size_t most = 0;
- size_t s = 0;
- CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
- l.srcTensorDesc,
- l.weightDesc,
- l.convDesc,
- l.dstTensorDesc,
- l.fw_algo,
- &s));
- if (s > most) most = s;
- CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
- l.srcTensorDesc,
- l.ddstTensorDesc,
- l.convDesc,
- l.dweightDesc,
- l.bf_algo,
- &s));
- if (s > most && l.train) most = s;
- CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
- l.weightDesc,
- l.ddstTensorDesc,
- l.convDesc,
- l.dsrcTensorDesc,
- l.bd_algo,
- &s));
- if (s > most && l.train) most = s;
- return most;
- }
- #endif
- if (l.xnor) {
- size_t re_packed_input_size = l.c * l.w * l.h * sizeof(float);
- size_t workspace_size = (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float);
- if (workspace_size < re_packed_input_size) workspace_size = re_packed_input_size;
- return workspace_size;
- }
- return (size_t)l.out_h*l.out_w*l.size*l.size*(l.c / l.groups)*sizeof(float);
- }
- size_t get_workspace_size16(layer l) {
- #if defined(CUDNN) && defined(CUDNN_HALF)
- if (gpu_index >= 0) {
- size_t most = 0;
- size_t s = 0;
- CHECK_CUDNN(cudnnGetConvolutionForwardWorkspaceSize(cudnn_handle(),
- l.srcTensorDesc16,
- l.weightDesc16,
- l.convDesc,
- l.dstTensorDesc16,
- l.fw_algo16,
- &s));
- if (s > most) most = s;
- CHECK_CUDNN(cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnn_handle(),
- l.srcTensorDesc16,
- l.ddstTensorDesc16,
- l.convDesc,
- l.dweightDesc16,
- l.bf_algo16,
- &s));
- if (s > most && l.train) most = s;
- CHECK_CUDNN(cudnnGetConvolutionBackwardDataWorkspaceSize(cudnn_handle(),
- l.weightDesc16,
- l.ddstTensorDesc16,
- l.convDesc,
- l.dsrcTensorDesc16,
- l.bd_algo16,
- &s));
- if (s > most && l.train) most = s;
- return most;
- }
- #endif
- return 0;
- //if (l.xnor) return (size_t)l.bit_align*l.size*l.size*l.c * sizeof(float);
- //return (size_t)l.out_h*l.out_w*l.size*l.size*l.c * sizeof(float);
- }
- size_t get_convolutional_workspace_size(layer l) {
- size_t workspace_size = get_workspace_size32(l);
- size_t workspace_size16 = get_workspace_size16(l);
- if (workspace_size16 > workspace_size) workspace_size = workspace_size16;
- return workspace_size;
- }
- #ifdef GPU
- #ifdef CUDNN
- void create_convolutional_cudnn_tensors(layer *l)
- {
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normTensorDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc));
- CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc));
- CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->normDstTensorDescF16));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->srcTensorDesc16));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dstTensorDesc16));
- CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->weightDesc16));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->dsrcTensorDesc16));
- CHECK_CUDNN(cudnnCreateTensorDescriptor(&l->ddstTensorDesc16));
- CHECK_CUDNN(cudnnCreateFilterDescriptor(&l->dweightDesc16));
- CHECK_CUDNN(cudnnCreateConvolutionDescriptor(&l->convDesc));
- }
- void cudnn_convolutional_setup(layer *l, int cudnn_preference, size_t workspace_size_specify)
- {
- // CUDNN_HALF
- // TRUE_HALF_CONFIG is only supported on architectures with true fp16 support (compute capability 5.3 and 6.0):
- // Tegra X1, Jetson TX1, DRIVE CX, DRIVE PX, Quadro GP100, Tesla P100
- // PSEUDO_HALF_CONFIG is required for Tensor Cores - our case!
- cudnnDataType_t data_type = CUDNN_DATA_FLOAT;
- #if(CUDNN_MAJOR >= 7)
- // Tensor Core uses CUDNN_TENSOR_OP_MATH instead of CUDNN_DEFAULT_MATH
- // For *_ALGO_WINOGRAD_NONFUSED can be used CUDNN_DATA_FLOAT
- // otherwise Input, Filter and Output descriptors (xDesc, yDesc, wDesc, dxDesc, dyDesc and dwDesc as applicable) have dataType = CUDNN_DATA_HALF
- // Three techniques for training using Mixed-precision: https://devblogs.nvidia.com/mixed-precision-training-deep-neural-networks/
- // 1. Accumulation into FP32
- // 2. Loss Scaling - required only for: activation gradients. We do not use.
- // 3. FP32 Master Copy of Weights
- // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops
- CHECK_CUDNN(cudnnSetConvolutionGroupCount(l->convDesc, l->groups));
- CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH));
- #if((CUDNN_MAJOR*10 + CUDNN_MINOR) >= 72) // cuDNN >= 7.2
- //CHECK_CUDNN(cudnnSetConvolutionMathType(l->convDesc, CUDNN_TENSOR_OP_MATH_ALLOW_CONVERSION)); // reduces the speed of regular and group convolution
- #endif
- #else //if(CUDNN_MAJOR >= 7)
- if (l->groups > 1) {
- error("CUDNN < 7 doesn't support groups, please upgrade!");
- }
- #endif
- // INT8_CONFIG, INT8_EXT_CONFIG, INT8x4_CONFIG and INT8x4_EXT_CONFIG are only supported
- // on architectures with DP4A support (compute capability 6.1 and later).
