| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067140681406914070140711407214073140741407514076140771407814079140801408114082140831408414085140861408714088140891409014091140921409314094140951409614097140981409914100141011410214103141041410514106141071410814109141101411114112141131411414115141161411714118141191412014121141221412314124141251412614127141281412914130141311413214133141341413514136141371413814139141401414114142141431414414145141461414714148141491415014151141521415314154141551415614157141581415914160141611416214163141641416514166141671416814169141701417114172141731417414175141761417714178141791418014181141821418314184141851418614187141881418914190141911419214193141941419514196141971419814199142001420114202142031420414205142061420714208142091421014211142121421314214142151421614217142181421914220142211422214223142241422514226142271422814229142301423114232142331423414235142361423714238142391424014241142421424314244142451424614247142481424914250142511425214253142541425514256142571425814259142601426114262142631426414265142661426714268142691427014271142721427314274142751427614277142781427914280142811428214283142841428514286142871428814289142901429114292142931429414295142961429714298142991430014301143021430314304143051430614307143081430914310143111431214313143141431514316143171431814319143201432114322143231432414325143261432714328143291433014331143321433314334143351433614337143381433914340143411434214343143441434514346143471434814349143501435114352143531435414355143561435714358143591436014361143621436314364143651436614367143681436914370143711437214373143741437514376143771437814379143801438114382143831438414385143861438714388143891439014391143921439314394143951439614397143981439914400144011440214403144041440514406144071440814409144101441114412144131441414415144161441714418144191442014421144221442314424144251442614427144281442914430144311443214433144341443514436144371443814439144401444114442144431444414445144461444714448144491445014451144521445314454144551445614457144581445914460144611446214463144641446514466144671446814469144701447114472144731447414475144761447714478144791448014481144821448314484144851448614487144881448914490144911449214493144941449514496144971449814499145001450114502145031450414505145061450714508145091451014511145121451314514145151451614517145181451914520145211452214523145241452514526145271452814529145301453114532145331453414535145361453714538145391454014541145421454314544145451454614547145481454914550145511455214553145541455514556145571455814559145601456114562145631456414565145661456714568145691457014571145721457314574145751457614577145781457914580145811458214583145841458514586145871458814589145901459114592145931459414595145961459714598145991460014601146021460314604146051460614607146081460914610146111461214613146141461514616146171461814619146201462114622146231462414625146261462714628146291463014631146321463314634146351463614637146381463914640146411464214643146441464514646146471464814649146501465114652146531465414655146561465714658146591466014661146621466314664146651466614667146681466914670146711467214673146741467514676146771467814679146801468114682146831468414685146861468714688146891469014691146921469314694146951469614697146981469914700147011470214703147041470514706147071470814709147101471114712147131471414715147161471714718147191472014721147221472314724147251472614727147281472914730147311473214733147341473514736147371473814739147401474114742147431474414745147461474714748147491475014751147521475314754147551475614757147581475914760147611476214763147641476514766147671476814769147701477114772147731477414775147761477714778147791478014781147821478314784147851478614787147881478914790147911479214793147941479514796147971479814799148001480114802148031480414805148061480714808148091481014811148121481314814148151481614817148181481914820148211482214823148241482514826148271482814829148301483114832148331483414835148361483714838148391484014841148421484314844148451484614847148481484914850148511485214853148541485514856148571485814859148601486114862148631486414865148661486714868148691487014871148721487314874148751487614877148781487914880148811488214883148841488514886148871488814889148901489114892148931489414895148961489714898148991490014901149021490314904149051490614907149081490914910149111491214913149141491514916149171491814919149201492114922149231492414925149261492714928149291493014931149321493314934149351493614937149381493914940149411494214943149441494514946149471494814949149501495114952149531495414955149561495714958149591496014961149621496314964149651496614967149681496914970149711497214973149741497514976149771497814979149801498114982149831498414985149861498714988149891499014991149921499314994149951499614997149981499915000150011500215003150041500515006150071500815009150101501115012150131501415015150161501715018150191502015021150221502315024150251502615027150281502915030150311503215033150341503515036150371503815039150401504115042150431504415045150461504715048150491505015051150521505315054150551505615057150581505915060150611506215063150641506515066150671506815069150701507115072150731507415075150761507715078150791508015081150821508315084150851508615087150881508915090150911509215093150941509515096150971509815099151001510115102151031510415105151061510715108151091511015111151121511315114151151511615117151181511915120151211512215123151241512515126151271512815129151301513115132151331513415135151361513715138151391514015141151421514315144151451514615147151481514915150151511515215153151541515515156151571515815159151601516115162151631516415165151661516715168151691517015171151721517315174151751517615177151781517915180151811518215183151841518515186151871518815189151901519115192151931519415195151961519715198151991520015201152021520315204152051520615207152081520915210152111521215213152141521515216152171521815219152201522115222152231522415225152261522715228152291523015231152321523315234152351523615237152381523915240152411524215243152441524515246152471524815249152501525115252152531525415255152561525715258152591526015261152621526315264152651526615267152681526915270152711527215273152741527515276152771527815279152801528115282152831528415285152861528715288152891529015291152921529315294152951529615297152981529915300153011530215303153041530515306153071530815309153101531115312153131531415315153161531715318153191532015321153221532315324153251532615327153281532915330153311533215333153341533515336153371533815339153401534115342153431534415345153461534715348153491535015351153521535315354153551535615357153581535915360153611536215363153641536515366153671536815369153701537115372153731537415375153761537715378153791538015381153821538315384153851538615387153881538915390153911539215393153941539515396153971539815399154001540115402154031540415405154061540715408154091541015411154121541315414154151541615417154181541915420154211542215423154241542515426154271542815429154301543115432154331543415435154361543715438154391544015441154421544315444154451544615447154481544915450154511545215453154541545515456154571545815459154601546115462154631546415465154661546715468154691547015471154721547315474154751547615477154781547915480154811548215483154841548515486154871548815489154901549115492154931549415495154961549715498154991550015501155021550315504155051550615507155081550915510155111551215513155141551515516155171551815519155201552115522155231552415525155261552715528155291553015531155321553315534155351553615537155381553915540155411554215543155441554515546155471554815549155501555115552155531555415555155561555715558155591556015561155621556315564155651556615567155681556915570155711557215573155741557515576155771557815579155801558115582155831558415585155861558715588155891559015591155921559315594155951559615597155981559915600156011560215603156041560515606156071560815609156101561115612156131561415615156161561715618156191562015621156221562315624156251562615627156281562915630156311563215633156341563515636156371563815639156401564115642156431564415645156461564715648156491565015651156521565315654156551565615657156581565915660156611566215663156641566515666156671566815669156701567115672156731567415675156761567715678156791568015681156821568315684156851568615687156881568915690156911569215693156941569515696156971569815699157001570115702157031570415705157061570715708157091571015711157121571315714157151571615717157181571915720157211572215723157241572515726157271572815729157301573115732157331573415735157361573715738157391574015741157421574315744157451574615747157481574915750157511575215753157541575515756157571575815759157601576115762157631576415765157661576715768157691577015771157721577315774157751577615777157781577915780157811578215783157841578515786157871578815789157901579115792157931579415795157961579715798157991580015801158021580315804158051580615807158081580915810158111581215813158141581515816158171581815819158201582115822158231582415825158261582715828158291583015831158321583315834158351583615837158381583915840158411584215843158441584515846158471584815849158501585115852158531585415855158561585715858158591586015861158621586315864158651586615867158681586915870158711587215873158741587515876158771587815879158801588115882158831588415885158861588715888158891589015891158921589315894158951589615897158981589915900159011590215903159041590515906159071590815909159101591115912159131591415915159161591715918159191592015921159221592315924159251592615927159281592915930159311593215933159341593515936159371593815939159401594115942159431594415945159461594715948159491595015951159521595315954159551595615957159581595915960159611596215963159641596515966159671596815969159701597115972159731597415975159761597715978159791598015981159821598315984159851598615987159881598915990159911599215993159941599515996159971599815999160001600116002160031600416005160061600716008160091601016011160121601316014160151601616017160181601916020160211602216023160241602516026160271602816029160301603116032160331603416035160361603716038160391604016041160421604316044160451604616047160481604916050160511605216053160541605516056160571605816059160601606116062160631606416065160661606716068160691607016071160721607316074160751607616077160781607916080160811608216083160841608516086160871608816089160901609116092160931609416095160961609716098160991610016101161021610316104161051610616107161081610916110161111611216113161141611516116161171611816119161201612116122161231612416125161261612716128161291613016131161321613316134161351613616137161381613916140161411614216143161441614516146161471614816149161501615116152161531615416155161561615716158161591616016161161621616316164161651616616167161681616916170161711617216173161741617516176161771617816179161801618116182161831618416185161861618716188161891619016191161921619316194161951619616197161981619916200162011620216203162041620516206162071620816209162101621116212162131621416215162161621716218162191622016221162221622316224162251622616227162281622916230162311623216233162341623516236162371623816239162401624116242162431624416245162461624716248162491625016251162521625316254162551625616257162581625916260162611626216263162641626516266162671626816269162701627116272162731627416275162761627716278162791628016281162821628316284162851628616287162881628916290162911629216293162941629516296162971629816299163001630116302163031630416305163061630716308163091631016311163121631316314163151631616317163181631916320163211632216323163241632516326163271632816329163301633116332163331633416335163361633716338163391634016341163421634316344163451634616347163481634916350163511635216353163541635516356163571635816359163601636116362163631636416365163661636716368163691637016371163721637316374163751637616377163781637916380163811638216383163841638516386163871638816389163901639116392163931639416395163961639716398163991640016401164021640316404164051640616407164081640916410164111641216413164141641516416164171641816419164201642116422164231642416425164261642716428164291643016431164321643316434164351643616437164381643916440164411644216443164441644516446164471644816449164501645116452164531645416455164561645716458164591646016461164621646316464164651646616467164681646916470164711647216473164741647516476164771647816479164801648116482164831648416485164861648716488164891649016491164921649316494164951649616497164981649916500165011650216503165041650516506165071650816509165101651116512165131651416515165161651716518165191652016521165221652316524165251652616527165281652916530165311653216533165341653516536165371653816539165401654116542165431654416545165461654716548165491655016551165521655316554165551655616557165581655916560165611656216563165641656516566165671656816569165701657116572165731657416575165761657716578165791658016581165821658316584165851658616587165881658916590165911659216593165941659516596165971659816599166001660116602166031660416605166061660716608166091661016611166121661316614166151661616617166181661916620166211662216623166241662516626166271662816629166301663116632166331663416635166361663716638166391664016641166421664316644166451664616647166481664916650166511665216653166541665516656166571665816659166601666116662166631666416665166661666716668166691667016671166721667316674166751667616677166781667916680166811668216683166841668516686166871668816689166901669116692166931669416695166961669716698166991670016701167021670316704167051670616707167081670916710167111671216713167141671516716167171671816719167201672116722167231672416725167261672716728167291673016731167321673316734167351673616737167381673916740167411674216743167441674516746167471674816749167501675116752167531675416755167561675716758167591676016761167621676316764167651676616767167681676916770167711677216773167741677516776167771677816779167801678116782167831678416785167861678716788167891679016791167921679316794167951679616797167981679916800168011680216803168041680516806168071680816809168101681116812168131681416815168161681716818168191682016821168221682316824168251682616827168281682916830168311683216833168341683516836168371683816839168401684116842168431684416845168461684716848168491685016851168521685316854168551685616857168581685916860168611686216863168641686516866168671686816869168701687116872168731687416875168761687716878168791688016881168821688316884168851688616887168881688916890168911689216893168941689516896168971689816899169001690116902169031690416905169061690716908169091691016911169121691316914169151691616917169181691916920169211692216923169241692516926169271692816929169301693116932169331693416935169361693716938169391694016941169421694316944169451694616947169481694916950169511695216953169541695516956169571695816959169601696116962169631696416965169661696716968169691697016971169721697316974169751697616977169781697916980169811698216983169841698516986169871698816989169901699116992169931699416995169961699716998169991700017001170021700317004170051700617007170081700917010170111701217013170141701517016170171701817019170201702117022170231702417025170261702717028170291703017031170321703317034170351703617037170381703917040170411704217043170441704517046170471704817049170501705117052170531705417055170561705717058170591706017061170621706317064170651706617067170681706917070170711707217073170741707517076170771707817079170801708117082170831708417085170861708717088170891709017091170921709317094170951709617097170981709917100171011710217103171041710517106171071710817109171101711117112171131711417115171161711717118171191712017121171221712317124171251712617127171281712917130171311713217133171341713517136171371713817139171401714117142171431714417145171461714717148171491715017151171521715317154171551715617157171581715917160171611716217163171641716517166171671716817169171701717117172171731717417175171761717717178171791718017181171821718317184171851718617187171881718917190171911719217193171941719517196171971719817199172001720117202172031720417205172061720717208172091721017211172121721317214172151721617217172181721917220172211722217223172241722517226172271722817229172301723117232172331723417235172361723717238172391724017241172421724317244172451724617247172481724917250172511725217253172541725517256172571725817259172601726117262172631726417265172661726717268172691727017271172721727317274172751727617277172781727917280172811728217283172841728517286172871728817289172901729117292172931729417295172961729717298172991730017301173021730317304173051730617307173081730917310173111731217313173141731517316173171731817319173201732117322173231732417325173261732717328173291733017331173321733317334173351733617337173381733917340173411734217343173441734517346173471734817349173501735117352173531735417355173561735717358173591736017361173621736317364173651736617367173681736917370173711737217373173741737517376173771737817379173801738117382173831738417385173861738717388173891739017391173921739317394173951739617397173981739917400174011740217403174041740517406174071740817409174101741117412174131741417415174161741717418174191742017421174221742317424174251742617427174281742917430174311743217433174341743517436174371743817439174401744117442174431744417445174461744717448174491745017451174521745317454174551745617457174581745917460174611746217463174641746517466174671746817469174701747117472174731747417475174761747717478174791748017481174821748317484174851748617487174881748917490174911749217493174941749517496174971749817499175001750117502175031750417505175061750717508175091751017511175121751317514175151751617517175181751917520175211752217523175241752517526175271752817529175301753117532175331753417535175361753717538175391754017541175421754317544175451754617547175481754917550175511755217553175541755517556175571755817559175601756117562175631756417565175661756717568175691757017571175721757317574175751757617577175781757917580175811758217583175841758517586175871758817589175901759117592175931759417595175961759717598175991760017601176021760317604176051760617607176081760917610176111761217613176141761517616176171761817619176201762117622176231762417625176261762717628176291763017631176321763317634176351763617637176381763917640176411764217643176441764517646176471764817649176501765117652176531765417655176561765717658176591766017661176621766317664176651766617667176681766917670176711767217673176741767517676176771767817679176801768117682176831768417685176861768717688176891769017691176921769317694176951769617697176981769917700177011770217703177041770517706177071770817709177101771117712177131771417715177161771717718177191772017721177221772317724177251772617727177281772917730177311773217733177341773517736177371773817739177401774117742177431774417745177461774717748177491775017751177521775317754177551775617757177581775917760177611776217763177641776517766177671776817769177701777117772177731777417775177761777717778177791778017781177821778317784177851778617787177881778917790177911779217793177941779517796177971779817799178001780117802178031780417805178061780717808178091781017811178121781317814178151781617817178181781917820178211782217823178241782517826178271782817829178301783117832178331783417835178361783717838178391784017841178421784317844178451784617847178481784917850178511785217853178541785517856178571785817859178601786117862178631786417865178661786717868178691787017871178721787317874178751787617877178781787917880178811788217883178841788517886178871788817889178901789117892178931789417895178961789717898178991790017901179021790317904179051790617907179081790917910179111791217913179141791517916179171791817919179201792117922179231792417925179261792717928179291793017931179321793317934179351793617937179381793917940179411794217943179441794517946179471794817949179501795117952179531795417955179561795717958179591796017961179621796317964179651796617967179681796917970179711797217973179741797517976179771797817979179801798117982179831798417985179861798717988179891799017991179921799317994179951799617997179981799918000180011800218003180041800518006180071800818009180101801118012180131801418015180161801718018180191802018021180221802318024180251802618027180281802918030180311803218033180341803518036180371803818039180401804118042180431804418045180461804718048180491805018051180521805318054180551805618057180581805918060180611806218063180641806518066180671806818069180701807118072180731807418075180761807718078180791808018081180821808318084180851808618087180881808918090180911809218093180941809518096180971809818099181001810118102181031810418105181061810718108181091811018111181121811318114181151811618117181181811918120181211812218123181241812518126181271812818129181301813118132181331813418135181361813718138181391814018141181421814318144181451814618147181481814918150181511815218153181541815518156181571815818159181601816118162181631816418165181661816718168181691817018171181721817318174181751817618177181781817918180181811818218183181841818518186181871818818189181901819118192181931819418195181961819718198181991820018201182021820318204182051820618207182081820918210182111821218213182141821518216182171821818219182201822118222182231822418225182261822718228182291823018231182321823318234182351823618237182381823918240182411824218243182441824518246182471824818249182501825118252182531825418255182561825718258182591826018261182621826318264182651826618267182681826918270182711827218273182741827518276182771827818279182801828118282182831828418285182861828718288182891829018291182921829318294182951829618297182981829918300183011830218303183041830518306183071830818309183101831118312183131831418315183161831718318183191832018321183221832318324183251832618327183281832918330183311833218333183341833518336183371833818339183401834118342183431834418345183461834718348183491835018351183521835318354183551835618357183581835918360183611836218363183641836518366183671836818369183701837118372183731837418375183761837718378183791838018381183821838318384183851838618387183881838918390183911839218393183941839518396183971839818399184001840118402184031840418405184061840718408184091841018411184121841318414184151841618417184181841918420184211842218423184241842518426184271842818429184301843118432184331843418435184361843718438184391844018441184421844318444184451844618447184481844918450184511845218453184541845518456184571845818459184601846118462184631846418465184661846718468184691847018471184721847318474184751847618477184781847918480184811848218483184841848518486184871848818489184901849118492184931849418495184961849718498184991850018501185021850318504185051850618507185081850918510185111851218513185141851518516185171851818519185201852118522185231852418525185261852718528185291853018531185321853318534185351853618537185381853918540185411854218543185441854518546185471854818549185501855118552185531855418555185561855718558185591856018561185621856318564185651856618567185681856918570185711857218573185741857518576185771857818579185801858118582185831858418585185861858718588185891859018591185921859318594185951859618597185981859918600186011860218603186041860518606186071860818609186101861118612186131861418615186161861718618186191862018621186221862318624186251862618627186281862918630186311863218633186341863518636186371863818639186401864118642186431864418645186461864718648186491865018651186521865318654186551865618657186581865918660186611866218663186641866518666186671866818669186701867118672186731867418675186761867718678186791868018681186821868318684186851868618687186881868918690186911869218693186941869518696186971869818699187001870118702187031870418705187061870718708187091871018711187121871318714187151871618717187181871918720187211872218723187241872518726187271872818729187301873118732187331873418735187361873718738187391874018741187421874318744187451874618747187481874918750187511875218753187541875518756187571875818759187601876118762187631876418765187661876718768187691877018771187721877318774187751877618777187781877918780187811878218783187841878518786187871878818789187901879118792187931879418795187961879718798187991880018801188021880318804188051880618807188081880918810188111881218813188141881518816188171881818819188201882118822188231882418825188261882718828188291883018831188321883318834188351883618837188381883918840188411884218843188441884518846188471884818849188501885118852188531885418855188561885718858188591886018861188621886318864188651886618867188681886918870188711887218873188741887518876188771887818879188801888118882188831888418885188861888718888188891889018891188921889318894188951889618897188981889918900189011890218903189041890518906189071890818909189101891118912189131891418915189161891718918189191892018921189221892318924189251892618927189281892918930189311893218933189341893518936189371893818939189401894118942189431894418945189461894718948189491895018951189521895318954189551895618957189581895918960189611896218963189641896518966189671896818969189701897118972189731897418975189761897718978189791898018981189821898318984189851898618987189881898918990189911899218993189941899518996189971899818999190001900119002190031900419005190061900719008190091901019011190121901319014190151901619017190181901919020190211902219023190241902519026190271902819029190301903119032190331903419035190361903719038190391904019041190421904319044190451904619047190481904919050190511905219053190541905519056190571905819059190601906119062190631906419065190661906719068190691907019071190721907319074190751907619077190781907919080190811908219083190841908519086190871908819089190901909119092190931909419095190961909719098190991910019101191021910319104191051910619107191081910919110191111911219113191141911519116191171911819119191201912119122191231912419125191261912719128191291913019131191321913319134191351913619137191381913919140191411914219143191441914519146191471914819149191501915119152191531915419155191561915719158191591916019161191621916319164191651916619167191681916919170191711917219173191741917519176191771917819179191801918119182191831918419185191861918719188191891919019191191921919319194191951919619197191981919919200192011920219203192041920519206192071920819209192101921119212192131921419215192161921719218192191922019221192221922319224192251922619227192281922919230192311923219233192341923519236192371923819239192401924119242192431924419245192461924719248192491925019251192521925319254192551925619257192581925919260192611926219263192641926519266192671926819269192701927119272192731927419275192761927719278192791928019281192821928319284192851928619287192881928919290192911929219293192941929519296192971929819299193001930119302193031930419305193061930719308193091931019311193121931319314193151931619317193181931919320193211932219323193241932519326193271932819329193301933119332193331933419335193361933719338193391934019341193421934319344193451934619347193481934919350193511935219353193541935519356193571935819359193601936119362193631936419365193661936719368193691937019371193721937319374193751937619377193781937919380193811938219383193841938519386193871938819389193901939119392193931939419395193961939719398193991940019401194021940319404194051940619407194081940919410194111941219413194141941519416194171941819419194201942119422194231942419425194261942719428194291943019431194321943319434194351943619437194381943919440194411944219443194441944519446194471944819449194501945119452194531945419455194561945719458194591946019461194621946319464194651946619467194681946919470194711947219473194741947519476194771947819479194801948119482194831948419485194861948719488194891949019491194921949319494194951949619497194981949919500195011950219503195041950519506195071950819509195101951119512195131951419515195161951719518195191952019521195221952319524195251952619527195281952919530195311953219533195341953519536195371953819539195401954119542195431954419545195461954719548195491955019551195521955319554195551955619557195581955919560195611956219563195641956519566195671956819569195701957119572195731957419575195761957719578195791958019581195821958319584195851958619587195881958919590195911959219593195941959519596195971959819599196001960119602196031960419605196061960719608196091961019611196121961319614196151961619617196181961919620196211962219623196241962519626196271962819629196301963119632196331963419635196361963719638196391964019641196421964319644196451964619647196481964919650196511965219653196541965519656196571965819659196601966119662196631966419665196661966719668196691967019671196721967319674196751967619677196781967919680196811968219683196841968519686196871968819689196901969119692196931969419695196961969719698196991970019701197021970319704197051970619707197081970919710197111971219713197141971519716197171971819719197201972119722197231972419725197261972719728197291973019731197321973319734197351973619737197381973919740197411974219743197441974519746197471974819749197501975119752197531975419755197561975719758197591976019761197621976319764197651976619767197681976919770197711977219773197741977519776197771977819779197801978119782197831978419785197861978719788197891979019791197921979319794197951979619797197981979919800198011980219803198041980519806198071980819809198101981119812198131981419815198161981719818198191982019821198221982319824198251982619827198281982919830198311983219833198341983519836198371983819839198401984119842198431984419845198461984719848198491985019851198521985319854198551985619857198581985919860198611986219863198641986519866198671986819869198701987119872198731987419875198761987719878198791988019881198821988319884198851988619887198881988919890198911989219893198941989519896198971989819899199001990119902199031990419905199061990719908199091991019911199121991319914199151991619917199181991919920199211992219923199241992519926199271992819929199301993119932199331993419935199361993719938199391994019941199421994319944199451994619947199481994919950199511995219953199541995519956199571995819959199601996119962199631996419965199661996719968199691997019971199721997319974199751997619977199781997919980199811998219983199841998519986199871998819989199901999119992199931999419995199961999719998199992000020001200022000320004200052000620007200082000920010200112001220013200142001520016200172001820019200202002120022200232002420025200262002720028200292003020031200322003320034200352003620037200382003920040200412004220043200442004520046200472004820049200502005120052200532005420055200562005720058200592006020061200622006320064200652006620067200682006920070200712007220073200742007520076200772007820079200802008120082200832008420085200862008720088200892009020091200922009320094200952009620097200982009920100201012010220103201042010520106201072010820109201102011120112201132011420115201162011720118201192012020121201222012320124201252012620127201282012920130201312013220133201342013520136201372013820139201402014120142201432014420145201462014720148201492015020151201522015320154201552015620157201582015920160201612016220163201642016520166201672016820169201702017120172201732017420175201762017720178201792018020181201822018320184201852018620187201882018920190201912019220193201942019520196201972019820199202002020120202202032020420205202062020720208202092021020211202122021320214202152021620217202182021920220202212022220223202242022520226202272022820229202302023120232202332023420235202362023720238202392024020241202422024320244202452024620247202482024920250202512025220253202542025520256202572025820259202602026120262202632026420265202662026720268202692027020271202722027320274202752027620277202782027920280202812028220283202842028520286202872028820289202902029120292202932029420295202962029720298202992030020301203022030320304203052030620307203082030920310203112031220313203142031520316203172031820319203202032120322203232032420325203262032720328203292033020331203322033320334203352033620337203382033920340203412034220343203442034520346203472034820349203502035120352203532035420355203562035720358203592036020361203622036320364203652036620367203682036920370203712037220373203742037520376203772037820379203802038120382203832038420385203862038720388203892039020391203922039320394203952039620397203982039920400204012040220403204042040520406204072040820409204102041120412204132041420415204162041720418204192042020421204222042320424204252042620427204282042920430204312043220433204342043520436204372043820439204402044120442204432044420445204462044720448204492045020451204522045320454204552045620457204582045920460204612046220463204642046520466204672046820469204702047120472204732047420475204762047720478204792048020481204822048320484204852048620487204882048920490204912049220493204942049520496204972049820499205002050120502205032050420505205062050720508205092051020511205122051320514205152051620517205182051920520205212052220523205242052520526205272052820529205302053120532205332053420535205362053720538205392054020541205422054320544205452054620547205482054920550205512055220553205542055520556205572055820559205602056120562205632056420565205662056720568205692057020571205722057320574205752057620577205782057920580205812058220583205842058520586205872058820589205902059120592205932059420595205962059720598205992060020601206022060320604206052060620607206082060920610206112061220613206142061520616206172061820619206202062120622206232062420625206262062720628206292063020631206322063320634206352063620637206382063920640206412064220643206442064520646206472064820649206502065120652206532065420655206562065720658206592066020661206622066320664206652066620667206682066920670206712067220673206742067520676206772067820679206802068120682206832068420685206862068720688206892069020691206922069320694206952069620697206982069920700207012070220703207042070520706207072070820709207102071120712207132071420715207162071720718207192072020721207222072320724207252072620727207282072920730207312073220733207342073520736207372073820739207402074120742207432074420745207462074720748207492075020751207522075320754207552075620757207582075920760207612076220763207642076520766207672076820769207702077120772207732077420775207762077720778207792078020781207822078320784207852078620787207882078920790207912079220793207942079520796207972079820799208002080120802208032080420805208062080720808208092081020811208122081320814208152081620817208182081920820208212082220823208242082520826208272082820829208302083120832208332083420835208362083720838208392084020841208422084320844208452084620847208482084920850208512085220853208542085520856208572085820859208602086120862208632086420865208662086720868208692087020871208722087320874208752087620877208782087920880208812088220883208842088520886208872088820889208902089120892208932089420895208962089720898208992090020901209022090320904209052090620907209082090920910209112091220913209142091520916209172091820919209202092120922209232092420925209262092720928209292093020931209322093320934209352093620937209382093920940209412094220943209442094520946209472094820949209502095120952209532095420955209562095720958209592096020961209622096320964209652096620967209682096920970209712097220973209742097520976209772097820979209802098120982209832098420985209862098720988209892099020991209922099320994209952099620997209982099921000210012100221003210042100521006210072100821009210102101121012210132101421015210162101721018210192102021021210222102321024210252102621027210282102921030210312103221033210342103521036210372103821039210402104121042210432104421045210462104721048210492105021051210522105321054210552105621057210582105921060210612106221063210642106521066210672106821069210702107121072210732107421075210762107721078210792108021081210822108321084210852108621087210882108921090210912109221093210942109521096210972109821099211002110121102211032110421105211062110721108211092111021111211122111321114211152111621117211182111921120211212112221123211242112521126211272112821129211302113121132211332113421135211362113721138211392114021141211422114321144211452114621147211482114921150211512115221153211542115521156211572115821159211602116121162211632116421165211662116721168211692117021171211722117321174211752117621177211782117921180211812118221183211842118521186211872118821189211902119121192211932119421195211962119721198211992120021201212022120321204212052120621207212082120921210212112121221213212142121521216212172121821219212202122121222212232122421225212262122721228212292123021231212322123321234212352123621237212382123921240212412124221243212442124521246212472124821249212502125121252212532125421255212562125721258212592126021261212622126321264212652126621267212682126921270212712127221273212742127521276212772127821279212802128121282212832128421285212862128721288212892129021291212922129321294212952129621297212982129921300213012130221303213042130521306213072130821309213102131121312213132131421315213162131721318213192132021321213222132321324213252132621327213282132921330213312133221333213342133521336213372133821339213402134121342213432134421345213462134721348213492135021351213522135321354213552135621357213582135921360213612136221363213642136521366213672136821369213702137121372213732137421375213762137721378213792138021381213822138321384213852138621387213882138921390213912139221393213942139521396213972139821399214002140121402214032140421405214062140721408214092141021411214122141321414214152141621417214182141921420214212142221423214242142521426214272142821429214302143121432214332143421435214362143721438214392144021441214422144321444214452144621447214482144921450214512145221453214542145521456214572145821459214602146121462214632146421465214662146721468214692147021471214722147321474214752147621477214782147921480214812148221483214842148521486214872148821489214902149121492214932149421495214962149721498214992150021501215022150321504215052150621507215082150921510215112151221513215142151521516215172151821519215202152121522215232152421525215262152721528215292153021531215322153321534215352153621537215382153921540215412154221543215442154521546215472154821549215502155121552215532155421555215562155721558215592156021561215622156321564215652156621567215682156921570215712157221573215742157521576215772157821579215802158121582215832158421585215862158721588215892159021591215922159321594215952159621597215982159921600216012160221603216042160521606216072160821609216102161121612216132161421615216162161721618216192162021621216222162321624216252162621627216282162921630216312163221633216342163521636216372163821639216402164121642216432164421645216462164721648216492165021651216522165321654216552165621657216582165921660216612166221663216642166521666216672166821669216702167121672216732167421675216762167721678216792168021681216822168321684216852168621687216882168921690216912169221693216942169521696216972169821699217002170121702217032170421705217062170721708217092171021711217122171321714217152171621717217182171921720217212172221723217242172521726217272172821729217302173121732217332173421735217362173721738217392174021741217422174321744217452174621747217482174921750217512175221753217542175521756217572175821759217602176121762217632176421765217662176721768217692177021771217722177321774217752177621777217782177921780217812178221783217842178521786217872178821789217902179121792217932179421795217962179721798217992180021801218022180321804218052180621807218082180921810218112181221813218142181521816218172181821819218202182121822218232182421825218262182721828218292183021831218322183321834218352183621837218382183921840218412184221843218442184521846218472184821849218502185121852218532185421855218562185721858218592186021861218622186321864218652186621867218682186921870218712187221873218742187521876218772187821879218802188121882218832188421885218862188721888218892189021891218922189321894218952189621897218982189921900219012190221903219042190521906219072190821909219102191121912219132191421915219162191721918219192192021921219222192321924219252192621927219282192921930219312193221933219342193521936219372193821939219402194121942219432194421945219462194721948219492195021951219522195321954219552195621957219582195921960219612196221963219642196521966219672196821969219702197121972219732197421975219762197721978219792198021981219822198321984219852198621987219882198921990219912199221993219942199521996219972199821999220002200122002220032200422005220062200722008220092201022011220122201322014220152201622017220182201922020220212202222023220242202522026220272202822029220302203122032220332203422035220362203722038220392204022041220422204322044220452204622047220482204922050220512205222053220542205522056220572205822059220602206122062220632206422065220662206722068220692207022071220722207322074220752207622077220782207922080220812208222083220842208522086220872208822089220902209122092220932209422095220962209722098220992210022101221022210322104221052210622107221082210922110221112211222113221142211522116221172211822119221202212122122221232212422125221262212722128221292213022131221322213322134221352213622137221382213922140221412214222143221442214522146221472214822149221502215122152221532215422155221562215722158221592216022161221622216322164221652216622167221682216922170221712217222173221742217522176221772217822179221802218122182221832218422185221862218722188221892219022191221922219322194221952219622197221982219922200222012220222203222042220522206222072220822209222102221122212222132221422215222162221722218222192222022221222222222322224222252222622227222282222922230222312223222233222342223522236222372223822239222402224122242222432224422245222462224722248222492225022251222522225322254222552225622257222582225922260222612226222263222642226522266222672226822269222702227122272222732227422275222762227722278222792228022281222822228322284222852228622287222882228922290222912229222293222942229522296222972229822299223002230122302223032230422305223062230722308223092231022311223122231322314223152231622317223182231922320223212232222323223242232522326223272232822329223302233122332223332233422335223362233722338223392234022341223422234322344223452234622347223482234922350223512235222353223542235522356223572235822359223602236122362223632236422365223662236722368223692237022371223722237322374223752237622377223782237922380223812238222383223842238522386223872238822389223902239122392223932239422395223962239722398223992240022401224022240322404224052240622407224082240922410224112241222413224142241522416224172241822419224202242122422224232242422425224262242722428224292243022431224322243322434224352243622437224382243922440224412244222443224442244522446224472244822449224502245122452224532245422455224562245722458224592246022461224622246322464224652246622467224682246922470224712247222473224742247522476224772247822479224802248122482224832248422485224862248722488224892249022491224922249322494224952249622497224982249922500225012250222503225042250522506225072250822509225102251122512225132251422515225162251722518225192252022521225222252322524225252252622527225282252922530225312253222533225342253522536225372253822539225402254122542225432254422545225462254722548225492255022551225522255322554225552255622557225582255922560225612256222563225642256522566225672256822569225702257122572225732257422575225762257722578225792258022581225822258322584225852258622587225882258922590225912259222593225942259522596225972259822599226002260122602226032260422605226062260722608226092261022611226122261322614226152261622617226182261922620226212262222623226242262522626226272262822629226302263122632226332263422635226362263722638226392264022641226422264322644226452264622647226482264922650226512265222653226542265522656226572265822659226602266122662226632266422665226662266722668226692267022671226722267322674226752267622677226782267922680226812268222683226842268522686226872268822689226902269122692226932269422695226962269722698226992270022701227022270322704227052270622707227082270922710227112271222713227142271522716227172271822719227202272122722227232272422725227262272722728227292273022731227322273322734227352273622737227382273922740227412274222743227442274522746227472274822749227502275122752227532275422755227562275722758227592276022761227622276322764227652276622767227682276922770227712277222773227742277522776227772277822779227802278122782227832278422785227862278722788227892279022791227922279322794227952279622797227982279922800228012280222803228042280522806228072280822809228102281122812228132281422815228162281722818228192282022821228222282322824228252282622827228282282922830228312283222833228342283522836228372283822839228402284122842228432284422845228462284722848228492285022851228522285322854228552285622857228582285922860228612286222863228642286522866228672286822869228702287122872228732287422875228762287722878228792288022881228822288322884228852288622887228882288922890228912289222893228942289522896228972289822899229002290122902229032290422905229062290722908229092291022911229122291322914229152291622917229182291922920229212292222923229242292522926229272292822929229302293122932229332293422935229362293722938229392294022941229422294322944229452294622947229482294922950229512295222953229542295522956229572295822959229602296122962229632296422965229662296722968229692297022971229722297322974229752297622977229782297922980229812298222983229842298522986229872298822989229902299122992229932299422995229962299722998229992300023001230022300323004230052300623007230082300923010230112301223013230142301523016230172301823019230202302123022230232302423025230262302723028230292303023031230322303323034230352303623037230382303923040230412304223043230442304523046230472304823049230502305123052230532305423055230562305723058230592306023061230622306323064230652306623067230682306923070230712307223073230742307523076230772307823079230802308123082230832308423085230862308723088230892309023091230922309323094230952309623097230982309923100231012310223103231042310523106231072310823109231102311123112231132311423115231162311723118231192312023121231222312323124231252312623127231282312923130231312313223133231342313523136231372313823139231402314123142231432314423145231462314723148231492315023151231522315323154231552315623157231582315923160231612316223163231642316523166231672316823169231702317123172231732317423175231762317723178231792318023181231822318323184231852318623187231882318923190231912319223193231942319523196231972319823199232002320123202232032320423205232062320723208232092321023211232122321323214232152321623217232182321923220232212322223223232242322523226232272322823229232302