123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779 |
- #include "yolo_layer.h"
- #include "activations.h"
- #include "blas.h"
- #include "box.h"
- #include "dark_cuda.h"
- #include "utils.h"
- #include <stdio.h>
- #include <assert.h>
- #include <string.h>
- #include <stdlib.h>
- layer make_yolo_layer(int batch, int w, int h, int n, int total, int *mask, int classes, int max_boxes)
- {
- int i;
- layer l = { (LAYER_TYPE)0 };
- l.type = YOLO;
- l.n = n;
- l.total = total;
- l.batch = batch;
- l.h = h;
- l.w = w;
- l.c = n*(classes + 4 + 1);
- l.out_w = l.w;
- l.out_h = l.h;
- l.out_c = l.c;
- l.classes = classes;
- l.cost = (float*)xcalloc(1, sizeof(float));
- l.biases = (float*)xcalloc(total * 2, sizeof(float));
- if(mask) l.mask = mask;
- else{
- l.mask = (int*)xcalloc(n, sizeof(int));
- for(i = 0; i < n; ++i){
- l.mask[i] = i;
- }
- }
- l.bias_updates = (float*)xcalloc(n * 2, sizeof(float));
- l.outputs = h*w*n*(classes + 4 + 1);
- l.inputs = l.outputs;
- l.max_boxes = max_boxes;
- l.truths = l.max_boxes*(4 + 1); // 90*(4 + 1);
- l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
- l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
- for(i = 0; i < total*2; ++i){
- l.biases[i] = .5;
- }
- l.forward = forward_yolo_layer;
- l.backward = backward_yolo_layer;
- #ifdef GPU
- l.forward_gpu = forward_yolo_layer_gpu;
- l.backward_gpu = backward_yolo_layer_gpu;
- l.output_gpu = cuda_make_array(l.output, batch*l.outputs);
- l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
- free(l.output);
- if (cudaSuccess == cudaHostAlloc(&l.output, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.output_pinned = 1;
- else {
- cudaGetLastError(); // reset CUDA-error
- l.output = (float*)xcalloc(batch * l.outputs, sizeof(float));
- }
- free(l.delta);
- if (cudaSuccess == cudaHostAlloc(&l.delta, batch*l.outputs*sizeof(float), cudaHostRegisterMapped)) l.delta_pinned = 1;
- else {
- cudaGetLastError(); // reset CUDA-error
- l.delta = (float*)xcalloc(batch * l.outputs, sizeof(float));
- }
- #endif
- fprintf(stderr, "yolo\n");
- srand(time(0));
- return l;
- }
- void resize_yolo_layer(layer *l, int w, int h)
- {
- l->w = w;
- l->h = h;
- l->outputs = h*w*l->n*(l->classes + 4 + 1);
- l->inputs = l->outputs;
- if (!l->output_pinned) l->output = (float*)xrealloc(l->output, l->batch*l->outputs * sizeof(float));
- if (!l->delta_pinned) l->delta = (float*)xrealloc(l->delta, l->batch*l->outputs*sizeof(float));
- #ifdef GPU
- if (l->output_pinned) {
- CHECK_CUDA(cudaFreeHost(l->output));
- if (cudaSuccess != cudaHostAlloc(&l->output, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
- cudaGetLastError(); // reset CUDA-error
- l->output = (float*)xcalloc(l->batch * l->outputs, sizeof(float));
- l->output_pinned = 0;
- }
- }
- if (l->delta_pinned) {
- CHECK_CUDA(cudaFreeHost(l->delta));
- if (cudaSuccess != cudaHostAlloc(&l->delta, l->batch*l->outputs * sizeof(float), cudaHostRegisterMapped)) {
- cudaGetLastError(); // reset CUDA-error
- l->delta = (float*)xcalloc(l->batch * l->outputs, sizeof(float));
- l->delta_pinned = 0;
- }
- }
- cuda_free(l->delta_gpu);
- cuda_free(l->output_gpu);
- l->delta_gpu = cuda_make_array(l->delta, l->batch*l->outputs);
- l->output_gpu = cuda_make_array(l->output, l->batch*l->outputs);
- #endif
- }
- box get_yolo_box(float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, int stride)
- {
- box b;
- // ln - natural logarithm (base = e)
- // x` = t.x * lw - i; // x = ln(x`/(1-x`)) // x - output of previous conv-layer