- //cudnnDataType_t data_type = CUDNN_DATA_INT8;
- // backward delta
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w));
- CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
- // forward
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->c, l->h, l->w));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc, CUDNN_TENSOR_NCHW, data_type, l->batch, l->out_c, l->out_h, l->out_w));
- CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc, data_type, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
- //#ifdef CUDNN_HALF
- // backward delta
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dsrcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->ddstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w));
- CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->dweightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
- // forward
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->srcTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->c, l->h, l->w));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->dstTensorDesc16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w));
- CHECK_CUDNN(cudnnSetFilter4dDescriptor(l->weightDesc16, CUDNN_DATA_HALF, CUDNN_TENSOR_NCHW, l->n, l->c / l->groups, l->size, l->size));
- // batch norm
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDescF16, CUDNN_TENSOR_NCHW, CUDNN_DATA_HALF, l->batch, l->out_c, l->out_h, l->out_w));
- //#endif
- // batch norm
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, 1, l->out_c, 1, 1));
- CHECK_CUDNN(cudnnSetTensor4dDescriptor(l->normDstTensorDesc, CUDNN_TENSOR_NCHW, CUDNN_DATA_FLOAT, l->batch, l->out_c, l->out_h, l->out_w));
- //printf("\n l->dilation = %d, l->pad = %d, l->size = %d \n", l->dilation, l->pad, l->size);
- #if(CUDNN_MAJOR >= 6)
- CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad* l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION, CUDNN_DATA_FLOAT)); // cudnn >= 6.0
- #else
- CHECK_CUDNN(cudnnSetConvolution2dDescriptor(l->convDesc, l->pad * l->dilation, l->pad * l->dilation, l->stride_y, l->stride_x, l->dilation, l->dilation, CUDNN_CROSS_CORRELATION)); // cudnn 5.1
- #endif
- int forward_algo = CUDNN_CONVOLUTION_FWD_PREFER_FASTEST;
- int backward_algo = CUDNN_CONVOLUTION_BWD_DATA_PREFER_FASTEST;
- int backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_PREFER_FASTEST;
- if (cudnn_preference == cudnn_smallest)
- {
- forward_algo = CUDNN_CONVOLUTION_FWD_NO_WORKSPACE;
- backward_algo = CUDNN_CONVOLUTION_BWD_DATA_NO_WORKSPACE;
- backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_NO_WORKSPACE;
- printf(" CUDNN-slow ");
- }
- if (cudnn_preference == cudnn_specify)
- {
- forward_algo = CUDNN_CONVOLUTION_FWD_SPECIFY_WORKSPACE_LIMIT;
- backward_algo = CUDNN_CONVOLUTION_BWD_DATA_SPECIFY_WORKSPACE_LIMIT;
- backward_filter = CUDNN_CONVOLUTION_BWD_FILTER_SPECIFY_WORKSPACE_LIMIT;
- //printf(" CUDNN-specified %zu ", workspace_size_specify);
- }
- CHECK_CUDNN(cudnnGetConvolutionForwardAlgorithm(cudnn_handle(),
- l->srcTensorDesc,
- l->weightDesc,
- l->convDesc,
- l->dstTensorDesc,
- (cudnnConvolutionFwdPreference_t)forward_algo,
- workspace_size_specify,
- &l->fw_algo));
- CHECK_CUDNN(cudnnGetConvolutionBackwardDataAlgorithm(cudnn_handle(),
- l->weightDesc,
- l->ddstTensorDesc,
- l->convDesc,
- l->dsrcTensorDesc,
- (cudnnConvolutionBwdDataPreference_t)backward_algo,
- workspace_size_specify,
- &l->bd_algo));
- CHECK_CUDNN(cudnnGetConvolutionBackwardFilterAlgorithm(cudnn_handle(),
- l->srcTensorDesc,
- l->ddstTensorDesc,
- l->convDesc,
- l->dweightDesc,
- (cudnnConvolutionBwdFilterPreference_t)backward_filter,
- workspace_size_specify,
- &l->bf_algo));
- //if (data_type == CUDNN_DATA_HALF)
- {
- // HALF-16 if(data_type == CUDNN_DATA_HALF)
- l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_IMPLICIT_PRECOMP_GEMM;
- l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_1;
- l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_1;
- // FLOAT-32 if(data_type == CUDNN_DATA_FLOAT)
- //l->fw_algo16 = CUDNN_CONVOLUTION_FWD_ALGO_WINOGRAD_NONFUSED;
- //l->bd_algo16 = CUDNN_CONVOLUTION_BWD_DATA_ALGO_WINOGRAD_NONFUSED;
- //l->bf_algo16 = CUDNN_CONVOLUTION_BWD_FILTER_ALGO_WINOGRAD_NONFUSED;
- }
- }
- #endif
- #endif
- void free_convolutional_batchnorm(convolutional_layer *l)
- {
- if (!l->share_layer) {
- free(l->scales); l->scales = NULL;
- free(l->scale_updates); l->scale_updates = NULL;
- free(l->mean); l->mean = NULL;
- free(l->variance); l->variance = NULL;
- free(l->mean_delta); l->mean_delta = NULL;
- free(l->variance_delta); l->variance_delta = NULL;
- free(l->rolling_mean); l->rolling_mean = NULL;
- free(l->rolling_variance); l->rolling_variance = NULL;
- free(l->x); l->x = NULL;
- free(l->x_norm); l->x_norm = NULL;
- #ifdef GPU
- cuda_free(l->scales_gpu); l->scales_gpu = NULL;
- cuda_free(l->scale_updates_gpu); l->scale_updates_gpu = NULL;
- cuda_free(l->mean_gpu); l->mean_gpu = NULL;
- cuda_free(l->variance_gpu); l->variance_gpu = NULL;
- cuda_free(l->mean_delta_gpu); l->mean_delta_gpu = NULL;
- cuda_free(l->variance_delta_gpu); l->variance_delta_gpu = NULL;
- cuda_free(l->rolling_mean_gpu); l->rolling_mean_gpu = NULL;
- cuda_free(l->rolling_variance_gpu); l->rolling_variance_gpu = NULL;
- cuda_free(l->x_gpu); l->x_gpu = NULL;
- cuda_free(l->x_norm_gpu); l->x_norm_gpu = NULL;
- #endif
- }
- }
- convolutional_layer make_convolutional_layer(int batch, int steps, int h, int w, int c, int n, int groups, int size, int stride_x, int stride_y, int dilation, int padding, ACTIVATION activation, int batch_normalize, int binary, int xnor, int adam, int use_bin_output, int index, int antialiasing, convolutional_layer *share_layer, int assisted_excitation, int deform, int train)
- {
- int total_batch = batch*steps;
- int i;
- convolutional_layer l = { (LAYER_TYPE)0 };
- l.type = CONVOLUTIONAL;
- l.train = train;
- if (xnor) groups = 1; // disable groups for XNOR-net
- if (groups < 1) groups = 1;
- const int blur_stride_x = stride_x;
- const int blur_stride_y = stride_y;
- l.antialiasing = antialiasing;