323123232232332323423235232362323723238232392324023241232422324323244232452324623247232482324923250232512325223253232542325523256232572325823259232602326123262232632326423265232662326723268232692327023271232722327323274232752327623277232782327923280232812328223283232842328523286232872328823289232902329123292232932329423295232962329723298232992330023301233022330323304233052330623307233082330923310233112331223313233142331523316233172331823319233202332123322233232332423325233262332723328233292333023331233322333323334233352333623337233382333923340233412334223343233442334523346233472334823349233502335123352233532335423355233562335723358233592336023361233622336323364233652336623367233682336923370233712337223373233742337523376233772337823379233802338123382233832338423385233862338723388233892339023391233922339323394233952339623397233982339923400234012340223403234042340523406234072340823409234102341123412234132341423415234162341723418234192342023421234222342323424234252342623427234282342923430234312343223433234342343523436234372343823439234402344123442234432344423445234462344723448234492345023451234522345323454234552345623457234582345923460234612346223463234642346523466234672346823469234702347123472234732347423475234762347723478234792348023481234822348323484234852348623487234882348923490234912349223493234942349523496234972349823499235002350123502235032350423505235062350723508235092351023511235122351323514235152351623517235182351923520235212352223523235242352523526235272352823529235302353123532235332353423535235362353723538235392354023541235422354323544235452354623547235482354923550235512355223553235542355523556235572355823559235602356123562235632356423565235662356723568235692357023571235722357323574235752357623577235782357923580235812358223583235842358523586235872358823589235902359123592235932359423595235962359723598235992360023601236022360323604236052360623607236082360923610236112361223613236142361523616236172361823619236202362123622236232362423625236262362723628236292363023631236322363323634236352363623637236382363923640236412364223643236442364523646236472364823649236502365123652236532365423655236562365723658236592366023661236622366323664236652366623667236682366923670236712367223673236742367523676236772367823679236802368123682236832368423685236862368723688236892369023691236922369323694236952369623697236982369923700237012370223703237042370523706237072370823709237102371123712237132371423715237162371723718237192372023721237222372323724237252372623727237282372923730237312373223733237342373523736237372373823739237402374123742237432374423745237462374723748237492375023751237522375323754237552375623757237582375923760237612376223763237642376523766237672376823769237702377123772237732377423775237762377723778237792378023781237822378323784237852378623787237882378923790237912379223793237942379523796237972379823799238002380123802238032380423805238062380723808238092381023811238122381323814238152381623817238182381923820238212382223823238242382523826238272382823829238302383123832238332383423835238362383723838238392384023841238422384323844238452384623847238482384923850238512385223853238542385523856238572385823859238602386123862238632386423865238662386723868238692387023871238722387323874238752387623877238782387923880238812388223883238842388523886238872388823889238902389123892238932389423895238962389723898238992390023901239022390323904239052390623907239082390923910239112391223913239142391523916239172391823919239202392123922239232392423925239262392723928239292393023931239322393323934239352393623937239382393923940239412394223943239442394523946239472394823949239502395123952239532395423955239562395723958239592396023961239622396323964239652396623967239682396923970239712397223973239742397523976239772397823979239802398123982239832398423985239862398723988239892399023991239922399323994239952399623997239982399924000240012400224003240042400524006240072400824009240102401124012240132401424015240162401724018240192402024021240222402324024240252402624027240282402924030240312403224033240342403524036240372403824039240402404124042240432404424045240462404724048240492405024051240522405324054240552405624057240582405924060240612406224063240642406524066240672406824069240702407124072240732407424075240762407724078240792408024081240822408324084240852408624087240882408924090240912409224093240942409524096240972409824099241002410124102241032410424105241062410724108241092411024111241122411324114241152411624117241182411924120241212412224123241242412524126241272412824129241302413124132241332413424135241362413724138241392414024141241422414324144241452414624147241482414924150241512415224153241542415524156241572415824159241602416124162241632416424165241662416724168241692417024171241722417324174241752417624177241782417924180241812418224183241842418524186241872418824189241902419124192241932419424195241962419724198241992420024201242022420324204242052420624207242082420924210242112421224213242142421524216242172421824219242202422124222242232422424225242262422724228242292423024231242322423324234242352423624237242382423924240242412424224243242442424524246242472424824249242502425124252242532425424255242562425724258242592426024261242622426324264242652426624267242682426924270242712427224273242742427524276242772427824279242802428124282242832428424285242862428724288242892429024291242922429324294242952429624297242982429924300243012430224303243042430524306243072430824309243102431124312243132431424315243162431724318243192432024321243222432324324243252432624327243282432924330243312433224333243342433524336243372433824339243402434124342243432434424345243462434724348243492435024351243522435324354243552435624357243582435924360243612436224363243642436524366243672436824369243702437124372243732437424375243762437724378243792438024381243822438324384243852438624387243882438924390243912439224393243942439524396243972439824399244002440124402244032440424405244062440724408244092441024411244122441324414244152441624417244182441924420244212442224423244242442524426244272442824429244302443124432244332443424435244362443724438244392444024441244422444324444244452444624447244482444924450244512445224453244542445524456244572445824459244602446124462244632446424465244662446724468244692447024471244722447324474244752447624477244782447924480244812448224483244842448524486244872448824489244902449124492244932449424495244962449724498244992450024501245022450324504245052450624507245082450924510245112451224513245142451524516245172451824519245202452124522245232452424525245262452724528245292453024531245322453324534245352453624537245382453924540245412454224543245442454524546245472454824549245502455124552245532455424555245562455724558245592456024561245622456324564245652456624567245682456924570245712457224573245742457524576245772457824579245802458124582245832458424585245862458724588245892459024591245922459324594245952459624597245982459924600246012460224603246042460524606246072460824609246102461124612246132461424615246162461724618246192462024621246222462324624246252462624627246282462924630246312463224633246342463524636246372463824639246402464124642246432464424645246462464724648246492465024651246522465324654246552465624657246582465924660246612466224663246642466524666246672466824669246702467124672246732467424675246762467724678246792468024681246822468324684246852468624687246882468924690246912469224693246942469524696246972469824699247002470124702247032470424705247062470724708247092471024711247122471324714247152471624717247182471924720247212472224723247242472524726247272472824729247302473124732247332473424735247362473724738247392474024741247422474324744247452474624747247482474924750247512475224753247542475524756247572475824759247602476124762247632476424765247662476724768247692477024771247722477324774247752477624777247782477924780247812478224783247842478524786247872478824789247902479124792247932479424795247962479724798247992480024801248022480324804248052480624807248082480924810248112481224813248142481524816248172481824819248202482124822248232482424825248262482724828248292483024831248322483324834248352483624837248382483924840248412484224843248442484524846248472484824849248502485124852248532485424855248562485724858248592486024861248622486324864248652486624867248682486924870248712487224873248742487524876248772487824879248802488124882248832488424885248862488724888248892489024891248922489324894248952489624897248982489924900249012490224903249042490524906249072490824909249102491124912249132491424915249162491724918249192492024921249222492324924249252492624927249282492924930249312493224933249342493524936249372493824939249402494124942249432494424945249462494724948249492495024951249522495324954249552495624957249582495924960249612496224963249642496524966249672496824969249702497124972249732497424975249762497724978249792498024981249822498324984249852498624987249882498924990249912499224993249942499524996249972499824999250002500125002250032500425005250062500725008250092501025011250122501325014250152501625017250182501925020250212502225023250242502525026250272502825029250302503125032250332503425035250362503725038250392504025041250422504325044250452504625047250482504925050250512505225053250542505525056250572505825059250602506125062250632506425065250662506725068250692507025071250722507325074250752507625077250782507925080250812508225083250842508525086250872508825089250902509125092250932509425095250962509725098250992510025101251022510325104251052510625107251082510925110251112511225113251142511525116251172511825119251202512125122251232512425125251262512725128251292513025131251322513325134251352513625137251382513925140251412514225143251442514525146251472514825149251502515125152251532515425155251562515725158251592516025161251622516325164251652516625167251682516925170251712517225173251742517525176251772517825179251802518125182251832518425185251862518725188251892519025191251922519325194251952519625197251982519925200252012520225203252042520525206252072520825209252102521125212252132521425215252162521725218252192522025221252222522325224252252522625227252282522925230252312523225233252342523525236252372523825239252402524125242252432524425245252462524725248252492525025251252522525325254252552525625257252582525925260252612526225263252642526525266252672526825269252702527125272252732527425275252762527725278252792528025281252822528325284252852528625287252882528925290252912529225293252942529525296252972529825299253002530125302253032530425305253062530725308253092531025311253122531325314253152531625317253182531925320253212532225323253242532525326253272532825329253302533125332253332533425335253362533725338253392534025341253422534325344253452534625347253482534925350253512535225353253542535525356253572535825359253602536125362253632536425365253662536725368253692537025371253722537325374253752537625377253782537925380253812538225383253842538525386253872538825389253902539125392253932539425395253962539725398253992540025401254022540325404254052540625407254082540925410254112541225413254142541525416254172541825419254202542125422254232542425425254262542725428254292543025431254322543325434254352543625437254382543925440254412544225443254442544525446254472544825449254502545125452254532545425455254562545725458254592546025461254622546325464254652546625467254682546925470254712547225473254742547525476254772547825479254802548125482254832548425485254862548725488254892549025491254922549325494254952549625497254982549925500255012550225503255042550525506255072550825509255102551125512255132551425515255162551725518255192552025521255222552325524255252552625527255282552925530255312553225533255342553525536255372553825539255402554125542255432554425545255462554725548255492555025551255522555325554255552555625557255582555925560255612556225563255642556525566255672556825569255702557125572255732557425575255762557725578255792558025581255822558325584255852558625587255882558925590255912559225593255942559525596255972559825599256002560125602256032560425605256062560725608256092561025611256122561325614256152561625617256182561925620256212562225623256242562525626256272562825629256302563125632256332563425635256362563725638256392564025641256422564325644256452564625647256482564925650256512565225653256542565525656256572565825659256602566125662256632566425665256662566725668256692567025671256722567325674256752567625677256782567925680256812568225683256842568525686256872568825689256902569125692256932569425695256962569725698256992570025701257022570325704257052570625707257082570925710257112571225713257142571525716257172571825719257202572125722257232572425725257262572725728257292573025731257322573325734257352573625737257382573925740257412574225743257442574525746257472574825749257502575125752257532575425755257562575725758257592576025761257622576325764257652576625767257682576925770257712577225773257742577525776257772577825779257802578125782257832578425785257862578725788257892579025791257922579325794257952579625797257982579925800258012580225803258042580525806258072580825809258102581125812258132581425815258162581725818258192582025821258222582325824258252582625827258282582925830258312583225833258342583525836258372583825839258402584125842258432584425845258462584725848258492585025851258522585325854258552585625857258582585925860258612586225863258642586525866258672586825869258702587125872258732587425875258762587725878258792588025881258822588325884258852588625887258882588925890258912589225893258942589525896258972589825899259002590125902259032590425905259062590725908259092591025911259122591325914259152591625917259182591925920259212592225923259242592525926259272592825929259302593125932259332593425935259362593725938259392594025941259422594325944259452594625947259482594925950259512595225953259542595525956259572595825959259602596125962259632596425965259662596725968259692597025971259722597325974259752597625977259782597925980259812598225983259842598525986259872598825989259902599125992259932599425995259962599725998259992600026001260022600326004260052600626007260082600926010260112601226013260142601526016260172601826019260202602126022260232602426025260262602726028260292603026031260322603326034260352603626037260382603926040260412604226043260442604526046260472604826049260502605126052260532605426055260562605726058260592606026061260622606326064260652606626067260682606926070260712607226073260742607526076260772607826079260802608126082260832608426085260862608726088260892609026091260922609326094260952609626097260982609926100261012610226103261042610526106261072610826109261102611126112261132611426115261162611726118261192612026121261222612326124261252612626127261282612926130261312613226133261342613526136261372613826139261402614126142261432614426145261462614726148261492615026151261522615326154261552615626157261582615926160261612616226163261642616526166261672616826169261702617126172261732617426175261762617726178261792618026181261822618326184261852618626187261882618926190261912619226193261942619526196261972619826199262002620126202262032620426205262062620726208262092621026211262122621326214262152621626217262182621926220262212622226223262242622526226262272622826229262302623126232262332623426235262362623726238262392624026241262422624326244262452624626247262482624926250262512625226253262542625526256262572625826259262602626126262262632626426265262662626726268262692627026271262722627326274262752627626277262782627926280262812628226283262842628526286262872628826289262902629126292262932629426295262962629726298262992630026301263022630326304263052630626307263082630926310263112631226313263142631526316263172631826319263202632126322263232632426325263262632726328263292633026331263322633326334263352633626337263382633926340263412634226343263442634526346263472634826349263502635126352263532635426355263562635726358263592636026361263622636326364263652636626367263682636926370263712637226373263742637526376263772637826379263802638126382263832638426385263862638726388263892639026391263922639326394263952639626397263982639926400264012640226403264042640526406264072640826409264102641126412264132641426415264162641726418264192642026421264222642326424264252642626427264282642926430264312643226433264342643526436264372643826439264402644126442264432644426445264462644726448264492645026451264522645326454264552645626457264582645926460264612646226463264642646526466264672646826469264702647126472264732647426475264762647726478264792648026481264822648326484264852648626487264882648926490264912649226493264942649526496264972649826499265002650126502265032650426505265062650726508265092651026511265122651326514265152651626517265182651926520265212652226523265242652526526265272652826529265302653126532265332653426535265362653726538265392654026541265422654326544265452654626547265482654926550265512655226553265542655526556265572655826559265602656126562265632656426565265662656726568265692657026571265722657326574265752657626577265782657926580265812658226583265842658526586265872658826589265902659126592265932659426595265962659726598265992660026601266022660326604266052660626607266082660926610266112661226613266142661526616266172661826619266202662126622266232662426625266262662726628266292663026631266322663326634266352663626637266382663926640266412664226643266442664526646266472664826649266502665126652266532665426655266562665726658266592666026661266622666326664266652666626667266682666926670266712667226673266742667526676266772667826679266802668126682266832668426685266862668726688266892669026691266922669326694266952669626697266982669926700267012670226703267042670526706267072670826709267102671126712267132671426715267162671726718267192672026721267222672326724267252672626727267282672926730267312673226733267342673526736267372673826739267402674126742267432674426745267462674726748267492675026751267522675326754267552675626757267582675926760267612676226763267642676526766267672676826769267702677126772267732677426775267762677726778267792678026781267822678326784267852678626787267882678926790267912679226793267942679526796267972679826799268002680126802268032680426805268062680726808268092681026811268122681326814268152681626817268182681926820268212682226823268242682526826268272682826829268302683126832268332683426835268362683726838268392684026841268422684326844268452684626847268482684926850268512685226853268542685526856268572685826859268602686126862268632686426865268662686726868268692687026871268722687326874268752687626877268782687926880268812688226883268842688526886268872688826889268902689126892268932689426895268962689726898268992690026901269022690326904269052690626907269082690926910269112691226913269142691526916269172691826919269202692126922269232692426925269262692726928269292693026931269322693326934269352693626937269382693926940269412694226943269442694526946269472694826949269502695126952269532695426955269562695726958269592696026961269622696326964269652696626967269682696926970269712697226973269742697526976269772697826979269802698126982269832698426985269862698726988269892699026991269922699326994269952699626997269982699927000270012700227003270042700527006270072700827009270102701127012270132701427015270162701727018270192702027021270222702327024270252702627027270282702927030270312703227033270342703527036270372703827039270402704127042270432704427045270462704727048270492705027051270522705327054270552705627057270582705927060270612706227063270642706527066270672706827069270702707127072270732707427075270762707727078270792708027081270822708327084270852708627087270882708927090270912709227093270942709527096270972709827099271002710127102271032710427105271062710727108271092711027111271122711327114271152711627117271182711927120271212712227123271242712527126271272712827129271302713127132271332713427135271362713727138271392714027141271422714327144271452714627147271482714927150271512715227153271542715527156271572715827159271602716127162271632716427165271662716727168271692717027171271722717327174271752717627177271782717927180271812718227183271842718527186271872718827189271902719127192271932719427195271962719727198271992720027201272022720327204272052720627207272082720927210272112721227213272142721527216272172721827219272202722127222272232722427225272262722727228272292723027231272322723327234272352723627237272382723927240272412724227243272442724527246272472724827249272502725127252272532725427255272562725727258272592726027261272622726327264272652726627267272682726927270272712727227273272742727527276272772727827279272802728127282272832728427285272862728727288272892729027291272922729327294272952729627297272982729927300273012730227303273042730527306273072730827309273102731127312273132731427315273162731727318273192732027321273222732327324273252732627327273282732927330273312733227333273342733527336273372733827339273402734127342273432734427345273462734727348273492735027351273522735327354273552735627357273582735927360273612736227363273642736527366273672736827369273702737127372273732737427375273762737727378273792738027381273822738327384273852738627387273882738927390273912739227393273942739527396273972739827399274002740127402274032740427405274062740727408274092741027411274122741327414274152741627417274182741927420274212742227423274242742527426274272742827429274302743127432274332743427435274362743727438274392744027441274422744327444274452744627447274482744927450274512745227453274542745527456274572745827459274602746127462274632746427465274662746727468274692747027471274722747327474274752747627477274782747927480274812748227483274842748527486274872748827489274902749127492274932749427495274962749727498274992750027501275022750327504275052750627507275082750927510275112751227513275142751527516275172751827519275202752127522275232752427525275262752727528275292753027531275322753327534275352753627537275382753927540275412754227543275442754527546275472754827549275502755127552275532755427555275562755727558275592756027561275622756327564275652756627567275682756927570275712757227573275742757527576275772757827579275802758127582275832758427585275862758727588275892759027591275922759327594275952759627597275982759927600276012760227603276042760527606276072760827609276102761127612276132761427615276162761727618276192762027621276222762327624276252762627627276282762927630276312763227633276342763527636276372763827639276402764127642276432764427645276462764727648276492765027651276522765327654276552765627657276582765927660276612766227663276642766527666276672766827669276702767127672276732767427675276762767727678276792768027681276822768327684276852768627687276882768927690276912769227693276942769527696276972769827699277002770127702277032770427705277062770727708277092771027711277122771327714277152771627717277182771927720277212772227723277242772527726277272772827729277302773127732277332773427735277362773727738277392774027741277422774327744277452774627747277482774927750277512775227753277542775527756277572775827759277602776127762277632776427765277662776727768277692777027771277722777327774277752777627777277782777927780277812778227783277842778527786277872778827789277902779127792277932779427795277962779727798277992780027801278022780327804278052780627807278082780927810278112781227813278142781527816278172781827819278202782127822278232782427825278262782727828278292783027831278322783327834278352783627837278382783927840278412784227843278442784527846278472784827849278502785127852278532785427855278562785727858278592786027861278622786327864278652786627867278682786927870278712787227873278742787527876278772787827879278802788127882278832788427885278862788727888278892789027891278922789327894278952789627897278982789927900279012790227903279042790527906279072790827909279102791127912279132791427915279162791727918279192792027921279222792327924279252792627927279282792927930279312793227933279342793527936279372793827939279402794127942279432794427945279462794727948279492795027951279522795327954279552795627957279582795927960279612796227963279642796527966279672796827969279702797127972279732797427975279762797727978279792798027981279822798327984279852798627987279882798927990279912799227993279942799527996279972799827999280002800128002280032800428005280062800728008280092801028011280122801328014280152801628017280182801928020280212802228023280242802528026280272802828029280302803128032280332803428035280362803728038280392804028041280422804328044280452804628047280482804928050280512805228053280542805528056280572805828059280602806128062280632806428065280662806728068280692807028071280722807328074280752807628077280782807928080280812808228083280842808528086280872808828089280902809128092280932809428095280962809728098280992810028101281022810328104281052810628107281082810928110281112811228113281142811528116281172811828119281202812128122281232812428125281262812728128281292813028131281322813328134281352813628137281382813928140281412814228143281442814528146281472814828149281502815128152281532815428155281562815728158281592816028161281622816328164281652816628167281682816928170281712817228173281742817528176281772817828179281802818128182281832818428185281862818728188281892819028191281922819328194281952819628197281982819928200282012820228203282042820528206282072820828209282102821128212282132821428215282162821728218282192822028221282222822328224282252822628227282282822928230282312823228233282342823528236282372823828239282402824128242282432824428245282462824728248282492825028251282522825328254282552825628257282582825928260282612826228263282642826528266282672826828269282702827128272282732827428275282762827728278282792828028281282822828328284282852828628287282882828928290282912829228293282942829528296282972829828299283002830128302283032830428305283062830728308283092831028311283122831328314283152831628317283182831928320283212832228323283242832528326283272832828329283302833128332283332833428335283362833728338283392834028341283422834328344283452834628347283482834928350283512835228353283542835528356283572835828359283602836128362283632836428365283662836728368283692837028371283722837328374283752837628377283782837928380283812838228383283842838528386283872838828389283902839128392283932839428395283962839728398283992840028401284022840328404284052840628407284082840928410284112841228413284142841528416284172841828419284202842128422284232842428425284262842728428284292843028431284322843328434284352843628437284382843928440284412844228443284442844528446284472844828449284502845128452284532845428455284562845728458284592846028461284622846328464284652846628467284682846928470284712847228473284742847528476284772847828479284802848128482284832848428485284862848728488284892849028491284922849328494284952849628497284982849928500285012850228503285042850528506285072850828509285102851128512285132851428515285162851728518285192852028521285222852328524285252852628527285282852928530285312853228533285342853528536285372853828539285402854128542285432854428545285462854728548285492855028551285522855328554285552855628557285582855928560285612856228563285642856528566285672856828569285702857128572285732857428575285762857728578285792858028581285822858328584285852858628587285882858928590285912859228593285942859528596285972859828599286002860128602286032860428605286062860728608286092861028611286122861328614286152861628617286182861928620286212862228623286242862528626286272862828629286302863128632286332863428635286362863728638286392864028641286422864328644286452864628647286482864928650286512865228653286542865528656286572865828659286602866128662286632866428665286662866728668286692867028671286722867328674286752867628677286782867928680286812868228683286842868528686286872868828689286902869128692286932869428695286962869728698286992870028701287022870328704287052870628707287082870928710287112871228713287142871528716287172871828719287202872128722287232872428725287262872728728287292873028731287322873328734287352873628737287382873928740287412874228743287442874528746287472874828749287502875128752287532875428755287562875728758287592876028761287622876328764287652876628767287682876928770287712877228773287742877528776287772877828779287802878128782287832878428785287862878728788287892879028791287922879328794287952879628797287982879928800288012880228803288042880528806288072880828809288102881128812288132881428815288162881728818288192882028821288222882328824288252882628827288282882928830288312883228833288342883528836288372883828839288402884128842288432884428845288462884728848288492885028851288522885328854288552885628857288582885928860288612886228863288642886528866288672886828869288702887128872288732887428875288762887728878288792888028881288822888328884288852888628887288882888928890288912889228893288942889528896288972889828899289002890128902289032890428905289062890728908289092891028911289122891328914289152891628917289182891928920289212892228923289242892528926289272892828929289302893128932289332893428935289362893728938289392894028941289422894328944289452894628947289482894928950289512895228953289542895528956289572895828959289602896128962289632896428965289662896728968289692897028971289722897328974289752897628977289782897928980289812898228983289842898528986289872898828989289902899128992289932899428995289962899728998289992900029001290022900329004290052900629007290082900929010290112901229013290142901529016290172901829019290202902129022290232902429025290262902729028290292903029031290322903329034290352903629037290382903929040290412904229043290442904529046290472904829049290502905129052290532905429055290562905729058290592906029061290622906329064290652906629067290682906929070290712907229073290742907529076290772907829079290802908129082290832908429085290862908729088290892909029091290922909329094290952909629097290982909929100291012910229103291042910529106291072910829109291102911129112291132911429115291162911729118291192912029121291222912329124291252912629127291282912929130291312913229133291342913529136291372913829139291402914129142291432914429145291462914729148291492915029151291522915329154291552915629157291582915929160291612916229163291642916529166291672916829169291702917129172291732917429175291762917729178291792918029181291822918329184291852918629187291882918929190291912919229193291942919529196291972919829199292002920129202292032920429205292062920729208292092921029211292122921329214292152921629217292182921929220292212922229223292242922529226292272922829229292302923129232292332923429235292362923729238292392924029241292422924329244292452924629247292482924929250292512925229253292542925529256292572925829259292602926129262292632926429265292662926729268292692927029271292722927329274292752927629277292782927929280292812928229283292842928529286292872928829289292902929129292292932929429295292962929729298292992930029301293022930329304293052930629307293082930929310293112931229313293142931529316293172931829319293202932129322293232932429325293262932729328293292933029331293322933329334293352933629337293382933929340293412934229343293442934529346293472934829349293502935129352293532935429355293562935729358293592936029361293622936329364293652936629367293682936929370293712937229373293742937529376293772937829379293802938129382293832938429385293862938729388293892939029391293922939329394293952939629397293982939929400294012940229403294042940529406294072940829409294102941129412294132941429415294162941729418294192942029421294222942329424294252942629427294282942929430294312943229433294342943529436294372943829439294402944129442294432944429445294462944729448294492945029451294522945329454294552945629457294582945929460294612946229463294642946529466294672946829469294702947129472294732947429475294762947729478294792948029481294822948329484294852948629487294882948929490294912949229493294942949529496294972949829499295002950129502295032950429505295062950729508295092951029511295122951329514295152951629517295182951929520295212952229523295242952529526295272952829529295302953129532295332953429535295362953729538295392954029541295422954329544295452954629547295482954929550295512955229553295542955529556295572955829559295602956129562295632956429565295662956729568295692957029571295722957329574295752957629577295782957929580295812958229583295842958529586295872958829589295902959129592295932959429595295962959729598295992960029601296022960329604296052960629607296082960929610296112961229613296142961529616296172961829619296202962129622296232962429625296262962729628296292963029631296322963329634296352963629637296382963929640296412964229643296442964529646296472964829649296502965129652296532965429655296562965729658296592966029661296622966329664296652966629667296682966929670296712967229673296742967529676296772967829679296802968129682296832968429685296862968729688296892969029691296922969329694296952969629697296982969929700297012970229703297042970529706297072970829709297102971129712297132971429715297162971729718297192972029721297222972329724297252972629727297282972929730297312973229733297342973529736297372973829739297402974129742297432974429745297462974729748297492975029751297522975329754297552975629757297582975929760297612976229763297642976529766297672976829769297702977129772297732977429775297762977729778297792978029781297822978329784297852978629787297882978929790297912979229793297942979529796297972979829799298002980129802298032980429805298062980729808298092981029811298122981329814298152981629817298182981929820298212982229823298242982529826298272982829829298302983129832298332983429835298362983729838298392984029841298422984329844298452984629847298482984929850298512985229853298542985529856298572985829859298602986129862298632986429865298662986729868298692987029871298722987329874298752987629877298782987929880298812988229883298842988529886298872988829889298902989129892298932989429895298962989729898298992990029901299022990329904299052990629907299082990929910299112991229913299142991529916299172991829919299202992129922299232992429925299262992729928299292993029931299322993329934299352993629937299382993929940299412994229943299442994529946299472994829949299502995129952299532995429955299562995729958299592996029961299622996329964299652996629967299682996929970299712997229973299742997529976299772997829979299802998129982299832998429985299862998729988299892999029991299922999329994299952999629997299982999930000300013000230003300043000530006300073000830009300103001130012300133001430015300163001730018300193002030021300223002330024300253002630027300283002930030300313003230033300343003530036300373003830039300403004130042300433004430045300463004730048300493005030051300523005330054300553005630057300583005930060300613006230063300643006530066300673006830069300703007130072300733007430075300763007730078300793008030081300823008330084300853008630087300883008930090300913009230093300943009530096300973009830099301003010130102301033010430105301063010730108301093011030111301123011330114301153011630117301183011930120301213012230123301243012530126301273012830129301303013130132301333013430135301363013730138301393014030141301423014330144301453014630147301483014930150301513015230153301543015530156301573015830159301603016130162301633016430165301663016730168301693017030171301723017330174301753017630177301783017930180301813018230183301843018530186301873018830189301903019130192301933019430195301963019730198301993020030201302023020330204302053020630207302083020930210302113021230213302143021530216302173021830219302203022130222302233022430225302263022730228302293023030231302323023330234302353023630237302383023930240302413024230243302443024530246302473024830249302503025130252302533025430255302563025730258302593026030261302623026330264302653026630267302683026930270302713027230273302743027530276302773027830279302803028130282302833028430285302863028730288302893029030291302923029330294302953029630297302983029930300303013030230303303043030530306303073030830309303103031130312303133031430315303163031730318303193032030321303223032330324303253032630327303283032930330303313033230333303343033530336303373033830339303403034130342303433034430345303463034730348303493035030351303523035330354303553035630357303583035930360303613036230363303643036530366303673036830369303703037130372303733037430375303763037730378303793038030381303823038330384303853038630387303883038930390303913039230393303943039530396303973039830399304003040130402304033040430405304063040730408304093041030411304123041330414304153041630417304183041930420304213042230423304243042530426304273042830429304303043130432304333043430435304363043730438304393044030441304423044330444304453044630447304483044930450304513045230453304543045530456304573045830459304603046130462304633046430465304663046730468304693047030471304723047330474304753047630477304783047930480304813048230483304843048530486304873048830489304903049130492304933049430495304963049730498304993050030501305023050330504305053050630507305083050930510305113051230513305143051530516305173051830519305203052130522305233052430525305263052730528305293053030531305323053330534305353053630537305383053930540305413054230543305443054530546305473054830549305503055130552305533055430555305563055730558305593056030561305623056330564305653056630567305683056930570305713057230573305743057530576305773057830579305803058130582305833058430585305863058730588305893059030591305923059330594305953059630597305983059930600306013060230603306043060530606306073060830609306103061130612306133061430615306163061730618306193062030621306223062330624306253062630627306283062930630306313063230633306343063530636306373063830639306403064130642306433064430645306463064730648306493065030651306523065330654306553065630657306583065930660306613066230663306643066530666306673066830669306703067130672306733067430675306763067730678306793068030681306823068330684306853068630687306883068930690306913069230693306943069530696306973069830699307003070130702307033070430705307063070730708307093071030711307123071330714307153071630717307183071930720307213072230723307243072530726307273072830729307303073130732307333073430735307363073730738307393074030741307423074330744307453074630747307483074930750307513075230753307543075530756307573075830759307603076130762307633076430765307663076730768307693077030771307723077330774307753077630777307783077930780307813078230783307843078530786307873078830789307903079130792307933079430795307963079730798307993080030801308023080330804308053080630807308083080930810308113081230813308143081530816308173081830819308203082130822308233082430825308263082730828308293083030831308323083330834308353083630837308383083930840308413084230843308443084530846308473084830849308503085130852308533085430855308563085730858308593086030861308623086330864308653086630867308683086930870308713087230873308743087530876308773087830879308803088130882308833088430885308863088730888308893089030891308923089330894308953089630897308983089930900309013090230903309043090530906309073090830909309103091130912309133091430915309163091730918309193092030921309223092330924309253092630927309283092930930309313093230933309343093530936309373093830939309403094130942309433094430945309463094730948309493095030951309523095330954309553095630957309583095930960309613096230963309643096530966309673096830969309703097130972309733097430975309763097730978309793098030981309823098330984309853098630987309883098930990309913099230993309943099530996309973099830999310003100131002310033100431005310063100731008310093101031011310123101331014310153101631017310183101931020310213102231023310243102531026310273102831029310303103131032310333103431035310363103731038310393104031041310423104331044310453104631047310483104931050310513105231053310543105531056310573105831059310603106131062310633106431065310663106731068310693107031071310723107331074310753107631077310783107931080310813108231083310843108531086310873108831089310903109131092310933109431095310963109731098310993110031101311023110331104311053110631107311083110931110311113111231113311143111531116311173111831119311203112131122311233112431125311263112731128311293113031131311323113331134311353113631137311383113931140311413114231143311443114531146311473114831149311503115131152311533115431155311563115731158311593116031161311623116331164311653116631167311683116931170311713117231173311743117531176311773117831179311803118131182311833118431185311863118731188311893119031191311923119331194311953119631197311983119931200312013120231203312043120531206312073120831209312103121131212312133121431215312163121731218312193122031221312223122331224312253122631227312283122931230312313123231233312343123531236312373123831239312403124131242312433124431245312463124731248312493125031251312523125331254312553125631257312583125931260312613126231263312643126531266312673126831269312703127131272312733127431275312763127731278312793128031281312823128331284312853128631287312883128931290312913129231293312943129531296312973129831299313003130131302313033130431305313063130731308313093131031311313123131331314313153131631317313183131931320313213132231323313243132531326313273132831329313303133131332313333133431335313363133731338313393134031341313423134331344313453134631347313483134931350313513135231353313543135531356313573135831359313603136131362313633136431365313663136731368313693137031371313723137331374313753137631377313783137931380313813138231383313843138531386313873138831389313903139131392313933139431395313963139731398313993140031401314023140331404314053140631407314083140931410314113141231413314143141531416314173141831419314203142131422314233142431425314263142731428314293143031431314323143331434314353143631437314383143931440314413144231443314443144531446314473144831449314503145131452314533145431455314563145731458314593146031461314623146331464314653146631467314683146931470314713147231473314743147531476314773147831479314803148131482314833148431485314863148731488314893149031491314923149331494314953149631497314983149931500315013150231503315043150531506315073150831509315103151131512315133151431515315163151731518315193152031521315223152331524315253152631527315283152931530315313153231533315343153531536315373153831539315403154131542315433154431545315463154731548315493155031551315523155331554315553155631557315583155931560315613156231563315643156531566315673156831569315703157131572315733157431575315763157731578315793158031581315823158331584315853158631587315883158931590315913159231593315943159531596315973159831599316003160131602316033160431605316063160731608316093161031611316123161331614316153161631617316183161931620316213162231623316243162531626316273162831629316303163131632316333163431635316363163731638316393164031641316423164331644316453164631647316483164931650316513165231653316543165531656316573165831659316603166131662316633166431665316663166731668316693167031671316723167331674316753167631677316783167931680316813168231683316843168531686316873168831689316903169131692316933169431695316963169731698316993170031701317023170331704317053170631707317083170931710317113171231713317143171531716317173171831719317203172131722317233172431725317263172731728317293173031731317323173331734317353173631737317383173931740317413174231743317443174531746317473174831749317503175131752317533175431755317563175731758317593176031761317623176331764317653176631767317683176931770317713177231773317743177531776317773177831779317803178131782317833178431785317863178731788317893179031791317923179331794317953179631797317983179931800318013180231803318043180531806318073180831809318103181131812318133181431815318163181731818318193182031821318223182331824318253182631827318283182931830318313183231833318343183531836318373183831839318403184131842318433184431845318463184731848318493185031851318523185331854318553185631857318583185931860318613186231863318643186531866318673186831869318703187131872318733187431875318763187731878318793188031881318823188331884318853188631887318883188931890318913189231893318943189531896318973189831899319003190131902319033190431905319063190731908319093191031911319123191331914319153191631917319183191931920319213192231923319243192531926319273192831929319303193131932319333193431935319363193731938319393194031941319423194331944319453194631947319483194931950319513195231953319543195531956319573195831959319603196131962319633196431965319663196731968319693197031971319723197331974319753197631977319783197931980319813198231983319843198531986319873198831989319903199131992319933199431995319963199731998319993200032001320023200332004320053200632007320083200932010320113201232013320143201532016320173201832019320203202132022320233202432025320263202732028320293203032031320323203332034320353203632037320383203932040320413204232043320443204532046320473204832049320503205132052320533205432055320563205732058320593206032061320623206332064320653206632067320683206932070320713207232073320743207532076320773207832079320803208132082320833208432085320863208732088320893209032091320923209332094320953209632097320983209932100321013210232103321043210532106321073210832109321103211132112321133211432115321163211732118321193212032121321223212332124321253212632127321283212932130321313213232133321343213532136321373213832139321403214132142321433214432145321463214732148321493215032151321523215332154321553215632157321583215932160321613216232163321643216532166321673216832169321703217132172321733217432175321763217732178321793218032181321823218332184321853218632187321883218932190321913219232193321943219532196321973219832199322003220132202322033220432205322063220732208322093221032211322123221332214322153221632217322183221932220322213222232223322243222532226322273222832229322303223132232322333223432235322363223732238322393224032241322423224332244322453224632247322483224932250322513225232253322543225532256322573225832259322603226132262322633226432265322663226732268322693227032271322723227332274322753227632277322783227932280322813228232283322843228532286322873228832289322903229132292322933229432295322963229732298322993230032301323023230332304323053230632307323083230932310323113231232313323143231532316323173231832319323203232132322323233232432325323263232732328323293233032331323323233332334323353233632337323383233932340323413234232343323443234532346323473234832349323503235132352323533235432355323563235732358323593236032361323623236332364323653236632367323683236932370323713237232373323743237532376323773237832379323803238132382323833238432385323863238732388323893239032391323923239332394323953239632397323983239932400324013240232403324043