- // y` = t.y * lh - i; // y = ln(y`/(1-y`)) // y - output of previous conv-layer
- // w = ln(t.w * net.w / anchors_w); // w - output of previous conv-layer
- // h = ln(t.h * net.h / anchors_h); // h - output of previous conv-layer
- b.x = (i + x[index + 0*stride]) / lw;
- b.y = (j + x[index + 1*stride]) / lh;
- b.w = exp(x[index + 2*stride]) * biases[2*n] / w;
- b.h = exp(x[index + 3*stride]) * biases[2*n+1] / h;
- return b;
- }
- ious delta_yolo_box(box truth, float *x, float *biases, int n, int index, int i, int j, int lw, int lh, int w, int h, float *delta, float scale, int stride, float iou_normalizer, IOU_LOSS iou_loss, int accumulate)
- {
- ious all_ious = { 0 };
- // i - step in layer width
- // j - step in layer height
- // Returns a box in absolute coordinates
- box pred = get_yolo_box(x, biases, n, index, i, j, lw, lh, w, h, stride);
- all_ious.iou = box_iou(pred, truth);
- all_ious.giou = box_giou(pred, truth);
- all_ious.diou = box_diou(pred, truth);
- all_ious.ciou = box_ciou(pred, truth);
- // avoid nan in dx_box_iou
- if (pred.w == 0) { pred.w = 1.0; }
- if (pred.h == 0) { pred.h = 1.0; }
- if (iou_loss == MSE) // old loss
- {
- float tx = (truth.x*lw - i);
- float ty = (truth.y*lh - j);
- float tw = log(truth.w*w / biases[2 * n]);
- float th = log(truth.h*h / biases[2 * n + 1]);
- // accumulate delta
- delta[index + 0 * stride] += scale * (tx - x[index + 0 * stride]) * iou_normalizer;
- delta[index + 1 * stride] += scale * (ty - x[index + 1 * stride]) * iou_normalizer;
- delta[index + 2 * stride] += scale * (tw - x[index + 2 * stride]) * iou_normalizer;
- delta[index + 3 * stride] += scale * (th - x[index + 3 * stride]) * iou_normalizer;
- }
- else {
- // https://github.com/generalized-iou/g-darknet
- // https://arxiv.org/abs/1902.09630v2
- // https://giou.stanford.edu/
- all_ious.dx_iou = dx_box_iou(pred, truth, iou_loss);
- // jacobian^t (transpose)
- //float dx = (all_ious.dx_iou.dl + all_ious.dx_iou.dr);
- //float dy = (all_ious.dx_iou.dt + all_ious.dx_iou.db);
- //float dw = ((-0.5 * all_ious.dx_iou.dl) + (0.5 * all_ious.dx_iou.dr));
- //float dh = ((-0.5 * all_ious.dx_iou.dt) + (0.5 * all_ious.dx_iou.db));
- // jacobian^t (transpose)
- float dx = all_ious.dx_iou.dt;
- float dy = all_ious.dx_iou.db;
- float dw = all_ious.dx_iou.dl;
- float dh = all_ious.dx_iou.dr;
- // predict exponential, apply gradient of e^delta_t ONLY for w,h
- dw *= exp(x[index + 2 * stride]);
- dh *= exp(x[index + 3 * stride]);
- // normalize iou weight
- dx *= iou_normalizer;
- dy *= iou_normalizer;
- dw *= iou_normalizer;
- dh *= iou_normalizer;
- if (!accumulate) {
- delta[index + 0 * stride] = 0;
- delta[index + 1 * stride] = 0;
- delta[index + 2 * stride] = 0;
- delta[index + 3 * stride] = 0;
- }
- // accumulate delta
- delta[index + 0 * stride] += dx;
- delta[index + 1 * stride] += dy;
- delta[index + 2 * stride] += dw;
- delta[index + 3 * stride] += dh;
- }
- return all_ious;
- }
- void averages_yolo_deltas(int class_index, int box_index, int stride, int classes, float *delta)
- {
- int classes_in_one_box = 0;
- int c;
- for (c = 0; c < classes; ++c) {
- if (delta[class_index + stride*c] > 0) classes_in_one_box++;
- }
- if (classes_in_one_box > 0) {
- delta[box_index + 0 * stride] /= classes_in_one_box;
- delta[box_index + 1 * stride] /= classes_in_one_box;
- delta[box_index + 2 * stride] /= classes_in_one_box;
- delta[box_index + 3 * stride] /= classes_in_one_box;
- }
- }