- if (antialiasing) {
- stride_x = stride_y = l.stride = l.stride_x = l.stride_y = 1; // use stride=1 in host-layer
- }
- l.deform = deform;
- l.assisted_excitation = assisted_excitation;
- l.share_layer = share_layer;
- l.index = index;
- l.h = h;
- l.w = w;
- l.c = c;
- l.groups = groups;
- l.n = n;
- l.binary = binary;
- l.xnor = xnor;
- l.use_bin_output = use_bin_output;
- l.batch = batch;
- l.steps = steps;
- l.stride = stride_x;
- l.stride_x = stride_x;
- l.stride_y = stride_y;
- l.dilation = dilation;
- l.size = size;
- l.pad = padding;
- l.batch_normalize = batch_normalize;
- l.learning_rate_scale = 1;
- l.nweights = (c / groups) * n * size * size;
- if (l.share_layer) {
- if (l.size != l.share_layer->size || l.nweights != l.share_layer->nweights || l.c != l.share_layer->c || l.n != l.share_layer->n) {
- printf("Layer size, nweights, channels or filters don't match for the share_layer");
- getchar();
- }
- l.weights = l.share_layer->weights;
- l.weight_updates = l.share_layer->weight_updates;
- l.biases = l.share_layer->biases;
- l.bias_updates = l.share_layer->bias_updates;
- }
- else {
- l.weights = (float*)xcalloc(l.nweights, sizeof(float));
- l.biases = (float*)xcalloc(n, sizeof(float));
- if (train) {
- l.weight_updates = (float*)xcalloc(l.nweights, sizeof(float));
- l.bias_updates = (float*)xcalloc(n, sizeof(float));
- }
- }
- // float scale = 1./sqrt(size*size*c);
- float scale = sqrt(2./(size*size*c/groups));
- for(i = 0; i < l.nweights; ++i) l.weights[i] = scale*rand_uniform(-1, 1); // rand_normal();
- int out_h = convolutional_out_height(l);
- int out_w = convolutional_out_width(l);
- l.out_h = out_h;
- l.out_w = out_w;
- l.out_c = n;
- l.outputs = l.out_h * l.out_w * l.out_c;
- l.inputs = l.w * l.h * l.c;
- l.activation = activation;
- l.output = (float*)xcalloc(total_batch*l.outputs, sizeof(float));
- #ifndef GPU
- if (train) l.delta = (float*)xcalloc(total_batch*l.outputs, sizeof(float));
- #endif // not GPU
- l.forward = forward_convolutional_layer;
- l.backward = backward_convolutional_layer;
- l.update = update_convolutional_layer;
- if(binary){
- l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float));
- l.cweights = (char*)xcalloc(l.nweights, sizeof(char));
- l.scales = (float*)xcalloc(n, sizeof(float));
- }
- if(xnor){
- l.binary_weights = (float*)xcalloc(l.nweights, sizeof(float));
- l.binary_input = (float*)xcalloc(l.inputs * l.batch, sizeof(float));
- int align = 32;// 8;
- int src_align = l.out_h*l.out_w;
- l.bit_align = src_align + (align - src_align % align);
- l.mean_arr = (float*)xcalloc(l.n, sizeof(float));
- const size_t new_c = l.c / 32;
- size_t in_re_packed_input_size = new_c * l.w * l.h + 1;
- l.bin_re_packed_input = (uint32_t*)xcalloc(in_re_packed_input_size, sizeof(uint32_t));
- l.lda_align = 256; // AVX2
- int k = l.size*l.size*l.c;
- size_t k_aligned = k + (l.lda_align - k%l.lda_align);
- size_t t_bit_input_size = k_aligned * l.bit_align / 8;
- l.t_bit_input = (char*)xcalloc(t_bit_input_size, sizeof(char));
- }
- if(batch_normalize){
- if (l.share_layer) {
- l.scales = l.share_layer->scales;
- l.scale_updates = l.share_layer->scale_updates;
- l.mean = l.share_layer->mean;
- l.variance = l.share_layer->variance;
- l.mean_delta = l.share_layer->mean_delta;
- l.variance_delta = l.share_layer->variance_delta;
- l.rolling_mean = l.share_layer->rolling_mean;
- l.rolling_variance = l.share_layer->rolling_variance;
- }
- else {
- l.scales = (float*)xcalloc(n, sizeof(float));
- for (i = 0; i < n; ++i) {
- l.scales[i] = 1;
- }
- if (train) {
- l.scale_updates = (float*)xcalloc(n, sizeof(float));
- l.mean = (float*)xcalloc(n, sizeof(float));
- l.variance = (float*)xcalloc(n, sizeof(float));
- l.mean_delta = (float*)xcalloc(n, sizeof(float));
- l.variance_delta = (float*)xcalloc(n, sizeof(float));
- }
- l.rolling_mean = (float*)xcalloc(n, sizeof(float));
- l.rolling_variance = (float*)xcalloc(n, sizeof(float));
- }
- #ifndef GPU
- if (train) {
- l.x = (float*)xcalloc(total_batch * l.outputs, sizeof(float));
- l.x_norm = (float*)xcalloc(total_batch * l.outputs, sizeof(float));
- }
- #endif // not GPU
- }
- #ifndef GPU
- if (l.activation == SWISH || l.activation == MISH) l.activation_input = (float*)calloc(total_batch*l.outputs, sizeof(float));
- #endif // not GPU
- if(adam){
- l.adam = 1;
- l.m = (float*)xcalloc(l.nweights, sizeof(float));
- l.v = (float*)xcalloc(l.nweights, sizeof(float));
- l.bias_m = (float*)xcalloc(n, sizeof(float));
- l.scale_m = (float*)xcalloc(n, sizeof(float));
- l.bias_v = (float*)xcalloc(n, sizeof(float));
- l.scale_v = (float*)xcalloc(n, sizeof(float));
- }
- #ifdef GPU
- l.forward_gpu = forward_convolutional_layer_gpu;
- l.backward_gpu = backward_convolutional_layer_gpu;
- l.update_gpu = update_convolutional_layer_gpu;
- if(gpu_index >= 0){
- if (l.activation == SWISH || l.activation == MISH) {
- l.activation_input_gpu = cuda_make_array(l.activation_input, total_batch*l.outputs);
- }
- if (l.deform) l.weight_deform_gpu = cuda_make_array(NULL, l.nweights);
- if (adam) {
- l.m_gpu = cuda_make_array(l.m, l.nweights);
- l.v_gpu = cuda_make_array(l.v, l.nweights);
- l.bias_m_gpu = cuda_make_array(l.bias_m, n);
- l.bias_v_gpu = cuda_make_array(l.bias_v, n);
- l.scale_m_gpu = cuda_make_array(l.scale_m, n);
- l.scale_v_gpu = cuda_make_array(l.scale_v, n);
- }
- if (l.share_layer) {
- l.weights_gpu = l.share_layer->weights_gpu;
- l.weight_updates_gpu = l.share_layer->weight_updates_gpu;
- l.weights_gpu16 = l.share_layer->weights_gpu16;
- l.weight_updates_gpu16 = l.share_layer->weight_updates_gpu16;
- l.biases_gpu = l.share_layer->biases_gpu;
- l.bias_updates_gpu = l.share_layer->bias_updates_gpu;
- }
- else {
- l.weights_gpu = cuda_make_array(l.weights, l.nweights);
- if (train) l.weight_updates_gpu = cuda_make_array(l.weight_updates, l.nweights);
- #ifdef CUDNN_HALF
- l.weights_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1);
- if (train) l.weight_updates_gpu16 = cuda_make_array(NULL, l.nweights / 2 + 1);
- #endif // CUDNN_HALF