240532406324073240832409324103241132412324133241432415324163241732418324193242032421324223242332424324253242632427324283242932430324313243232433324343243532436324373243832439324403244132442324433244432445324463244732448324493245032451324523245332454324553245632457324583245932460324613246232463324643246532466324673246832469324703247132472324733247432475324763247732478324793248032481324823248332484324853248632487324883248932490324913249232493324943249532496324973249832499325003250132502325033250432505325063250732508325093251032511325123251332514325153251632517325183251932520325213252232523325243252532526325273252832529325303253132532325333253432535325363253732538325393254032541325423254332544325453254632547325483254932550325513255232553325543255532556325573255832559325603256132562325633256432565325663256732568325693257032571325723257332574325753257632577325783257932580325813258232583325843258532586325873258832589325903259132592325933259432595325963259732598325993260032601326023260332604326053260632607326083260932610326113261232613326143261532616326173261832619326203262132622326233262432625326263262732628326293263032631326323263332634326353263632637326383263932640326413264232643326443264532646326473264832649326503265132652326533265432655326563265732658326593266032661326623266332664326653266632667326683266932670326713267232673326743267532676326773267832679326803268132682326833268432685326863268732688326893269032691326923269332694326953269632697326983269932700327013270232703327043270532706327073270832709327103271132712327133271432715327163271732718327193272032721327223272332724327253272632727327283272932730327313273232733327343273532736327373273832739327403274132742327433274432745327463274732748327493275032751327523275332754327553275632757327583275932760327613276232763327643276532766327673276832769327703277132772327733277432775327763277732778327793278032781327823278332784327853278632787327883278932790327913279232793327943279532796327973279832799328003280132802328033280432805328063280732808328093281032811328123281332814328153281632817328183281932820328213282232823328243282532826328273282832829328303283132832328333283432835328363283732838328393284032841328423284332844328453284632847328483284932850328513285232853328543285532856328573285832859328603286132862328633286432865328663286732868328693287032871328723287332874328753287632877328783287932880328813288232883328843288532886328873288832889328903289132892328933289432895328963289732898328993290032901329023290332904329053290632907329083290932910329113291232913329143291532916329173291832919329203292132922329233292432925329263292732928329293293032931329323293332934329353293632937329383293932940329413294232943329443294532946329473294832949329503295132952329533295432955329563295732958329593296032961329623296332964329653296632967329683296932970329713297232973329743297532976329773297832979329803298132982329833298432985329863298732988329893299032991329923299332994329953299632997329983299933000330013300233003330043300533006330073300833009330103301133012330133301433015330163301733018330193302033021330223302333024330253302633027330283302933030330313303233033330343303533036330373303833039330403304133042330433304433045330463304733048330493305033051330523305333054330553305633057330583305933060330613306233063330643306533066330673306833069330703307133072330733307433075330763307733078330793308033081330823308333084330853308633087330883308933090330913309233093330943309533096330973309833099331003310133102331033310433105331063310733108331093311033111331123311333114331153311633117331183311933120331213312233123331243312533126331273312833129331303313133132331333313433135331363313733138331393314033141331423314333144331453314633147331483314933150331513315233153331543315533156331573315833159331603316133162331633316433165331663316733168331693317033171331723317333174331753317633177331783317933180331813318233183331843318533186331873318833189331903319133192331933319433195331963319733198331993320033201332023320333204332053320633207332083320933210332113321233213332143321533216332173321833219332203322133222332233322433225332263322733228332293323033231332323323333234332353323633237332383323933240332413324233243332443324533246332473324833249332503325133252332533325433255332563325733258332593326033261332623326333264332653326633267332683326933270332713327233273332743327533276332773327833279332803328133282332833328433285332863328733288332893329033291332923329333294332953329633297332983329933300333013330233303333043330533306333073330833309333103331133312333133331433315333163331733318333193332033321333223332333324333253332633327333283332933330333313333233333333343333533336333373333833339333403334133342333433334433345333463334733348333493335033351333523335333354333553335633357333583335933360333613336233363333643336533366333673336833369333703337133372333733337433375333763337733378333793338033381333823338333384333853338633387333883338933390333913339233393333943339533396333973339833399334003340133402334033340433405334063340733408334093341033411334123341333414334153341633417334183341933420334213342233423334243342533426334273342833429334303343133432334333343433435334363343733438334393344033441334423344333444334453344633447334483344933450334513345233453334543345533456334573345833459334603346133462334633346433465334663346733468334693347033471334723347333474334753347633477334783347933480334813348233483334843348533486334873348833489334903349133492334933349433495334963349733498334993350033501335023350333504335053350633507335083350933510335113351233513335143351533516335173351833519335203352133522335233352433525335263352733528335293353033531335323353333534335353353633537335383353933540335413354233543335443354533546335473354833549335503355133552335533355433555335563355733558335593356033561335623356333564335653356633567335683356933570335713357233573335743357533576335773357833579335803358133582335833358433585335863358733588335893359033591335923359333594335953359633597335983359933600336013360233603336043360533606336073360833609336103361133612336133361433615336163361733618336193362033621336223362333624336253362633627336283362933630336313363233633336343363533636336373363833639336403364133642336433364433645336463364733648336493365033651336523365333654336553365633657336583365933660336613366233663336643366533666336673366833669336703367133672336733367433675336763367733678336793368033681336823368333684336853368633687336883368933690336913369233693336943369533696336973369833699337003370133702337033370433705337063370733708337093371033711337123371333714337153371633717337183371933720337213372233723337243372533726337273372833729337303373133732337333373433735337363373733738337393374033741337423374333744337453374633747337483374933750337513375233753337543375533756337573375833759337603376133762337633376433765337663376733768337693377033771337723377333774337753377633777337783377933780337813378233783337843378533786337873378833789337903379133792337933379433795337963379733798337993380033801338023380333804338053380633807338083380933810338113381233813338143381533816338173381833819338203382133822338233382433825338263382733828338293383033831338323383333834338353383633837338383383933840338413384233843338443384533846338473384833849338503385133852338533385433855338563385733858338593386033861338623386333864338653386633867338683386933870338713387233873338743387533876338773387833879338803388133882338833388433885338863388733888338893389033891338923389333894338953389633897338983389933900339013390233903339043390533906339073390833909339103391133912339133391433915339163391733918339193392033921339223392333924339253392633927339283392933930339313393233933339343393533936339373393833939339403394133942339433394433945339463394733948339493395033951339523395333954339553395633957339583395933960339613396233963339643396533966339673396833969339703397133972339733397433975339763397733978339793398033981339823398333984339853398633987339883398933990339913399233993339943399533996339973399833999340003400134002340033400434005340063400734008340093401034011340123401334014340153401634017340183401934020340213402234023340243402534026340273402834029340303403134032340333403434035340363403734038340393404034041340423404334044340453404634047340483404934050340513405234053340543405534056340573405834059340603406134062340633406434065340663406734068340693407034071340723407334074340753407634077340783407934080340813408234083340843408534086340873408834089340903409134092340933409434095340963409734098340993410034101341023410334104341053410634107341083410934110341113411234113341143411534116341173411834119341203412134122341233412434125341263412734128341293413034131341323413334134341353413634137341383413934140341413414234143341443414534146341473414834149341503415134152341533415434155341563415734158341593416034161341623416334164341653416634167341683416934170341713417234173341743417534176341773417834179341803418134182341833418434185341863418734188341893419034191341923419334194341953419634197341983419934200342013420234203342043420534206342073420834209342103421134212342133421434215342163421734218342193422034221342223422334224342253422634227342283422934230342313423234233342343423534236342373423834239342403424134242342433424434245342463424734248342493425034251342523425334254342553425634257342583425934260342613426234263342643426534266342673426834269342703427134272342733427434275342763427734278342793428034281342823428334284342853428634287342883428934290342913429234293342943429534296342973429834299343003430134302343033430434305343063430734308343093431034311343123431334314343153431634317343183431934320343213432234323343243432534326343273432834329343303433134332343333433434335343363433734338343393434034341343423434334344343453434634347343483434934350343513435234353343543435534356343573435834359343603436134362343633436434365343663436734368343693437034371343723437334374343753437634377343783437934380343813438234383343843438534386343873438834389343903439134392343933439434395343963439734398343993440034401344023440334404344053440634407344083440934410344113441234413344143441534416344173441834419344203442134422344233442434425344263442734428344293443034431344323443334434344353443634437344383443934440344413444234443344443444534446344473444834449344503445134452344533445434455344563445734458344593446034461344623446334464344653446634467344683446934470344713447234473344743447534476344773447834479344803448134482344833448434485344863448734488344893449034491344923449334494344953449634497344983449934500345013450234503345043450534506345073450834509345103451134512345133451434515345163451734518345193452034521345223452334524345253452634527345283452934530345313453234533345343453534536345373453834539345403454134542345433454434545345463454734548345493455034551345523455334554345553455634557345583455934560345613456234563345643456534566345673456834569345703457134572345733457434575345763457734578345793458034581345823458334584345853458634587345883458934590345913459234593345943459534596345973459834599346003460134602346033460434605346063460734608346093461034611346123461334614346153461634617346183461934620346213462234623346243462534626346273462834629346303463134632346333463434635346363463734638346393464034641346423464334644346453464634647346483464934650346513465234653346543465534656346573465834659346603466134662346633466434665346663466734668346693467034671346723467334674346753467634677346783467934680346813468234683346843468534686346873468834689346903469134692346933469434695346963469734698346993470034701347023470334704347053470634707347083470934710347113471234713347143471534716347173471834719347203472134722347233472434725347263472734728347293473034731347323473334734347353473634737347383473934740347413474234743347443474534746347473474834749347503475134752347533475434755347563475734758347593476034761347623476334764347653476634767347683476934770347713477234773347743477534776347773477834779347803478134782347833478434785347863478734788347893479034791347923479334794347953479634797347983479934800348013480234803348043480534806348073480834809348103481134812348133481434815348163481734818348193482034821348223482334824348253482634827348283482934830348313483234833348343483534836348373483834839348403484134842348433484434845348463484734848348493485034851348523485334854348553485634857348583485934860348613486234863348643486534866348673486834869348703487134872348733487434875348763487734878348793488034881348823488334884348853488634887348883488934890348913489234893348943489534896348973489834899349003490134902349033490434905349063490734908349093491034911349123491334914349153491634917349183491934920349213492234923349243492534926349273492834929349303493134932349333493434935349363493734938349393494034941349423494334944349453494634947349483494934950349513495234953349543495534956349573495834959349603496134962349633496434965349663496734968349693497034971349723497334974349753497634977349783497934980349813498234983349843498534986349873498834989349903499134992349933499434995349963499734998349993500035001350023500335004350053500635007350083500935010350113501235013350143501535016350173501835019350203502135022350233502435025350263502735028350293503035031350323503335034350353503635037350383503935040350413504235043350443504535046350473504835049350503505135052350533505435055350563505735058350593506035061350623506335064350653506635067350683506935070350713507235073350743507535076350773507835079350803508135082350833508435085350863508735088350893509035091350923509335094350953509635097350983509935100351013510235103351043510535106351073510835109351103511135112351133511435115351163511735118351193512035121351223512335124351253512635127351283512935130351313513235133351343513535136351373513835139351403514135142351433514435145351463514735148351493515035151351523515335154351553515635157351583515935160351613516235163351643516535166351673516835169351703517135172351733517435175351763517735178351793518035181351823518335184351853518635187351883518935190351913519235193351943519535196351973519835199352003520135202352033520435205352063520735208352093521035211352123521335214352153521635217352183521935220352213522235223352243522535226352273522835229352303523135232352333523435235352363523735238352393524035241352423524335244352453524635247352483524935250352513525235253352543525535256352573525835259352603526135262352633526435265352663526735268352693527035271352723527335274352753527635277352783527935280352813528235283352843528535286352873528835289352903529135292352933529435295352963529735298352993530035301353023530335304353053530635307353083530935310353113531235313353143531535316353173531835319353203532135322353233532435325353263532735328353293533035331353323533335334353353533635337353383533935340353413534235343353443534535346353473534835349353503535135352353533535435355353563535735358353593536035361353623536335364353653536635367353683536935370353713537235373353743537535376353773537835379353803538135382353833538435385353863538735388353893539035391353923539335394353953539635397353983539935400354013540235403354043540535406354073540835409354103541135412354133541435415354163541735418354193542035421354223542335424354253542635427354283542935430354313543235433354343543535436354373543835439354403544135442354433544435445354463544735448354493545035451354523545335454354553545635457354583545935460354613546235463354643546535466354673546835469354703547135472354733547435475354763547735478354793548035481354823548335484354853548635487354883548935490354913549235493354943549535496354973549835499355003550135502355033550435505355063550735508355093551035511355123551335514355153551635517355183551935520355213552235523355243552535526355273552835529355303553135532355333553435535355363553735538355393554035541355423554335544355453554635547355483554935550355513555235553355543555535556355573555835559355603556135562355633556435565355663556735568355693557035571355723557335574355753557635577355783557935580355813558235583355843558535586355873558835589355903559135592355933559435595355963559735598355993560035601356023560335604356053560635607356083560935610356113561235613356143561535616356173561835619356203562135622356233562435625356263562735628356293563035631356323563335634356353563635637356383563935640356413564235643356443564535646356473564835649356503565135652356533565435655356563565735658356593566035661356623566335664356653566635667356683566935670356713567235673356743567535676356773567835679356803568135682356833568435685356863568735688356893569035691356923569335694356953569635697356983569935700357013570235703357043570535706357073570835709357103571135712357133571435715357163571735718357193572035721357223572335724357253572635727357283572935730357313573235733357343573535736357373573835739357403574135742357433574435745357463574735748357493575035751357523575335754357553575635757357583575935760357613576235763357643576535766357673576835769357703577135772357733577435775357763577735778357793578035781357823578335784357853578635787357883578935790357913579235793357943579535796357973579835799358003580135802358033580435805358063580735808358093581035811358123581335814358153581635817358183581935820358213582235823358243582535826358273582835829358303583135832358333583435835358363583735838358393584035841358423584335844358453584635847358483584935850358513585235853358543585535856358573585835859358603586135862358633586435865358663586735868358693587035871358723587335874358753587635877358783587935880358813588235883358843588535886358873588835889358903589135892358933589435895358963589735898358993590035901359023590335904359053590635907359083590935910359113591235913359143591535916359173591835919359203592135922359233592435925359263592735928359293593035931359323593335934359353593635937359383593935940359413594235943359443594535946359473594835949359503595135952359533595435955359563595735958359593596035961359623596335964359653596635967359683596935970359713597235973359743597535976359773597835979359803598135982359833598435985359863598735988359893599035991359923599335994359953599635997359983599936000360013600236003360043600536006360073600836009360103601136012360133601436015360163601736018360193602036021360223602336024360253602636027360283602936030360313603236033360343603536036360373603836039360403604136042360433604436045360463604736048360493605036051360523605336054360553605636057360583605936060360613606236063360643606536066360673606836069360703607136072360733607436075360763607736078360793608036081360823608336084360853608636087360883608936090360913609236093360943609536096360973609836099361003610136102361033610436105361063610736108361093611036111361123611336114361153611636117361183611936120361213612236123361243612536126361273612836129361303613136132361333613436135361363613736138361393614036141361423614336144361453614636147361483614936150361513615236153361543615536156361573615836159361603616136162361633616436165361663616736168361693617036171361723617336174361753617636177361783617936180361813618236183361843618536186361873618836189361903619136192361933619436195361963619736198361993620036201362023620336204362053620636207362083620936210362113621236213362143621536216362173621836219362203622136222362233622436225362263622736228362293623036231362323623336234362353623636237362383623936240362413624236243362443624536246362473624836249362503625136252362533625436255362563625736258362593626036261362623626336264362653626636267362683626936270362713627236273362743627536276362773627836279362803628136282362833628436285362863628736288362893629036291362923629336294362953629636297362983629936300363013630236303363043630536306363073630836309363103631136312363133631436315363163631736318363193632036321363223632336324363253632636327363283632936330363313633236333363343633536336363373633836339363403634136342363433634436345363463634736348363493635036351363523635336354363553635636357363583635936360363613636236363363643636536366363673636836369363703637136372363733637436375363763637736378363793638036381363823638336384363853638636387363883638936390363913639236393363943639536396363973639836399364003640136402364033640436405364063640736408364093641036411364123641336414364153641636417364183641936420364213642236423364243642536426364273642836429364303643136432364333643436435364363643736438364393644036441364423644336444364453644636447364483644936450364513645236453364543645536456364573645836459364603646136462364633646436465364663646736468364693647036471364723647336474364753647636477364783647936480364813648236483364843648536486364873648836489364903649136492364933649436495364963649736498364993650036501365023650336504365053650636507365083650936510365113651236513365143651536516365173651836519365203652136522365233652436525365263652736528365293653036531365323653336534365353653636537365383653936540365413654236543365443654536546365473654836549365503655136552365533655436555365563655736558365593656036561365623656336564365653656636567365683656936570365713657236573365743657536576365773657836579365803658136582365833658436585365863658736588365893659036591365923659336594365953659636597365983659936600366013660236603366043660536606366073660836609366103661136612366133661436615366163661736618366193662036621366223662336624366253662636627366283662936630366313663236633366343663536636366373663836639366403664136642366433664436645366463664736648366493665036651366523665336654366553665636657366583665936660366613666236663366643666536666366673666836669366703667136672366733667436675366763667736678366793668036681366823668336684366853668636687366883668936690366913669236693366943669536696366973669836699367003670136702367033670436705367063670736708367093671036711367123671336714367153671636717367183671936720367213672236723367243672536726367273672836729367303673136732367333673436735367363673736738367393674036741367423674336744367453674636747367483674936750367513675236753367543675536756367573675836759367603676136762367633676436765367663676736768367693677036771367723677336774367753677636777367783677936780367813678236783367843678536786367873678836789367903679136792367933679436795367963679736798367993680036801368023680336804368053680636807368083680936810368113681236813368143681536816368173681836819368203682136822368233682436825368263682736828368293683036831368323683336834368353683636837368383683936840368413684236843368443684536846368473684836849368503685136852368533685436855368563685736858368593686036861368623686336864368653686636867368683686936870368713687236873368743687536876368773687836879368803688136882368833688436885368863688736888368893689036891368923689336894368953689636897368983689936900369013690236903369043690536906369073690836909369103691136912369133691436915369163691736918369193692036921369223692336924369253692636927369283692936930369313693236933369343693536936369373693836939369403694136942369433694436945369463694736948369493695036951369523695336954369553695636957369583695936960369613696236963369643696536966369673696836969369703697136972369733697436975369763697736978369793698036981369823698336984369853698636987369883698936990369913699236993369943699536996369973699836999370003700137002370033700437005370063700737008370093701037011370123701337014370153701637017370183701937020370213702237023370243702537026370273702837029370303703137032370333703437035370363703737038370393704037041370423704337044370453704637047370483704937050370513705237053370543705537056370573705837059370603706137062370633706437065370663706737068370693707037071370723707337074370753707637077370783707937080370813708237083370843708537086370873708837089370903709137092370933709437095370963709737098370993710037101371023710337104371053710637107371083710937110371113711237113371143711537116371173711837119371203712137122371233712437125371263712737128371293713037131371323713337134371353713637137371383713937140371413714237143371443714537146371473714837149371503715137152371533715437155371563715737158371593716037161371623716337164371653716637167371683716937170371713717237173371743717537176371773717837179371803718137182371833718437185371863718737188371893719037191371923719337194371953719637197371983719937200372013720237203372043720537206372073720837209372103721137212372133721437215372163721737218372193722037221372223722337224372253722637227372283722937230372313723237233372343723537236372373723837239372403724137242372433724437245372463724737248372493725037251372523725337254372553725637257372583725937260372613726237263372643726537266372673726837269372703727137272372733727437275372763727737278372793728037281372823728337284372853728637287372883728937290372913729237293372943729537296372973729837299373003730137302373033730437305373063730737308373093731037311373123731337314373153731637317373183731937320373213732237323373243732537326373273732837329373303733137332373333733437335373363733737338373393734037341373423734337344373453734637347373483734937350373513735237353373543735537356373573735837359373603736137362373633736437365373663736737368373693737037371373723737337374373753737637377373783737937380373813738237383373843738537386373873738837389373903739137392373933739437395373963739737398373993740037401374023740337404374053740637407374083740937410374113741237413374143741537416374173741837419374203742137422374233742437425374263742737428374293743037431374323743337434374353743637437374383743937440374413744237443374443744537446374473744837449374503745137452374533745437455374563745737458374593746037461374623746337464374653746637467374683746937470374713747237473374743747537476374773747837479374803748137482374833748437485374863748737488374893749037491374923749337494374953749637497374983749937500375013750237503375043750537506375073750837509375103751137512375133751437515375163751737518375193752037521375223752337524375253752637527375283752937530375313753237533375343753537536375373753837539375403754137542375433754437545375463754737548375493755037551375523755337554375553755637557375583755937560375613756237563375643756537566375673756837569375703757137572375733757437575375763757737578375793758037581375823758337584375853758637587375883758937590375913759237593375943759537596375973759837599376003760137602376033760437605376063760737608376093761037611376123761337614376153761637617376183761937620376213762237623376243762537626376273762837629376303763137632376333763437635376363763737638376393764037641376423764337644376453764637647376483764937650376513765237653376543765537656376573765837659376603766137662376633766437665376663766737668376693767037671376723767337674376753767637677376783767937680376813768237683376843768537686376873768837689376903769137692376933769437695376963769737698376993770037701377023770337704377053770637707377083770937710377113771237713377143771537716377173771837719377203772137722377233772437725377263772737728377293773037731377323773337734377353773637737377383773937740377413774237743377443774537746377473774837749377503775137752377533775437755377563775737758377593776037761377623776337764377653776637767377683776937770377713777237773377743777537776377773777837779377803778137782377833778437785377863778737788377893779037791377923779337794377953779637797377983779937800378013780237803378043780537806378073780837809378103781137812378133781437815378163781737818378193782037821378223782337824378253782637827378283782937830378313783237833378343783537836378373783837839378403784137842378433784437845378463784737848378493785037851378523785337854378553785637857378583785937860378613786237863378643786537866378673786837869378703787137872378733787437875378763787737878378793788037881378823788337884378853788637887378883788937890378913789237893378943789537896378973789837899379003790137902379033790437905379063790737908379093791037911379123791337914379153791637917379183791937920379213792237923379243792537926379273792837929379303793137932379333793437935379363793737938379393794037941379423794337944379453794637947379483794937950379513795237953379543795537956379573795837959379603796137962379633796437965379663796737968379693797037971379723797337974379753797637977379783797937980379813798237983379843798537986379873798837989379903799137992379933799437995379963799737998379993800038001380023800338004380053800638007380083800938010380113801238013380143801538016380173801838019380203802138022380233802438025380263802738028380293803038031380323803338034380353803638037380383803938040380413804238043380443804538046380473804838049380503805138052380533805438055380563805738058380593806038061380623806338064380653806638067380683806938070380713807238073380743807538076380773807838079380803808138082380833808438085380863808738088380893809038091380923809338094380953809638097380983809938100381013810238103381043810538106381073810838109381103811138112381133811438115381163811738118381193812038121381223812338124381253812638127381283812938130381313813238133381343813538136381373813838139381403814138142381433814438145381463814738148381493815038151381523815338154381553815638157381583815938160381613816238163381643816538166381673816838169381703817138172381733817438175381763817738178381793818038181381823818338184381853818638187381883818938190381913819238193381943819538196381973819838199382003820138202382033820438205382063820738208382093821038211382123821338214382153821638217382183821938220382213822238223382243822538226382273822838229382303823138232382333823438235382363823738238382393824038241382423824338244382453824638247382483824938250382513825238253382543825538256382573825838259382603826138262382633826438265382663826738268382693827038271382723827338274382753827638277382783827938280382813828238283382843828538286382873828838289382903829138292382933829438295382963829738298382993830038301383023830338304383053830638307383083830938310383113831238313383143831538316383173831838319383203832138322383233832438325383263832738328383293833038331383323833338334383353833638337383383833938340383413834238343383443834538346383473834838349383503835138352383533835438355383563835738358383593836038361383623836338364383653836638367383683836938370383713837238373383743837538376383773837838379383803838138382383833838438385383863838738388383893839038391383923839338394383953839638397383983839938400384013840238403384043840538406384073840838409384103841138412384133841438415384163841738418384193842038421384223842338424384253842638427384283842938430384313843238433384343843538436384373843838439384403844138442384433844438445384463844738448384493845038451384523845338454384553845638457384583845938460384613846238463384643846538466384673846838469384703847138472384733847438475384763847738478384793848038481384823848338484384853848638487384883848938490384913849238493384943849538496384973849838499385003850138502385033850438505385063850738508385093851038511385123851338514385153851638517385183851938520385213852238523385243852538526385273852838529385303853138532385333853438535385363853738538385393854038541385423854338544385453854638547385483854938550385513855238553385543855538556385573855838559385603856138562385633856438565385663856738568385693857038571385723857338574385753857638577385783857938580385813858238583385843858538586385873858838589385903859138592385933859438595385963859738598385993860038601386023860338604386053860638607386083860938610386113861238613386143861538616386173861838619386203862138622386233862438625386263862738628386293863038631386323863338634386353863638637386383863938640386413864238643386443864538646386473864838649386503865138652386533865438655386563865738658386593866038661386623866338664386653866638667386683866938670386713867238673386743867538676386773867838679386803868138682386833868438685386863868738688386893869038691386923869338694386953869638697386983869938700387013870238703387043870538706387073870838709387103871138712387133871438715387163871738718387193872038721387223872338724387253872638727387283872938730387313873238733387343873538736387373873838739387403874138742387433874438745387463874738748387493875038751387523875338754387553875638757387583875938760387613876238763387643876538766387673876838769387703877138772387733877438775387763877738778387793878038781387823878338784387853878638787387883878938790387913879238793387943879538796387973879838799388003880138802388033880438805388063880738808388093881038811388123881338814388153881638817388183881938820388213882238823388243882538826388273882838829388303883138832388333883438835388363883738838388393884038841388423884338844388453884638847388483884938850388513885238853388543885538856388573885838859388603886138862388633886438865388663886738868388693887038871388723887338874388753887638877388783887938880388813888238883388843888538886388873888838889388903889138892388933889438895388963889738898388993890038901389023890338904389053890638907389083890938910389113891238913389143891538916389173891838919389203892138922389233892438925389263892738928389293893038931389323893338934389353893638937389383893938940389413894238943389443894538946389473894838949389503895138952389533895438955389563895738958389593896038961389623896338964389653896638967389683896938970389713897238973389743897538976389773897838979389803898138982389833898438985389863898738988389893899038991389923899338994389953899638997389983899939000390013900239003390043900539006390073900839009390103901139012390133901439015390163901739018390193902039021390223902339024390253902639027390283902939030390313903239033390343903539036390373903839039390403904139042390433904439045390463904739048390493905039051390523905339054390553905639057390583905939060390613906239063390643906539066390673906839069390703907139072390733907439075390763907739078390793908039081390823908339084390853908639087390883908939090390913909239093390943909539096390973909839099391003910139102391033910439105391063910739108391093911039111391123911339114391153911639117391183911939120391213912239123391243912539126391273912839129391303913139132391333913439135391363913739138391393914039141391423914339144391453914639147391483914939150391513915239153391543915539156391573915839159391603916139162391633916439165391663916739168391693917039171391723917339174391753917639177391783917939180391813918239183391843918539186391873918839189391903919139192391933919439195391963919739198391993920039201392023920339204392053920639207392083920939210392113921239213392143921539216392173921839219392203922139222392233922439225392263922739228392293923039231392323923339234392353923639237392383923939240392413924239243392443924539246392473924839249392503925139252392533925439255392563925739258392593926039261392623926339264392653926639267392683926939270392713927239273392743927539276392773927839279392803928139282392833928439285392863928739288392893929039291392923929339294392953929639297392983929939300393013930239303393043930539306393073930839309393103931139312393133931439315393163931739318393193932039321393223932339324393253932639327393283932939330393313933239333393343933539336393373933839339393403934139342393433934439345393463934739348393493935039351393523935339354393553935639357393583935939360393613936239363393643936539366393673936839369393703937139372393733937439375393763937739378393793938039381393823938339384393853938639387393883938939390393913939239393393943939539396393973939839399394003940139402394033940439405394063940739408394093941039411394123941339414394153941639417394183941939420394213942239423394243942539426394273942839429394303943139432394333943439435394363943739438394393944039441394423944339444394453944639447394483944939450394513945239453394543945539456394573945839459394603946139462394633946439465394663946739468394693947039471394723947339474394753947639477394783947939480394813948239483394843948539486394873948839489394903949139492394933949439495394963949739498394993950039501395023950339504395053950639507395083950939510395113951239513395143951539516395173951839519395203952139522395233952439525395263952739528395293953039531395323953339534395353953639537395383953939540395413954239543395443954539546395473954839549395503955139552395533955439555395563955739558395593956039561395623956339564395653956639567395683956939570395713957239573395743957539576395773957839579395803958139582395833958439585395863958739588395893959039591395923959339594395953959639597395983959939600396013960239603396043960539606396073960839609396103961139612396133961439615396163961739618396193962039621396223962339624396253962639627396283962939630396313963239633396343963539636396373963839639396403964139642396433964439645396463964739648396493965039651396523965339654396553965639657396583965939660396613966239663396643966539666396673966839669396703967139672396733967439675396763967739678396793968039681396823968339684396853968639687396883968939690396913969239693396943969539696396973969839699397003970139702397033970439705397063970739708397093971039711397123971339714397153971639717397183971939720397213972239723397243972539726397273972839729397303973139732397333973439735397363973739738397393974039741397423974339744397453974639747397483974939750397513975239753397543975539756397573975839759397603976139762397633976439765397663976739768397693977039771397723977339774397753977639777397783977939780397813978239783397843978539786397873978839789397903979139792397933979439795397963979739798397993980039801398023980339804398053980639807398083980939810398113981239813398143981539816398173981839819398203982139822398233982439825398263982739828398293983039831398323983339834398353983639837398383983939840398413984239843398443984539846398473984839849398503985139852398533985439855398563985739858398593986039861398623986339864398653986639867398683986939870398713987239873398743987539876398773987839879398803988139882398833988439885398863988739888398893989039891398923989339894398953989639897398983989939900399013990239903399043990539906399073990839909399103991139912399133991439915399163991739918399193992039921399223992339924399253992639927399283992939930399313993239933399343993539936399373993839939399403994139942399433994439945399463994739948399493995039951399523995339954399553995639957399583995939960399613996239963399643996539966399673996839969399703997139972399733997439975399763997739978399793998039981399823998339984399853998639987399883998939990399913999239993399943999539996399973999839999400004000140002400034000440005400064000740008400094001040011400124001340014400154001640017400184001940020400214002240023400244002540026400274002840029400304003140032400334003440035400364003740038400394004040041400424004340044400454004640047400484004940050400514005240053400544005540056400574005840059400604006140062400634006440065400664006740068400694007040071400724007340074400754007640077400784007940080400814008240083400844008540086400874008840089400904009140092400934009440095400964009740098400994010040101401024010340104401054010640107401084010940110401114011240113401144011540116401174011840119401204012140122401234012440125401264012740128401294013040131401324013340134401354013640137401384013940140401414014240143401444014540146401474014840149401504015140152401534015440155401564015740158401594016040161401624016340164401654016640167401684016940170401714017240173401744017540176401774017840179401804018140182401834018440185401864018740188401894019040191401924019340194401954019640197401984019940200402014020240203402044020540206402074020840209402104021140212402134021440215402164021740218402194022040221402224022340224402254022640227402284022940230402314023240233402344023540236402374023840239402404024140242402434024440245402464024740248402494025040251402524025340254402554025640257402584025940260402614026240263402644026540266402674026840269402704027140272402734027440275402764027740278402794028040281402824028340284402854028640287402884028940290402914029240293402944029540296402974029840299403004030140302403034030440305403064030740308403094031040311403124031340314403154031640317403184031940320403214032240323403244032540326403274032840329403304033140332403334033440335403364033740338403394034040341403424034340344403454034640347403484034940350403514035240353403544035540356403574035840359403604036140362403634036440365403664036740368403694037040371403724037340374403754037640377403784037940380403814038240383403844038540386403874038840389403904039140392403934039440395403964039740398403994040040401404024040340404404054040640407404084040940410404114041240413404144041540416404174041840419404204042140422404234042440425404264042740428404294043040431404324043340434404354043640437404384043940440404414044240443404444044540446404474044840449404504045140452404534045440455404564045740458404594046040461404624046340464404654046640467404684046940470404714047240473404744047540476404774047840479404804048140482404834048440485404864048740488404894049040491404924049340494404954049640497404984049940500405014050240503405044050540506405074050840509405104051140512405134051440515405164051740518405194052040521405224052340524405254052640527405284052940530405314053240533405344053540536405374053840539405404054140542405434054440545405464054740548405494055040551405524055340554405554055640557405584055940560405614056240563405644056540566405674056840569405704057140572405734057440575405764057740578405794058040581405824058340584405854058640587405884058940590405914059240593405944059540596405974059840599406004060140602406034060440605406064060740608406094061040611406124061340614406154061640617406184061940620406214062240623406244062540626406274062840629406304063140632406334063440635406364063740638406394064040641406424064340644406454064640647406484064940650406514065240653406544065540656406574065840659406604066140662406634066440665406664066740668406694067040671406724067340674406754067640677406784067940680406814068240683406844068540686406874068840689406904069140692406934069440695406964069740698406994070040701407024070340704407054070640707407084070940710407114071240713407144071540716407174071840719407204072140722407234072440725407264072740728407294073040731407324073340734407354073640737407384073940740407414074240743407444074540746407474074840749407504075140752407534075440755407564075740758407594076040761407624076340764407654076640767407684076940770407714077240773407744077540776407774077840779407804078140782407834078440785407864078740788407894079040791407924079340794407954079640797407984079940800408014080240803408044080540806408074080840809408104081140812408134081440815408164081740818408194082040821408224082340824408254082640827408284082940830408314083240833408344083540836408374083840839408404084140842408434084440845408464084740848408494085040851408524085340854408554085640857408584085940860408614086240863408644086540866408674086840869408704087140872408734087440875408764087740878408794088040881408824088340884408854088640887408884088940890408914089240893408944089540896408974089840899409004090140902409034090440905409064090740908409094091040911409124091340914409154091640917409184091940920409214092240923409244092540926409274092840929409304093140932409334093440935409364093740938409394094040941409424094340944409454094640947409484094940950409514095240953409544095540956409574095840959409604096140962409634096440965409664096740968409694097040971409724097340974409754097640977409784097940980409814098240983409844098540986409874098840989409904099140992409934099440995409964099740998409994100041001410024100341004410054100641007410084100941010410114101241013410144101541016410174101841019410204102141022410234102441025410264102741028410294103041031410324103341034410354103641037410384103941040410414104241043410444104541046410474104841049410504105141052410534105441055410564105741058410594106041061410624106341064410654106641067410684106941070410714107241073410744107541076410774107841079410804108141082410834108441085410864108741088410894109041091410924109341094410954109641097410984109941100411014110241103411044110541106411074110841109411104111141112411134111441115411164111741118411194112041121411224112341124411254112641127411284112941130411314113241133411344113541136411374113841139411404114141142411434114441145411464114741148411494115041151411524115341154411554115641157411584115941160411614116241163411644116541166411674116841169411704117141172411734117441175411764117741178411794118041181411824118341184411854118641187411884118941190411914119241193411944119541196411974119841199412004120141202412034120441205412064120741208412094121041211412124121341214412154121641217412184121941220412214122241223412244122541226412274122841229412304123141232412334123441235412364123741238412394124041241412424124341244412454124641247412484124941250412514125241253412544125541256412574125841259412604126141262412634126441265412664126741268412694127041271412724127341274412754127641277412784127941280412814128241283412844128541286412874128841289412904129141292412934129441295412964129741298412994130041301413024130341304413054130641307413084130941310413114131241313413144131541316413174131841319413204132141322413234132441325413264132741328413294133041331413324133341334413354133641337413384133941340413414134241343413444134541346413474134841349413504135141352413534135441355413564135741358413594136041361413624136341364413654136641367413684136941370413714137241373413744137541376413774137841379413804138141382413834138441385413864138741388413894139041391413924139341394413954139641397413984139941400414014140241403414044140541406414074140841409414104141141412414134141441415414164141741418414194142041421414224142341424414254142641427414284142941430414314143241433414344143541436414374143841439414404144141442414434144441445414464144741448414494145041451414524145341454414554145641457414584145941460414614146241463414644146541466414674146841469414704147141472414734147441475414764147741478414794148041481414824148341484414854148641487414884148941490414914149241493414944149541496414974149841499415004150141502415034150441505415064150741508415094151041511415124151341514415154151641517415184151941520415214152241523415244152541526415274152841529415304153141532415334153441535415364153741538415394154041541415424154341544415454154641547415484154941550415514155241553415544155541556415574155841559415604156141562415634156441565415664156741568 | 
							- // modules are defined as an array
 