- void delta_yolo_class(float *output, float *delta, int index, int class_id, int classes, int stride, float *avg_cat, int focal_loss, float label_smooth_eps, float *classes_multipliers)
- {
- int n;
- if (delta[index + stride*class_id]){
- delta[index + stride*class_id] = (1 - label_smooth_eps) - output[index + stride*class_id];
- if (classes_multipliers) delta[index + stride*class_id] *= classes_multipliers[class_id];
- if(avg_cat) *avg_cat += output[index + stride*class_id];
- return;
- }
- // Focal loss
- if (focal_loss) {
- // Focal Loss
- float alpha = 0.5; // 0.25 or 0.5
- //float gamma = 2; // hardcoded in many places of the grad-formula
- int ti = index + stride*class_id;
- float pt = output[ti] + 0.000000000000001F;
- // http://fooplot.com/#W3sidHlwZSI6MCwiZXEiOiItKDEteCkqKDIqeCpsb2coeCkreC0xKSIsImNvbG9yIjoiIzAwMDAwMCJ9LHsidHlwZSI6MTAwMH1d
- float grad = -(1 - pt) * (2 * pt*logf(pt) + pt - 1); // http://blog.csdn.net/linmingan/article/details/77885832
- //float grad = (1 - pt) * (2 * pt*logf(pt) + pt - 1); // https://github.com/unsky/focal-loss
- for (n = 0; n < classes; ++n) {
- delta[index + stride*n] = (((n == class_id) ? 1 : 0) - output[index + stride*n]);
- delta[index + stride*n] *= alpha*grad;
- if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
- }
- }
- else {
- // default
- for (n = 0; n < classes; ++n) {
- delta[index + stride*n] = ((n == class_id) ? (1 - label_smooth_eps) : (0 + label_smooth_eps/classes)) - output[index + stride*n];
- if (classes_multipliers && n == class_id) delta[index + stride*class_id] *= classes_multipliers[class_id];
- if (n == class_id && avg_cat) *avg_cat += output[index + stride*n];
- }
- }
- }
- int compare_yolo_class(float *output, int classes, int class_index, int stride, float objectness, int class_id, float conf_thresh)
- {
- int j;
- for (j = 0; j < classes; ++j) {
- //float prob = objectness * output[class_index + stride*j];
- float prob = output[class_index + stride*j];
- if (prob > conf_thresh) {
- return 1;
- }
- }
- return 0;
- }
- static int entry_index(layer l, int batch, int location, int entry)
- {
- int n = location / (l.w*l.h);
- int loc = location % (l.w*l.h);
- return batch*l.outputs + n*l.w*l.h*(4+l.classes+1) + entry*l.w*l.h + loc;
- }
- void forward_yolo_layer(const layer l, network_state state)
- {
- int i, j, b, t, n;
- memcpy(l.output, state.input, l.outputs*l.batch * sizeof(float));
- #ifndef GPU
- for (b = 0; b < l.batch; ++b) {
- for (n = 0; n < l.n; ++n) {
- int index = entry_index(l, b, n*l.w*l.h, 0);
- activate_array(l.output + index, 2 * l.w*l.h, LOGISTIC); // x,y,
- scal_add_cpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output + index, 1); // scale x,y
- index = entry_index(l, b, n*l.w*l.h, 4);
- activate_array(l.output + index, (1 + l.classes)*l.w*l.h, LOGISTIC);
- }
- }
- #endif
- // delta is zeroed
- memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
- if (!state.train) return;
- //float avg_iou = 0;
- float tot_iou = 0;
- float tot_giou = 0;
- float tot_diou = 0;
- float tot_ciou = 0;
- float tot_iou_loss = 0;
- float tot_giou_loss = 0;
- float tot_diou_loss = 0;
- float tot_ciou_loss = 0;
- float recall = 0;
- float recall75 = 0;
- float avg_cat = 0;
- float avg_obj = 0;
- float avg_anyobj = 0;
- int count = 0;
- int class_count = 0;
- *(l.cost) = 0;
- for (b = 0; b < l.batch; ++b) {
- for (j = 0; j < l.h; ++j) {
- for (i = 0; i < l.w; ++i) {
- for (n = 0; n < l.n; ++n) {
- int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