- l.biases_gpu = cuda_make_array(l.biases, n);
- if (train) l.bias_updates_gpu = cuda_make_array(l.bias_updates, n);
- }
- l.output_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
- if (train) l.delta_gpu = cuda_make_array(l.delta, total_batch*out_h*out_w*n);
- if(binary){
- l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
- }
- if(xnor){
- l.binary_weights_gpu = cuda_make_array(l.weights, l.nweights);
- l.mean_arr_gpu = cuda_make_array(0, l.n);
- l.binary_input_gpu = cuda_make_array(0, l.inputs*l.batch);
- }
- if(batch_normalize){
- if (l.share_layer) {
- l.scales_gpu = l.share_layer->scales_gpu;
- l.scale_updates_gpu = l.share_layer->scale_updates_gpu;
- l.mean_gpu = l.share_layer->mean_gpu;
- l.variance_gpu = l.share_layer->variance_gpu;
- l.rolling_mean_gpu = l.share_layer->rolling_mean_gpu;
- l.rolling_variance_gpu = l.share_layer->rolling_variance_gpu;
- l.mean_delta_gpu = l.share_layer->mean_delta_gpu;
- l.variance_delta_gpu = l.share_layer->variance_delta_gpu;
- }
- else {
- l.scales_gpu = cuda_make_array(l.scales, n);
- if (train) {
- l.scale_updates_gpu = cuda_make_array(l.scale_updates, n);
- l.mean_gpu = cuda_make_array(l.mean, n);
- l.variance_gpu = cuda_make_array(l.variance, n);
- #ifndef CUDNN
- l.mean_delta_gpu = cuda_make_array(l.mean, n);
- l.variance_delta_gpu = cuda_make_array(l.variance, n);
- #endif // CUDNN
- }
- l.rolling_mean_gpu = cuda_make_array(l.mean, n);
- l.rolling_variance_gpu = cuda_make_array(l.variance, n);
- }
- if (train) {
- l.x_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
- #ifndef CUDNN
- l.x_norm_gpu = cuda_make_array(l.output, total_batch*out_h*out_w*n);
- #endif // CUDNN
- }
- }
- if (l.assisted_excitation)
- {
- const int size = l.out_w * l.out_h * l.batch;
- l.gt_gpu = cuda_make_array(NULL, size);
- l.a_avg_gpu = cuda_make_array(NULL, size);
- }
- #ifdef CUDNN
- create_convolutional_cudnn_tensors(&l);
- cudnn_convolutional_setup(&l, cudnn_fastest, 0);
- #endif // CUDNN
- }
- #endif // GPU
- l.workspace_size = get_convolutional_workspace_size(l);
- //fprintf(stderr, "conv %5d %2d x%2d /%2d %4d x%4d x%4d -> %4d x%4d x%4d\n", n, size, size, stride, w, h, c, l.out_w, l.out_h, l.out_c);
- l.bflops = (2.0 * l.nweights * l.out_h*l.out_w) / 1000000000.;
- if (l.xnor) l.bflops = l.bflops / 32;
- if (l.xnor && l.use_bin_output) fprintf(stderr, "convXB");
- else if (l.xnor) fprintf(stderr, "convX ");
- else if (l.share_layer) fprintf(stderr, "convS ");
- else if (l.assisted_excitation) fprintf(stderr, "convAE");
- else fprintf(stderr, "conv ");
- if (groups > 1) fprintf(stderr, "%5d/%4d ", n, groups);
- else fprintf(stderr, "%5d ", n);
- if (stride_x != stride_y) fprintf(stderr, "%2dx%2d/%2dx%2d ", size, size, stride_x, stride_y);
- else {
- if (dilation > 1) fprintf(stderr, "%2d x%2d/%2d(%1d)", size, size, stride_x, dilation);
- else fprintf(stderr, "%2d x%2d/%2d ", size, size, stride_x);
- }
- fprintf(stderr, "%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
- //fprintf(stderr, "%5d/%2d %2d x%2d /%2d(%d)%4d x%4d x%4d -> %4d x%4d x%4d %5.3f BF\n", n, groups, size, size, stride, dilation, w, h, c, l.out_w, l.out_h, l.out_c, l.bflops);
- if (l.antialiasing) {
- printf("AA: ");
- l.input_layer = (layer*)calloc(1, sizeof(layer));
- int blur_size = 3;
- int blur_pad = blur_size / 2;
- if (l.antialiasing == 2) {
- blur_size = 2;
- blur_pad = 0;
- }
- *(l.input_layer) = make_convolutional_layer(batch, steps, out_h, out_w, n, n, n, blur_size, blur_stride_x, blur_stride_y, 1, blur_pad, LINEAR, 0, 0, 0, 0, 0, index, 0, NULL, 0, 0, train);
- const int blur_nweights = n * blur_size * blur_size; // (n / n) * n * blur_size * blur_size;
- int i;
- if (blur_size == 2) {
- for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) {
- l.input_layer->weights[i + 0] = 1 / 4.f;
- l.input_layer->weights[i + 1] = 1 / 4.f;
- l.input_layer->weights[i + 2] = 1 / 4.f;
- l.input_layer->weights[i + 3] = 1 / 4.f;
- }
- }
- else {
- for (i = 0; i < blur_nweights; i += (blur_size*blur_size)) {
- l.input_layer->weights[i + 0] = 1 / 16.f;
- l.input_layer->weights[i + 1] = 2 / 16.f;
- l.input_layer->weights[i + 2] = 1 / 16.f;
- l.input_layer->weights[i + 3] = 2 / 16.f;
- l.input_layer->weights[i + 4] = 4 / 16.f;
- l.input_layer->weights[i + 5] = 2 / 16.f;
- l.input_layer->weights[i + 6] = 1 / 16.f;
- l.input_layer->weights[i + 7] = 2 / 16.f;
- l.input_layer->weights[i + 8] = 1 / 16.f;
- }
- }
- for (i = 0; i < n; ++i) l.input_layer->biases[i] = 0;
- #ifdef GPU
- if (gpu_index >= 0) {
- l.input_antialiasing_gpu = cuda_make_array(NULL, l.batch*l.outputs);
- push_convolutional_layer(*(l.input_layer));
- }
- #endif // GPU
- }
- return l;
- }
- void denormalize_convolutional_layer(convolutional_layer l)
- {
- int i, j;
- for(i = 0; i < l.n; ++i){
- float scale = l.scales[i]/sqrt(l.rolling_variance[i] + .00001);
- for(j = 0; j < l.nweights; ++j){
- l.weights[i*l.nweights + j] *= scale;
- }
- l.biases[i] -= l.rolling_mean[i] * scale;
- l.scales[i] = 1;
- l.rolling_mean[i] = 0;
- l.rolling_variance[i] = 1;
- }
- }
- void test_convolutional_layer()
- {
- convolutional_layer l = make_convolutional_layer(1, 1, 5, 5, 3, 2, 1, 5, 2, 2, 1, 1, LEAKY, 1, 0, 0, 0, 0, 0, 0, NULL, 0, 0, 0);
- l.batch_normalize = 1;
- float data[] = {1,1,1,1,1,
- 1,1,1,1,1,
- 1,1,1,1,1,
- 1,1,1,1,1,
- 1,1,1,1,1,
- 2,2,2,2,2,
- 2,2,2,2,2,
- 2,2,2,2,2,
- 2,2,2,2,2,
- 2,2,2,2,2,
- 3,3,3,3,3,
- 3,3,3,3,3,
- 3,3,3,3,3,
- 3,3,3,3,3,
- 3,3,3,3,3};
- network_state state = {0};
- state.input = data;
- forward_convolutional_layer(l, state);
- }
- void resize_convolutional_layer(convolutional_layer *l, int w, int h)
- {
- int total_batch = l->batch*l->steps;
- int old_w = l->w;
- int old_h = l->h;
- l->w = w;
- l->h = h;
- int out_w = convolutional_out_width(*l);
- int out_h = convolutional_out_height(*l);
- l->out_w = out_w;
- l->out_h = out_h;
- l->outputs = l->out_h * l->out_w * l->out_c;
- l->inputs = l->w * l->h * l->c;
- l->output = (float*)xrealloc(l->output, total_batch * l->outputs * sizeof(float));
- if (l->train) {