- // [ module function, map of requires ]
 
- //
 
- // map of requires is short require name -> numeric require
 
- //
 
- // anything defined in a previous bundle is accessed via the
 
- // orig method which is the require for previous bundles
 
- parcelRequire = (function (modules, cache, entry, globalName) {
 
-   // Save the require from previous bundle to this closure if any
 
-   var previousRequire = typeof parcelRequire === 'function' && parcelRequire;
 
-   var nodeRequire = typeof require === 'function' && require;
 
-   function newRequire(name, jumped) {
 
-     if (!cache[name]) {
 
-       if (!modules[name]) {
 
-         // if we cannot find the module within our internal map or
 
-         // cache jump to the current global require ie. the last bundle
 
-         // that was added to the page.
 
-         var currentRequire = typeof parcelRequire === 'function' && parcelRequire;
 
-         if (!jumped && currentRequire) {
 
-           return currentRequire(name, true);
 
-         }
 
-         // If there are other bundles on this page the require from the
 
-         // previous one is saved to 'previousRequire'. Repeat this as
 
-         // many times as there are bundles until the module is found or
 
-         // we exhaust the require chain.
 
-         if (previousRequire) {
 
-           return previousRequire(name, true);
 
-         }
 
-         // Try the node require function if it exists.
 
-         if (nodeRequire && typeof name === 'string') {
 
-           return nodeRequire(name);
 
-         }
 
-         var err = new Error('Cannot find module \'' + name + '\'');
 
-         err.code = 'MODULE_NOT_FOUND';
 
-         throw err;
 
-       }
 
-       localRequire.resolve = resolve;
 
-       localRequire.cache = {};
 
-       var module = cache[name] = new newRequire.Module(name);
 
-       modules[name][0].call(module.exports, localRequire, module, module.exports, this);
 
-     }
 
-     return cache[name].exports;
 
-     function localRequire(x) {
 
-       return newRequire(localRequire.resolve(x));
 
-     }
 
-     function resolve(x) {
 
-       return modules[name][1][x] || x;
 
-     }
 
-   }
 
-   function Module(moduleName) {
 
-     this.id = moduleName;
 
-     this.bundle = newRequire;
 
-     this.exports = {};
 
-   }
 
-   newRequire.isParcelRequire = true;
 
-   newRequire.Module = Module;
 
-   newRequire.modules = modules;
 
-   newRequire.cache = cache;
 
-   newRequire.parent = previousRequire;
 
-   newRequire.register = function (id, exports) {
 
-     modules[id] = [function (require, module) {
 
-       module.exports = exports;
 
-     }, {}];
 
-   };
 
-   var error;
 
-   for (var i = 0; i < entry.length; i++) {
 
-     try {
 
-       newRequire(entry[i]);
 
-     } catch (e) {
 
-       // Save first error but execute all entries
 
-       if (!error) {
 
-         error = e;
 
-       }
 
-     }
 
-   }
 
-   if (entry.length) {
 
-     // Expose entry point to Node, AMD or browser globals
 
-     // Based on https://github.com/ForbesLindesay/umd/blob/master/template.js
 
-     var mainExports = newRequire(entry[entry.length - 1]);
 
-     // CommonJS
 
-     if (typeof exports === "object" && typeof module !== "undefined") {
 
-       module.exports = mainExports;
 
-       // RequireJS
 
-     } else if (typeof define === "function" && define.amd) {
 
-       define(function () {
 
-         return mainExports;
 
-       });
 
-       // <script>
 
-     } else if (globalName) {
 
-       this[globalName] = mainExports;
 
-     }
 
-   }
 
-   // Override the current require with this new one
 
-   parcelRequire = newRequire;
 
-   if (error) {
 
-     // throw error from earlier, _after updating parcelRequire_
 
-     throw error;
 
-   }
 
-   return newRequire;
 
- })({
 
-   "node_modules/parcel-bundler/src/builtins/_empty.js": [function (require, module, exports) {
 
-   }, {}], "node_modules/process/browser.js": [function (require, module, exports) {
 
-     // shim for using process in browser
 
-     var process = module.exports = {}; // cached from whatever global is present so that test runners that stub it
 
-     // don't break things.  But we need to wrap it in a try catch in case it is
 
-     // wrapped in strict mode code which doesn't define any globals.  It's inside a
 
-     // function because try/catches deoptimize in certain engines.
 
-     var cachedSetTimeout;
 
-     var cachedClearTimeout;
 
-     function defaultSetTimout() {
 
-       throw new Error('setTimeout has not been defined');
 
-     }
 
-     function defaultClearTimeout() {
 
-       throw new Error('clearTimeout has not been defined');
 
-     }
 
-     (function () {
 
-       try {
 
-         if (typeof setTimeout === 'function') {
 
-           cachedSetTimeout = setTimeout;
 
-         } else {
 
-           cachedSetTimeout = defaultSetTimout;
 
-         }
 
-       } catch (e) {
 
-         cachedSetTimeout = defaultSetTimout;
 
-       }
 
-       try {
 
-         if (typeof clearTimeout === 'function') {
 
-           cachedClearTimeout = clearTimeout;
 
-         } else {
 
-           cachedClearTimeout = defaultClearTimeout;
 
-         }
 
-       } catch (e) {
 
-         cachedClearTimeout = defaultClearTimeout;
 
-       }
 
-     })();
 
-     function runTimeout(fun) {
 
-       if (cachedSetTimeout === setTimeout) {
 
-         //normal enviroments in sane situations
 
-         return setTimeout(fun, 0);
 
-       } // if setTimeout wasn't available but was latter defined
 
-       if ((cachedSetTimeout === defaultSetTimout || !cachedSetTimeout) && setTimeout) {
 
-         cachedSetTimeout = setTimeout;
 
-         return setTimeout(fun, 0);
 
-       }
 
-       try {
 
-         // when when somebody has screwed with setTimeout but no I.E. maddness
 
-         return cachedSetTimeout(fun, 0);
 
-       } catch (e) {
 
-         try {
 
-           // When we are in I.E. but the script has been evaled so I.E. doesn't trust the global object when called normally
 
-           return cachedSetTimeout.call(null, fun, 0);
 
-         } catch (e) {
 
-           // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error
 
-           return cachedSetTimeout.call(this, fun, 0);
 
-         }
 
-       }
 
-     }
 
-     function runClearTimeout(marker) {
 
-       if (cachedClearTimeout === clearTimeout) {
 
-         //normal enviroments in sane situations
 
-         return clearTimeout(marker);
 
-       } // if clearTimeout wasn't available but was latter defined
 
-       if ((cachedClearTimeout === defaultClearTimeout || !cachedClearTimeout) && clearTimeout) {
 
-         cachedClearTimeout = clearTimeout;
 
-         return clearTimeout(marker);
 
-       }
 
-       try {
 
-         // when when somebody has screwed with setTimeout but no I.E. maddness
 
-         return cachedClearTimeout(marker);
 
-       } catch (e) {
 
-         try {
 
-           // When we are in I.E. but the script has been evaled so I.E. doesn't  trust the global object when called normally
 
-           return cachedClearTimeout.call(null, marker);
 
-         } catch (e) {
 
-           // same as above but when it's a version of I.E. that must have the global object for 'this', hopfully our context correct otherwise it will throw a global error.
 
-           // Some versions of I.E. have different rules for clearTimeout vs setTimeout
 
-           return cachedClearTimeout.call(this, marker);
 
-         }
 
-       }
 
-     }
 
-     var queue = [];
 
-     var draining = false;
 
-     var currentQueue;
 
-     var queueIndex = -1;
 
-     function cleanUpNextTick() {
 
-       if (!draining || !currentQueue) {
 
-         return;
 
-       }
 
-       draining = false;
 
-       if (currentQueue.length) {
 
-         queue = currentQueue.concat(queue);
 
-       } else {
 
-         queueIndex = -1;
 
-       }
 
-       if (queue.length) {
 
-         drainQueue();
 
-       }
 
-     }
 
-     function drainQueue() {
 
-       if (draining) {
 
-         return;
 
-       }
 
-       var timeout = runTimeout(cleanUpNextTick);
 
-       draining = true;
 
-       var len = queue.length;
 
-       while (len) {
 
-         currentQueue = queue;
 
-         queue = [];
 
-         while (++queueIndex < len) {
 
-           if (currentQueue) {
 
-             currentQueue[queueIndex].run();
 
-           }
 
-         }
 
-         queueIndex = -1;
 
-         len = queue.length;
 
-       }
 
-       currentQueue = null;
 
-       draining = false;
 
-       runClearTimeout(timeout);
 
-     }
 
-     process.nextTick = function (fun) {
 
-       var args = new Array(arguments.length - 1);
 
-       if (arguments.length > 1) {
 
-         for (var i = 1; i < arguments.length; i++) {
 
-           args[i - 1] = arguments[i];
 
-         }
 
-       }
 
-       queue.push(new Item(fun, args));
 
-       if (queue.length === 1 && !draining) {
 
-         runTimeout(drainQueue);
 
-       }
 
-     }; // v8 likes predictible objects
 
-     function Item(fun, array) {
 
-       this.fun = fun;
 
-       this.array = array;
 
-     }
 
-     Item.prototype.run = function () {
 
-       this.fun.apply(null, this.array);
 
-     };
 
-     process.title = 'browser';
 
-     process.env = {};
 
-     process.argv = [];
 
-     process.version = ''; // empty string to avoid regexp issues
 
-     process.versions = {};
 
-     function noop() { }
 
-     process.on = noop;
 
-     process.addListener = noop;
 
-     process.once = noop;
 
-     process.off = noop;
 
-     process.removeListener = noop;
 
-     process.removeAllListeners = noop;
 
-     process.emit = noop;
 
-     process.prependListener = noop;
 
-     process.prependOnceListener = noop;
 
-     process.listeners = function (name) {
 
-       return [];
 
-     };
 
-     process.binding = function (name) {
 
-       throw new Error('process.binding is not supported');
 
-     };
 
-     process.cwd = function () {
 
-       return '/';
 
-     };
 
-     process.chdir = function (dir) {
 
-       throw new Error('process.chdir is not supported');
 
-     };
 
-     process.umask = function () {
 
-       return 0;
 
-     };
 
-   }, {}], "node_modules/base64-js/index.js": [function (require, module, exports) {
 
-     'use strict'
 
-     exports.byteLength = byteLength
 
-     exports.toByteArray = toByteArray
 
-     exports.fromByteArray = fromByteArray
 
-     var lookup = []
 
-     var revLookup = []
 
-     var Arr = typeof Uint8Array !== 'undefined' ? Uint8Array : Array
 
-     var code = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
 
-     for (var i = 0, len = code.length; i < len; ++i) {
 
-       lookup[i] = code[i]
 
-       revLookup[code.charCodeAt(i)] = i
 
-     }
 
-     // Support decoding URL-safe base64 strings, as Node.js does.
 
-     // See: https://en.wikipedia.org/wiki/Base64#URL_applications
 
-     revLookup['-'.charCodeAt(0)] = 62
 
-     revLookup['_'.charCodeAt(0)] = 63
 
-     function getLens(b64) {
 
-       var len = b64.length
 
-       if (len % 4 > 0) {
 
-         throw new Error('Invalid string. Length must be a multiple of 4')
 
-       }
 
-       // Trim off extra bytes after placeholder bytes are found
 
-       // See: https://github.com/beatgammit/base64-js/issues/42
 
-       var validLen = b64.indexOf('=')
 
-       if (validLen === -1) validLen = len
 
-       var placeHoldersLen = validLen === len
 
-         ? 0
 
-         : 4 - (validLen % 4)
 
-       return [validLen, placeHoldersLen]
 
-     }
 
-     // base64 is 4/3 + up to two characters of the original data
 
-     function byteLength(b64) {
 
-       var lens = getLens(b64)
 
-       var validLen = lens[0]
 
-       var placeHoldersLen = lens[1]
 
-       return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
 
-     }
 
-     function _byteLength(b64, validLen, placeHoldersLen) {
 
-       return ((validLen + placeHoldersLen) * 3 / 4) - placeHoldersLen
 
-     }
 
-     function toByteArray(b64) {
 
-       var tmp
 
-       var lens = getLens(b64)
 
-       var validLen = lens[0]
 
-       var placeHoldersLen = lens[1]
 
-       var arr = new Arr(_byteLength(b64, validLen, placeHoldersLen))
 
-       var curByte = 0
 
-       // if there are placeholders, only get up to the last complete 4 chars
 
-       var len = placeHoldersLen > 0
 
-         ? validLen - 4
 
-         : validLen
 
-       var i
 
-       for (i = 0; i < len; i += 4) {
 
-         tmp =
 
-           (revLookup[b64.charCodeAt(i)] << 18) |
 
-           (revLookup[b64.charCodeAt(i + 1)] << 12) |
 
-           (revLookup[b64.charCodeAt(i + 2)] << 6) |
 
-           revLookup[b64.charCodeAt(i + 3)]
 
-         arr[curByte++] = (tmp >> 16) & 0xFF
 
-         arr[curByte++] = (tmp >> 8) & 0xFF
 
-         arr[curByte++] = tmp & 0xFF
 
-       }
 
-       if (placeHoldersLen === 2) {
 
-         tmp =
 
-           (revLookup[b64.charCodeAt(i)] << 2) |
 
-           (revLookup[b64.charCodeAt(i + 1)] >> 4)
 
-         arr[curByte++] = tmp & 0xFF
 
-       }
 
-       if (placeHoldersLen === 1) {
 
-         tmp =
 
-           (revLookup[b64.charCodeAt(i)] << 10) |
 
-           (revLookup[b64.charCodeAt(i + 1)] << 4) |
 
-           (revLookup[b64.charCodeAt(i + 2)] >> 2)
 
-         arr[curByte++] = (tmp >> 8) & 0xFF
 
-         arr[curByte++] = tmp & 0xFF
 
-       }
 
-       return arr
 
-     }
 
-     function tripletToBase64(num) {
 
-       return lookup[num >> 18 & 0x3F] +
 
-         lookup[num >> 12 & 0x3F] +
 
-         lookup[num >> 6 & 0x3F] +
 
-         lookup[num & 0x3F]
 
-     }
 
-     function encodeChunk(uint8, start, end) {
 
-       var tmp
 
-       var output = []
 
-       for (var i = start; i < end; i += 3) {
 
-         tmp =
 
-           ((uint8[i] << 16) & 0xFF0000) +
 
-           ((uint8[i + 1] << 8) & 0xFF00) +
 
-           (uint8[i + 2] & 0xFF)
 
-         output.push(tripletToBase64(tmp))
 
-       }
 
-       return output.join('')
 
-     }
 
-     function fromByteArray(uint8) {
 
-       var tmp
 
-       var len = uint8.length
 
-       var extraBytes = len % 3 // if we have 1 byte left, pad 2 bytes
 
-       var parts = []
 
-       var maxChunkLength = 16383 // must be multiple of 3
 
-       // go through the array every three bytes, we'll deal with trailing stuff later
 
-       for (var i = 0, len2 = len - extraBytes; i < len2; i += maxChunkLength) {
 
-         parts.push(encodeChunk(
 
-           uint8, i, (i + maxChunkLength) > len2 ? len2 : (i + maxChunkLength)
 
-         ))
 
-       }
 
-       // pad the end with zeros, but make sure to not forget the extra bytes
 
-       if (extraBytes === 1) {
 
-         tmp = uint8[len - 1]
 
-         parts.push(
 
-           lookup[tmp >> 2] +
 
-           lookup[(tmp << 4) & 0x3F] +
 
-           '=='
 
-         )
 
-       } else if (extraBytes === 2) {
 
-         tmp = (uint8[len - 2] << 8) + uint8[len - 1]
 
-         parts.push(
 
-           lookup[tmp >> 10] +
 
-           lookup[(tmp >> 4) & 0x3F] +
 
-           lookup[(tmp << 2) & 0x3F] +
 
-           '='
 
-         )
 
-       }
 
-       return parts.join('')
 
-     }
 
-   }, {}], "node_modules/ieee754/index.js": [function (require, module, exports) {
 
-     exports.read = function (buffer, offset, isLE, mLen, nBytes) {
 
-       var e, m
 
-       var eLen = (nBytes * 8) - mLen - 1
 
-       var eMax = (1 << eLen) - 1
 
-       var eBias = eMax >> 1
 
-       var nBits = -7
 
-       var i = isLE ? (nBytes - 1) : 0
 
-       var d = isLE ? -1 : 1
 
-       var s = buffer[offset + i]
 
-       i += d
 
-       e = s & ((1 << (-nBits)) - 1)
 
-       s >>= (-nBits)
 
-       nBits += eLen
 
-       for (; nBits > 0; e = (e * 256) + buffer[offset + i], i += d, nBits -= 8) { }
 
-       m = e & ((1 << (-nBits)) - 1)
 
-       e >>= (-nBits)
 
-       nBits += mLen
 
-       for (; nBits > 0; m = (m * 256) + buffer[offset + i], i += d, nBits -= 8) { }
 
-       if (e === 0) {
 
-         e = 1 - eBias
 
-       } else if (e === eMax) {
 
-         return m ? NaN : ((s ? -1 : 1) * Infinity)
 
-       } else {
 
-         m = m + Math.pow(2, mLen)
 
-         e = e - eBias
 
-       }
 
-       return (s ? -1 : 1) * m * Math.pow(2, e - mLen)
 
-     }
 
-     exports.write = function (buffer, value, offset, isLE, mLen, nBytes) {
 
-       var e, m, c
 
-       var eLen = (nBytes * 8) - mLen - 1
 
-       var eMax = (1 << eLen) - 1
 
-       var eBias = eMax >> 1
 
-       var rt = (mLen === 23 ? Math.pow(2, -24) - Math.pow(2, -77) : 0)
 
-       var i = isLE ? 0 : (nBytes - 1)
 
-       var d = isLE ? 1 : -1
 
-       var s = value < 0 || (value === 0 && 1 / value < 0) ? 1 : 0
 
-       value = Math.abs(value)
 
-       if (isNaN(value) || value === Infinity) {
 
-         m = isNaN(value) ? 1 : 0
 
-         e = eMax
 
-       } else {
 
-         e = Math.floor(Math.log(value) / Math.LN2)
 
-         if (value * (c = Math.pow(2, -e)) < 1) {
 
-           e--
 
-           c *= 2
 
-         }
 
-         if (e + eBias >= 1) {
 
-           value += rt / c
 
-         } else {
 
-           value += rt * Math.pow(2, 1 - eBias)
 
-         }
 
-         if (value * c >= 2) {
 
-           e++
 
-           c /= 2
 
-         }
 
-         if (e + eBias >= eMax) {
 
-           m = 0
 
-           e = eMax
 
-         } else if (e + eBias >= 1) {
 
-           m = ((value * c) - 1) * Math.pow(2, mLen)
 
-           e = e + eBias
 
-         } else {
 
-           m = value * Math.pow(2, eBias - 1) * Math.pow(2, mLen)
 
-           e = 0
 
-         }
 
-       }
 
-       for (; mLen >= 8; buffer[offset + i] = m & 0xff, i += d, m /= 256, mLen -= 8) { }
 
-       e = (e << mLen) | m
 
-       eLen += mLen
 
-       for (; eLen > 0; buffer[offset + i] = e & 0xff, i += d, e /= 256, eLen -= 8) { }
 
-       buffer[offset + i - d] |= s * 128
 
-     }
 
-   }, {}], "node_modules/isarray/index.js": [function (require, module, exports) {
 
-     var toString = {}.toString;
 
-     module.exports = Array.isArray || function (arr) {
 
-       return toString.call(arr) == '[object Array]';
 
-     };
 
-   }, {}], "node_modules/buffer/index.js": [function (require, module, exports) {
 
-     var global = arguments[3];
 
-     /*!
 
-      * The buffer module from node.js, for the browser.
 
-      *
 
-      * @author   Feross Aboukhadijeh <feross@feross.org> <http://feross.org>
 
-      * @license  MIT
 
-      */
 
-     /* eslint-disable no-proto */
 
-     'use strict'
 
-     var base64 = require('base64-js')
 
-     var ieee754 = require('ieee754')
 
-     var isArray = require('isarray')
 
-     exports.Buffer = Buffer
 
-     exports.SlowBuffer = SlowBuffer
 
-     exports.INSPECT_MAX_BYTES = 50
 
-     /**
 
-      * If `Buffer.TYPED_ARRAY_SUPPORT`:
 
-      *   === true    Use Uint8Array implementation (fastest)
 
-      *   === false   Use Object implementation (most compatible, even IE6)
 
-      *
 
-      * Browsers that support typed arrays are IE 10+, Firefox 4+, Chrome 7+, Safari 5.1+,
 
-      * Opera 11.6+, iOS 4.2+.
 
-      *
 
-      * Due to various browser bugs, sometimes the Object implementation will be used even
 
-      * when the browser supports typed arrays.
 
-      *
 
-      * Note:
 
-      *
 
-      *   - Firefox 4-29 lacks support for adding new properties to `Uint8Array` instances,
 
-      *     See: https://bugzilla.mozilla.org/show_bug.cgi?id=695438.
 
-      *
 
-      *   - Chrome 9-10 is missing the `TypedArray.prototype.subarray` function.
 
-      *
 
-      *   - IE10 has a broken `TypedArray.prototype.subarray` function which returns arrays of
 
-      *     incorrect length in some situations.
 
-     
 
-      * We detect these buggy browsers and set `Buffer.TYPED_ARRAY_SUPPORT` to `false` so they
 
-      * get the Object implementation, which is slower but behaves correctly.
 
-      */
 
-     Buffer.TYPED_ARRAY_SUPPORT = global.TYPED_ARRAY_SUPPORT !== undefined
 
-       ? global.TYPED_ARRAY_SUPPORT
 
-       : typedArraySupport()
 
-     /*
 
-      * Export kMaxLength after typed array support is determined.
 
-      */
 
-     exports.kMaxLength = kMaxLength()
 
-     function typedArraySupport() {
 
-       try {
 
-         var arr = new Uint8Array(1)
 
-         arr.__proto__ = { __proto__: Uint8Array.prototype, foo: function () { return 42 } }
 
-         return arr.foo() === 42 && // typed array instances can be augmented
 
-           typeof arr.subarray === 'function' && // chrome 9-10 lack `subarray`
 
-           arr.subarray(1, 1).byteLength === 0 // ie10 has broken `subarray`
 
-       } catch (e) {
 
-         return false
 
-       }
 
-     }
 
-     function kMaxLength() {
 
-       return Buffer.TYPED_ARRAY_SUPPORT
 
-         ? 0x7fffffff
 
-         : 0x3fffffff
 
-     }
 
-     function createBuffer(that, length) {
 
-       if (kMaxLength() < length) {
 
-         throw new RangeError('Invalid typed array length')
 
-       }
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         // Return an augmented `Uint8Array` instance, for best performance
 
-         that = new Uint8Array(length)
 
-         that.__proto__ = Buffer.prototype
 
-       } else {
 
-         // Fallback: Return an object instance of the Buffer class
 
-         if (that === null) {
 
-           that = new Buffer(length)
 
-         }
 
-         that.length = length
 
-       }
 
-       return that
 
-     }
 
-     /**
 
-      * The Buffer constructor returns instances of `Uint8Array` that have their
 
-      * prototype changed to `Buffer.prototype`. Furthermore, `Buffer` is a subclass of
 
-      * `Uint8Array`, so the returned instances will have all the node `Buffer` methods
 
-      * and the `Uint8Array` methods. Square bracket notation works as expected -- it
 
-      * returns a single octet.
 
-      *
 
-      * The `Uint8Array` prototype remains unmodified.
 
-      */
 
-     function Buffer(arg, encodingOrOffset, length) {
 
-       if (!Buffer.TYPED_ARRAY_SUPPORT && !(this instanceof Buffer)) {
 
-         return new Buffer(arg, encodingOrOffset, length)
 
-       }
 
-       // Common case.
 
-       if (typeof arg === 'number') {
 
-         if (typeof encodingOrOffset === 'string') {
 
-           throw new Error(
 
-             'If encoding is specified then the first argument must be a string'
 
-           )
 
-         }
 
-         return allocUnsafe(this, arg)
 
-       }
 
-       return from(this, arg, encodingOrOffset, length)
 
-     }
 
-     Buffer.poolSize = 8192 // not used by this implementation
 
-     // TODO: Legacy, not needed anymore. Remove in next major version.
 
-     Buffer._augment = function (arr) {
 
-       arr.__proto__ = Buffer.prototype
 
-       return arr
 
-     }
 
-     function from(that, value, encodingOrOffset, length) {
 
-       if (typeof value === 'number') {
 
-         throw new TypeError('"value" argument must not be a number')
 
-       }
 
-       if (typeof ArrayBuffer !== 'undefined' && value instanceof ArrayBuffer) {
 
-         return fromArrayBuffer(that, value, encodingOrOffset, length)
 
-       }
 
-       if (typeof value === 'string') {
 
-         return fromString(that, value, encodingOrOffset)
 
-       }
 
-       return fromObject(that, value)
 
-     }
 
-     /**
 
-      * Functionally equivalent to Buffer(arg, encoding) but throws a TypeError
 
-      * if value is a number.
 
-      * Buffer.from(str[, encoding])
 
-      * Buffer.from(array)
 
-      * Buffer.from(buffer)
 
-      * Buffer.from(arrayBuffer[, byteOffset[, length]])
 
-      **/
 
-     Buffer.from = function (value, encodingOrOffset, length) {
 
-       return from(null, value, encodingOrOffset, length)
 
-     }
 
-     if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-       Buffer.prototype.__proto__ = Uint8Array.prototype
 
-       Buffer.__proto__ = Uint8Array
 
-       if (typeof Symbol !== 'undefined' && Symbol.species &&
 
-         Buffer[Symbol.species] === Buffer) {
 
-         // Fix subarray() in ES2016. See: https://github.com/feross/buffer/pull/97
 
-         Object.defineProperty(Buffer, Symbol.species, {
 
-           value: null,
 
-           configurable: true
 
-         })
 
-       }
 
-     }
 
-     function assertSize(size) {
 
-       if (typeof size !== 'number') {
 
-         throw new TypeError('"size" argument must be a number')
 
-       } else if (size < 0) {
 
-         throw new RangeError('"size" argument must not be negative')
 
-       }
 
-     }
 
-     function alloc(that, size, fill, encoding) {
 
-       assertSize(size)
 
-       if (size <= 0) {
 
-         return createBuffer(that, size)
 
-       }
 
-       if (fill !== undefined) {
 
-         // Only pay attention to encoding if it's a string. This
 
-         // prevents accidentally sending in a number that would
 
-         // be interpretted as a start offset.
 
-         return typeof encoding === 'string'
 
-           ? createBuffer(that, size).fill(fill, encoding)
 
-           : createBuffer(that, size).fill(fill)
 
-       }
 
-       return createBuffer(that, size)
 
-     }
 
-     /**
 
-      * Creates a new filled Buffer instance.
 
-      * alloc(size[, fill[, encoding]])
 
-      **/
 
-     Buffer.alloc = function (size, fill, encoding) {
 
-       return alloc(null, size, fill, encoding)
 
-     }
 
-     function allocUnsafe(that, size) {
 
-       assertSize(size)
 
-       that = createBuffer(that, size < 0 ? 0 : checked(size) | 0)
 
-       if (!Buffer.TYPED_ARRAY_SUPPORT) {
 
-         for (var i = 0; i < size; ++i) {
 
-           that[i] = 0
 
-         }
 
-       }
 
-       return that
 
-     }
 
-     /**
 
-      * Equivalent to Buffer(num), by default creates a non-zero-filled Buffer instance.
 
-      * */
 
-     Buffer.allocUnsafe = function (size) {
 
-       return allocUnsafe(null, size)
 
-     }
 
-     /**
 
-      * Equivalent to SlowBuffer(num), by default creates a non-zero-filled Buffer instance.
 
-      */
 
-     Buffer.allocUnsafeSlow = function (size) {
 
-       return allocUnsafe(null, size)
 
-     }
 
-     function fromString(that, string, encoding) {
 
-       if (typeof encoding !== 'string' || encoding === '') {
 
-         encoding = 'utf8'
 
-       }
 
-       if (!Buffer.isEncoding(encoding)) {
 
-         throw new TypeError('"encoding" must be a valid string encoding')
 
-       }
 
-       var length = byteLength(string, encoding) | 0
 
-       that = createBuffer(that, length)
 
-       var actual = that.write(string, encoding)
 
-       if (actual !== length) {
 
-         // Writing a hex string, for example, that contains invalid characters will
 
-         // cause everything after the first invalid character to be ignored. (e.g.
 
-         // 'abxxcd' will be treated as 'ab')
 
-         that = that.slice(0, actual)
 
-       }
 
-       return that
 
-     }
 
-     function fromArrayLike(that, array) {
 
-       var length = array.length < 0 ? 0 : checked(array.length) | 0
 
-       that = createBuffer(that, length)
 
-       for (var i = 0; i < length; i += 1) {
 
-         that[i] = array[i] & 255
 
-       }
 
-       return that
 
-     }
 
-     function fromArrayBuffer(that, array, byteOffset, length) {
 
-       array.byteLength // this throws if `array` is not a valid ArrayBuffer
 
-       if (byteOffset < 0 || array.byteLength < byteOffset) {
 
-         throw new RangeError('\'offset\' is out of bounds')
 
-       }
 
-       if (array.byteLength < byteOffset + (length || 0)) {
 
-         throw new RangeError('\'length\' is out of bounds')
 
-       }
 
-       if (byteOffset === undefined && length === undefined) {
 
-         array = new Uint8Array(array)
 
-       } else if (length === undefined) {
 
-         array = new Uint8Array(array, byteOffset)
 
-       } else {
 
-         array = new Uint8Array(array, byteOffset, length)
 
-       }
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         // Return an augmented `Uint8Array` instance, for best performance
 
-         that = array
 
-         that.__proto__ = Buffer.prototype
 
-       } else {
 
-         // Fallback: Return an object instance of the Buffer class
 
-         that = fromArrayLike(that, array)
 
-       }
 
-       return that
 
-     }
 
-     function fromObject(that, obj) {
 
-       if (Buffer.isBuffer(obj)) {
 
-         var len = checked(obj.length) | 0
 
-         that = createBuffer(that, len)
 
-         if (that.length === 0) {
 
-           return that
 
-         }
 
-         obj.copy(that, 0, 0, len)
 
-         return that
 
-       }
 
-       if (obj) {
 
-         if ((typeof ArrayBuffer !== 'undefined' &&
 
-           obj.buffer instanceof ArrayBuffer) || 'length' in obj) {
 
-           if (typeof obj.length !== 'number' || isnan(obj.length)) {
 
-             return createBuffer(that, 0)
 
-           }
 
-           return fromArrayLike(that, obj)
 
-         }
 
-         if (obj.type === 'Buffer' && isArray(obj.data)) {
 
-           return fromArrayLike(that, obj.data)
 
-         }
 
-       }
 
-       throw new TypeError('First argument must be a string, Buffer, ArrayBuffer, Array, or array-like object.')
 