- box pred = get_yolo_box(l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.w*l.h);
- float best_match_iou = 0;
- int best_match_t = 0;
- float best_iou = 0;
- int best_t = 0;
- for (t = 0; t < l.max_boxes; ++t) {
- box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
- int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
- if (class_id >= l.classes) {
- printf(" Warning: in txt-labels class_id=%d >= classes=%d in cfg-file. In txt-labels class_id should be [from 0 to %d] \n", class_id, l.classes, l.classes - 1);
- printf(" truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f, class_id = %d \n", truth.x, truth.y, truth.w, truth.h, class_id);
- getchar();
- continue; // if label contains class_id more than number of classes in the cfg-file
- }
- if (!truth.x) break; // continue;
- int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
- int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
- float objectness = l.output[obj_index];
- int class_id_match = compare_yolo_class(l.output, l.classes, class_index, l.w*l.h, objectness, class_id, 0.25f);
- float iou = box_iou(pred, truth);
- if (iou > best_match_iou && class_id_match == 1) {
- best_match_iou = iou;
- best_match_t = t;
- }
- if (iou > best_iou) {
- best_iou = iou;
- best_t = t;
- }
- }
- int obj_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4);
- avg_anyobj += l.output[obj_index];
- l.delta[obj_index] = l.cls_normalizer * (0 - l.output[obj_index]);
- if (best_match_iou > l.ignore_thresh) {
- l.delta[obj_index] = 0;
- }
- if (best_iou > l.truth_thresh) {
- l.delta[obj_index] = l.cls_normalizer * (1 - l.output[obj_index]);
- int class_id = state.truth[best_t*(4 + 1) + b*l.truths + 4];
- if (l.map) class_id = l.map[class_id];
- int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
- delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, 0, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
- box truth = float_to_box_stride(state.truth + best_t*(4 + 1) + b*l.truths, 1);
- const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
- delta_yolo_box(truth, l.output, l.biases, l.mask[n], box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1);
- }
- }
- }
- }
- for (t = 0; t < l.max_boxes; ++t) {
- box truth = float_to_box_stride(state.truth + t*(4 + 1) + b*l.truths, 1);
- if (truth.x < 0 || truth.y < 0 || truth.x > 1 || truth.y > 1 || truth.w < 0 || truth.h < 0) {
- char buff[256];
- printf(" Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f \n", truth.x, truth.y, truth.w, truth.h);
- sprintf(buff, "echo \"Wrong label: truth.x = %f, truth.y = %f, truth.w = %f, truth.h = %f\" >> bad_label.list",
- truth.x, truth.y, truth.w, truth.h);
- system(buff);
- }
- int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
- if (class_id >= l.classes) continue; // if label contains class_id more than number of classes in the cfg-file
- if (!truth.x) break; // continue;
- float best_iou = 0;
- int best_n = 0;
- i = (truth.x * l.w);
- j = (truth.y * l.h);
- box truth_shift = truth;
- truth_shift.x = truth_shift.y = 0;
- for (n = 0; n < l.total; ++n) {
- box pred = { 0 };
- pred.w = l.biases[2 * n] / state.net.w;
- pred.h = l.biases[2 * n + 1] / state.net.h;
- float iou = box_iou(pred, truth_shift);
- if (iou > best_iou) {
- best_iou = iou;
- best_n = n;
- }
- }
- int mask_n = int_index(l.mask, best_n, l.n);
- if (mask_n >= 0) {
- int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
- if (l.map) class_id = l.map[class_id];