- l->delta = (float*)xrealloc(l->delta, total_batch * l->outputs * sizeof(float));
- if (l->batch_normalize) {
- l->x = (float*)xrealloc(l->x, total_batch * l->outputs * sizeof(float));
- l->x_norm = (float*)xrealloc(l->x_norm, total_batch * l->outputs * sizeof(float));
- }
- }
- if (l->xnor) {
- //l->binary_input = realloc(l->inputs*l->batch, sizeof(float));
- }
- if (l->activation == SWISH || l->activation == MISH) l->activation_input = (float*)realloc(l->activation_input, total_batch*l->outputs * sizeof(float));
- #ifdef GPU
- if (old_w < w || old_h < h) {
- if (l->train) {
- cuda_free(l->delta_gpu);
- l->delta_gpu = cuda_make_array(l->delta, total_batch*l->outputs);
- }
- cuda_free(l->output_gpu);
- l->output_gpu = cuda_make_array(l->output, total_batch*l->outputs);
- if (l->batch_normalize) {
- cuda_free(l->x_gpu);
- l->x_gpu = cuda_make_array(l->output, total_batch*l->outputs);
- #ifndef CUDNN
- cuda_free(l->x_norm_gpu);
- l->x_norm_gpu = cuda_make_array(l->output, total_batch*l->outputs);
- #endif // CUDNN
- }
- if (l->xnor) {
- cuda_free(l->binary_input_gpu);
- l->binary_input_gpu = cuda_make_array(0, l->inputs*l->batch);
- }
- if (l->activation == SWISH || l->activation == MISH) {
- cuda_free(l->activation_input_gpu);
- l->activation_input_gpu = cuda_make_array(l->activation_input, total_batch*l->outputs);
- }
- if (l->assisted_excitation)
- {
- cuda_free(l->gt_gpu);
- cuda_free(l->a_avg_gpu);
- const int size = l->out_w * l->out_h * l->batch;
- l->gt_gpu = cuda_make_array(NULL, size);
- l->a_avg_gpu = cuda_make_array(NULL, size);
- }
- }
- #ifdef CUDNN
- cudnn_convolutional_setup(l, cudnn_fastest, 0);
- #endif
- #endif
- l->workspace_size = get_convolutional_workspace_size(*l);
- #ifdef CUDNN
- // check for excessive memory consumption
- size_t free_byte;
- size_t total_byte;
- CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte));
- if (l->workspace_size > free_byte || l->workspace_size >= total_byte / 2) {
- printf(" used slow CUDNN algo without Workspace! Need memory: %zu, available: %zu\n", l->workspace_size, (free_byte < total_byte/2) ? free_byte : total_byte/2);
- cudnn_convolutional_setup(l, cudnn_smallest, 0);
- l->workspace_size = get_convolutional_workspace_size(*l);
- }
- #endif
- }
- void set_specified_workspace_limit(convolutional_layer *l, size_t workspace_size_limit)
- {
- #ifdef CUDNN
- size_t free_byte;
- size_t total_byte;
- CHECK_CUDA(cudaMemGetInfo(&free_byte, &total_byte));
- cudnn_convolutional_setup(l, cudnn_specify, workspace_size_limit);
- l->workspace_size = get_convolutional_workspace_size(*l);
- //printf("Set specified workspace limit for cuDNN: %zu, available: %zu, workspace = %zu \n", workspace_size_limit, free_byte, l->workspace_size);
- #endif // CUDNN
- }
- void add_bias(float *output, float *biases, int batch, int n, int size)
- {
- int i,j,b;
- for(b = 0; b < batch; ++b){
- for(i = 0; i < n; ++i){
- for(j = 0; j < size; ++j){
- output[(b*n + i)*size + j] += biases[i];
- }
- }
- }
- }
- void scale_bias(float *output, float *scales, int batch, int n, int size)
- {
- int i,j,b;
- for(b = 0; b < batch; ++b){
- for(i = 0; i < n; ++i){
- for(j = 0; j < size; ++j){
- output[(b*n + i)*size + j] *= scales[i];
- }
- }
- }
- }
- void backward_bias(float *bias_updates, float *delta, int batch, int n, int size)
- {
- int i,b;
- for(b = 0; b < batch; ++b){
- for(i = 0; i < n; ++i){
- bias_updates[i] += sum_array(delta+size*(i+b*n), size);
- }
- }
- }
- void gemm_nn_custom(int M, int N, int K, float ALPHA,
- float *A, int lda,
- float *B, int ldb,
- float *C, int ldc)
- {
- int i, j, k;
- for (i = 0; i < M; ++i) {
- for (k = 0; k < K; ++k) {
- PUT_IN_REGISTER float A_PART = ALPHA * A[i * lda + k];
- //printf("\n weight = %f \n", A_PART);
- for (j = 0; j < N; ++j) {
- C[i*ldc + j] += A_PART*B[k*ldb + j];
- }
- }
- }
- }
- void get_mean_array(float *src, size_t size, size_t filters, float *mean_arr) {
- size_t i, counter;
- counter = 0;
- for (i = 0; i < size; i += size / filters) {
- mean_arr[counter++] = fabs(src[i]);
- }
- }
- /*
- void float_to_bit(float *src, unsigned char *dst, size_t size) {
- size_t dst_size = size / 8 + 1;
- memset(dst, 0, dst_size);
- size_t i, dst_i, dst_shift;
- for (i = 0; i < size; ++i) {
- if (src[i] > 0) set_bit(dst, i);
- }
- }
- */
- void bit_to_float(unsigned char *src, float *dst, size_t size, size_t filters, float *mean_arr) {
- memset(dst, 0, size *sizeof(float));
- size_t i;
- for (i = 0; i < size; ++i) {
- float mean_val = 1;
- if(mean_arr != NULL) mean_val = fabs(mean_arr[i / (size / filters)]);
- if(get_bit(src, i)) dst[i] = mean_val;
- else dst[i] = -mean_val;
- }
- }
- void binary_align_weights(convolutional_layer *l)
- {
- int m = l->n; // (l->n / l->groups)
- int k = l->size*l->size*l->c; // ->size*l->size*(l->c / l->groups)
- size_t new_lda = k + (l->lda_align - k % l->lda_align); // (k / 8 + 1) * 8;
- l->new_lda = new_lda;
- binarize_weights(l->weights, m, k, l->binary_weights);
- size_t align_weights_size = new_lda * m;
- l->align_bit_weights_size = align_weights_size / 8 + 1;
- float* align_weights = (float*)xcalloc(align_weights_size, sizeof(float));
- l->align_bit_weights = (char*)xcalloc(l->align_bit_weights_size, sizeof(char));
- size_t i, j;
- // align A without transpose
- for (i = 0; i < m; ++i) {
- for (j = 0; j < k; ++j) {
- align_weights[i*new_lda + j] = l->binary_weights[i*k + j];
- }
- }
- if (l->c % 32 == 0)
- //if(gpu_index < 0 && l->stride == 1 && l->pad == 1 && l->c % 32 == 0)
- //if (l->stride == 1 && l->pad == 1 && l->c % 32 == 0)
- {
- int fil, chan;
- const int items_per_filter = l->c * l->size * l->size;
- //const int dst_items_per_filter = new_lda;
- for (fil = 0; fil < l->n; ++fil)
- {
- for (chan = 0; chan < l->c; chan += 32)
- {
- const int items_per_channel = l->size*l->size;
- for (i = 0; i < items_per_channel; ++i)
- {
- //uint32_t val = 0;
- int c_pack;
- for (c_pack = 0; c_pack < 32; ++c_pack) {
- float src = l->binary_weights[fil*items_per_filter + (chan + c_pack)*items_per_channel + i];
- //align_weights[fil*items_per_filter + chan*items_per_channel + i * 32 + c_pack] = src;