-     }
 
-     function checked(length) {
 
-       // Note: cannot use `length < kMaxLength()` here because that fails when
 
-       // length is NaN (which is otherwise coerced to zero.)
 
-       if (length >= kMaxLength()) {
 
-         throw new RangeError('Attempt to allocate Buffer larger than maximum ' +
 
-           'size: 0x' + kMaxLength().toString(16) + ' bytes')
 
-       }
 
-       return length | 0
 
-     }
 
-     function SlowBuffer(length) {
 
-       if (+length != length) { // eslint-disable-line eqeqeq
 
-         length = 0
 
-       }
 
-       return Buffer.alloc(+length)
 
-     }
 
-     Buffer.isBuffer = function isBuffer(b) {
 
-       return !!(b != null && b._isBuffer)
 
-     }
 
-     Buffer.compare = function compare(a, b) {
 
-       if (!Buffer.isBuffer(a) || !Buffer.isBuffer(b)) {
 
-         throw new TypeError('Arguments must be Buffers')
 
-       }
 
-       if (a === b) return 0
 
-       var x = a.length
 
-       var y = b.length
 
-       for (var i = 0, len = Math.min(x, y); i < len; ++i) {
 
-         if (a[i] !== b[i]) {
 
-           x = a[i]
 
-           y = b[i]
 
-           break
 
-         }
 
-       }
 
-       if (x < y) return -1
 
-       if (y < x) return 1
 
-       return 0
 
-     }
 
-     Buffer.isEncoding = function isEncoding(encoding) {
 
-       switch (String(encoding).toLowerCase()) {
 
-         case 'hex':
 
-         case 'utf8':
 
-         case 'utf-8':
 
-         case 'ascii':
 
-         case 'latin1':
 
-         case 'binary':
 
-         case 'base64':
 
-         case 'ucs2':
 
-         case 'ucs-2':
 
-         case 'utf16le':
 
-         case 'utf-16le':
 
-           return true
 
-         default:
 
-           return false
 
-       }
 
-     }
 
-     Buffer.concat = function concat(list, length) {
 
-       if (!isArray(list)) {
 
-         throw new TypeError('"list" argument must be an Array of Buffers')
 
-       }
 
-       if (list.length === 0) {
 
-         return Buffer.alloc(0)
 
-       }
 
-       var i
 
-       if (length === undefined) {
 
-         length = 0
 
-         for (i = 0; i < list.length; ++i) {
 
-           length += list[i].length
 
-         }
 
-       }
 
-       var buffer = Buffer.allocUnsafe(length)
 
-       var pos = 0
 
-       for (i = 0; i < list.length; ++i) {
 
-         var buf = list[i]
 
-         if (!Buffer.isBuffer(buf)) {
 
-           throw new TypeError('"list" argument must be an Array of Buffers')
 
-         }
 
-         buf.copy(buffer, pos)
 
-         pos += buf.length
 
-       }
 
-       return buffer
 
-     }
 
-     function byteLength(string, encoding) {
 
-       if (Buffer.isBuffer(string)) {
 
-         return string.length
 
-       }
 
-       if (typeof ArrayBuffer !== 'undefined' && typeof ArrayBuffer.isView === 'function' &&
 
-         (ArrayBuffer.isView(string) || string instanceof ArrayBuffer)) {
 
-         return string.byteLength
 
-       }
 
-       if (typeof string !== 'string') {
 
-         string = '' + string
 
-       }
 
-       var len = string.length
 
-       if (len === 0) return 0
 
-       // Use a for loop to avoid recursion
 
-       var loweredCase = false
 
-       for (; ;) {
 
-         switch (encoding) {
 
-           case 'ascii':
 
-           case 'latin1':
 
-           case 'binary':
 
-             return len
 
-           case 'utf8':
 
-           case 'utf-8':
 
-           case undefined:
 
-             return utf8ToBytes(string).length
 
-           case 'ucs2':
 
-           case 'ucs-2':
 
-           case 'utf16le':
 
-           case 'utf-16le':
 
-             return len * 2
 
-           case 'hex':
 
-             return len >>> 1
 
-           case 'base64':
 
-             return base64ToBytes(string).length
 
-           default:
 
-             if (loweredCase) return utf8ToBytes(string).length // assume utf8
 
-             encoding = ('' + encoding).toLowerCase()
 
-             loweredCase = true
 
-         }
 
-       }
 
-     }
 
-     Buffer.byteLength = byteLength
 
-     function slowToString(encoding, start, end) {
 
-       var loweredCase = false
 
-       // No need to verify that "this.length <= MAX_UINT32" since it's a read-only
 
-       // property of a typed array.
 
-       // This behaves neither like String nor Uint8Array in that we set start/end
 
-       // to their upper/lower bounds if the value passed is out of range.
 
-       // undefined is handled specially as per ECMA-262 6th Edition,
 
-       // Section 13.3.3.7 Runtime Semantics: KeyedBindingInitialization.
 
-       if (start === undefined || start < 0) {
 
-         start = 0
 
-       }
 
-       // Return early if start > this.length. Done here to prevent potential uint32
 
-       // coercion fail below.
 
-       if (start > this.length) {
 
-         return ''
 
-       }
 
-       if (end === undefined || end > this.length) {
 
-         end = this.length
 
-       }
 
-       if (end <= 0) {
 
-         return ''
 
-       }
 
-       // Force coersion to uint32. This will also coerce falsey/NaN values to 0.
 
-       end >>>= 0
 
-       start >>>= 0
 
-       if (end <= start) {
 
-         return ''
 
-       }
 
-       if (!encoding) encoding = 'utf8'
 
-       while (true) {
 
-         switch (encoding) {
 
-           case 'hex':
 
-             return hexSlice(this, start, end)
 
-           case 'utf8':
 
-           case 'utf-8':
 
-             return utf8Slice(this, start, end)
 
-           case 'ascii':
 
-             return asciiSlice(this, start, end)
 
-           case 'latin1':
 
-           case 'binary':
 
-             return latin1Slice(this, start, end)
 
-           case 'base64':
 
-             return base64Slice(this, start, end)
 
-           case 'ucs2':
 
-           case 'ucs-2':
 
-           case 'utf16le':
 
-           case 'utf-16le':
 
-             return utf16leSlice(this, start, end)
 
-           default:
 
-             if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
 
-             encoding = (encoding + '').toLowerCase()
 
-             loweredCase = true
 
-         }
 
-       }
 
-     }
 
-     // The property is used by `Buffer.isBuffer` and `is-buffer` (in Safari 5-7) to detect
 
-     // Buffer instances.
 
-     Buffer.prototype._isBuffer = true
 
-     function swap(b, n, m) {
 
-       var i = b[n]
 
-       b[n] = b[m]
 
-       b[m] = i
 
-     }
 
-     Buffer.prototype.swap16 = function swap16() {
 
-       var len = this.length
 
-       if (len % 2 !== 0) {
 
-         throw new RangeError('Buffer size must be a multiple of 16-bits')
 
-       }
 
-       for (var i = 0; i < len; i += 2) {
 
-         swap(this, i, i + 1)
 
-       }
 
-       return this
 
-     }
 
-     Buffer.prototype.swap32 = function swap32() {
 
-       var len = this.length
 
-       if (len % 4 !== 0) {
 
-         throw new RangeError('Buffer size must be a multiple of 32-bits')
 
-       }
 
-       for (var i = 0; i < len; i += 4) {
 
-         swap(this, i, i + 3)
 
-         swap(this, i + 1, i + 2)
 
-       }
 
-       return this
 
-     }
 
-     Buffer.prototype.swap64 = function swap64() {
 
-       var len = this.length
 
-       if (len % 8 !== 0) {
 
-         throw new RangeError('Buffer size must be a multiple of 64-bits')
 
-       }
 
-       for (var i = 0; i < len; i += 8) {
 
-         swap(this, i, i + 7)
 
-         swap(this, i + 1, i + 6)
 
-         swap(this, i + 2, i + 5)
 
-         swap(this, i + 3, i + 4)
 
-       }
 
-       return this
 
-     }
 
-     Buffer.prototype.toString = function toString() {
 
-       var length = this.length | 0
 
-       if (length === 0) return ''
 
-       if (arguments.length === 0) return utf8Slice(this, 0, length)
 
-       return slowToString.apply(this, arguments)
 
-     }
 
-     Buffer.prototype.equals = function equals(b) {
 
-       if (!Buffer.isBuffer(b)) throw new TypeError('Argument must be a Buffer')
 
-       if (this === b) return true
 
-       return Buffer.compare(this, b) === 0
 
-     }
 
-     Buffer.prototype.inspect = function inspect() {
 
-       var str = ''
 
-       var max = exports.INSPECT_MAX_BYTES
 
-       if (this.length > 0) {
 
-         str = this.toString('hex', 0, max).match(/.{2}/g).join(' ')
 
-         if (this.length > max) str += ' ... '
 
-       }
 
-       return '<Buffer ' + str + '>'
 
-     }
 
-     Buffer.prototype.compare = function compare(target, start, end, thisStart, thisEnd) {
 
-       if (!Buffer.isBuffer(target)) {
 
-         throw new TypeError('Argument must be a Buffer')
 
-       }
 
-       if (start === undefined) {
 
-         start = 0
 
-       }
 
-       if (end === undefined) {
 
-         end = target ? target.length : 0
 
-       }
 
-       if (thisStart === undefined) {
 
-         thisStart = 0
 
-       }
 
-       if (thisEnd === undefined) {
 
-         thisEnd = this.length
 
-       }
 
-       if (start < 0 || end > target.length || thisStart < 0 || thisEnd > this.length) {
 
-         throw new RangeError('out of range index')
 
-       }
 
-       if (thisStart >= thisEnd && start >= end) {
 
-         return 0
 
-       }
 
-       if (thisStart >= thisEnd) {
 
-         return -1
 
-       }
 
-       if (start >= end) {
 
-         return 1
 
-       }
 
-       start >>>= 0
 
-       end >>>= 0
 
-       thisStart >>>= 0
 
-       thisEnd >>>= 0
 
-       if (this === target) return 0
 
-       var x = thisEnd - thisStart
 
-       var y = end - start
 
-       var len = Math.min(x, y)
 
-       var thisCopy = this.slice(thisStart, thisEnd)
 
-       var targetCopy = target.slice(start, end)
 
-       for (var i = 0; i < len; ++i) {
 
-         if (thisCopy[i] !== targetCopy[i]) {
 
-           x = thisCopy[i]
 
-           y = targetCopy[i]
 
-           break
 
-         }
 
-       }
 
-       if (x < y) return -1
 
-       if (y < x) return 1
 
-       return 0
 
-     }
 
-     // Finds either the first index of `val` in `buffer` at offset >= `byteOffset`,
 
-     // OR the last index of `val` in `buffer` at offset <= `byteOffset`.
 
-     //
 
-     // Arguments:
 
-     // - buffer - a Buffer to search
 
-     // - val - a string, Buffer, or number
 
-     // - byteOffset - an index into `buffer`; will be clamped to an int32
 
-     // - encoding - an optional encoding, relevant is val is a string
 
-     // - dir - true for indexOf, false for lastIndexOf
 
-     function bidirectionalIndexOf(buffer, val, byteOffset, encoding, dir) {
 
-       // Empty buffer means no match
 
-       if (buffer.length === 0) return -1
 
-       // Normalize byteOffset
 
-       if (typeof byteOffset === 'string') {
 
-         encoding = byteOffset
 
-         byteOffset = 0
 
-       } else if (byteOffset > 0x7fffffff) {
 
-         byteOffset = 0x7fffffff
 
-       } else if (byteOffset < -0x80000000) {
 
-         byteOffset = -0x80000000
 
-       }
 
-       byteOffset = +byteOffset  // Coerce to Number.
 
-       if (isNaN(byteOffset)) {
 
-         // byteOffset: it it's undefined, null, NaN, "foo", etc, search whole buffer
 
-         byteOffset = dir ? 0 : (buffer.length - 1)
 
-       }
 
-       // Normalize byteOffset: negative offsets start from the end of the buffer
 
-       if (byteOffset < 0) byteOffset = buffer.length + byteOffset
 
-       if (byteOffset >= buffer.length) {
 
-         if (dir) return -1
 
-         else byteOffset = buffer.length - 1
 
-       } else if (byteOffset < 0) {
 
-         if (dir) byteOffset = 0
 
-         else return -1
 
-       }
 
-       // Normalize val
 
-       if (typeof val === 'string') {
 
-         val = Buffer.from(val, encoding)
 
-       }
 
-       // Finally, search either indexOf (if dir is true) or lastIndexOf
 
-       if (Buffer.isBuffer(val)) {
 
-         // Special case: looking for empty string/buffer always fails
 
-         if (val.length === 0) {
 
-           return -1
 
-         }
 
-         return arrayIndexOf(buffer, val, byteOffset, encoding, dir)
 
-       } else if (typeof val === 'number') {
 
-         val = val & 0xFF // Search for a byte value [0-255]
 
-         if (Buffer.TYPED_ARRAY_SUPPORT &&
 
-           typeof Uint8Array.prototype.indexOf === 'function') {
 
-           if (dir) {
 
-             return Uint8Array.prototype.indexOf.call(buffer, val, byteOffset)
 
-           } else {
 
-             return Uint8Array.prototype.lastIndexOf.call(buffer, val, byteOffset)
 
-           }
 
-         }
 
-         return arrayIndexOf(buffer, [val], byteOffset, encoding, dir)
 
-       }
 
-       throw new TypeError('val must be string, number or Buffer')
 
-     }
 
-     function arrayIndexOf(arr, val, byteOffset, encoding, dir) {
 
-       var indexSize = 1
 
-       var arrLength = arr.length
 
-       var valLength = val.length
 
-       if (encoding !== undefined) {
 
-         encoding = String(encoding).toLowerCase()
 
-         if (encoding === 'ucs2' || encoding === 'ucs-2' ||
 
-           encoding === 'utf16le' || encoding === 'utf-16le') {
 
-           if (arr.length < 2 || val.length < 2) {
 
-             return -1
 
-           }
 
-           indexSize = 2
 
-           arrLength /= 2
 
-           valLength /= 2
 
-           byteOffset /= 2
 
-         }
 
-       }
 
-       function read(buf, i) {
 
-         if (indexSize === 1) {
 
-           return buf[i]
 
-         } else {
 
-           return buf.readUInt16BE(i * indexSize)
 
-         }
 
-       }
 
-       var i
 
-       if (dir) {
 
-         var foundIndex = -1
 
-         for (i = byteOffset; i < arrLength; i++) {
 
-           if (read(arr, i) === read(val, foundIndex === -1 ? 0 : i - foundIndex)) {
 
-             if (foundIndex === -1) foundIndex = i
 
-             if (i - foundIndex + 1 === valLength) return foundIndex * indexSize
 
-           } else {
 
-             if (foundIndex !== -1) i -= i - foundIndex
 
-             foundIndex = -1
 
-           }
 
-         }
 
-       } else {
 
-         if (byteOffset + valLength > arrLength) byteOffset = arrLength - valLength
 
-         for (i = byteOffset; i >= 0; i--) {
 
-           var found = true
 
-           for (var j = 0; j < valLength; j++) {
 
-             if (read(arr, i + j) !== read(val, j)) {
 
-               found = false
 
-               break
 
-             }
 
-           }
 
-           if (found) return i
 
-         }
 
-       }
 
-       return -1
 
-     }
 
-     Buffer.prototype.includes = function includes(val, byteOffset, encoding) {
 
-       return this.indexOf(val, byteOffset, encoding) !== -1
 
-     }
 
-     Buffer.prototype.indexOf = function indexOf(val, byteOffset, encoding) {
 
-       return bidirectionalIndexOf(this, val, byteOffset, encoding, true)
 
-     }
 
-     Buffer.prototype.lastIndexOf = function lastIndexOf(val, byteOffset, encoding) {
 
-       return bidirectionalIndexOf(this, val, byteOffset, encoding, false)
 
-     }
 
-     function hexWrite(buf, string, offset, length) {
 
-       offset = Number(offset) || 0
 
-       var remaining = buf.length - offset
 
-       if (!length) {
 
-         length = remaining
 
-       } else {
 
-         length = Number(length)
 
-         if (length > remaining) {
 
-           length = remaining
 
-         }
 
-       }
 
-       // must be an even number of digits
 
-       var strLen = string.length
 
-       if (strLen % 2 !== 0) throw new TypeError('Invalid hex string')
 
-       if (length > strLen / 2) {
 
-         length = strLen / 2
 
-       }
 
-       for (var i = 0; i < length; ++i) {
 
-         var parsed = parseInt(string.substr(i * 2, 2), 16)
 
-         if (isNaN(parsed)) return i
 
-         buf[offset + i] = parsed
 
-       }
 
-       return i
 
-     }
 
-     function utf8Write(buf, string, offset, length) {
 
-       return blitBuffer(utf8ToBytes(string, buf.length - offset), buf, offset, length)
 
-     }
 
-     function asciiWrite(buf, string, offset, length) {
 
-       return blitBuffer(asciiToBytes(string), buf, offset, length)
 
-     }
 
-     function latin1Write(buf, string, offset, length) {
 
-       return asciiWrite(buf, string, offset, length)
 
-     }
 
-     function base64Write(buf, string, offset, length) {
 
-       return blitBuffer(base64ToBytes(string), buf, offset, length)
 
-     }
 
-     function ucs2Write(buf, string, offset, length) {
 
-       return blitBuffer(utf16leToBytes(string, buf.length - offset), buf, offset, length)
 
-     }
 
-     Buffer.prototype.write = function write(string, offset, length, encoding) {
 
-       // Buffer#write(string)
 
-       if (offset === undefined) {
 
-         encoding = 'utf8'
 
-         length = this.length
 
-         offset = 0
 
-         // Buffer#write(string, encoding)
 
-       } else if (length === undefined && typeof offset === 'string') {
 
-         encoding = offset
 
-         length = this.length
 
-         offset = 0
 
-         // Buffer#write(string, offset[, length][, encoding])
 
-       } else if (isFinite(offset)) {
 
-         offset = offset | 0
 
-         if (isFinite(length)) {
 
-           length = length | 0
 
-           if (encoding === undefined) encoding = 'utf8'
 
-         } else {
 
-           encoding = length
 
-           length = undefined
 
-         }
 
-         // legacy write(string, encoding, offset, length) - remove in v0.13
 
-       } else {
 
-         throw new Error(
 
-           'Buffer.write(string, encoding, offset[, length]) is no longer supported'
 
-         )
 
-       }
 
-       var remaining = this.length - offset
 
-       if (length === undefined || length > remaining) length = remaining
 
-       if ((string.length > 0 && (length < 0 || offset < 0)) || offset > this.length) {
 
-         throw new RangeError('Attempt to write outside buffer bounds')
 
-       }
 
-       if (!encoding) encoding = 'utf8'
 
-       var loweredCase = false
 
-       for (; ;) {
 
-         switch (encoding) {
 
-           case 'hex':
 
-             return hexWrite(this, string, offset, length)
 
-           case 'utf8':
 
-           case 'utf-8':
 
-             return utf8Write(this, string, offset, length)
 
-           case 'ascii':
 
-             return asciiWrite(this, string, offset, length)
 
-           case 'latin1':
 
-           case 'binary':
 
-             return latin1Write(this, string, offset, length)
 
-           case 'base64':
 
-             // Warning: maxLength not taken into account in base64Write
 
-             return base64Write(this, string, offset, length)
 
-           case 'ucs2':
 
-           case 'ucs-2':
 
-           case 'utf16le':
 
-           case 'utf-16le':
 
-             return ucs2Write(this, string, offset, length)
 
-           default:
 
-             if (loweredCase) throw new TypeError('Unknown encoding: ' + encoding)
 
-             encoding = ('' + encoding).toLowerCase()
 
-             loweredCase = true
 
-         }
 
-       }
 
-     }
 
-     Buffer.prototype.toJSON = function toJSON() {
 
-       return {
 
-         type: 'Buffer',
 
-         data: Array.prototype.slice.call(this._arr || this, 0)
 
-       }
 
-     }
 
-     function base64Slice(buf, start, end) {
 
-       if (start === 0 && end === buf.length) {
 
-         return base64.fromByteArray(buf)
 
-       } else {
 
-         return base64.fromByteArray(buf.slice(start, end))
 
-       }
 
-     }
 
-     function utf8Slice(buf, start, end) {
 
-       end = Math.min(buf.length, end)
 
-       var res = []
 
-       var i = start
 
-       while (i < end) {
 
-         var firstByte = buf[i]
 
-         var codePoint = null
 
-         var bytesPerSequence = (firstByte > 0xEF) ? 4
 
-           : (firstByte > 0xDF) ? 3
 
-             : (firstByte > 0xBF) ? 2
 
-               : 1
 
-         if (i + bytesPerSequence <= end) {
 
-           var secondByte, thirdByte, fourthByte, tempCodePoint
 
-           switch (bytesPerSequence) {
 
-             case 1:
 
-               if (firstByte < 0x80) {
 
-                 codePoint = firstByte
 
-               }
 
-               break
 
-             case 2:
 
-               secondByte = buf[i + 1]
 
-               if ((secondByte & 0xC0) === 0x80) {
 
-                 tempCodePoint = (firstByte & 0x1F) << 0x6 | (secondByte & 0x3F)
 
-                 if (tempCodePoint > 0x7F) {
 
-                   codePoint = tempCodePoint
 
-                 }
 
-               }
 
-               break
 
-             case 3:
 
-               secondByte = buf[i + 1]
 
-               thirdByte = buf[i + 2]
 
-               if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80) {
 
-                 tempCodePoint = (firstByte & 0xF) << 0xC | (secondByte & 0x3F) << 0x6 | (thirdByte & 0x3F)
 
-                 if (tempCodePoint > 0x7FF && (tempCodePoint < 0xD800 || tempCodePoint > 0xDFFF)) {
 
-                   codePoint = tempCodePoint
 
-                 }
 
-               }
 
-               break
 
-             case 4:
 
-               secondByte = buf[i + 1]
 
-               thirdByte = buf[i + 2]
 
-               fourthByte = buf[i + 3]
 
-               if ((secondByte & 0xC0) === 0x80 && (thirdByte & 0xC0) === 0x80 && (fourthByte & 0xC0) === 0x80) {
 
-                 tempCodePoint = (firstByte & 0xF) << 0x12 | (secondByte & 0x3F) << 0xC | (thirdByte & 0x3F) << 0x6 | (fourthByte & 0x3F)
 
-                 if (tempCodePoint > 0xFFFF && tempCodePoint < 0x110000) {
 
-                   codePoint = tempCodePoint
 
-                 }
 
-               }
 
-           }
 
-         }
 
-         if (codePoint === null) {
 
-           // we did not generate a valid codePoint so insert a
 
-           // replacement char (U+FFFD) and advance only 1 byte
 
-           codePoint = 0xFFFD
 
-           bytesPerSequence = 1
 
-         } else if (codePoint > 0xFFFF) {
 
-           // encode to utf16 (surrogate pair dance)
 
-           codePoint -= 0x10000
 
-           res.push(codePoint >>> 10 & 0x3FF | 0xD800)
 
-           codePoint = 0xDC00 | codePoint & 0x3FF
 
-         }
 
-         res.push(codePoint)
 
-         i += bytesPerSequence
 
-       }
 
-       return decodeCodePointsArray(res)
 
-     }
 
-     // Based on http://stackoverflow.com/a/22747272/680742, the browser with
 
-     // the lowest limit is Chrome, with 0x10000 args.
 
-     // We go 1 magnitude less, for safety
 
-     var MAX_ARGUMENTS_LENGTH = 0x1000
 
-     function decodeCodePointsArray(codePoints) {
 
-       var len = codePoints.length
 
-       if (len <= MAX_ARGUMENTS_LENGTH) {
 
-         return String.fromCharCode.apply(String, codePoints) // avoid extra slice()
 
-       }
 
-       // Decode in chunks to avoid "call stack size exceeded".
 
-       var res = ''
 
-       var i = 0
 
-       while (i < len) {
 
-         res += String.fromCharCode.apply(
 
-           String,
 
-           codePoints.slice(i, i += MAX_ARGUMENTS_LENGTH)
 
-         )
 
-       }
 
-       return res
 
-     }
 
-     function asciiSlice(buf, start, end) {
 
-       var ret = ''
 
-       end = Math.min(buf.length, end)
 
-       for (var i = start; i < end; ++i) {
 
-         ret += String.fromCharCode(buf[i] & 0x7F)
 
-       }
 
-       return ret
 
-     }
 
-     function latin1Slice(buf, start, end) {
 
-       var ret = ''
 
-       end = Math.min(buf.length, end)
 
-       for (var i = start; i < end; ++i) {
 
-         ret += String.fromCharCode(buf[i])
 
-       }
 
-       return ret
 
-     }
 
-     function hexSlice(buf, start, end) {
 
-       var len = buf.length
 
-       if (!start || start < 0) start = 0
 
-       if (!end || end < 0 || end > len) end = len
 
-       var out = ''
 
-       for (var i = start; i < end; ++i) {
 
-         out += toHex(buf[i])
 
-       }
 
-       return out
 
-     }
 
-     function utf16leSlice(buf, start, end) {
 
-       var bytes = buf.slice(start, end)
 
-       var res = ''
 
-       for (var i = 0; i < bytes.length; i += 2) {
 
-         res += String.fromCharCode(bytes[i] + bytes[i + 1] * 256)
 
-       }
 
-       return res
 
-     }
 
-     Buffer.prototype.slice = function slice(start, end) {
 
-       var len = this.length
 
-       start = ~~start
 
-       end = end === undefined ? len : ~~end
 
-       if (start < 0) {
 
-         start += len
 
-         if (start < 0) start = 0
 
-       } else if (start > len) {
 
-         start = len
 
-       }
 
-       if (end < 0) {
 
-         end += len
 
-         if (end < 0) end = 0
 
-       } else if (end > len) {
 
-         end = len
 
-       }
 
-       if (end < start) end = start
 
-       var newBuf
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         newBuf = this.subarray(start, end)
 
-         newBuf.__proto__ = Buffer.prototype
 
-       } else {
 
-         var sliceLen = end - start
 
-         newBuf = new Buffer(sliceLen, undefined)
 
-         for (var i = 0; i < sliceLen; ++i) {
 
-           newBuf[i] = this[i + start]
 
-         }
 
-       }
 
-       return newBuf
 
-     }
 
-     /*
 
-      * Need to make sure that buffer isn't trying to write out of bounds.
 
-      */
 
-     function checkOffset(offset, ext, length) {
 
-       if ((offset % 1) !== 0 || offset < 0) throw new RangeError('offset is not uint')
 
-       if (offset + ext > length) throw new RangeError('Trying to access beyond buffer length')
 
-     }
 
-     Buffer.prototype.readUIntLE = function readUIntLE(offset, byteLength, noAssert) {
 
-       offset = offset | 0
 
-       byteLength = byteLength | 0
 
-       if (!noAssert) checkOffset(offset, byteLength, this.length)
 
-       var val = this[offset]
 
-       var mul = 1
 
-       var i = 0
 
-       while (++i < byteLength && (mul *= 0x100)) {
 
-         val += this[offset + i] * mul
 
-       }
 
-       return val
 
-     }
 
-     Buffer.prototype.readUIntBE = function readUIntBE(offset, byteLength, noAssert) {
 
-       offset = offset | 0
 
-       byteLength = byteLength | 0
 
-       if (!noAssert) {
 
-         checkOffset(offset, byteLength, this.length)
 
-       }
 
-       var val = this[offset + --byteLength]
 
-       var mul = 1
 
-       while (byteLength > 0 && (mul *= 0x100)) {
 
-         val += this[offset + --byteLength] * mul
 
-       }
 
-       return val
 
-     }
 
-     Buffer.prototype.readUInt8 = function readUInt8(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 1, this.length)
 
-       return this[offset]
 
-     }
 
-     Buffer.prototype.readUInt16LE = function readUInt16LE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 2, this.length)
 
-       return this[offset] | (this[offset + 1] << 8)
 
-     }
 
-     Buffer.prototype.readUInt16BE = function readUInt16BE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 2, this.length)
 
-       return (this[offset] << 8) | this[offset + 1]
 
-     }
 
-     Buffer.prototype.readUInt32LE = function readUInt32LE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 4, this.length)
 
-       return ((this[offset]) |
 
-         (this[offset + 1] << 8) |
 
-         (this[offset + 2] << 16)) +
 
-         (this[offset + 3] * 0x1000000)
 
-     }
 
-     Buffer.prototype.readUInt32BE = function readUInt32BE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 4, this.length)
 
-       return (this[offset] * 0x1000000) +
 
-         ((this[offset + 1] << 16) |
 
-           (this[offset + 2] << 8) |
 
-           this[offset + 3])
 
-     }
 
-     Buffer.prototype.readIntLE = function readIntLE(offset, byteLength, noAssert) {
 
-       offset = offset | 0
 
-       byteLength = byteLength | 0
 
-       if (!noAssert) checkOffset(offset, byteLength, this.length)
 
-       var val = this[offset]
 
-       var mul = 1
 
-       var i = 0
 
-       while (++i < byteLength && (mul *= 0x100)) {
 
-         val += this[offset + i] * mul
 
-       }
 
-       mul *= 0x80
 
-       if (val >= mul) val -= Math.pow(2, 8 * byteLength)
 
-       return val
 
-     }
 
-     Buffer.prototype.readIntBE = function readIntBE(offset, byteLength, noAssert) {
 
-       offset = offset | 0
 
-       byteLength = byteLength | 0
 
-       if (!noAssert) checkOffset(offset, byteLength, this.length)
 
-       var i = byteLength
 
-       var mul = 1
 
-       var val = this[offset + --i]
 
-       while (i > 0 && (mul *= 0x100)) {
 
-         val += this[offset + --i] * mul
 
-       }
 
-       mul *= 0x80
 
-       if (val >= mul) val -= Math.pow(2, 8 * byteLength)
 
-       return val
 
-     }
 
-     Buffer.prototype.readInt8 = function readInt8(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 1, this.length)
 
-       if (!(this[offset] & 0x80)) return (this[offset])
 
-       return ((0xff - this[offset] + 1) * -1)
 
-     }
 
-     Buffer.prototype.readInt16LE = function readInt16LE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 2, this.length)
 
-       var val = this[offset] | (this[offset + 1] << 8)
 
-       return (val & 0x8000) ? val | 0xFFFF0000 : val
 
-     }
 
-     Buffer.prototype.readInt16BE = function readInt16BE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 2, this.length)
 
-       var val = this[offset + 1] | (this[offset] << 8)
 
-       return (val & 0x8000) ? val | 0xFFFF0000 : val
 
-     }
 
-     Buffer.prototype.readInt32LE = function readInt32LE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 4, this.length)
 
-       return (this[offset]) |
 
-         (this[offset + 1] << 8) |
 
-         (this[offset + 2] << 16) |
 
-         (this[offset + 3] << 24)
 
-     }
 
-     Buffer.prototype.readInt32BE = function readInt32BE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 4, this.length)
 
-       return (this[offset] << 24) |
 
-         (this[offset + 1] << 16) |
 
-         (this[offset + 2] << 8) |
 
-         (this[offset + 3])
 
-     }
 
-     Buffer.prototype.readFloatLE = function readFloatLE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 4, this.length)
 
-       return ieee754.read(this, offset, true, 23, 4)
 
-     }
 
-     Buffer.prototype.readFloatBE = function readFloatBE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 4, this.length)
 
-       return ieee754.read(this, offset, false, 23, 4)
 
-     }
 
-     Buffer.prototype.readDoubleLE = function readDoubleLE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 8, this.length)
 
-       return ieee754.read(this, offset, true, 52, 8)
 
-     }
 
-     Buffer.prototype.readDoubleBE = function readDoubleBE(offset, noAssert) {
 
-       if (!noAssert) checkOffset(offset, 8, this.length)
 
-       return ieee754.read(this, offset, false, 52, 8)
 
-     }
 
-     function checkInt(buf, value, offset, ext, max, min) {
 
-       if (!Buffer.isBuffer(buf)) throw new TypeError('"buffer" argument must be a Buffer instance')
 
-       if (value > max || value < min) throw new RangeError('"value" argument is out of bounds')
 
-       if (offset + ext > buf.length) throw new RangeError('Index out of range')
 
-     }
 
-     Buffer.prototype.writeUIntLE = function writeUIntLE(value, offset, byteLength, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       byteLength = byteLength | 0
 
-       if (!noAssert) {
 
-         var maxBytes = Math.pow(2, 8 * byteLength) - 1
 
-         checkInt(this, value, offset, byteLength, maxBytes, 0)
 
-       }
 
-       var mul = 1
 
-       var i = 0
 
-       this[offset] = value & 0xFF
 
-       while (++i < byteLength && (mul *= 0x100)) {
 
-         this[offset + i] = (value / mul) & 0xFF
 
-       }
 
-       return offset + byteLength
 
-     }
 
-     Buffer.prototype.writeUIntBE = function writeUIntBE(value, offset, byteLength, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       byteLength = byteLength | 0
 
-       if (!noAssert) {
 
-         var maxBytes = Math.pow(2, 8 * byteLength) - 1
 
-         checkInt(this, value, offset, byteLength, maxBytes, 0)
 
-       }
 
-       var i = byteLength - 1
 
-       var mul = 1
 
-       this[offset + i] = value & 0xFF
 
-       while (--i >= 0 && (mul *= 0x100)) {
 
-         this[offset + i] = (value / mul) & 0xFF
 
-       }
 
-       return offset + byteLength
 
-     }
 
-     Buffer.prototype.writeUInt8 = function writeUInt8(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 1, 0xff, 0)
 
-       if (!Buffer.TYPED_ARRAY_SUPPORT) value = Math.floor(value)
 
-       this[offset] = (value & 0xff)
 
-       return offset + 1
 
-     }
 
-     function objectWriteUInt16(buf, value, offset, littleEndian) {
 
-       if (value < 0) value = 0xffff + value + 1
 
-       for (var i = 0, j = Math.min(buf.length - offset, 2); i < j; ++i) {
 
-         buf[offset + i] = (value & (0xff << (8 * (littleEndian ? i : 1 - i)))) >>>
 
-           (littleEndian ? i : 1 - i) * 8
 
-       }
 
-     }
 
-     Buffer.prototype.writeUInt16LE = function writeUInt16LE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value & 0xff)
 
-         this[offset + 1] = (value >>> 8)
 
-       } else {
 
-         objectWriteUInt16(this, value, offset, true)
 