- int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
- const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
- ious all_ious = delta_yolo_box(truth, l.output, l.biases, best_n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1);
- // range is 0 <= 1
- tot_iou += all_ious.iou;
- tot_iou_loss += 1 - all_ious.iou;
- // range is -1 <= giou <= 1
- tot_giou += all_ious.giou;
- tot_giou_loss += 1 - all_ious.giou;
- tot_diou += all_ious.diou;
- tot_diou_loss += 1 - all_ious.diou;
- tot_ciou += all_ious.ciou;
- tot_ciou_loss += 1 - all_ious.ciou;
- int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
- avg_obj += l.output[obj_index];
- l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
- int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
- delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
- ++count;
- ++class_count;
- if (all_ious.iou > .5) recall += 1;
- if (all_ious.iou > .75) recall75 += 1;
- }
- // iou_thresh
- for (n = 0; n < l.total; ++n) {
- int mask_n = int_index(l.mask, n, l.n);
- if (mask_n >= 0 && n != best_n && l.iou_thresh < 1.0f) {
- box pred = { 0 };
- pred.w = l.biases[2 * n] / state.net.w;
- pred.h = l.biases[2 * n + 1] / state.net.h;
- float iou = box_iou(pred, truth_shift);
- // iou, n
- if (iou > l.iou_thresh) {
- int class_id = state.truth[t*(4 + 1) + b*l.truths + 4];
- if (l.map) class_id = l.map[class_id];
- int box_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 0);
- const float class_multiplier = (l.classes_multipliers) ? l.classes_multipliers[class_id] : 1.0f;
- ious all_ious = delta_yolo_box(truth, l.output, l.biases, n, box_index, i, j, l.w, l.h, state.net.w, state.net.h, l.delta, (2 - truth.w*truth.h), l.w*l.h, l.iou_normalizer * class_multiplier, l.iou_loss, 1);
- // range is 0 <= 1
- tot_iou += all_ious.iou;
- tot_iou_loss += 1 - all_ious.iou;
- // range is -1 <= giou <= 1
- tot_giou += all_ious.giou;
- tot_giou_loss += 1 - all_ious.giou;
- tot_diou += all_ious.diou;
- tot_diou_loss += 1 - all_ious.diou;
- tot_ciou += all_ious.ciou;
- tot_ciou_loss += 1 - all_ious.ciou;
- int obj_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4);
- avg_obj += l.output[obj_index];
- l.delta[obj_index] = class_multiplier * l.cls_normalizer * (1 - l.output[obj_index]);
- int class_index = entry_index(l, b, mask_n*l.w*l.h + j*l.w + i, 4 + 1);
- delta_yolo_class(l.output, l.delta, class_index, class_id, l.classes, l.w*l.h, &avg_cat, l.focal_loss, l.label_smooth_eps, l.classes_multipliers);
- ++count;
- ++class_count;
- if (all_ious.iou > .5) recall += 1;
- if (all_ious.iou > .75) recall75 += 1;
- }
- }
- }
- }
- // averages the deltas obtained by the function: delta_yolo_box()_accumulate
- for (j = 0; j < l.h; ++j) {
- for (i = 0; i < l.w; ++i) {
- for (n = 0; n < l.n; ++n) {
- int box_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
- int class_index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 4 + 1);
- const int stride = l.w*l.h;
- averages_yolo_deltas(class_index, box_index, stride, l.classes, l.delta);
- }
- }
- }
- }
- //*(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
- //printf("Region %d Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d\n", state.index, avg_iou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count);
- int stride = l.w*l.h;
- float* no_iou_loss_delta = (float *)calloc(l.batch * l.outputs, sizeof(float));
- memcpy(no_iou_loss_delta, l.delta, l.batch * l.outputs * sizeof(float));
- for (b = 0; b < l.batch; ++b) {