- align_weights[fil*new_lda + chan*items_per_channel + i*32 + c_pack] = src;
- //val |= (src << c);
- }
- }
- }
- }
- //printf("\n l.index = %d \t aw[0] = %f, aw[1] = %f, aw[2] = %f, aw[3] = %f \n", l->index, align_weights[0], align_weights[1], align_weights[2], align_weights[3]);
- //memcpy(l->binary_weights, align_weights, (l->size * l->size * l->c * l->n) * sizeof(float));
- float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size);
- //if (l->n >= 32)
- if(gpu_index >= 0)
- {
- //int M = l->n;
- //int N = l->out_w*l->out_h;
- //printf("\n M = %d, N = %d, M %% 8 = %d, N %% 8 = %d - weights \n", M, N, M % 8, N % 8);
- //printf("\n l.w = %d, l.c = %d, l.n = %d \n", l->w, l->c, l->n);
- for (i = 0; i < align_weights_size / 8; ++i) l->align_bit_weights[i] = ~(l->align_bit_weights[i]);
- }
- get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);
- //get_mean_array(l->binary_weights, m*new_lda, l->n, l->mean_arr);
- }
- else {
- float_to_bit(align_weights, (unsigned char*)l->align_bit_weights, align_weights_size);
- get_mean_array(l->binary_weights, m*k, l->n, l->mean_arr);
- }
- //l->mean_arr = calloc(l->n, sizeof(float));
- //get_mean_array(align_weights, align_weights_size, l->n, l->mean_arr);
- #ifdef GPU
- cudaError_t status;
- l->align_workspace_size = l->bit_align * l->size * l->size * l->c;
- status = cudaMalloc((void **)&l->align_workspace_gpu, l->align_workspace_size * sizeof(float));
- status = cudaMalloc((void **)&l->transposed_align_workspace_gpu, l->align_workspace_size * sizeof(float));
- CHECK_CUDA(status);
- //l->align_bit_weights_gpu = cuda_make_array(l->align_bit_weights, l->align_bit_weights_size * sizeof(char)/sizeof(float));
- status = cudaMalloc((void **)&l->align_bit_weights_gpu, l->align_bit_weights_size);
- CHECK_CUDA(status);
- status = cudaMemcpy(l->align_bit_weights_gpu, l->align_bit_weights, l->align_bit_weights_size, cudaMemcpyHostToDevice);
- CHECK_CUDA(status);
- status = cudaMemcpy(l->binary_weights_gpu, l->binary_weights, m*k * sizeof(float), cudaMemcpyHostToDevice);
- CHECK_CUDA(status);
- //l->mean_arr_gpu = cuda_make_array(l->mean_arr, l->n);
- cuda_push_array(l->mean_arr_gpu, l->mean_arr, l->n);
- CHECK_CUDA(cudaDeviceSynchronize());
- #endif // GPU
- free(align_weights);
- }
- // binary transpose
- size_t binary_transpose_align_input(int k, int n, float *b, char **t_bit_input, size_t ldb_align, int bit_align)
- {
- size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
- //printf("\n n = %d, bit_align = %d \n", n, bit_align);
- size_t t_intput_size = new_ldb * bit_align;// n;
- size_t t_bit_input_size = t_intput_size / 8;// +1;
- memset(*t_bit_input, 0, t_bit_input_size * sizeof(char));
- //int src_size = k * bit_align;
- // b - [bit_align, k] - [l.bit_align, l.size*l.size*l.c] = src_size
- // t_input - [bit_align, k] - [n', k]
- // t_bit_input - [new_ldb, n] - [k', n]
- //transpose_bin(t_input, *t_bit_input, k, n, bit_align, new_ldb, 8);
- transpose_bin((uint32_t*)b, (uint32_t*)*t_bit_input, k, n, bit_align, new_ldb, 8);
- return t_intput_size;
- }
- void forward_convolutional_layer(convolutional_layer l, network_state state)
- {
- int out_h = convolutional_out_height(l);
- int out_w = convolutional_out_width(l);
- int i, j;
- fill_cpu(l.outputs*l.batch, 0, l.output, 1);
- if (l.xnor && (!l.align_bit_weights || state.train)) {
- if (!l.align_bit_weights || state.train) {
- binarize_weights(l.weights, l.n, l.nweights, l.binary_weights);
- //printf("\n binarize_weights l.align_bit_weights = %p \n", l.align_bit_weights);
- }
- swap_binary(&l);
- binarize_cpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input);
- state.input = l.binary_input;
- }
- int m = l.n / l.groups;
- int k = l.size*l.size*l.c / l.groups;
- int n = out_h*out_w;
- static int u = 0;
- u++;
- for(i = 0; i < l.batch; ++i)
- {
- for (j = 0; j < l.groups; ++j)
- {
- float *a = l.weights +j*l.nweights / l.groups;
- float *b = state.workspace;
- float *c = l.output +(i*l.groups + j)*n*m;
- //gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
- //gemm_nn_custom(m, n, k, 1, a, k, b, n, c, n);
- if (l.xnor && l.align_bit_weights && !state.train && l.stride_x == l.stride_y)
- {
- memset(b, 0, l.bit_align*l.size*l.size*l.c * sizeof(float));
- if (l.c % 32 == 0)
- {
- //printf(" l.index = %d - new XNOR \n", l.index);
- int ldb_align = l.lda_align;
- size_t new_ldb = k + (ldb_align - k%ldb_align); // (k / 8 + 1) * 8;
- //size_t t_intput_size = new_ldb * l.bit_align;// n;
- //size_t t_bit_input_size = t_intput_size / 8;// +1;
- int re_packed_input_size = l.c * l.w * l.h;
- memset(state.workspace, 0, re_packed_input_size * sizeof(float));
- const size_t new_c = l.c / 32;
- size_t in_re_packed_input_size = new_c * l.w * l.h + 1;
- memset(l.bin_re_packed_input, 0, in_re_packed_input_size * sizeof(uint32_t));
- //float *re_packed_input = calloc(l.c * l.w * l.h, sizeof(float));
- //uint32_t *bin_re_packed_input = calloc(new_c * l.w * l.h + 1, sizeof(uint32_t));
- // float32x4 by channel (as in cuDNN)
- repack_input(state.input, state.workspace, l.w, l.h, l.c);
- // 32 x floats -> 1 x uint32_t
- float_to_bit(state.workspace, (unsigned char *)l.bin_re_packed_input, l.c * l.w * l.h);
- //free(re_packed_input);
- // slow - convolution the packed inputs and weights: float x 32 by channel (as in cuDNN)
- //convolution_repacked((uint32_t *)bin_re_packed_input, (uint32_t *)l.align_bit_weights, l.output,
- // l.w, l.h, l.c, l.n, l.size, l.pad, l.new_lda, l.mean_arr);
- // // then exit from if()
- im2col_cpu_custom((float *)l.bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, state.workspace);
- //im2col_cpu((float *)bin_re_packed_input, new_c, l.h, l.w, l.size, l.stride, l.pad, b);
- //free(bin_re_packed_input);
- int new_k = l.size*l.size*l.c / 32;
- // good for (l.c == 64)
- //gemm_nn_bin_32bit_packed(m, n, new_k, 1,
- // l.align_bit_weights, l.new_lda/32,
- // b, n,
- // c, n, l.mean_arr);
- // // then exit from if()
- transpose_uint32((uint32_t *)state.workspace, (uint32_t*)l.t_bit_input, new_k, n, n, new_ldb);