-       }
 
-       return offset + 2
 
-     }
 
-     Buffer.prototype.writeUInt16BE = function writeUInt16BE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 2, 0xffff, 0)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value >>> 8)
 
-         this[offset + 1] = (value & 0xff)
 
-       } else {
 
-         objectWriteUInt16(this, value, offset, false)
 
-       }
 
-       return offset + 2
 
-     }
 
-     function objectWriteUInt32(buf, value, offset, littleEndian) {
 
-       if (value < 0) value = 0xffffffff + value + 1
 
-       for (var i = 0, j = Math.min(buf.length - offset, 4); i < j; ++i) {
 
-         buf[offset + i] = (value >>> (littleEndian ? i : 3 - i) * 8) & 0xff
 
-       }
 
-     }
 
-     Buffer.prototype.writeUInt32LE = function writeUInt32LE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset + 3] = (value >>> 24)
 
-         this[offset + 2] = (value >>> 16)
 
-         this[offset + 1] = (value >>> 8)
 
-         this[offset] = (value & 0xff)
 
-       } else {
 
-         objectWriteUInt32(this, value, offset, true)
 
-       }
 
-       return offset + 4
 
-     }
 
-     Buffer.prototype.writeUInt32BE = function writeUInt32BE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 4, 0xffffffff, 0)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value >>> 24)
 
-         this[offset + 1] = (value >>> 16)
 
-         this[offset + 2] = (value >>> 8)
 
-         this[offset + 3] = (value & 0xff)
 
-       } else {
 
-         objectWriteUInt32(this, value, offset, false)
 
-       }
 
-       return offset + 4
 
-     }
 
-     Buffer.prototype.writeIntLE = function writeIntLE(value, offset, byteLength, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) {
 
-         var limit = Math.pow(2, 8 * byteLength - 1)
 
-         checkInt(this, value, offset, byteLength, limit - 1, -limit)
 
-       }
 
-       var i = 0
 
-       var mul = 1
 
-       var sub = 0
 
-       this[offset] = value & 0xFF
 
-       while (++i < byteLength && (mul *= 0x100)) {
 
-         if (value < 0 && sub === 0 && this[offset + i - 1] !== 0) {
 
-           sub = 1
 
-         }
 
-         this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
 
-       }
 
-       return offset + byteLength
 
-     }
 
-     Buffer.prototype.writeIntBE = function writeIntBE(value, offset, byteLength, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) {
 
-         var limit = Math.pow(2, 8 * byteLength - 1)
 
-         checkInt(this, value, offset, byteLength, limit - 1, -limit)
 
-       }
 
-       var i = byteLength - 1
 
-       var mul = 1
 
-       var sub = 0
 
-       this[offset + i] = value & 0xFF
 
-       while (--i >= 0 && (mul *= 0x100)) {
 
-         if (value < 0 && sub === 0 && this[offset + i + 1] !== 0) {
 
-           sub = 1
 
-         }
 
-         this[offset + i] = ((value / mul) >> 0) - sub & 0xFF
 
-       }
 
-       return offset + byteLength
 
-     }
 
-     Buffer.prototype.writeInt8 = function writeInt8(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 1, 0x7f, -0x80)
 
-       if (!Buffer.TYPED_ARRAY_SUPPORT) value = Math.floor(value)
 
-       if (value < 0) value = 0xff + value + 1
 
-       this[offset] = (value & 0xff)
 
-       return offset + 1
 
-     }
 
-     Buffer.prototype.writeInt16LE = function writeInt16LE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value & 0xff)
 
-         this[offset + 1] = (value >>> 8)
 
-       } else {
 
-         objectWriteUInt16(this, value, offset, true)
 
-       }
 
-       return offset + 2
 
-     }
 
-     Buffer.prototype.writeInt16BE = function writeInt16BE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 2, 0x7fff, -0x8000)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value >>> 8)
 
-         this[offset + 1] = (value & 0xff)
 
-       } else {
 
-         objectWriteUInt16(this, value, offset, false)
 
-       }
 
-       return offset + 2
 
-     }
 
-     Buffer.prototype.writeInt32LE = function writeInt32LE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value & 0xff)
 
-         this[offset + 1] = (value >>> 8)
 
-         this[offset + 2] = (value >>> 16)
 
-         this[offset + 3] = (value >>> 24)
 
-       } else {
 
-         objectWriteUInt32(this, value, offset, true)
 
-       }
 
-       return offset + 4
 
-     }
 
-     Buffer.prototype.writeInt32BE = function writeInt32BE(value, offset, noAssert) {
 
-       value = +value
 
-       offset = offset | 0
 
-       if (!noAssert) checkInt(this, value, offset, 4, 0x7fffffff, -0x80000000)
 
-       if (value < 0) value = 0xffffffff + value + 1
 
-       if (Buffer.TYPED_ARRAY_SUPPORT) {
 
-         this[offset] = (value >>> 24)
 
-         this[offset + 1] = (value >>> 16)
 
-         this[offset + 2] = (value >>> 8)
 
-         this[offset + 3] = (value & 0xff)
 
-       } else {
 
-         objectWriteUInt32(this, value, offset, false)
 
-       }
 
-       return offset + 4
 
-     }
 
-     function checkIEEE754(buf, value, offset, ext, max, min) {
 
-       if (offset + ext > buf.length) throw new RangeError('Index out of range')
 
-       if (offset < 0) throw new RangeError('Index out of range')
 
-     }
 
-     function writeFloat(buf, value, offset, littleEndian, noAssert) {
 
-       if (!noAssert) {
 
-         checkIEEE754(buf, value, offset, 4, 3.4028234663852886e+38, -3.4028234663852886e+38)
 
-       }
 
-       ieee754.write(buf, value, offset, littleEndian, 23, 4)
 
-       return offset + 4
 
-     }
 
-     Buffer.prototype.writeFloatLE = function writeFloatLE(value, offset, noAssert) {
 
-       return writeFloat(this, value, offset, true, noAssert)
 
-     }
 
-     Buffer.prototype.writeFloatBE = function writeFloatBE(value, offset, noAssert) {
 
-       return writeFloat(this, value, offset, false, noAssert)
 
-     }
 
-     function writeDouble(buf, value, offset, littleEndian, noAssert) {
 
-       if (!noAssert) {
 
-         checkIEEE754(buf, value, offset, 8, 1.7976931348623157E+308, -1.7976931348623157E+308)
 
-       }
 
-       ieee754.write(buf, value, offset, littleEndian, 52, 8)
 
-       return offset + 8
 
-     }
 
-     Buffer.prototype.writeDoubleLE = function writeDoubleLE(value, offset, noAssert) {
 
-       return writeDouble(this, value, offset, true, noAssert)
 
-     }
 
-     Buffer.prototype.writeDoubleBE = function writeDoubleBE(value, offset, noAssert) {
 
-       return writeDouble(this, value, offset, false, noAssert)
 
-     }
 
-     // copy(targetBuffer, targetStart=0, sourceStart=0, sourceEnd=buffer.length)
 
-     Buffer.prototype.copy = function copy(target, targetStart, start, end) {
 
-       if (!start) start = 0
 
-       if (!end && end !== 0) end = this.length
 
-       if (targetStart >= target.length) targetStart = target.length
 
-       if (!targetStart) targetStart = 0
 
-       if (end > 0 && end < start) end = start
 
-       // Copy 0 bytes; we're done
 
-       if (end === start) return 0
 
-       if (target.length === 0 || this.length === 0) return 0
 
-       // Fatal error conditions
 
-       if (targetStart < 0) {
 
-         throw new RangeError('targetStart out of bounds')
 
-       }
 
-       if (start < 0 || start >= this.length) throw new RangeError('sourceStart out of bounds')
 
-       if (end < 0) throw new RangeError('sourceEnd out of bounds')
 
-       // Are we oob?
 
-       if (end > this.length) end = this.length
 
-       if (target.length - targetStart < end - start) {
 
-         end = target.length - targetStart + start
 
-       }
 
-       var len = end - start
 
-       var i
 
-       if (this === target && start < targetStart && targetStart < end) {
 
-         // descending copy from end
 
-         for (i = len - 1; i >= 0; --i) {
 
-           target[i + targetStart] = this[i + start]
 
-         }
 
-       } else if (len < 1000 || !Buffer.TYPED_ARRAY_SUPPORT) {
 
-         // ascending copy from start
 
-         for (i = 0; i < len; ++i) {
 
-           target[i + targetStart] = this[i + start]
 
-         }
 
-       } else {
 
-         Uint8Array.prototype.set.call(
 
-           target,
 
-           this.subarray(start, start + len),
 
-           targetStart
 
-         )
 
-       }
 
-       return len
 
-     }
 
-     // Usage:
 
-     //    buffer.fill(number[, offset[, end]])
 
-     //    buffer.fill(buffer[, offset[, end]])
 
-     //    buffer.fill(string[, offset[, end]][, encoding])
 
-     Buffer.prototype.fill = function fill(val, start, end, encoding) {
 
-       // Handle string cases:
 
-       if (typeof val === 'string') {
 
-         if (typeof start === 'string') {
 
-           encoding = start
 
-           start = 0
 
-           end = this.length
 
-         } else if (typeof end === 'string') {
 
-           encoding = end
 
-           end = this.length
 
-         }
 
-         if (val.length === 1) {
 
-           var code = val.charCodeAt(0)
 
-           if (code < 256) {
 
-             val = code
 
-           }
 
-         }
 
-         if (encoding !== undefined && typeof encoding !== 'string') {
 
-           throw new TypeError('encoding must be a string')
 
-         }
 
-         if (typeof encoding === 'string' && !Buffer.isEncoding(encoding)) {
 
-           throw new TypeError('Unknown encoding: ' + encoding)
 
-         }
 
-       } else if (typeof val === 'number') {
 
-         val = val & 255
 
-       }
 
-       // Invalid ranges are not set to a default, so can range check early.
 
-       if (start < 0 || this.length < start || this.length < end) {
 
-         throw new RangeError('Out of range index')
 
-       }
 
-       if (end <= start) {
 
-         return this
 
-       }
 
-       start = start >>> 0
 
-       end = end === undefined ? this.length : end >>> 0
 
-       if (!val) val = 0
 
-       var i
 
-       if (typeof val === 'number') {
 
-         for (i = start; i < end; ++i) {
 
-           this[i] = val
 
-         }
 
-       } else {
 
-         var bytes = Buffer.isBuffer(val)
 
-           ? val
 
-           : utf8ToBytes(new Buffer(val, encoding).toString())
 
-         var len = bytes.length
 
-         for (i = 0; i < end - start; ++i) {
 
-           this[i + start] = bytes[i % len]
 
-         }
 
-       }
 
-       return this
 
-     }
 
-     // HELPER FUNCTIONS
 
-     // ================
 
-     var INVALID_BASE64_RE = /[^+\/0-9A-Za-z-_]/g
 
-     function base64clean(str) {
 
-       // Node strips out invalid characters like \n and \t from the string, base64-js does not
 
-       str = stringtrim(str).replace(INVALID_BASE64_RE, '')
 
-       // Node converts strings with length < 2 to ''
 
-       if (str.length < 2) return ''
 
-       // Node allows for non-padded base64 strings (missing trailing ===), base64-js does not
 
-       while (str.length % 4 !== 0) {
 
-         str = str + '='
 
-       }
 
-       return str
 
-     }
 
-     function stringtrim(str) {
 
-       if (str.trim) return str.trim()
 
-       return str.replace(/^\s+|\s+$/g, '')
 
-     }
 
-     function toHex(n) {
 
-       if (n < 16) return '0' + n.toString(16)
 
-       return n.toString(16)
 
-     }
 
-     function utf8ToBytes(string, units) {
 
-       units = units || Infinity
 
-       var codePoint
 
-       var length = string.length
 
-       var leadSurrogate = null
 
-       var bytes = []
 
-       for (var i = 0; i < length; ++i) {
 
-         codePoint = string.charCodeAt(i)
 
-         // is surrogate component
 
-         if (codePoint > 0xD7FF && codePoint < 0xE000) {
 
-           // last char was a lead
 
-           if (!leadSurrogate) {
 
-             // no lead yet
 
-             if (codePoint > 0xDBFF) {
 
-               // unexpected trail
 
-               if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
 
-               continue
 
-             } else if (i + 1 === length) {
 
-               // unpaired lead
 
-               if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
 
-               continue
 
-             }
 
-             // valid lead
 
-             leadSurrogate = codePoint
 
-             continue
 
-           }
 
-           // 2 leads in a row
 
-           if (codePoint < 0xDC00) {
 
-             if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
 
-             leadSurrogate = codePoint
 
-             continue
 
-           }
 
-           // valid surrogate pair
 
-           codePoint = (leadSurrogate - 0xD800 << 10 | codePoint - 0xDC00) + 0x10000
 
-         } else if (leadSurrogate) {
 
-           // valid bmp char, but last char was a lead
 
-           if ((units -= 3) > -1) bytes.push(0xEF, 0xBF, 0xBD)
 
-         }
 
-         leadSurrogate = null
 
-         // encode utf8
 
-         if (codePoint < 0x80) {
 
-           if ((units -= 1) < 0) break
 
-           bytes.push(codePoint)
 
-         } else if (codePoint < 0x800) {
 
-           if ((units -= 2) < 0) break
 
-           bytes.push(
 
-             codePoint >> 0x6 | 0xC0,
 
-             codePoint & 0x3F | 0x80
 
-           )
 
-         } else if (codePoint < 0x10000) {
 
-           if ((units -= 3) < 0) break
 
-           bytes.push(
 
-             codePoint >> 0xC | 0xE0,
 
-             codePoint >> 0x6 & 0x3F | 0x80,
 
-             codePoint & 0x3F | 0x80
 
-           )
 
-         } else if (codePoint < 0x110000) {
 
-           if ((units -= 4) < 0) break
 
-           bytes.push(
 
-             codePoint >> 0x12 | 0xF0,
 
-             codePoint >> 0xC & 0x3F | 0x80,
 
-             codePoint >> 0x6 & 0x3F | 0x80,
 
-             codePoint & 0x3F | 0x80
 
-           )
 
-         } else {
 
-           throw new Error('Invalid code point')
 
-         }
 
-       }
 
-       return bytes
 
-     }
 
-     function asciiToBytes(str) {
 
-       var byteArray = []
 
-       for (var i = 0; i < str.length; ++i) {
 
-         // Node's code seems to be doing this and not & 0x7F..
 
-         byteArray.push(str.charCodeAt(i) & 0xFF)
 
-       }
 
-       return byteArray
 
-     }
 
-     function utf16leToBytes(str, units) {
 
-       var c, hi, lo
 
-       var byteArray = []
 
-       for (var i = 0; i < str.length; ++i) {
 
-         if ((units -= 2) < 0) break
 
-         c = str.charCodeAt(i)
 
-         hi = c >> 8
 
-         lo = c % 256
 
-         byteArray.push(lo)
 
-         byteArray.push(hi)
 
-       }
 
-       return byteArray
 
-     }
 
-     function base64ToBytes(str) {
 
-       return base64.toByteArray(base64clean(str))
 
-     }
 
-     function blitBuffer(src, dst, offset, length) {
 
-       for (var i = 0; i < length; ++i) {
 
-         if ((i + offset >= dst.length) || (i >= src.length)) break
 
-         dst[i + offset] = src[i]
 
-       }
 
-       return i
 
-     }
 
-     function isnan(val) {
 
-       return val !== val // eslint-disable-line no-self-compare
 
-     }
 
-   }, { "base64-js": "node_modules/base64-js/index.js", "ieee754": "node_modules/ieee754/index.js", "isarray": "node_modules/isarray/index.js", "buffer": "node_modules/buffer/index.js" }], "node_modules/@tensorflow/tfjs-core/dist/tf-core.esm.js": [function (require, module, exports) {
 
-     var global = arguments[3];
 
-     var process = require("process");
 
-     var Buffer = require("buffer").Buffer;
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.backend = on;
 
-     exports.buffer = ur;
 
-     exports.customGrad = oo;
 
-     exports.deprecationWarn = ze;
 
-     exports.disableDeprecationWarnings = Ve;
 
-     exports.dispose = Xe;
 
-     exports.disposeVariables = Ge;
 
-     exports.enableDebugMode = Ue;
 
-     exports.enableProdMode = We;
 
-     exports.engine = He;
 
-     exports.env = a;
 
-     exports.fill = Ln;
 
-     exports.findBackend = en;
 
-     exports.findBackendFactory = nn;
 
-     exports.getBackend = Ze;
 
-     exports.getKernel = s;
 
-     exports.getKernelsForBackend = c;
 
-     exports.grad = Zr;
 
-     exports.grads = to;
 
-     exports.keep = $e;
 
-     exports.linspace = Wn;
 
-     exports.memory = qe;
 
-     exports.nextFrame = ep;
 
-     exports.ones = Bn;
 
-     exports.op = Cn;
 
-     exports.print = sr;
 
-     exports.profile = Ke;
 
-     exports.range = Un;
 
-     exports.ready = Je;
 
-     exports.registerBackend = rn;
 
-     exports.registerKernel = l;
 
-     exports.removeBackend = tn;
 
-     exports.scalar = An;
 
-     exports.setBackend = Qe;
 
-     exports.setPlatform = an;
 
-     exports.tensor = kn;
 
-     exports.tensor1d = Dn;
 
-     exports.tensor2d = Tn;
 
-     exports.tensor3d = Nn;
 
-     exports.tensor4d = Fn;
 
-     exports.tensor5d = On;
 
-     exports.tensor6d = _n;
 
-     exports.tidy = je;
 
-     exports.time = Ye;
 
-     exports.unregisterKernel = h;
 
-     exports.valueAndGrad = eo;
 
-     exports.valueAndGrads = no;
 
-     exports.variable = Mn;
 
-     exports.variableGrads = ro;
 
-     exports.zeros = Pn;
 
-     exports.isFinite = exports.irfft = exports.io = exports.inTopKAsync = exports.image = exports.imag = exports.ifft = exports.hannWindow = exports.hammingWindow = exports.greaterStrict = exports.greaterEqualStrict = exports.greaterEqual = exports.greater = exports.gatherND = exports.gather = exports.fused = exports.frame = exports.floorDiv = exports.floor = exports.fft = exports.eye = exports.expm1 = exports.expandDims = exports.exp = exports.erf = exports.equalStrict = exports.equal = exports.elu = exports.dropout = exports.dot = exports.divStrict = exports.div = exports.diag = exports.depthwiseConv2d = exports.depthToSpace = exports.cumsum = exports.cosh = exports.cos = exports.conv3dTranspose = exports.conv3d = exports.conv2dTranspose = exports.conv2d = exports.conv1d = exports.concat4d = exports.concat3d = exports.concat2d = exports.concat1d = exports.concat = exports.complex = exports.clone = exports.clipByValue = exports.ceil = exports.cast = exports.browser = exports.booleanMaskAsync = exports.batchToSpaceND = exports.batchNormalization4d = exports.batchNormalization3d = exports.batchNormalization2d = exports.batchNormalization = exports.batchNorm4d = exports.batchNorm3d = exports.batchNorm2d = exports.batchNorm = exports.basicLSTMCell = exports.backend_util = exports.avgPool3d = exports.avgPool = exports.atanh = exports.atan2 = exports.atan = exports.asinh = exports.asin = exports.argMin = exports.argMax = exports.any = exports.all = exports.addStrict = exports.addN = exports.add = exports.acosh = exports.acos = exports.abs = exports.Variable = exports.TensorBuffer = exports.Tensor = exports.SGDOptimizer = exports.Reduction = exports.Rank = exports.RMSPropOptimizer = exports.Optimizer = exports.MomentumOptimizer = exports.KernelBackend = exports.Environment = exports.ENV = exports.DataStorage = exports.AdamaxOptimizer = exports.AdamOptimizer = exports.AdagradOptimizer = exports.AdadeltaOptimizer = void 0;
 
-     exports.stack = exports.squeeze = exports.squaredDifferenceStrict = exports.squaredDifference = exports.square = exports.sqrt = exports.split = exports.spectral = exports.sparseToDense = exports.spaceToBatchND = exports.softplus = exports.softmax = exports.slice_util = exports.slice4d = exports.slice3d = exports.slice2d = exports.slice1d = exports.slice = exports.sinh = exports.sin = exports.signal = exports.sign = exports.sigmoid = exports.setdiff1dAsync = exports.serialization = exports.separableConv2d = exports.selu = exports.scatterND = exports.rsqrt = exports.round = exports.rfft = exports.reverse4d = exports.reverse3d = exports.reverse2d = exports.reverse1d = exports.reverse = exports.reshape = exports.relu6 = exports.relu = exports.reciprocal = exports.real = exports.randomUniform = exports.randomNormal = exports.randomGamma = exports.rand = exports.prod = exports.prelu = exports.powStrict = exports.pow = exports.pool = exports.pad4d = exports.pad3d = exports.pad2d = exports.pad1d = exports.pad = exports.outerProduct = exports.onesLike = exports.oneHot = exports.notEqualStrict = exports.notEqual = exports.norm = exports.neg = exports.multinomial = exports.multiRNNCell = exports.mulStrict = exports.mul = exports.movingAverage = exports.moments = exports.modStrict = exports.mod = exports.minimumStrict = exports.minimum = exports.min = exports.mean = exports.maximumStrict = exports.maximum = exports.maxPool3d = exports.maxPool = exports.max = exports.math = exports.matMul = exports.losses = exports.logicalXor = exports.logicalOr = exports.logicalNot = exports.logicalAnd = exports.logSumExp = exports.logSoftmax = exports.logSigmoid = exports.log1p = exports.log = exports.localResponseNormalization = exports.linalg = exports.lessStrict = exports.lessEqualStrict = exports.lessEqual = exports.less = exports.leakyRelu = exports.isNaN = exports.isInf = void 0;
 
-     exports.zerosLike = exports.whereAsync = exports.where = exports.webgl = exports.version_core = exports.util = exports.unstack = exports.unsortedSegmentSum = exports.truncatedNormal = exports.transpose = exports.train = exports.topk = exports.tile = exports.test_util = exports.tensor_util = exports.tanh = exports.tan = exports.sum = exports.subStrict = exports.sub = exports.stridedSlice = exports.stft = exports.step = void 0;
 
-     /**
 
-      * @license
 
-      * Copyright 2019 Google LLC. All Rights Reserved.
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * http://www.apache.org/licenses/LICENSE-2.0
 
-      *
 
-      * Unless required by applicable law or agreed to in writing, software
 
-      * distributed under the License is distributed on an "AS IS" BASIS,
 
-      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-      * See the License for the specific language governing permissions and
 
-      * limitations under the License.
 
-      * =============================================================================
 
-      */
 
-     var t = function (e, n) {
 
-       return (t = Object.setPrototypeOf || {
 
-         __proto__: []
 
-       } instanceof Array && function (t, e) {
 
-         t.__proto__ = e;
 
-       } || function (t, e) {
 
-         for (var n in e) e.hasOwnProperty(n) && (t[n] = e[n]);
 
-       })(e, n);
 
-     };
 
-     function e(e, n) {
 
-       function r() {
 
-         this.constructor = e;
 
-       }
 
-       t(e, n), e.prototype = null === n ? Object.create(n) : (r.prototype = n.prototype, new r());
 
-     }
 
-     function n(t, e, n, r) {
 
-       return new (n || (n = Promise))(function (o, a) {
 
-         function i(t) {
 
-           try {
 
-             s(r.next(t));
 
-           } catch (t) {
 
-             a(t);
 
-           }
 
-         }
 
-         function u(t) {
 
-           try {
 
-             s(r.throw(t));
 
-           } catch (t) {
 
-             a(t);
 
-           }
 
-         }
 
-         function s(t) {
 
-           t.done ? o(t.value) : new n(function (e) {
 
-             e(t.value);
 
-           }).then(i, u);
 
-         }
 
-         s((r = r.apply(t, e || [])).next());
 
-       });
 
-     }
 
-     function r(t, e) {
 
-       var n,
 
-         r,
 
-         o,
 
-         a,
 
-         i = {
 
-           label: 0,
 
-           sent: function () {
 
-             if (1 & o[0]) throw o[1];
 
-             return o[1];
 
-           },
 
-           trys: [],
 
-           ops: []
 
-         };
 
-       return a = {
 
-         next: u(0),
 
-         throw: u(1),
 
-         return: u(2)
 
-       }, "function" == typeof Symbol && (a[Symbol.iterator] = function () {
 
-         return this;
 
-       }), a;
 
-       function u(a) {
 
-         return function (u) {
 
-           return function (a) {
 
-             if (n) throw new TypeError("Generator is already executing.");
 
-             for (; i;) try {
 
-               if (n = 1, r && (o = 2 & a[0] ? r.return : a[0] ? r.throw || ((o = r.return) && o.call(r), 0) : r.next) && !(o = o.call(r, a[1])).done) return o;
 
-               switch (r = 0, o && (a = [2 & a[0], o.value]), a[0]) {
 
-                 case 0:
 
-                 case 1:
 
-                   o = a;
 
-                   break;
 
-                 case 4:
 
-                   return i.label++, {
 
-                     value: a[1],
 
-                     done: !1
 
-                   };
 
-                 case 5:
 
-                   i.label++, r = a[1], a = [0];
 
-                   continue;
 
-                 case 7:
 
-                   a = i.ops.pop(), i.trys.pop();
 
-                   continue;
 
-                 default:
 
-                   if (!(o = (o = i.trys).length > 0 && o[o.length - 1]) && (6 === a[0] || 2 === a[0])) {
 
-                     i = 0;
 
-                     continue;
 
-                   }
 
-                   if (3 === a[0] && (!o || a[1] > o[0] && a[1] < o[3])) {
 
-                     i.label = a[1];
 
-                     break;
 
-                   }
 
-                   if (6 === a[0] && i.label < o[1]) {
 
-                     i.label = o[1], o = a;
 
-                     break;
 
-                   }
 
-                   if (o && i.label < o[2]) {
 
-                     i.label = o[2], i.ops.push(a);
 
-                     break;
 
-                   }
 
-                   o[2] && i.ops.pop(), i.trys.pop();
 
-                   continue;
 
-               }
 
-               a = e.call(t, i);
 
-             } catch (t) {
 
-               a = [6, t], r = 0;
 
-             } finally {
 
-                 n = o = 0;
 
-               }
 
-             if (5 & a[0]) throw a[1];
 
-             return {
 
-               value: a[0] ? a[1] : void 0,
 
-               done: !0
 
-             };
 
-           }([a, u]);
 
-         };
 
-       }
 
-     }
 
-     var o = function () {
 
-       function t(t) {
 
-         this.global = t, this.flags = {}, this.flagRegistry = {}, this.urlFlags = {}, this.populateURLFlags();
 
-       }
 
-       return t.prototype.setPlatform = function (t, e) {
 
-         null != this.platform && console.warn("Platform " + this.platformName + " has already been set. Overwriting the platform with " + e + "."), this.platformName = t, this.platform = e;
 
-       }, t.prototype.registerFlag = function (t, e, n) {
 
-         if (this.flagRegistry[t] = {
 
-           evaluationFn: e,
 
-           setHook: n
 
-         }, null != this.urlFlags[t]) {
 
-           var r = this.urlFlags[t];
 
-           console.warn("Setting feature override from URL " + t + ": " + r + "."), this.set(t, r);
 
-         }
 
-       }, t.prototype.get = function (t) {
 
-         return t in this.flags ? this.flags[t] : (this.flags[t] = this.evaluateFlag(t), this.flags[t]);
 
-       }, t.prototype.getNumber = function (t) {
 
-         return this.get(t);
 
-       }, t.prototype.getBool = function (t) {
 
-         return this.get(t);
 
-       }, t.prototype.getFlags = function () {
 
-         return this.flags;
 
-       }, Object.defineProperty(t.prototype, "features", {
 
-         get: function () {
 
-           return this.flags;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.set = function (t, e) {
 
-         if (null == this.flagRegistry[t]) throw new Error("Cannot set flag " + t + " as it has not been registered.");
 
-         this.flags[t] = e, null != this.flagRegistry[t].setHook && this.flagRegistry[t].setHook(e);
 
-       }, t.prototype.evaluateFlag = function (t) {
 
-         if (null == this.flagRegistry[t]) throw new Error("Cannot evaluate flag '" + t + "': no evaluation function found.");
 
-         return this.flagRegistry[t].evaluationFn();
 
-       }, t.prototype.setFlags = function (t) {
 
-         this.flags = Object.assign({}, t);
 
-       }, t.prototype.reset = function () {
 
-         this.flags = {}, this.urlFlags = {}, this.populateURLFlags();
 
-       }, t.prototype.populateURLFlags = function () {
 
-         var t = this;
 
-         if (void 0 !== this.global && void 0 !== this.global.location && void 0 !== this.global.location.search) {
 
-           var e,
 
-             n,
 
-             r = (e = this.global.location.search, n = {}, e.replace(/[?&]([^=?&]+)(?:=([^&]*))?/g, function (t) {
 
-               for (var e = [], r = 1; r < arguments.length; r++) e[r - 1] = arguments[r];
 
-               return function (t, e, n) {
 
-                 t[decodeURIComponent(e)] = decodeURIComponent(n || "");
 
-               }(n, e[0], e[1]), e.join("=");
 
-             }), n);
 
-           if ("tfjsflags" in r) r.tfjsflags.split(",").forEach(function (e) {
 
-             var n = e.split(":"),
 
-               r = n[0],
 
-               o = n[1];
 
-             t.urlFlags[r] = function (t, e) {
 
-               if ("true" === (e = e.toLowerCase()) || "false" === e) return "true" === e;
 
-               if ("" + +e === e) return +e;
 
-               throw new Error("Could not parse value flag value " + e + " for flag " + t + ".");
 
-             }(r, o);
 
-           });
 
-         }
 
-       }, t;
 
-     }();
 
-     exports.Environment = o;
 
-     function a() {
 
-       return i;
 
-     }
 
-     var i = null;
 
-     exports.ENV = i;
 
-     var u = new Map();
 
-     function s(t, e) {
 
-       var n = f(t, e);
 
-       return u.get(n);
 
-     }
 
-     function c(t) {
 
-       for (var e = u.entries(), n = []; ;) {
 
-         var r = e.next(),
 
-           o = r.done,
 
-           a = r.value;
 
-         if (o) break;
 
-         var i = a[0],
 
-           s = a[1];
 
-         i.split("_")[0] === t && n.push(s);
 
-       }
 
-       return n;
 
-     }
 
-     function l(t) {
 
-       var e = t.kernelName,
 
-         n = t.backendName,
 
-         r = f(e, n);
 
-       if (u.has(r)) throw new Error("The kernel '" + e + "' for backend '" + n + "' is already registered");
 
-       u.set(r, t);
 
-     }
 
-     function h(t, e) {
 
-       var n = f(t, e);
 
-       if (!u.has(n)) throw new Error("The kernel '" + t + "' for backend '" + e + "' is not registered");
 
-       u.delete(n);
 
-     }
 
-     function f(t, e) {
 
-       return e + "_" + t;
 
-     }
 
-     function p(t) {
 
-       for (var e = t.length, n = 0, r = 0; e > 0;) r = Math.random() * e | 0, n = t[--e], t[e] = t[r], t[r] = n;
 
-     }
 
-     function d(t, e, n) {
 
-       return Math.max(t, Math.min(e, n));
 
-     }
 
-     function v(t) {
 
-       return t % 2 == 0 ? t : t + 1;
 
-     }
 
-     function m(t) {
 
-       for (var e = 0, n = 0; n < t.length; n++) e += t[n];
 
-       return e;
 
-     }
 
-     function g(t, e) {
 
-       if (!t) throw new Error("string" == typeof e ? e : e());
 
-     }
 
-     function y(t, e, n) {
 
-       void 0 === n && (n = ""), g(C(t, e), function () {
 
-         return n + " Shapes " + t + " and " + e + " must match";
 
-       });
 
-     }
 
-     function x(t) {
 
-       g(null != t, function () {
 
-         return "The input to the tensor constructor must be a non-null value.";
 
-       });
 
-     }
 
-     function b(t, e, n) {
 
-       if (void 0 === e && (e = []), void 0 === n && (n = !1), null == e && (e = []), Array.isArray(t) || B(t) && !n) for (var r = 0; r < t.length; ++r) b(t[r], e, n); else e.push(t);
 
-       return e;
 
-     }
 
-     function w(t) {
 
-       if (0 === t.length) return 1;
 
-       for (var e = t[0], n = 1; n < t.length; n++) e *= t[n];
 
-       return e;
 
-     }
 
-     function C(t, e) {
 
-       if (t === e) return !0;
 
-       if (null == t || null == e) return !1;
 
-       if (t.length !== e.length) return !1;
 
-       for (var n = 0; n < t.length; n++) if (t[n] !== e[n]) return !1;
 
-       return !0;
 
-     }
 
-     function E(t) {
 
-       return t % 1 == 0;
 
-     }
 
-     function R(t) {
 
-       if (null != Math.tanh) return Math.tanh(t);
 
-       if (t === 1 / 0) return 1;
 
-       if (t === -1 / 0) return -1;
 
-       var e = Math.exp(2 * t);
 
-       return (e - 1) / (e + 1);
 
-     }
 
-     function I(t) {
 
-       var e = Math.ceil(Math.sqrt(t));
 
-       return [e, Math.ceil(t / e)];
 
-     }
 
-     function k(t, e) {
 
-       return e <= t.length ? t : t + " ".repeat(e - t.length);
 
-     }
 
-     function S(t, e, n) {
 
-       return void 0 === e && (e = function (t) {
 
-         return 0;
 
-       }), new Promise(function (r, o) {
 
-         var a = 0,
 
-           i = function () {
 
-             if (t()) r(); else {
 
-               var u = e(++a);
 
-               null != n && a >= n ? o() : setTimeout(i, u);
 
-             }
 
-           };
 
-         i();
 
-       });
 
-     }
 
-     function A(t, e) {
 
-       for (var n = 1, r = -1, o = 0; o < t.length; ++o) if (t[o] >= 0) n *= t[o]; else if (-1 === t[o]) {
 
-         if (-1 !== r) throw Error("Shapes can only have 1 implicit size. Found -1 at dim " + r + " and dim " + o);
 
-         r = o;
 
-       } else if (t[o] < 0) throw Error("Shapes can not be < 0. Found " + t[o] + " at dim " + o);
 
-       if (-1 === r) {
 
-         if (e > 0 && e !== n) throw Error("Size(" + e + ") must match the product of shape " + t);
 
-         return t;
 
-       }
 
-       if (0 === n) throw Error("Cannot infer the missing size in [" + t + "] when there are 0 elements");
 
-       if (e % n != 0) throw Error("The implicit shape can't be a fractional number. Got " + e + " / " + n);
 
-       var a = t.slice();
 
-       return a[r] = e / n, a;
 
-     }
 
-     function D(t, e) {
 
-       var n = e.length;
 
-       return g((t = null == t ? e.map(function (t, e) {
 
-         return e;
 
-       }) : [].concat(t)).every(function (t) {
 
-         return t >= -n && t < n;
 
-       }), function () {
 
-         return "All values in axis param must be in range [-" + n + ", " + n + ") but got axis " + t;
 
-       }), g(t.every(function (t) {
 
-         return E(t);
 
-       }), function () {
 
-         return "All values in axis param must be integers but got axis " + t;
 
-       }), t.map(function (t) {
 
-         return t < 0 ? n + t : t;
 
-       });
 