- for (j = 0; j < l.h; ++j) {
- for (i = 0; i < l.w; ++i) {
- for (n = 0; n < l.n; ++n) {
- int index = entry_index(l, b, n*l.w*l.h + j*l.w + i, 0);
- no_iou_loss_delta[index + 0 * stride] = 0;
- no_iou_loss_delta[index + 1 * stride] = 0;
- no_iou_loss_delta[index + 2 * stride] = 0;
- no_iou_loss_delta[index + 3 * stride] = 0;
- }
- }
- }
- }
- float classification_loss = l.cls_normalizer * pow(mag_array(no_iou_loss_delta, l.outputs * l.batch), 2);
- free(no_iou_loss_delta);
- float loss = pow(mag_array(l.delta, l.outputs * l.batch), 2);
- float iou_loss = loss - classification_loss;
- float avg_iou_loss = 0;
- // gIOU loss + MSE (objectness) loss
- if (l.iou_loss == MSE) {
- *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
- }
- else {
- // Always compute classification loss both for iou + cls loss and for logging with mse loss
- // TODO: remove IOU loss fields before computing MSE on class
- // probably split into two arrays
- if (l.iou_loss == GIOU) {
- avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_giou_loss / count) : 0;
- }
- else {
- avg_iou_loss = count > 0 ? l.iou_normalizer * (tot_iou_loss / count) : 0;
- }
- *(l.cost) = avg_iou_loss + classification_loss;
- }
- loss /= l.batch;
- classification_loss /= l.batch;
- iou_loss /= l.batch;
- printf("v3 (%s loss, Normalizer: (iou: %f, cls: %f) Region %d Avg (IOU: %f, GIOU: %f), Class: %f, Obj: %f, No Obj: %f, .5R: %f, .75R: %f, count: %d, loss = %f, class_loss = %f, iou_loss = %f\n",
- (l.iou_loss == MSE ? "mse" : (l.iou_loss == GIOU ? "giou" : "iou")), l.iou_normalizer, l.cls_normalizer, state.index, tot_iou / count, tot_giou / count, avg_cat / class_count, avg_obj / count, avg_anyobj / (l.w*l.h*l.n*l.batch), recall / count, recall75 / count, count,
- loss, classification_loss, iou_loss);
- }
- void backward_yolo_layer(const layer l, network_state state)
- {
- axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
- }
- // Converts output of the network to detection boxes
- // w,h: image width,height
- // netw,neth: network width,height
- // relative: 1 (all callers seems to pass TRUE)
- void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
- {
- int i;
- // network height (or width)
- int new_w = 0;
- // network height (or width)
- int new_h = 0;
- // Compute scale given image w,h vs network w,h
- // I think this "rotates" the image to match network to input image w/h ratio
- // new_h and new_w are really just network width and height
- if (letter) {
- if (((float)netw / w) < ((float)neth / h)) {
- new_w = netw;
- new_h = (h * netw) / w;
- }
- else {
- new_h = neth;
- new_w = (w * neth) / h;
- }
- }
- else {
- new_w = netw;
- new_h = neth;
- }
- // difference between network width and "rotated" width
- float deltaw = netw - new_w;
- // difference between network height and "rotated" height
- float deltah = neth - new_h;
- // ratio between rotated network width and network width
- float ratiow = (float)new_w / netw;
- // ratio between rotated network width and network width
- float ratioh = (float)new_h / neth;
- for (i = 0; i < n; ++i) {
- box b = dets[i].bbox;
- // x = ( x - (deltaw/2)/netw ) / ratiow;
- // x - [(1/2 the difference of the network width and rotated width) / (network width)]
- b.x = (b.x - deltaw / 2. / netw) / ratiow;
- b.y = (b.y - deltah / 2. / neth) / ratioh;
- // scale to match rotation of incoming image
- b.w *= 1 / ratiow;
- b.h *= 1 / ratioh;
- // relative seems to always be == 1, I don't think we hit this condition, ever.