- // the main GEMM function
- gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr);
- // // alternative GEMM
- //gemm_nn_bin_transposed_32bit_packed(m, n, new_k, 1,
- // l.align_bit_weights, l.new_lda/32,
- // t_bit_input, new_ldb / 32,
- // c, n, l.mean_arr);
- //free(t_bit_input);
- }
- else
- { // else (l.c % 32 != 0)
- //--------------------------------------------------------
- //printf(" l.index = %d - old XNOR \n", l.index);
- //im2col_cpu_custom_align(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, b, l.bit_align);
- im2col_cpu_custom_bin(state.input, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace, l.bit_align);
- //size_t output_size = l.outputs;
- //float *count_output = calloc(output_size, sizeof(float));
- //size_t bit_output_size = output_size / 8 + 1;
- //char *bit_output = calloc(bit_output_size, sizeof(char));
- //size_t intput_size = n * k; // (out_h*out_w) X (l.size*l.size*l.c) : after im2col()
- //size_t bit_input_size = intput_size / 8 + 1;
- //char *bit_input = calloc(bit_input_size, sizeof(char));
- //size_t weights_size = k * m; //l.size*l.size*l.c*l.n; // l.nweights
- //size_t bit_weights_size = weights_size / 8 + 1;
- //char *bit_weights = calloc(bit_weights_size, sizeof(char));
- //float *mean_arr = calloc(l.n, sizeof(float));
- // transpose B from NxK to KxN (x-axis (ldb = l.size*l.size*l.c) - should be multiple of 8 bits)
- {
- //size_t ldb_align = 256; // 256 bit for AVX2
- int ldb_align = l.lda_align;
- size_t new_ldb = k + (ldb_align - k%ldb_align);
- size_t t_intput_size = binary_transpose_align_input(k, n, state.workspace, &l.t_bit_input, ldb_align, l.bit_align);
- // 5x times faster than gemm()-float32
- gemm_nn_custom_bin_mean_transposed(m, n, k, 1, (unsigned char*)l.align_bit_weights, new_ldb, (unsigned char*)l.t_bit_input, new_ldb, c, n, l.mean_arr);
- //gemm_nn_custom_bin_mean_transposed(m, n, k, 1, bit_weights, k, t_bit_input, new_ldb, c, n, mean_arr);
- //free(t_input);
- //free(t_bit_input);
- //}
- }
- }
- add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
- //activate_array(l.output, m*n*l.batch, l.activation);
- if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output);
- else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output);
- else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output);
- else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output);
- else activate_array_cpu_custom(l.output, m*n*l.batch, l.activation);
- return;
- }
- else {
- //printf(" l.index = %d - FP32 \n", l.index);
- float *im = state.input + (i*l.groups + j)*(l.c / l.groups)*l.h*l.w;
- if (l.size == 1) {
- b = im;
- }
- else {
- //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
- im2col_cpu_ext(im, // input
- l.c / l.groups, // input channels
- l.h, l.w, // input size (h, w)
- l.size, l.size, // kernel size (h, w)
- l.pad, l.pad, // padding (h, w)
- l.stride_y, l.stride_x, // stride (h, w)
- l.dilation, l.dilation, // dilation (h, w)
- b); // output
- }
- gemm(0, 0, m, n, k, 1, a, k, b, n, 1, c, n);
- // bit-count to float
- }
- //c += n*m;
- //state.input += l.c*l.h*l.w;
- }
- }
- if(l.batch_normalize){
- forward_batchnorm_layer(l, state);
- }
- else {
- add_bias(l.output, l.biases, l.batch, l.n, out_h*out_w);
- }
- //activate_array(l.output, m*n*l.batch, l.activation);
- if (l.activation == SWISH) activate_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.output);
- else if (l.activation == MISH) activate_array_mish(l.output, l.outputs*l.batch, l.activation_input, l.output);
- else if (l.activation == NORM_CHAN) activate_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output);
- else if (l.activation == NORM_CHAN_SOFTMAX) activate_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.output);
- else activate_array_cpu_custom(l.output, l.outputs*l.batch, l.activation);
- if(l.binary || l.xnor) swap_binary(&l);
- //visualize_convolutional_layer(l, "conv_visual", NULL);
- //wait_until_press_key_cv();
- if(l.assisted_excitation && state.train) assisted_excitation_forward(l, state);
- if (l.antialiasing) {
- network_state s = { 0 };
- s.train = state.train;
- s.workspace = state.workspace;
- s.net = state.net;
- s.input = l.output;
- forward_convolutional_layer(*(l.input_layer), s);
- //simple_copy_ongpu(l.outputs*l.batch, l.output, l.input_antialiasing);
- memcpy(l.output, l.input_layer->output, l.input_layer->outputs * l.input_layer->batch * sizeof(float));
- }
- }
- void assisted_excitation_forward(convolutional_layer l, network_state state)
- {
- const int iteration_num = (*state.net.seen) / (state.net.batch*state.net.subdivisions);
- // epoch
- //const float epoch = (float)(*state.net.seen) / state.net.train_images_num;
- // calculate alpha
- //const float alpha = (1 + cos(3.141592 * iteration_num)) / (2 * state.net.max_batches);
- //const float alpha = (1 + cos(3.141592 * epoch)) / (2 * state.net.max_batches);
- float alpha = (1 + cos(3.141592 * iteration_num / state.net.max_batches));
- if (l.assisted_excitation > 1) {
- if (iteration_num > l.assisted_excitation) alpha = 0;
- else alpha = (1 + cos(3.141592 * iteration_num / l.assisted_excitation));
- }
- //printf("\n epoch = %f, alpha = %f, seen = %d, max_batches = %d, train_images_num = %d \n",
- // epoch, alpha, (*state.net.seen), state.net.max_batches, state.net.train_images_num);
- float *a_avg = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float));
- float *g = (float *)xcalloc(l.out_w * l.out_h * l.batch, sizeof(float));
- int b;
- int w, h, c;
- l.max_boxes = state.net.num_boxes;
- l.truths = l.max_boxes*(4 + 1);
- for (b = 0; b < l.batch; ++b)
- {
- // calculate G
- int t;
- for (t = 0; t < state.net.num_boxes; ++t) {
- box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
- if (!truth.x) break; // continue;
- int left = floor((truth.x - truth.w / 2) * l.out_w);
- int right = ceil((truth.x + truth.w / 2) * l.out_w);
- int top = floor((truth.y - truth.h / 2) * l.out_h);
- int bottom = ceil((truth.y + truth.h / 2) * l.out_h);