-     }
 
-     function T(t, e) {
 
-       for (var n = [], r = [], o = null != e && Array.isArray(e) && 0 === e.length, a = null == e || o ? null : D(e, t).sort(), i = 0, u = 0; u < t.length; ++u) {
 
-         if (null != a) {
 
-           if (a[i] === u && 1 !== t[u]) throw new Error("Can't squeeze axis " + u + " since its dim '" + t[u] + "' is not 1");
 
-           (null == a[i] || a[i] > u) && 1 === t[u] && (n.push(t[u]), r.push(u)), a[i] <= u && i++;
 
-         }
 
-         1 !== t[u] && (n.push(t[u]), r.push(u));
 
-       }
 
-       return {
 
-         newShape: n,
 
-         keptDims: r
 
-       };
 
-     }
 
-     function N(t, e) {
 
-       var n = null;
 
-       if (null == t || "float32" === t) n = new Float32Array(e); else if ("int32" === t) n = new Int32Array(e); else {
 
-         if ("bool" !== t) throw new Error("Unknown data type " + t);
 
-         n = new Uint8Array(e);
 
-       }
 
-       return n;
 
-     }
 
-     function F(t, e) {
 
-       var n = null;
 
-       if (null == t || "float32" === t) n = new Float32Array(e); else if ("int32" === t) n = new Int32Array(e); else if ("bool" === t) n = new Uint8Array(e); else {
 
-         if ("string" !== t) throw new Error("Unknown data type " + t);
 
-         n = new Array(e);
 
-       }
 
-       return n;
 
-     }
 
-     function O(t, e) {
 
-       for (var n = 0; n < t.length; n++) {
 
-         var r = t[n];
 
-         if (isNaN(r) || !isFinite(r)) throw Error("A tensor of type " + e + " being uploaded contains " + r + ".");
 
-       }
 
-     }
 
-     function _(t) {
 
-       return "bool" === t || "complex64" === t || "float32" === t || "int32" === t || "string" === t;
 
-     }
 
-     function M(t, e) {
 
-       return "complex64" !== e && ("float32" !== e || "complex64" === t) && ("int32" !== e || "float32" === t || "complex64" === t) && ("bool" !== e || "bool" !== t);
 
-     }
 
-     function B(t) {
 
-       return t instanceof Float32Array || t instanceof Int32Array || t instanceof Uint8Array;
 
-     }
 
-     function P(t) {
 
-       if ("float32" === t || "int32" === t) return 4;
 
-       if ("complex64" === t) return 8;
 
-       if ("bool" === t) return 1;
 
-       throw new Error("Unknown dtype " + t);
 
-     }
 
-     function L(t) {
 
-       if (null == t) return 0;
 
-       var e = 0;
 
-       return t.forEach(function (t) {
 
-         return e += t.length;
 
-       }), e;
 
-     }
 
-     function W(t) {
 
-       return "string" == typeof t || t instanceof String;
 
-     }
 
-     function U(t) {
 
-       return "boolean" == typeof t;
 
-     }
 
-     function V(t) {
 
-       return "number" == typeof t;
 
-     }
 
-     function z(t) {
 
-       return Array.isArray(t) ? z(t[0]) : t instanceof Float32Array ? "float32" : t instanceof Int32Array || t instanceof Uint8Array ? "int32" : V(t) ? "float32" : W(t) ? "string" : U(t) ? "bool" : "float32";
 
-     }
 
-     function G(t) {
 
-       return !!(t && t.constructor && t.call && t.apply);
 
-     }
 
-     function H(t, e) {
 
-       for (var n = e; n < t; ++n) if (t % n == 0) return n;
 
-       return t;
 
-     }
 
-     function q(t) {
 
-       var e = t.length;
 
-       if (e < 2) return [];
 
-       var n = new Array(e - 1);
 
-       n[e - 2] = t[e - 1];
 
-       for (var r = e - 3; r >= 0; --r) n[r] = n[r + 1] * t[r + 1];
 
-       return n;
 
-     }
 
-     function K(t, e, n) {
 
-       if ("string" === e) throw new Error("Cannot convert a string[] to a TypedArray");
 
-       if (Array.isArray(t) && (t = b(t)), n && O(t, e), function (t, e) {
 
-         return t instanceof Float32Array && "float32" === e || t instanceof Int32Array && "int32" === e || t instanceof Uint8Array && "bool" === e;
 
-       }(t, e)) return t;
 
-       if (null == e || "float32" === e || "complex64" === e) return new Float32Array(t);
 
-       if ("int32" === e) return new Int32Array(t);
 
-       if ("bool" === e) {
 
-         for (var r = new Uint8Array(t.length), o = 0; o < r.length; ++o) 0 !== Math.round(t[o]) && (r[o] = 1);
 
-         return r;
 
-       }
 
-       throw new Error("Unknown data type " + e);
 
-     }
 
-     function j(t, e) {
 
-       if (0 === t.length) return e[0];
 
-       var n = t.reduce(function (t, e) {
 
-         return t * e;
 
-       });
 
-       if (0 === n) return [];
 
-       if (n !== e.length) throw new Error("[" + t + "] does not match the input size.");
 
-       return function t(e, n, r) {
 
-         var o = new Array();
 
-         if (1 === n.length) for (var a = n[0], i = 0; i < a; i++) o[i] = r[e + i]; else {
 
-           a = n[0];
 
-           var u = n.slice(1),
 
-             s = u.reduce(function (t, e) {
 
-               return t * e;
 
-             });
 
-           for (i = 0; i < a; i++) o[i] = t(e + i * s, u, r);
 
-         }
 
-         return o;
 
-       }(0, t, e);
 
-     }
 
-     function X(t, e) {
 
-       for (var n = $(t, e), r = 0; r < n.length; r++) n[r] = 1;
 
-       return n;
 
-     }
 
-     function $(t, e) {
 
-       if (null == e || "float32" === e || "complex64" === e) return new Float32Array(t);
 
-       if ("int32" === e) return new Int32Array(t);
 
-       if ("bool" === e) return new Uint8Array(t);
 
-       throw new Error("Unknown data type " + e);
 
-     }
 
-     function Y() {
 
-       return a().platform.now();
 
-     }
 
-     function Q(t) {
 
-       t.forEach(function (e) {
 
-         g(Number.isInteger(e) && e >= 0, function () {
 
-           return "Tensor must have a shape comprised of positive integers but got shape [" + t + "].";
 
-         });
 
-       });
 
-     }
 
-     function J(t, e) {
 
-       return void 0 === e && (e = "utf-8"), e = e || "utf-8", a().platform.encode(t, e);
 
-     }
 
-     function Z(t, e) {
 
-       return void 0 === e && (e = "utf-8"), e = e || "utf-8", a().platform.decode(t, e);
 
-     }
 
-     var tt = Object.freeze({
 
-       shuffle: p,
 
-       clamp: d,
 
-       nearestLargerEven: v,
 
-       sum: m,
 
-       randUniform: function (t, e) {
 
-         var n = Math.random();
 
-         return e * n + (1 - n) * t;
 
-       },
 
-       distSquared: function (t, e) {
 
-         for (var n = 0, r = 0; r < t.length; r++) {
 
-           var o = Number(t[r]) - Number(e[r]);
 
-           n += o * o;
 
-         }
 
-         return n;
 
-       },
 
-       assert: g,
 
-       assertShapesMatch: y,
 
-       assertNonNull: x,
 
-       flatten: b,
 
-       sizeFromShape: w,
 
-       isScalarShape: function (t) {
 
-         return 0 === t.length;
 
-       },
 
-       arraysEqual: C,
 
-       isInt: E,
 
-       tanh: R,
 
-       sizeToSquarishShape: I,
 
-       createShuffledIndices: function (t) {
 
-         for (var e = new Uint32Array(t), n = 0; n < t; ++n) e[n] = n;
 
-         return p(e), e;
 
-       },
 
-       rightPad: k,
 
-       repeatedTry: S,
 
-       inferFromImplicitShape: A,
 
-       parseAxisParam: D,
 
-       squeezeShape: T,
 
-       getTypedArrayFromDType: N,
 
-       getArrayFromDType: F,
 
-       checkConversionForErrors: O,
 
-       isValidDtype: _,
 
-       hasEncodingLoss: M,
 
-       isTypedArray: B,
 
-       bytesPerElement: P,
 
-       bytesFromStringArray: L,
 
-       isString: W,
 
-       isBoolean: U,
 
-       isNumber: V,
 
-       inferDtype: z,
 
-       isFunction: G,
 
-       nearestDivisor: H,
 
-       computeStrides: q,
 
-       toTypedArray: K,
 
-       toNestedArray: j,
 
-       makeOnesTypedArray: X,
 
-       makeZerosTypedArray: $,
 
-       now: Y,
 
-       assertNonNegativeIntegerDimensions: Q,
 
-       fetch: function (t, e) {
 
-         return a().platform.fetch(t, e);
 
-       },
 
-       encodeString: J,
 
-       decodeString: Z
 
-     }),
 
-       et = function () {
 
-         function t(t, e) {
 
-           this.backendTimer = t, this.logger = e, null == e && (this.logger = new nt());
 
-         }
 
-         return t.prototype.profileKernel = function (t, e, n) {
 
-           var r,
 
-             o = this,
 
-             a = this.backendTimer.time(function () {
 
-               r = n();
 
-             });
 
-           return r.forEach(function (n) {
 
-             n.data().then(function (r) {
 
-               !function (t, e, n) {
 
-                 if ("float32" !== e) return !1;
 
-                 for (var r = 0; r < t.length; r++) {
 
-                   var o = t[r];
 
-                   if (isNaN(o) || !isFinite(o)) return console.warn("Found " + o + " in the result of '" + n + "'"), !0;
 
-                 }
 
-               }(r, n.dtype, t), a.then(function (a) {
 
-                 var i = "";
 
-                 null != a.getExtraProfileInfo && (i = a.getExtraProfileInfo()), o.logger.logKernelProfile(t, n, r, a.kernelMs, e, i);
 
-               });
 
-             });
 
-           }), r;
 
-         }, t;
 
-       }();
 
-     exports.util = tt;
 
-     var nt = function () {
 
-       function t() { }
 
-       return t.prototype.logKernelProfile = function (t, e, n, r, o, a) {
 
-         var i = k(r + "ms", 9),
 
-           u = k(t, 25),
 
-           s = e.rank,
 
-           c = e.size,
 
-           l = k(e.shape.toString(), 14),
 
-           h = "";
 
-         for (var f in o) {
 
-           var p = o[f].shape,
 
-             d = p.length;
 
-           h += f + ": " + d + "D " + (d > 0 ? p : "") + " ";
 
-         }
 
-         console.log("%c" + u + "\t%c" + i + "\t%c" + s + "D " + l + "\t%c" + c + "\t%c" + h + "\t%c" + a, "font-weight:bold", "color:red", "color:blue", "color: orange", "color: green", "color: steelblue");
 
-       }, t;
 
-     }();
 
-     var rt = 20,
 
-       ot = 3,
 
-       at = 7;
 
-     function it(t, e, n, r) {
 
-       var o = q(e),
 
-         a = function (t, e, n, r) {
 
-           var o = w(e),
 
-             a = r[r.length - 1],
 
-             i = new Array(a).fill(0),
 
-             u = e.length,
 
-             s = "complex64" === n ? ct(t) : t;
 
-           if (u > 1) for (var c = 0; c < o / a; c++) for (var l = c * a, h = 0; h < a; h++) i[h] = Math.max(i[h], ut(s[l + h], 0, n).length);
 
-           return i;
 
-         }(t, e, n, o),
 
-         i = e.length,
 
-         u = function t(e, n, r, o, a, i) {
 
-           void 0 === i && (i = !0);
 
-           var u = "complex64" === r ? 2 : 1;
 
-           var s = n[0];
 
-           var c = n.length;
 
-           if (0 === c) {
 
-             if ("complex64" === r) {
 
-               var l = ct(e);
 
-               return [ut(l[0], 0, r)];
 
-             }
 
-             return "bool" === r ? [st(e[0])] : [e[0].toString()];
 
-           }
 
-           if (1 === c) {
 
-             if (s > rt) {
 
-               var h = ot * u,
 
-                 f = Array.from(e.slice(0, h)),
 
-                 p = Array.from(e.slice(s - ot * u, s));
 
-               return "complex64" === r && (f = ct(f), p = ct(p)), ["[" + f.map(function (t, e) {
 
-                 return ut(t, a[e], r);
 
-               }).join(", ") + ", ..., " + p.map(function (t, e) {
 
-                 return ut(t, a[s - ot + e], r);
 
-               }).join(", ") + "]"];
 
-             }
 
-             var d = "complex64" === r ? ct(e) : Array.from(e);
 
-             return ["[" + d.map(function (t, e) {
 
-               return ut(t, a[e], r);
 
-             }).join(", ") + "]"];
 
-           }
 
-           var v = n.slice(1);
 
-           var m = o.slice(1);
 
-           var g = o[0] * u;
 
-           var y = [];
 
-           if (s > rt) {
 
-             for (var x = 0; x < ot; x++) {
 
-               var b = x * g,
 
-                 w = b + g;
 
-               y.push.apply(y, t(e.slice(b, w), v, r, m, a, !1));
 
-             }
 
-             y.push("...");
 
-             for (var x = s - ot; x < s; x++) {
 
-               var b = x * g,
 
-                 w = b + g;
 
-               y.push.apply(y, t(e.slice(b, w), v, r, m, a, x === s - 1));
 
-             }
 
-           } else for (var x = 0; x < s; x++) {
 
-             var b = x * g,
 
-               w = b + g;
 
-             y.push.apply(y, t(e.slice(b, w), v, r, m, a, x === s - 1));
 
-           }
 
-           var C = 2 === c ? "," : "";
 
-           y[0] = "[" + y[0] + C;
 
-           for (var x = 1; x < y.length - 1; x++) y[x] = " " + y[x] + C;
 
-           var E = ",\n";
 
-           for (var x = 2; x < c; x++) E += "\n";
 
-           y[y.length - 1] = " " + y[y.length - 1] + "]" + (i ? "" : E);
 
-           return y;
 
-         }(t, e, n, o, a),
 
-         s = ["Tensor"];
 
-       return r && (s.push("  dtype: " + n), s.push("  rank: " + i), s.push("  shape: [" + e + "]"), s.push("  values:")), s.push(u.map(function (t) {
 
-         return "    " + t;
 
-       }).join("\n")), s.join("\n");
 
-     }
 
-     function ut(t, e, n) {
 
-       return k(Array.isArray(t) ? parseFloat(t[0].toFixed(at)) + " + " + parseFloat(t[1].toFixed(at)) + "j" : W(t) ? "'" + t + "'" : "bool" === n ? st(t) : parseFloat(t.toFixed(at)).toString(), e);
 
-     }
 
-     function st(t) {
 
-       return 0 === t ? "false" : "true";
 
-     }
 
-     function ct(t) {
 
-       for (var e = [], n = 0; n < t.length; n += 2) e.push([t[n], t[n + 1]]);
 
-       return e;
 
-     }
 
-     var lt = function () {
 
-       function t(t, e, n) {
 
-         var r = this;
 
-         if (this.dtype = e, this.shape = t.slice(), this.size = w(t), null != n) {
 
-           var o = n.length;
 
-           g(o === this.size, function () {
 
-             return "Length of values '" + o + "' does not match the size inferred by the shape '" + r.size + "'.";
 
-           });
 
-         }
 
-         if ("complex64" === e) throw new Error("complex64 dtype TensorBuffers are not supported. Please create a TensorBuffer for the real and imaginary parts separately and call tf.complex(real, imag).");
 
-         this.values = n || F(e, this.size), this.strides = q(t);
 
-       }
 
-       return t.prototype.set = function (t) {
 
-         for (var e = this, n = [], r = 1; r < arguments.length; r++) n[r - 1] = arguments[r];
 
-         0 === n.length && (n = [0]), g(n.length === this.rank, function () {
 
-           return "The number of provided coordinates (" + n.length + ") must match the rank (" + e.rank + ")";
 
-         });
 
-         var o = this.locToIndex(n);
 
-         this.values[o] = t;
 
-       }, t.prototype.get = function () {
 
-         for (var t = [], e = 0; e < arguments.length; e++) t[e] = arguments[e];
 
-         0 === t.length && (t = [0]);
 
-         for (var n = 0, r = 0, o = t; r < o.length; r++) {
 
-           var a = o[r];
 
-           if (a < 0 || a >= this.shape[n]) {
 
-             var i = "Requested out of range element at " + t + ".   Buffer shape=" + this.shape;
 
-             throw new Error(i);
 
-           }
 
-           n++;
 
-         }
 
-         for (var u = t[t.length - 1], s = 0; s < t.length - 1; ++s) u += this.strides[s] * t[s];
 
-         return this.values[u];
 
-       }, t.prototype.locToIndex = function (t) {
 
-         if (0 === this.rank) return 0;
 
-         if (1 === this.rank) return t[0];
 
-         for (var e = t[t.length - 1], n = 0; n < t.length - 1; ++n) e += this.strides[n] * t[n];
 
-         return e;
 
-       }, t.prototype.indexToLoc = function (t) {
 
-         if (0 === this.rank) return [];
 
-         if (1 === this.rank) return [t];
 
-         for (var e = new Array(this.shape.length), n = 0; n < e.length - 1; ++n) e[n] = Math.floor(t / this.strides[n]), t -= e[n] * this.strides[n];
 
-         return e[e.length - 1] = t, e;
 
-       }, Object.defineProperty(t.prototype, "rank", {
 
-         get: function () {
 
-           return this.shape.length;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.toTensor = function () {
 
-         return ht().makeTensor(this.values, this.shape, this.dtype);
 
-       }, t;
 
-     }(),
 
-       ht = null,
 
-       ft = null,
 
-       pt = null;
 
-     exports.TensorBuffer = lt;
 
-     var dt = function () {
 
-       function t(t, e, n, r) {
 
-         this.kept = !1, this.isDisposedInternal = !1, this.shape = t.slice(), this.dtype = e || "float32", this.size = w(t), this.strides = q(t), this.dataId = n, this.id = r, this.rankType = this.rank < 5 ? this.rank.toString() : "higher";
 
-       }
 
-       return t.prototype.flatten = function () {
 
-         return this.throwIfDisposed(), this.as1D();
 
-       }, t.prototype.asScalar = function () {
 
-         return this.throwIfDisposed(), g(1 === this.size, function () {
 
-           return "The array must have only 1 element.";
 
-         }), this.reshape([]);
 
-       }, t.prototype.as1D = function () {
 
-         return this.throwIfDisposed(), this.reshape([this.size]);
 
-       }, t.prototype.as2D = function (t, e) {
 
-         return this.throwIfDisposed(), this.reshape([t, e]);
 
-       }, t.prototype.as3D = function (t, e, n) {
 
-         return this.throwIfDisposed(), this.reshape([t, e, n]);
 
-       }, t.prototype.as4D = function (t, e, n, r) {
 
-         return this.throwIfDisposed(), this.reshape([t, e, n, r]);
 
-       }, t.prototype.as5D = function (t, e, n, r, o) {
 
-         return this.throwIfDisposed(), this.reshape([t, e, n, r, o]);
 
-       }, t.prototype.asType = function (t) {
 
-         return this.throwIfDisposed(), ft.cast(this, t);
 
-       }, Object.defineProperty(t.prototype, "rank", {
 
-         get: function () {
 
-           return this.shape.length;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.buffer = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t;
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return [4, this.data()];
 
-               case 1:
 
-                 return t = e.sent(), [2, ft.buffer(this.shape, this.dtype, t)];
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.bufferSync = function () {
 
-         return ft.buffer(this.shape, this.dtype, this.dataSync());
 
-       }, t.prototype.array = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t;
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return [4, this.data()];
 
-               case 1:
 
-                 return t = e.sent(), [2, j(this.shape, t)];
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.arraySync = function () {
 
-         return j(this.shape, this.dataSync());
 
-       }, t.prototype.data = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t, e;
 
-           return r(this, function (n) {
 
-             switch (n.label) {
 
-               case 0:
 
-                 return this.throwIfDisposed(), t = ht().read(this.dataId), "string" !== this.dtype ? [3, 2] : [4, t];
 
-               case 1:
 
-                 e = n.sent();
 
-                 try {
 
-                   return [2, e.map(function (t) {
 
-                     return Z(t);
 
-                   })];
 
-                 } catch (t) {
 
-                   throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().");
 
-                 }
 
-                 n.label = 2;
 
-               case 2:
 
-                 return [2, t];
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.dataSync = function () {
 
-         this.throwIfDisposed();
 
-         var t = ht().readSync(this.dataId);
 
-         if ("string" === this.dtype) try {
 
-           return t.map(function (t) {
 
-             return Z(t);
 
-           });
 
-         } catch (t) {
 
-           throw new Error("Failed to decode the string bytes into utf-8. To get the original bytes, call tensor.bytes().");
 
-         }
 
-         return t;
 
-       }, t.prototype.bytes = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t;
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return this.throwIfDisposed(), [4, ht().read(this.dataId)];
 
-               case 1:
 
-                 return t = e.sent(), "string" === this.dtype ? [2, t] : [2, new Uint8Array(t.buffer)];
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.dispose = function () {
 
-         this.isDisposed || (ht().disposeTensor(this), this.isDisposedInternal = !0);
 
-       }, Object.defineProperty(t.prototype, "isDisposed", {
 
-         get: function () {
 
-           return this.isDisposedInternal;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.throwIfDisposed = function () {
 
-         if (this.isDisposed) throw new Error("Tensor is disposed.");
 
-       }, t.prototype.toFloat = function () {
 
-         return this.asType("float32");
 
-       }, t.prototype.toInt = function () {
 
-         return this.asType("int32");
 
-       }, t.prototype.toBool = function () {
 
-         return this.asType("bool");
 
-       }, t.prototype.print = function (t) {
 
-         return void 0 === t && (t = !1), ft.print(this, t);
 
-       }, t.prototype.reshape = function (t) {
 
-         return this.throwIfDisposed(), ft.reshape(this, t);
 
-       }, t.prototype.reshapeAs = function (t) {
 
-         return this.throwIfDisposed(), this.reshape(t.shape);
 
-       }, t.prototype.expandDims = function (t) {
 
-         return void 0 === t && (t = 0), ft.expandDims(this, t);
 
-       }, t.prototype.cumsum = function (t, e, n) {
 
-         return void 0 === t && (t = 0), void 0 === e && (e = !1), void 0 === n && (n = !1), ft.cumsum(this, t, e, n);
 
-       }, t.prototype.squeeze = function (t) {
 
-         return this.throwIfDisposed(), ft.squeeze(this, t);
 
-       }, t.prototype.clone = function () {
 
-         return this.throwIfDisposed(), ft.clone(this);
 
-       }, t.prototype.oneHot = function (t, e, n) {
 
-         return this.throwIfDisposed(), ft.oneHot(this, t, e, n);
 
-       }, t.prototype.toString = function (t) {
 
-         return void 0 === t && (t = !1), it(this.dataSync(), this.shape, this.dtype, t);
 
-       }, t.prototype.tile = function (t) {
 
-         return this.throwIfDisposed(), ft.tile(this, t);
 
-       }, t.prototype.gather = function (t, e) {
 
-         return void 0 === e && (e = 0), this.throwIfDisposed(), ft.gather(this, t, e);
 
-       }, t.prototype.matMul = function (t, e, n) {
 
-         return void 0 === e && (e = !1), void 0 === n && (n = !1), this.throwIfDisposed(), ft.matMul(this, t, e, n);
 
-       }, t.prototype.dot = function (t) {
 
-         return this.throwIfDisposed(), ft.dot(this, t);
 
-       }, t.prototype.norm = function (t, e, n) {
 
-         return void 0 === t && (t = "euclidean"), void 0 === e && (e = null), void 0 === n && (n = !1), this.throwIfDisposed(), ft.norm(this, t, e, n);
 
-       }, t.prototype.slice = function (t, e) {
 
-         return this.throwIfDisposed(), ft.slice(this, t, e);
 
-       }, t.prototype.reverse = function (t) {
 
-         return this.throwIfDisposed(), ft.reverse(this, t);
 
-       }, t.prototype.concat = function (e, n) {
 
-         return void 0 === n && (n = 0), this.throwIfDisposed(), e instanceof t && (e = [e]), ft.concat([this].concat(e), n);
 
-       }, t.prototype.split = function (t, e) {
 
-         return void 0 === e && (e = 0), this.throwIfDisposed(), ft.split(this, t, e);
 
-       }, t.prototype.stack = function (t, e) {
 
-         return void 0 === e && (e = 0), ft.stack([this, t], e);
 
-       }, t.prototype.unstack = function (t) {
 
-         return void 0 === t && (t = 0), ft.unstack(this, t);
 
-       }, t.prototype.pad = function (t, e) {
 
-         return void 0 === e && (e = 0), ft.pad(this, t, e);
 
-       }, t.prototype.batchNormalization = function (t, e, n, r, o) {
 
-         return void 0 === n && (n = .001), pt("tf.batchNormalization() is going away. Use tf.batchNorm() instead, and note the positional argument change of scale, offset, and varianceEpsilon"), this.batchNorm(t, e, o, r, n);
 
-       }, t.prototype.batchNorm = function (t, e, n, r, o) {
 
-         return void 0 === o && (o = .001), this.throwIfDisposed(), ft.batchNorm(this, t, e, n, r, o);
 
-       }, t.prototype.all = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.all(this, t, e);
 
-       }, t.prototype.any = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.any(this, t, e);
 
-       }, t.prototype.logSumExp = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.logSumExp(this, t, e);
 
-       }, t.prototype.sum = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.sum(this, t, e);
 
-       }, t.prototype.prod = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.prod(this, t, e);
 
-       }, t.prototype.mean = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.mean(this, t, e);
 
-       }, t.prototype.min = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.min(this, t, e);
 
-       }, t.prototype.max = function (t, e) {
 
-         return void 0 === t && (t = null), void 0 === e && (e = !1), this.throwIfDisposed(), ft.max(this, t, e);
 
-       }, t.prototype.argMin = function (t) {
 
-         return void 0 === t && (t = null), this.throwIfDisposed(), ft.argMin(this, t);
 
-       }, t.prototype.argMax = function (t) {
 
-         return void 0 === t && (t = null), this.throwIfDisposed(), ft.argMax(this, t);
 
-       }, t.prototype.cast = function (t) {
 
-         return this.throwIfDisposed(), ft.cast(this, t);
 
-       }, t.prototype.add = function (t) {
 
-         return this.throwIfDisposed(), ft.add(this, t);
 
-       }, t.prototype.addStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.addStrict(this, t);
 
-       }, t.prototype.atan2 = function (t) {
 
-         return this.throwIfDisposed(), ft.atan2(this, t);
 
-       }, t.prototype.sub = function (t) {
 
-         return this.throwIfDisposed(), ft.sub(this, t);
 
-       }, t.prototype.subStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.subStrict(this, t);
 
-       }, t.prototype.pow = function (t) {
 
-         return this.throwIfDisposed(), ft.pow(this, t);
 
-       }, t.prototype.powStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.powStrict(this, t);
 
-       }, t.prototype.mul = function (t) {
 
-         return this.throwIfDisposed(), ft.mul(this, t);
 
-       }, t.prototype.mulStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.mulStrict(this, t);
 
-       }, t.prototype.div = function (t) {
 
-         return this.throwIfDisposed(), ft.div(this, t);
 
-       }, t.prototype.floorDiv = function (t) {
 
-         return this.throwIfDisposed(), ft.floorDiv(this, t);
 
-       }, t.prototype.divStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.divStrict(this, t);
 
-       }, t.prototype.minimum = function (t) {
 
-         return this.throwIfDisposed(), ft.minimum(this, t);
 
-       }, t.prototype.minimumStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.minimumStrict(this, t);
 
-       }, t.prototype.maximum = function (t) {
 
-         return this.throwIfDisposed(), ft.maximum(this, t);
 
-       }, t.prototype.maximumStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.maximumStrict(this, t);
 
-       }, t.prototype.mod = function (t) {
 
-         return this.throwIfDisposed(), ft.mod(this, t);
 
-       }, t.prototype.modStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.modStrict(this, t);
 
-       }, t.prototype.squaredDifference = function (t) {
 
-         return this.throwIfDisposed(), ft.squaredDifference(this, t);
 
-       }, t.prototype.squaredDifferenceStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.squaredDifferenceStrict(this, t);
 
-       }, t.prototype.transpose = function (t) {
 
-         return this.throwIfDisposed(), ft.transpose(this, t);
 
-       }, t.prototype.notEqual = function (t) {
 
-         return this.throwIfDisposed(), ft.notEqual(this, t);
 
-       }, t.prototype.notEqualStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.notEqualStrict(this, t);
 
-       }, t.prototype.less = function (t) {
 
-         return this.throwIfDisposed(), ft.less(this, t);
 
-       }, t.prototype.lessStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.lessStrict(this, t);
 
-       }, t.prototype.equal = function (t) {
 
-         return this.throwIfDisposed(), ft.equal(this, t);
 
-       }, t.prototype.equalStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.equalStrict(this, t);
 
-       }, t.prototype.lessEqual = function (t) {
 
-         return this.throwIfDisposed(), ft.lessEqual(this, t);
 
-       }, t.prototype.lessEqualStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.lessEqualStrict(this, t);
 
-       }, t.prototype.greater = function (t) {
 
-         return this.throwIfDisposed(), ft.greater(this, t);
 
-       }, t.prototype.greaterStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.greaterStrict(this, t);
 
-       }, t.prototype.greaterEqual = function (t) {
 
-         return this.throwIfDisposed(), ft.greaterEqual(this, t);
 
-       }, t.prototype.greaterEqualStrict = function (t) {
 
-         return this.throwIfDisposed(), ft.greaterEqualStrict(this, t);
 
-       }, t.prototype.logicalAnd = function (t) {
 
-         return this.throwIfDisposed(), ft.logicalAnd(this, t);
 
-       }, t.prototype.logicalOr = function (t) {
 
-         return this.throwIfDisposed(), ft.logicalOr(this, t);
 
-       }, t.prototype.logicalNot = function () {
 
-         return this.throwIfDisposed(), ft.logicalNot(this);
 
-       }, t.prototype.logicalXor = function (t) {
 
-         return this.throwIfDisposed(), ft.logicalXor(this, t);
 
-       }, t.prototype.where = function (t, e) {
 
-         return this.throwIfDisposed(), ft.where(t, this, e);
 
-       }, t.prototype.neg = function () {
 
-         return this.throwIfDisposed(), ft.neg(this);
 
-       }, t.prototype.ceil = function () {
 
-         return this.throwIfDisposed(), ft.ceil(this);
 
-       }, t.prototype.floor = function () {
 
-         return this.throwIfDisposed(), ft.floor(this);
 
-       }, t.prototype.sign = function () {
 
-         return this.throwIfDisposed(), ft.sign(this);
 
-       }, t.prototype.isNaN = function () {
 
-         return this.throwIfDisposed(), ft.isNaN(this);
 
-       }, t.prototype.isInf = function () {
 
-         return this.throwIfDisposed(), ft.isInf(this);
 
-       }, t.prototype.isFinite = function () {
 
-         return this.throwIfDisposed(), ft.isFinite(this);
 
-       }, t.prototype.exp = function () {
 
-         return this.throwIfDisposed(), ft.exp(this);
 
-       }, t.prototype.expm1 = function () {
 
-         return this.throwIfDisposed(), ft.expm1(this);
 
-       }, t.prototype.log = function () {
 
-         return this.throwIfDisposed(), ft.log(this);
 
-       }, t.prototype.log1p = function () {
 
-         return this.throwIfDisposed(), ft.log1p(this);
 
-       }, t.prototype.sqrt = function () {
 
-         return this.throwIfDisposed(), ft.sqrt(this);
 
-       }, t.prototype.rsqrt = function () {
 
-         return this.throwIfDisposed(), ft.rsqrt(this);
 
-       }, t.prototype.square = function () {
 
-         return this.throwIfDisposed(), ft.square(this);
 
-       }, t.prototype.reciprocal = function () {
 
-         return this.throwIfDisposed(), ft.reciprocal(this);
 
-       }, t.prototype.abs = function () {
 
-         return this.throwIfDisposed(), ft.abs(this);
 
-       }, t.prototype.clipByValue = function (t, e) {
 
-         return this.throwIfDisposed(), ft.clipByValue(this, t, e);
 
-       }, t.prototype.relu = function () {
 
-         return this.throwIfDisposed(), ft.relu(this);
 
-       }, t.prototype.relu6 = function () {
 
-         return this.throwIfDisposed(), ft.relu6(this);
 
-       }, t.prototype.elu = function () {
 
-         return this.throwIfDisposed(), ft.elu(this);
 
-       }, t.prototype.selu = function () {
 
-         return this.throwIfDisposed(), ft.selu(this);
 
-       }, t.prototype.leakyRelu = function (t) {
 
-         return void 0 === t && (t = .2), this.throwIfDisposed(), ft.leakyRelu(this, t);
 
-       }, t.prototype.prelu = function (t) {
 
-         return this.throwIfDisposed(), ft.prelu(this, t);
 
-       }, t.prototype.sigmoid = function () {
 
-         return this.throwIfDisposed(), ft.sigmoid(this);
 
-       }, t.prototype.logSigmoid = function () {
 
-         return this.throwIfDisposed(), ft.logSigmoid(this);
 
-       }, t.prototype.softplus = function () {
 
-         return this.throwIfDisposed(), ft.softplus(this);
 
-       }, t.prototype.zerosLike = function () {
 
-         return this.throwIfDisposed(), ft.zerosLike(this);
 
-       }, t.prototype.onesLike = function () {
 
-         return this.throwIfDisposed(), ft.onesLike(this);
 
-       }, t.prototype.sin = function () {
 
-         return this.throwIfDisposed(), ft.sin(this);
 
-       }, t.prototype.cos = function () {
 
-         return this.throwIfDisposed(), ft.cos(this);
 
-       }, t.prototype.tan = function () {
 
-         return this.throwIfDisposed(), ft.tan(this);
 
-       }, t.prototype.asin = function () {
 
-         return this.throwIfDisposed(), ft.asin(this);
 
-       }, t.prototype.acos = function () {
 
-         return this.throwIfDisposed(), ft.acos(this);
 
-       }, t.prototype.atan = function () {
 
-         return this.throwIfDisposed(), ft.atan(this);
 
-       }, t.prototype.sinh = function () {
 
-         return this.throwIfDisposed(), ft.sinh(this);
 
-       }, t.prototype.cosh = function () {
 
-         return this.throwIfDisposed(), ft.cosh(this);
 
-       }, t.prototype.tanh = function () {
 
-         return this.throwIfDisposed(), ft.tanh(this);
 
-       }, t.prototype.asinh = function () {
 
-         return this.throwIfDisposed(), ft.asinh(this);
 
-       }, t.prototype.acosh = function () {
 
-         return this.throwIfDisposed(), ft.acosh(this);
 
-       }, t.prototype.atanh = function () {
 
-         return this.throwIfDisposed(), ft.atanh(this);
 
-       }, t.prototype.erf = function () {
 
-         return this.throwIfDisposed(), ft.erf(this);
 
-       }, t.prototype.round = function () {
 
-         return this.throwIfDisposed(), ft.round(this);
 