- if (!relative) {
- b.x *= w;
- b.w *= w;
- b.y *= h;
- b.h *= h;
- }
- dets[i].bbox = b;
- }
- }
- /*
- void correct_yolo_boxes(detection *dets, int n, int w, int h, int netw, int neth, int relative, int letter)
- {
- int i;
- int new_w=0;
- int new_h=0;
- if (letter) {
- if (((float)netw / w) < ((float)neth / h)) {
- new_w = netw;
- new_h = (h * netw) / w;
- }
- else {
- new_h = neth;
- new_w = (w * neth) / h;
- }
- }
- else {
- new_w = netw;
- new_h = neth;
- }
- for (i = 0; i < n; ++i){
- box b = dets[i].bbox;
- b.x = (b.x - (netw - new_w)/2./netw) / ((float)new_w/netw);
- b.y = (b.y - (neth - new_h)/2./neth) / ((float)new_h/neth);
- b.w *= (float)netw/new_w;
- b.h *= (float)neth/new_h;
- if(!relative){
- b.x *= w;
- b.w *= w;
- b.y *= h;
- b.h *= h;
- }
- dets[i].bbox = b;
- }
- }
- */
- int yolo_num_detections(layer l, float thresh)
- {
- int i, n;
- int count = 0;
- for (i = 0; i < l.w*l.h; ++i){
- for(n = 0; n < l.n; ++n){
- int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4);
- if(l.output[obj_index] > thresh){
- ++count;
- }
- }
- }
- return count;
- }
- void avg_flipped_yolo(layer l)
- {
- int i,j,n,z;
- float *flip = l.output + l.outputs;
- for (j = 0; j < l.h; ++j) {
- for (i = 0; i < l.w/2; ++i) {
- for (n = 0; n < l.n; ++n) {
- for(z = 0; z < l.classes + 4 + 1; ++z){
- int i1 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + i;
- int i2 = z*l.w*l.h*l.n + n*l.w*l.h + j*l.w + (l.w - i - 1);
- float swap = flip[i1];
- flip[i1] = flip[i2];
- flip[i2] = swap;
- if(z == 0){
- flip[i1] = -flip[i1];
- flip[i2] = -flip[i2];
- }
- }
- }
- }
- }
- for(i = 0; i < l.outputs; ++i){
- l.output[i] = (l.output[i] + flip[i])/2.;
- }
- }
- int get_yolo_detections(layer l, int w, int h, int netw, int neth, float thresh, int *map, int relative, detection *dets, int letter)
- {
- //printf("\n l.batch = %d, l.w = %d, l.h = %d, l.n = %d \n", l.batch, l.w, l.h, l.n);
- int i,j,n;
- float *predictions = l.output;
- // This snippet below is not necessary
- // Need to comment it in order to batch processing >= 2 images
- //if (l.batch == 2) avg_flipped_yolo(l);
- int count = 0;
- for (i = 0; i < l.w*l.h; ++i){
- int row = i / l.w;
- int col = i % l.w;
- for(n = 0; n < l.n; ++n){
- int obj_index = entry_index(l, 0, n*l.w*l.h + i, 4);
- float objectness = predictions[obj_index];
- //if(objectness <= thresh) continue; // incorrect behavior for Nan values
- if (objectness > thresh) {
- //printf("\n objectness = %f, thresh = %f, i = %d, n = %d \n", objectness, thresh, i, n);