- for (w = left; w <= right; w++) {
- for (h = top; h < bottom; h++) {
- g[w + l.out_w * h + l.out_w*l.out_h*b] = 1;
- }
- }
- }
- }
- for (b = 0; b < l.batch; ++b)
- {
- // calculate average A
- for (w = 0; w < l.out_w; w++) {
- for (h = 0; h < l.out_h; h++) {
- for (c = 0; c < l.out_c; c++) {
- a_avg[w + l.out_w*(h + l.out_h*b)] += l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))];
- }
- a_avg[w + l.out_w*(h + l.out_h*b)] /= l.out_c; // a_avg / d
- }
- }
- }
- // change activation
- for (b = 0; b < l.batch; ++b)
- {
- for (w = 0; w < l.out_w; w++) {
- for (h = 0; h < l.out_h; h++) {
- for (c = 0; c < l.out_c; c++)
- {
- // a = a + alpha(t) + e(c,i,j) = a + alpha(t) + g(i,j) * avg_a(i,j) / channels
- l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] +=
- alpha *
- g[w + l.out_w*(h + l.out_h*b)] *
- a_avg[w + l.out_w*(h + l.out_h*b)];
- //l.output[w + l.out_w*(h + l.out_h*(c + l.out_c*b))] =
- // alpha * g[w + l.out_w*(h + l.out_h*b)] * a_avg[w + l.out_w*(h + l.out_h*b)];
- }
- }
- }
- }
- if(0) // visualize ground truth
- {
- #ifdef OPENCV
- for (b = 0; b < l.batch; ++b)
- {
- image img = float_to_image(l.out_w, l.out_h, 1, &g[l.out_w*l.out_h*b]);
- char buff[100];
- sprintf(buff, "a_excitation_%d", b);
- show_image_cv(img, buff);
- image img2 = float_to_image(l.out_w, l.out_h, 1, &l.output[l.out_w*l.out_h*l.out_c*b]);
- char buff2[100];
- sprintf(buff2, "a_excitation_act_%d", b);
- show_image_cv(img2, buff2);
- wait_key_cv(5);
- }
- wait_until_press_key_cv();
- #endif // OPENCV
- }
- free(g);
- free(a_avg);
- }
- void backward_convolutional_layer(convolutional_layer l, network_state state)
- {
- int i, j;
- int m = l.n / l.groups;
- int n = l.size*l.size*l.c / l.groups;
- int k = l.out_w*l.out_h;
- if (l.activation == SWISH) gradient_array_swish(l.output, l.outputs*l.batch, l.activation_input, l.delta);
- else if (l.activation == MISH) gradient_array_mish(l.outputs*l.batch, l.activation_input, l.delta);
- else if (l.activation == NORM_CHAN_SOFTMAX) gradient_array_normalize_channels_softmax(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
- else if (l.activation == NORM_CHAN) gradient_array_normalize_channels(l.output, l.outputs*l.batch, l.batch, l.out_c, l.out_w*l.out_h, l.delta);
- else gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta);
- if (l.batch_normalize) {
- backward_batchnorm_layer(l, state);
- }
- else {
- backward_bias(l.bias_updates, l.delta, l.batch, l.n, k);
- }
- for (i = 0; i < l.batch; ++i) {
- for (j = 0; j < l.groups; ++j) {
- float *a = l.delta + (i*l.groups + j)*m*k;
- float *b = state.workspace;
- float *c = l.weight_updates + j*l.nweights / l.groups;
- float *im = state.input + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w;
- //im2col_cpu(im, l.c / l.groups, l.h, l.w, l.size, l.stride, l.pad, b);
- im2col_cpu_ext(
- im, // input
- l.c / l.groups, // input channels
- l.h, l.w, // input size (h, w)
- l.size, l.size, // kernel size (h, w)
- l.pad, l.pad, // padding (h, w)
- l.stride_y, l.stride_x, // stride (h, w)
- l.dilation, l.dilation, // dilation (h, w)
- b); // output
- gemm(0, 1, m, n, k, 1, a, k, b, k, 1, c, n);
- if (state.delta) {
- a = l.weights + j*l.nweights / l.groups;
- b = l.delta + (i*l.groups + j)*m*k;
- c = state.workspace;
- gemm(1, 0, n, k, m, 1, a, n, b, k, 0, c, k);
- //col2im_cpu(state.workspace, l.c / l.groups, l.h, l.w, l.size, l.stride,
- // l.pad, state.delta + (i*l.groups + j)*l.c / l.groups*l.h*l.w);
- col2im_cpu_ext(
- state.workspace, // input
- l.c / l.groups, // input channels (h, w)
- l.h, l.w, // input size (h, w)
- l.size, l.size, // kernel size (h, w)
- l.pad, l.pad, // padding (h, w)
- l.stride_y, l.stride_x, // stride (h, w)
- l.dilation, l.dilation, // dilation (h, w)
- state.delta + (i*l.groups + j)* (l.c / l.groups)*l.h*l.w); // output (delta)
- }
- }
- }
- }
- void update_convolutional_layer(convolutional_layer l, int batch, float learning_rate_init, float momentum, float decay)
- {
- float learning_rate = learning_rate_init*l.learning_rate_scale;
- //float momentum = a.momentum;
- //float decay = a.decay;
- //int batch = a.batch;
- axpy_cpu(l.nweights, -decay*batch, l.weights, 1, l.weight_updates, 1);
- axpy_cpu(l.nweights, learning_rate / batch, l.weight_updates, 1, l.weights, 1);
- scal_cpu(l.nweights, momentum, l.weight_updates, 1);
- axpy_cpu(l.n, learning_rate / batch, l.bias_updates, 1, l.biases, 1);
- scal_cpu(l.n, momentum, l.bias_updates, 1);
- if (l.scales) {
- axpy_cpu(l.n, learning_rate / batch, l.scale_updates, 1, l.scales, 1);
- scal_cpu(l.n, momentum, l.scale_updates, 1);
- }
- }
- image get_convolutional_weight(convolutional_layer l, int i)
- {
- int h = l.size;
- int w = l.size;
- int c = l.c / l.groups;
- return float_to_image(w, h, c, l.weights + i*h*w*c);
- }
- void rgbgr_weights(convolutional_layer l)
- {
- int i;
- for (i = 0; i < l.n; ++i) {
- image im = get_convolutional_weight(l, i);
- if (im.c == 3) {
- rgbgr_image(im);
- }
- }
- }
- void rescale_weights(convolutional_layer l, float scale, float trans)
- {
- int i;
- for (i = 0; i < l.n; ++i) {
- image im = get_convolutional_weight(l, i);
- if (im.c == 3) {
- scale_image(im, scale);
- float sum = sum_array(im.data, im.w*im.h*im.c);
- l.biases[i] += sum*trans;
- }
- }
- }
- image *get_weights(convolutional_layer l)
- {
- image *weights = (image *)xcalloc(l.n, sizeof(image));
- int i;
- for (i = 0; i < l.n; ++i) {
- weights[i] = copy_image(get_convolutional_weight(l, i));
- normalize_image(weights[i]);
- /*
- char buff[256];
- sprintf(buff, "filter%d", i);
- save_image(weights[i], buff);
- */
- }
- //error("hey");
- return weights;
- }
- image *visualize_convolutional_layer(convolutional_layer l, char *window, image *prev_weights)
- {
- image *single_weights = get_weights(l);
- show_images(single_weights, l.n, window);
- image delta = get_convolutional_image(l);
- image dc = collapse_image_layers(delta, 1);
- char buff[256];
- sprintf(buff, "%s: Output", window);
- show_image(dc, buff);
- //save_image(dc, buff);
- free_image(dc);
- return single_weights;
- }
|