- int box_index = entry_index(l, 0, n*l.w*l.h + i, 0);
- dets[count].bbox = get_yolo_box(predictions, l.biases, l.mask[n], box_index, col, row, l.w, l.h, netw, neth, l.w*l.h);
- dets[count].objectness = objectness;
- dets[count].classes = l.classes;
- for (j = 0; j < l.classes; ++j) {
- int class_index = entry_index(l, 0, n*l.w*l.h + i, 4 + 1 + j);
- float prob = objectness*predictions[class_index];
- dets[count].prob[j] = (prob > thresh) ? prob : 0;
- }
- ++count;
- }
- }
- }
- correct_yolo_boxes(dets, count, w, h, netw, neth, relative, letter);
- return count;
- }
- #ifdef GPU
- void forward_yolo_layer_gpu(const layer l, network_state state)
- {
- //copy_ongpu(l.batch*l.inputs, state.input, 1, l.output_gpu, 1);
- simple_copy_ongpu(l.batch*l.inputs, state.input, l.output_gpu);
- int b, n;
- for (b = 0; b < l.batch; ++b){
- for(n = 0; n < l.n; ++n){
- int index = entry_index(l, b, n*l.w*l.h, 0);
- // y = 1./(1. + exp(-x))
- // x = ln(y/(1-y)) // ln - natural logarithm (base = e)
- // if(y->1) x -> inf
- // if(y->0) x -> -inf
- activate_array_ongpu(l.output_gpu + index, 2*l.w*l.h, LOGISTIC); // x,y
- if (l.scale_x_y != 1) scal_add_ongpu(2 * l.w*l.h, l.scale_x_y, -0.5*(l.scale_x_y - 1), l.output_gpu + index, 1); // scale x,y
- index = entry_index(l, b, n*l.w*l.h, 4);
- activate_array_ongpu(l.output_gpu + index, (1+l.classes)*l.w*l.h, LOGISTIC); // classes and objectness
- }
- }
- if(!state.train || l.onlyforward){
- //cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
- cuda_pull_array_async(l.output_gpu, l.output, l.batch*l.outputs);
- CHECK_CUDA(cudaPeekAtLastError());
- return;
- }
- float *in_cpu = (float *)xcalloc(l.batch*l.inputs, sizeof(float));
- cuda_pull_array(l.output_gpu, l.output, l.batch*l.outputs);
- memcpy(in_cpu, l.output, l.batch*l.outputs*sizeof(float));
- float *truth_cpu = 0;
- if (state.truth) {
- int num_truth = l.batch*l.truths;
- truth_cpu = (float *)xcalloc(num_truth, sizeof(float));
- cuda_pull_array(state.truth, truth_cpu, num_truth);
- }
- network_state cpu_state = state;
- cpu_state.net = state.net;
- cpu_state.index = state.index;
- cpu_state.train = state.train;
- cpu_state.truth = truth_cpu;
- cpu_state.input = in_cpu;
- forward_yolo_layer(l, cpu_state);
- //forward_yolo_layer(l, state);
- cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
- free(in_cpu);
- if (cpu_state.truth) free(cpu_state.truth);
- }
- void backward_yolo_layer_gpu(const layer l, network_state state)
- {
- axpy_ongpu(l.batch*l.inputs, 1, l.delta_gpu, 1, state.delta, 1);
- }
- #endif
|