-       }, t.prototype.step = function (t) {
 
-         return void 0 === t && (t = 0), this.throwIfDisposed(), ft.step(this, t);
 
-       }, t.prototype.softmax = function (t) {
 
-         return void 0 === t && (t = -1), this.throwIfDisposed(), ft.softmax(this, t);
 
-       }, t.prototype.logSoftmax = function (t) {
 
-         return void 0 === t && (t = -1), this.throwIfDisposed(), ft.logSoftmax(this, t);
 
-       }, t.prototype.resizeBilinear = function (t, e) {
 
-         return void 0 === e && (e = !1), this.throwIfDisposed(), ft.image.resizeBilinear(this, t, e);
 
-       }, t.prototype.resizeNearestNeighbor = function (t, e) {
 
-         return void 0 === e && (e = !1), this.throwIfDisposed(), ft.image.resizeNearestNeighbor(this, t, e);
 
-       }, t.prototype.conv1d = function (t, e, n, r, o, a) {
 
-         return void 0 === r && (r = "NWC"), void 0 === o && (o = 1), this.throwIfDisposed(), ft.conv1d(this, t, e, n, r, o, a);
 
-       }, t.prototype.conv2d = function (t, e, n, r, o, a) {
 
-         return void 0 === r && (r = "NHWC"), void 0 === o && (o = [1, 1]), this.throwIfDisposed(), ft.conv2d(this, t, e, n, r, o, a);
 
-       }, t.prototype.conv2dTranspose = function (t, e, n, r, o) {
 
-         return this.throwIfDisposed(), ft.conv2dTranspose(this, t, e, n, r, o);
 
-       }, t.prototype.depthwiseConv2D = function (t, e, n, r, o, a) {
 
-         return void 0 === r && (r = "NHWC"), void 0 === o && (o = [1, 1]), this.throwIfDisposed(), ft.depthwiseConv2d(this, t, e, n, r, o, a);
 
-       }, t.prototype.separableConv2d = function (t, e, n, r, o, a) {
 
-         return void 0 === o && (o = [1, 1]), void 0 === a && (a = "NHWC"), this.throwIfDisposed(), ft.separableConv2d(this, t, e, n, r, o, a);
 
-       }, t.prototype.avgPool = function (t, e, n, r) {
 
-         return this.throwIfDisposed(), ft.avgPool(this, t, e, n, r);
 
-       }, t.prototype.maxPool = function (t, e, n, r) {
 
-         return this.throwIfDisposed(), ft.maxPool(this, t, e, n, r);
 
-       }, t.prototype.localResponseNormalization = function (t, e, n, r) {
 
-         return void 0 === t && (t = 5), void 0 === e && (e = 1), void 0 === n && (n = 1), void 0 === r && (r = .5), ft.localResponseNormalization(this, t, e, n, r);
 
-       }, t.prototype.pool = function (t, e, n, r, o) {
 
-         return this.throwIfDisposed(), ft.pool(this, t, e, n, r, o);
 
-       }, t.prototype.variable = function (t, e, n) {
 
-         return void 0 === t && (t = !0), this.throwIfDisposed(), ht().makeVariable(this, t, e, n);
 
-       }, t.prototype.unsortedSegmentSum = function (t, e) {
 
-         return this.throwIfDisposed(), ft.unsortedSegmentSum(this, t, e);
 
-       }, t.prototype.batchToSpaceND = function (t, e) {
 
-         return this.throwIfDisposed(), ft.batchToSpaceND(this, t, e);
 
-       }, t.prototype.spaceToBatchND = function (t, e) {
 
-         return this.throwIfDisposed(), ft.spaceToBatchND(this, t, e);
 
-       }, t.prototype.topk = function (t, e) {
 
-         return void 0 === t && (t = 1), void 0 === e && (e = !0), this.throwIfDisposed(), ft.topk(this, t, e);
 
-       }, t.prototype.stridedSlice = function (t, e, n, r, o, a, i, u) {
 
-         return void 0 === r && (r = 0), void 0 === o && (o = 0), void 0 === a && (a = 0), void 0 === i && (i = 0), void 0 === u && (u = 0), this.throwIfDisposed(), ft.stridedSlice(this, t, e, n, r, o, a, i, u);
 
-       }, t.prototype.depthToSpace = function (t, e) {
 
-         return this.throwIfDisposed(), ft.depthToSpace(this, t, e);
 
-       }, t.prototype.fft = function () {
 
-         return this.throwIfDisposed(), ft.spectral.fft(this);
 
-       }, t.prototype.ifft = function () {
 
-         return this.throwIfDisposed(), ft.spectral.ifft(this);
 
-       }, t.prototype.rfft = function () {
 
-         return this.throwIfDisposed(), ft.spectral.rfft(this);
 
-       }, t.prototype.irfft = function () {
 
-         return this.throwIfDisposed(), ft.spectral.irfft(this);
 
-       }, t;
 
-     }();
 
-     exports.Tensor = dt;
 
-     Object.defineProperty(dt, Symbol.hasInstance, {
 
-       value: function (t) {
 
-         return !!t && null != t.dataId && null != t.shape && null != t.dtype;
 
-       }
 
-     });
 
-     var vt,
 
-       mt,
 
-       gt,
 
-       yt,
 
-       xt,
 
-       bt = function (t) {
 
-         function n(e, n, r, o) {
 
-           var a = t.call(this, e.shape, e.dtype, e.dataId, o) || this;
 
-           return a.trainable = n, a.name = r, a;
 
-         }
 
-         return e(n, t), n.prototype.assign = function (t) {
 
-           if (t.dtype !== this.dtype) throw new Error("dtype of the new value (" + t.dtype + ") and previous value (" + this.dtype + ") must match");
 
-           if (!C(t.shape, this.shape)) throw new Error("shape of the new value (" + t.shape + ") and previous value (" + this.shape + ") must match");
 
-           ht().disposeTensor(this), this.dataId = t.dataId, ht().incRef(this, null);
 
-         }, n.prototype.dispose = function () {
 
-           ht().disposeVariable(this), this.isDisposedInternal = !0;
 
-         }, n;
 
-       }(dt);
 
-     exports.Variable = bt;
 
-     exports.Rank = vt;
 
-     Object.defineProperty(bt, Symbol.hasInstance, {
 
-       value: function (t) {
 
-         return t instanceof dt && null != t.assign && t.assign instanceof Function;
 
-       }
 
-     }), function (t) {
 
-       t.R0 = "R0", t.R1 = "R1", t.R2 = "R2", t.R3 = "R3", t.R4 = "R4", t.R5 = "R5", t.R6 = "R6";
 
-     }(vt || (exports.Rank = vt = {})), function (t) {
 
-       t.float32 = "float32", t.int32 = "int32", t.bool = "int32", t.complex64 = "complex64";
 
-     }(mt || (mt = {})), function (t) {
 
-       t.float32 = "float32", t.int32 = "int32", t.bool = "bool", t.complex64 = "complex64";
 
-     }(gt || (gt = {})), function (t) {
 
-       t.float32 = "float32", t.int32 = "float32", t.bool = "float32", t.complex64 = "complex64";
 
-     }(yt || (yt = {})), function (t) {
 
-       t.float32 = "complex64", t.int32 = "complex64", t.bool = "complex64", t.complex64 = "complex64";
 
-     }(xt || (xt = {}));
 
-     var wt = {
 
-       float32: yt,
 
-       int32: mt,
 
-       bool: gt,
 
-       complex64: xt
 
-     };
 
-     function Ct(t, e) {
 
-       if ("string" === t || "string" === e) {
 
-         if ("string" === t && "string" === e) return "string";
 
-         throw new Error("Can not upcast " + t + " with " + e);
 
-       }
 
-       return wt[t][e];
 
-     }
 
-     function Et(t) {
 
-       return Ct(t, "int32");
 
-     }
 
-     function Rt(t, e) {
 
-       if (t.dtype === e.dtype) return [t, e];
 
-       var n = Ct(t.dtype, e.dtype);
 
-       return [t.cast(n), e.cast(n)];
 
-     }
 
-     function It(t, e) {
 
-       g(t.dtype === e.dtype, function () {
 
-         return "The dtypes of the first(" + t.dtype + ") and second(" + e.dtype + ") input must match";
 
-       });
 
-     }
 
-     function kt(t) {
 
-       var e = [];
 
-       return function t(e, n, r) {
 
-         if (null == e) return;
 
-         if (e instanceof dt) return void n.push(e);
 
-         if (o = e, !Array.isArray(o) && "object" != typeof o) return;
 
-         var o;
 
-         var a = e;
 
-         for (var i in a) {
 
-           var u = a[i];
 
-           r.has(u) || (r.add(u), t(u, n, r));
 
-         }
 
-       }(t, e, new Set()), e;
 
-     }
 
-     var St,
 
-       At = Object.freeze({
 
-         makeTypesMatch: Rt,
 
-         assertTypesMatch: It,
 
-         isTensorInList: function (t, e) {
 
-           for (var n = 0; n < e.length; n++) if (e[n].id === t.id) return !0;
 
-           return !1;
 
-         },
 
-         getTensorsInContainer: kt
 
-       }),
 
-       Dt = function () {
 
-         function t() {
 
-           this.registeredVariables = {}, this.nextTapeNodeId = 0, this.numBytes = 0, this.numTensors = 0, this.numStringTensors = 0, this.numDataBuffers = 0, this.gradientDepth = 0, this.kernelDepth = 0, this.scopeStack = [], this.numDataMovesStack = [], this.nextScopeId = 0, this.tensorInfo = new WeakMap(), this.profiling = !1, this.activeProfile = {
 
-             newBytes: 0,
 
-             newTensors: 0,
 
-             peakBytes: 0,
 
-             kernels: [],
 
-             result: null
 
-           };
 
-         }
 
-         return t.prototype.dispose = function () {
 
-           for (var t in this.registeredVariables) this.registeredVariables[t].dispose();
 
-         }, t;
 
-       }(),
 
-       Tt = function () {
 
-         function t(t) {
 
-           this.ENV = t, this.registry = {}, this.registryFactory = {}, this.pendingBackendInitId = 0, this.state = new Dt();
 
-         }
 
-         return t.prototype.ready = function () {
 
-           return n(this, void 0, void 0, function () {
 
-             var t, e, n;
 
-             return r(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   if (null != this.pendingBackendInit) return [2, this.pendingBackendInit.then(function () { })];
 
-                   if (null != this.backendInstance) return [2];
 
-                   t = this.getSortedBackends(), e = 0, r.label = 1;
 
-                 case 1:
 
-                   return e < t.length ? (n = t[e], [4, this.initializeBackend(n).success]) : [3, 5];
 
-                 case 2:
 
-                   return r.sent() ? [4, this.setBackend(n)] : [3, 4];
 
-                 case 3:
 
-                   return r.sent(), [2];
 
-                 case 4:
 
-                   return e++, [3, 1];
 
-                 case 5:
 
-                   throw new Error("Could not initialize any backends, all backend initializations failed.");
 
-               }
 
-             });
 
-           });
 
-         }, Object.defineProperty(t.prototype, "backend", {
 
-           get: function () {
 
-             if (null != this.pendingBackendInit) throw new Error("Backend '" + this.backendName + "' has not yet been initialized. Make sure to await tf.ready() before calling other methods");
 
-             if (null == this.backendInstance) {
 
-               var t = this.initializeBackendsAndReturnBest(),
 
-                 e = t.name;
 
-               if (t.asyncInit) throw new Error("The highest priority backend '" + e + "' has not yet been initialized. Make sure to await tf.ready() before calling other methods");
 
-               this.setBackend(e);
 
-             }
 
-             return this.backendInstance;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.backendNames = function () {
 
-           return Object.keys(this.registryFactory);
 
-         }, t.prototype.findBackend = function (t) {
 
-           if (!(t in this.registry)) {
 
-             if (!(t in this.registryFactory)) return null;
 
-             if (this.initializeBackend(t).asyncInit) return null;
 
-           }
 
-           return this.registry[t];
 
-         }, t.prototype.findBackendFactory = function (t) {
 
-           return t in this.registryFactory ? this.registryFactory[t].factory : null;
 
-         }, t.prototype.registerBackend = function (t, e, n) {
 
-           return void 0 === n && (n = 1), t in this.registryFactory ? (console.warn(t + " backend was already registered. Reusing existing backend factory."), !1) : (this.registryFactory[t] = {
 
-             factory: e,
 
-             priority: n
 
-           }, !0);
 
-         }, t.prototype.setBackend = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             var e, n, o;
 
-             return r(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   if (null == this.registryFactory[t]) throw new Error("Backend name '" + t + "' not found in registry");
 
-                   return this.backendName = t, null != this.registry[t] ? [3, 4] : (this.backendInstance = null, e = this.initializeBackend(t), n = e.success, e.asyncInit ? [4, n] : [3, 2]);
 
-                 case 1:
 
-                   return o = r.sent(), [3, 3];
 
-                 case 2:
 
-                   o = n, r.label = 3;
 
-                 case 3:
 
-                   if (!o) return [2, !1];
 
-                   r.label = 4;
 
-                 case 4:
 
-                   return this.backendInstance = this.registry[t], this.setupRegisteredKernels(), this.profiler = new et(this.backendInstance), [2, !0];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.setupRegisteredKernels = function () {
 
-           var t = this;
 
-           c(this.backendName).forEach(function (e) {
 
-             null != e.setupFunc && e.setupFunc(t.backendInstance);
 
-           });
 
-         }, t.prototype.disposeRegisteredKernels = function (t) {
 
-           var e = this;
 
-           c(t).forEach(function (n) {
 
-             null != n.disposeFunc && n.disposeFunc(e.registry[t]);
 
-           });
 
-         }, t.prototype.initializeBackend = function (t) {
 
-           var e = this,
 
-             n = this.registryFactory[t];
 
-           if (null == n) throw new Error("Cannot initialize backend " + t + ", no registration found.");
 
-           try {
 
-             var r = n.factory();
 
-             if (Promise.resolve(r) === r) {
 
-               var o = ++this.pendingBackendInitId,
 
-                 a = r.then(function (n) {
 
-                   return !(o < e.pendingBackendInitId) && (e.registry[t] = n, e.pendingBackendInit = null, !0);
 
-                 }).catch(function (n) {
 
-                   return !(o < e.pendingBackendInitId) && (e.pendingBackendInit = null, console.warn("Initialization of backend " + t + " failed"), console.warn(n.stack || n.message), !1);
 
-                 });
 
-               return this.pendingBackendInit = a, {
 
-                 success: a,
 
-                 asyncInit: !0
 
-               };
 
-             }
 
-             return this.registry[t] = r, {
 
-               success: !0,
 
-               asyncInit: !1
 
-             };
 
-           } catch (e) {
 
-             return console.warn("Initialization of backend " + t + " failed"), console.warn(e.stack || e.message), {
 
-               success: !1,
 
-               asyncInit: !1
 
-             };
 
-           }
 
-         }, t.prototype.removeBackend = function (t) {
 
-           if (!(t in this.registryFactory)) throw new Error(t + " backend not found in registry");
 
-           this.backendName === t && null != this.pendingBackendInit && this.pendingBackendInitId++, t in this.registry && (this.disposeRegisteredKernels(t), this.registry[t].dispose(), delete this.registry[t]), delete this.registryFactory[t], this.backendName === t && (this.pendingBackendInit = null, this.backendName = null, this.backendInstance = null);
 
-         }, t.prototype.getSortedBackends = function () {
 
-           var t = this;
 
-           if (0 === Object.keys(this.registryFactory).length) throw new Error("No backend found in registry.");
 
-           return Object.keys(this.registryFactory).sort(function (e, n) {
 
-             return t.registryFactory[n].priority - t.registryFactory[e].priority;
 
-           });
 
-         }, t.prototype.initializeBackendsAndReturnBest = function () {
 
-           for (var t = this.getSortedBackends(), e = 0; e < t.length; e++) {
 
-             var n = t[e],
 
-               r = this.initializeBackend(n),
 
-               o = r.success,
 
-               a = r.asyncInit;
 
-             if (a || o) return {
 
-               name: n,
 
-               asyncInit: a
 
-             };
 
-           }
 
-           throw new Error("Could not initialize any backends, all backend initializations failed.");
 
-         }, t.prototype.moveData = function (t, e) {
 
-           var n = this.state.tensorInfo.get(e),
 
-             r = n.backend,
 
-             o = this.readSync(e);
 
-           r.disposeData(e), n.backend = t, t.move(e, o, n.shape, n.dtype), this.shouldCheckForMemLeaks() && this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1]++;
 
-         }, t.prototype.tidy = function (t, e) {
 
-           var n,
 
-             r = this,
 
-             o = null;
 
-           if (null == e) {
 
-             if ("function" != typeof t) throw new Error("Please provide a function to tidy()");
 
-             e = t;
 
-           } else {
 
-             if ("string" != typeof t && !(t instanceof String)) throw new Error("When calling with two arguments, the first argument to tidy() must be a string");
 
-             if ("function" != typeof e) throw new Error("When calling with two arguments, the 2nd argument to tidy() must be a function");
 
-             o = t;
 
-           }
 
-           return this.scopedRun(function () {
 
-             return r.startScope(o);
 
-           }, function () {
 
-             return r.endScope(n);
 
-           }, function () {
 
-             return (n = e()) instanceof Promise && console.error("Cannot return a Promise inside of tidy."), n;
 
-           });
 
-         }, t.prototype.scopedRun = function (t, e, n) {
 
-           t();
 
-           try {
 
-             var r = n();
 
-             return e(), r;
 
-           } catch (t) {
 
-             throw e(), t;
 
-           }
 
-         }, t.prototype.nextTensorId = function () {
 
-           return t.nextTensorId++;
 
-         }, t.prototype.nextVariableId = function () {
 
-           return t.nextVariableId++;
 
-         }, t.prototype.clone = function (t) {
 
-           var e = this.makeTensorFromDataId(t.dataId, t.shape, t.dtype),
 
-             n = {
 
-               x: t
 
-             };
 
-           return this.addTapeNode(this.state.activeScope.name, n, [e], function (t) {
 
-             return {
 
-               x: function () {
 
-                 return t.toFloat();
 
-               }
 
-             };
 
-           }, []), e;
 
-         }, t.prototype.runKernel = function (t, e, n, r, o) {
 
-           return this.runKernelFunc(null, e, null, t, n, r, o);
 
-         }, t.prototype.shouldCheckForMemLeaks = function () {
 
-           return this.ENV.getBool("IS_TEST");
 
-         }, t.prototype.checkKernelForMemLeak = function (t, e, n) {
 
-           var r = this.backend.numDataIds(),
 
-             o = 0;
 
-           n.forEach(function (t) {
 
-             o += "complex64" === t.dtype ? 3 : 1;
 
-           });
 
-           var a = this.state.numDataMovesStack[this.state.numDataMovesStack.length - 1],
 
-             i = r - e - o - a;
 
-           if (i > 0) throw new Error("Backend '" + this.backendName + "' has an internal memory leak (" + i + " data ids) after running '" + t + "'");
 
-         }, t.prototype.runKernelFunc = function (t, e, n, r, o, a, i) {
 
-           var u,
 
-             c = this;
 
-           void 0 === a && (a = []), void 0 === i && (i = []);
 
-           var l,
 
-             h = [],
 
-             f = this.isTapeOn(),
 
-             p = null != this.state.activeScope ? this.state.activeScope.name : "",
 
-             d = function (t) {
 
-               f && (h = t.map(function (t) {
 
-                 return c.keep(c.clone(t));
 
-               }));
 
-             },
 
-             v = this.state.numBytes,
 
-             m = this.state.numTensors;
 
-           this.shouldCheckForMemLeaks() && this.state.numDataMovesStack.push(0);
 
-           var g,
 
-             y = s(r, this.backendName);
 
-           return l = null != y ? function () {
 
-             var t = c.backend.numDataIds();
 
-             g = y.kernelFunc({
 
-               inputs: e,
 
-               attrs: o,
 
-               backend: c.backend
 
-             });
 
-             var n = Array.isArray(g) ? g : [g];
 
-             c.shouldCheckForMemLeaks() && c.checkKernelForMemLeak(p, t, n);
 
-             var r = n.map(function (t) {
 
-               var e = t.dataId,
 
-                 n = t.shape,
 
-                 r = t.dtype;
 
-               return c.makeTensorFromDataId(e, n, r);
 
-             }),
 
-               u = r.filter(function (t, e) {
 
-                 return i[e];
 
-               });
 
-             return d(a.slice().concat(u)), r;
 
-           } : function () {
 
-             var e = c.backend.numDataIds();
 
-             g = c.tidy(function () {
 
-               return t(c.backend, d);
 
-             });
 
-             var n = Array.isArray(g) ? g : [g];
 
-             return c.shouldCheckForMemLeaks() && c.checkKernelForMemLeak(p, e, n), n;
 
-           }, this.scopedRun(function () {
 
-             return c.state.kernelDepth++;
 
-           }, function () {
 
-             return c.state.kernelDepth--;
 
-           }, function () {
 
-             u = c.ENV.getBool("DEBUG") ? c.profiler.profileKernel(p, e, function () {
 
-               return l();
 
-             }) : l();
 
-           }), f && this.addTapeNode(p, e, u, n, h), this.state.profiling && this.state.activeProfile.kernels.push({
 
-             name: p,
 
-             bytesAdded: this.state.numBytes - v,
 
-             totalBytesSnapshot: this.state.numBytes,
 
-             tensorsAdded: this.state.numTensors - m,
 
-             totalTensorsSnapshot: this.state.numTensors,
 
-             inputShapes: Object.keys(e).map(function (t) {
 
-               return e[t].shape;
 
-             }),
 
-             outputShapes: u.map(function (t) {
 
-               return t.shape;
 
-             })
 
-           }), Array.isArray(g) ? u : u[0];
 
-         }, t.prototype.makeTensor = function (t, e, n, r) {
 
-           if (null == t) throw new Error("Values passed to engine.makeTensor() are null");
 
-           n = n || "float32", r = r || this.backend;
 
-           var o = t;
 
-           "string" === n && W(t[0]) && (o = t.map(function (t) {
 
-             return J(t);
 
-           }));
 
-           var a = r.write(o, e, n),
 
-             i = new dt(e, n, a, this.nextTensorId());
 
-           if (this.incRef(i, r), "string" === n) {
 
-             var u = this.state.tensorInfo.get(a),
 
-               s = L(o);
 
-             this.state.numBytes += s - u.bytes, u.bytes = s;
 
-           }
 
-           return i;
 
-         }, t.prototype.makeTensorFromDataId = function (t, e, n, r) {
 
-           var o = new dt(e, n = n || "float32", t, this.nextTensorId());
 
-           return this.incRef(o, r), o;
 
-         }, t.prototype.makeVariable = function (t, e, n, r) {
 
-           void 0 === e && (e = !0), n = n || this.nextVariableId().toString(), null != r && r !== t.dtype && (t = t.asType(r));
 
-           var o = new bt(t, e, n, this.nextTensorId());
 
-           if (null != this.state.registeredVariables[o.name]) throw new Error("Variable with name " + o.name + " was already registered");
 
-           return this.state.registeredVariables[o.name] = o, this.incRef(o, this.backend), o;
 
-         }, t.prototype.incRef = function (t, e) {
 
-           var n = this.state.tensorInfo.has(t.dataId) ? this.state.tensorInfo.get(t.dataId).refCount : 0;
 
-           if (this.state.numTensors++, "string" === t.dtype && this.state.numStringTensors++, 0 === n) {
 
-             this.state.numDataBuffers++;
 
-             var r = 0;
 
-             "complex64" !== t.dtype && "string" !== t.dtype && (r = t.size * P(t.dtype)), this.state.tensorInfo.set(t.dataId, {
 
-               backend: e || this.backend,
 
-               dtype: t.dtype,
 
-               shape: t.shape,
 
-               bytes: r,
 
-               refCount: 0
 
-             }), this.state.numBytes += r;
 
-           }
 
-           this.state.tensorInfo.get(t.dataId).refCount++, t instanceof bt || this.track(t);
 
-         }, t.prototype.disposeTensor = function (t) {
 
-           if (this.state.tensorInfo.has(t.dataId)) {
 
-             this.state.numTensors--, "string" === t.dtype && this.state.numStringTensors--;
 
-             var e = this.state.tensorInfo.get(t.dataId);
 
-             e.refCount <= 1 ? ("complex64" !== t.dtype && (this.state.numBytes -= e.bytes), this.state.numDataBuffers--, e.backend.disposeData(t.dataId), this.state.tensorInfo.delete(t.dataId)) : this.state.tensorInfo.get(t.dataId).refCount--;
 
-           }
 
-         }, t.prototype.disposeVariables = function () {
 
-           for (var t in this.state.registeredVariables) {
 
-             var e = this.state.registeredVariables[t];
 
-             this.disposeVariable(e);
 
-           }
 
-         }, t.prototype.disposeVariable = function (t) {
 
-           this.disposeTensor(t), null != this.state.registeredVariables[t.name] && delete this.state.registeredVariables[t.name];
 
-         }, t.prototype.memory = function () {
 
-           var t = this.backend.memory();
 
-           return t.numTensors = this.state.numTensors, t.numDataBuffers = this.state.numDataBuffers, t.numBytes = this.state.numBytes, this.state.numStringTensors > 0 && (t.unreliable = !0, null == t.reasons && (t.reasons = []), t.reasons.push("Memory usage by string tensors is approximate (2 bytes per character)")), t;
 
-         }, t.prototype.profile = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             var e, n;
 
-             return r(this, function (r) {
 
-               return this.state.profiling = !0, e = this.state.numBytes, n = this.state.numTensors, this.state.activeProfile.kernels = [], this.state.activeProfile.result = t(), this.state.profiling = !1, this.state.activeProfile.peakBytes = Math.max.apply(Math, this.state.activeProfile.kernels.map(function (t) {
 
-                 return t.totalBytesSnapshot;
 
-               })), this.state.activeProfile.newBytes = this.state.numBytes - e, this.state.activeProfile.newTensors = this.state.numTensors - n, [2, this.state.activeProfile];
 
-             });
 
-           });
 
-         }, t.prototype.isTapeOn = function () {
 
-           return this.state.gradientDepth > 0 && 0 === this.state.kernelDepth;
 
-         }, t.prototype.addTapeNode = function (t, e, n, r, o) {
 
-           var a = this,
 
-             i = {
 
-               id: this.state.nextTapeNodeId++,
 
-               name: t,
 
-               inputs: e,
 
-               outputs: n,
 
-               saved: o
 
-             };
 
-           null != r && (i.gradient = function (t) {
 
-             return t = t.map(function (t, e) {
 
-               if (null == t) {
 
-                 var r = n[e],
 
-                   o = $(r.size, r.dtype);
 
-                 return a.makeTensor(o, r.shape, r.dtype);
 
-               }
 
-               return t;
 
-             }), r(t.length > 1 ? t : t[0], o);
 
-           }), this.state.activeTape.push(i);
 
-         }, t.prototype.keep = function (t) {
 
-           return t.kept = !0, t;
 
-         }, t.prototype.startTape = function () {
 
-           0 === this.state.gradientDepth && (this.state.activeTape = []), this.state.gradientDepth++;
 
-         }, t.prototype.endTape = function () {
 
-           this.state.gradientDepth--;
 
-         }, t.prototype.startScope = function (t) {
 
-           var e = {
 
-             track: [],
 
-             name: "unnamed scope",
 
-             id: this.state.nextScopeId++
 
-           };
 
-           t && (e.name = t), this.state.scopeStack.push(e), this.state.activeScope = e;
 
-         }, t.prototype.endScope = function (t) {
 
-           for (var e = this, n = kt(t), r = new Set(n.map(function (t) {
 
-             return t.id;
 
-           })), o = 0; o < this.state.activeScope.track.length; o++) {
 
-             var a = this.state.activeScope.track[o];
 
-             a.kept || r.has(a.id) || a.dispose();
 
-           }
 
-           var i = this.state.scopeStack.pop();
 
-           this.state.activeScope = 0 === this.state.scopeStack.length ? null : this.state.scopeStack[this.state.scopeStack.length - 1], n.forEach(function (t) {
 
-             t.kept || t.scopeId !== i.id || e.track(t);
 
-           });
 
-         }, t.prototype.gradients = function (t, e, n, r) {
 
-           var o = this;
 
-           if (void 0 === r && (r = !1), g(e.length > 0, function () {
 
-             return "gradients() received an empty list of xs.";
 
-           }), null != n && "float32" !== n.dtype) throw new Error("dy must have 'float32' dtype, but has '" + n.dtype + "'");
 
-           var a = this.scopedRun(function () {
 
-             return o.startTape();
 
-           }, function () {
 
-             return o.endTape();
 
-           }, function () {
 
-             return o.tidy("forward", t);
 
-           });
 
-           g(a instanceof dt, function () {
 
-             return "The result y returned by f() must be a tensor.";
 
-           });
 
-           var i = function (t, e, n) {
 
-             for (var r = {}, o = {}, a = 0; a < e.length; a++) r[e[a].id] = !0;
 
-             for (a = 0; a < t.length; a++) {
 
-               var i = (d = t[a]).inputs;
 
-               for (var u in i) {
 
-                 for (var s = i[u], c = !1, l = 0; l < e.length; l++) if (r[s.id]) {
 
-                   d.outputs.forEach(function (t) {
 
-                     return r[t.id] = !0;
 
-                   }), c = !0, o[d.id] = !0;
 
-                   break;
 
-                 }
 
-                 if (c) break;
 
-               }
 
-             }
 
-             var h = {};
 
-             h[n.id] = !0;
 
-             var f = {};
 
-             for (a = t.length - 1; a >= 0; a--) for (i = (d = t[a]).inputs, l = 0; l < d.outputs.length; l++) if (h[d.outputs[l].id]) {
 
-               for (var u in i) h[i[u].id] = !0, f[d.id] = !0;
 
-               break;
 
-             }
 
-             var p = [];
 
-             for (a = 0; a < t.length; a++) {
 
-               var d;
 
-               if (o[(d = t[a]).id] && f[d.id]) {
 
-                 var v = {};
 
-                 for (var u in d.inputs) {
 
-                   var m = d.inputs[u];
 
-                   r[m.id] && (v[u] = m);
 
-                 }
 
-                 var g = Object.assign({}, d);
 
-                 g.inputs = v, g.outputs = d.outputs, p.push(g);
 
-               }
 
-             }
 
-             return p;
 
-           }(this.state.activeTape, e, a);
 
-           if (!r && 0 === i.length && e.length > 0) throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that the f you passed encloses all operations that lead from x to y.");
 
-           return this.tidy("backward", function () {
 
-             var t,
 
-               r,
 
-               u = {};
 
-             u[a.id] = null == n ? (t = a.shape, r = X(w(t), "float32"), Nt.makeTensor(r, t, "float32")) : n, function (t, e, n) {
 
-               for (var r = function (r) {
 
-                 var o = e[r],
 
-                   a = [];
 
-                 if (o.outputs.forEach(function (e) {
 
-                   var n = t[e.id];
 
-                   null != n ? a.push(n) : a.push(null);
 
-                 }), null == o.gradient) throw new Error("Cannot compute gradient: gradient function not found for " + o.name + ".");
 
-                 var i = o.gradient(a),
 
-                   u = function (e) {
 
-                     if (!(e in i)) throw new Error("Cannot backprop through input " + e + ". Available gradients found: " + Object.keys(i) + ".");
 
-                     var r = n(function () {
 
-                       return i[e]();
 
-                     });
 
-                     if ("float32" !== r.dtype) throw new Error("Error in gradient for op " + o.name + ". The gradient of input " + e + " must have 'float32' dtype, but has '" + r.dtype + "'");
 
-                     var a = o.inputs[e];
 
-                     if (!C(r.shape, a.shape)) throw new Error("Error in gradient for op " + o.name + ". The gradient of input '" + e + "' has shape '" + r.shape + "', which does not match the shape of the input '" + a.shape + "'");
 
-                     if (null == t[a.id]) t[a.id] = r; else {
 
-                       var u = t[a.id];
 
-                       t[a.id] = u.add(r), u.dispose();
 
-                     }
 
-                   };
 
-                 for (var s in o.inputs) u(s);
 
-               }, o = e.length - 1; o >= 0; o--) r(o);
 
-             }(u, i, function (t) {
 
-               return o.tidy(t);
 
-             });
 
-             var s = e.map(function (t) {
 
-               return u[t.id];
 
-             });
 
-             return 0 === o.state.gradientDepth && (o.state.activeTape.forEach(function (t) {
 
-               for (var e in t.saved) t.saved[e].dispose();
 
-             }), o.state.activeTape = null), {
 
-               value: a,
 
-               grads: s
 
-             };
 
-           });
 
-         }, t.prototype.customGrad = function (t) {
 
-           var e = this;
 
-           return g(G(t), function () {
 
-             return "The f passed in customGrad(f) must be a function.";
 
-           }), function () {
 
-             for (var n, r = [], o = 0; o < arguments.length; o++) r[o] = arguments[o];
 
-             g(r.every(function (t) {
 
-               return t instanceof dt;
 
-             }), function () {
 
-               return "The args passed in customGrad(f)(x1, x2,...) must all be tensors";
 
-             });
 
-             var a = {};
 
-             return r.forEach(function (t, e) {
 
-               a[e] = t;
 
-             }), e.runKernelFunc(function (e, o) {
 
-               return g((n = t.apply(void 0, r.concat([o]))).value instanceof dt, function () {
 
-                 return "The function f passed in customGrad(f) must return an object where `obj.value` is a tensor";
 
-               }), g(G(n.gradFunc), function () {
 
-                 return "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function.";
 
-               }), n.value;
 
-             }, a, function (t, e) {
 
-               var o = n.gradFunc(t, e),
 
-                 a = Array.isArray(o) ? o : [o];
 
-               g(a.length === r.length, function () {
 
-                 return "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns the same number of tensors as inputs passed to f(...).";
 
-               }), g(a.every(function (t) {
 
-                 return t instanceof dt;
 
-               }), function () {
 
-                 return "The function f passed in customGrad(f) must return an object where `obj.gradFunc` is a function that returns a list of only tensors.";
 
-               });
 
-               var i = {};
 
-               return a.forEach(function (t, e) {
 
-                 i[e] = function () {
 
-                   return t;
 
-                 };
 
-               }), i;
 
-             });
 
-           };
 
-         }, t.prototype.readSync = function (t) {
 
-           return this.state.tensorInfo.get(t).backend.readSync(t);
 
-         }, t.prototype.read = function (t) {
 
-           return this.state.tensorInfo.get(t).backend.read(t);
 
-         }, t.prototype.fromPixels = function (t, e) {
 
-           return this.backend.fromPixels(t, e);
 
-         }, t.prototype.time = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             var e, n;
 
-             return r(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return e = Y(), [4, this.backend.time(t)];
 
-                 case 1:
 
-                   return (n = r.sent()).wallMs = Y() - e, [2, n];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.track = function (t) {
 
-           return null != this.state.activeScope && (t.scopeId = this.state.activeScope.id, this.state.activeScope.track.push(t)), t;
 
-         }, Object.defineProperty(t.prototype, "registeredVariables", {
 
-           get: function () {
 
-             return this.state.registeredVariables;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.reset = function () {
 
-           for (var t in this.pendingBackendInitId++, this.state.dispose(), this.ENV.reset(), this.state = new Dt(), this.registry) this.disposeRegisteredKernels(t), this.registry[t].dispose(), delete this.registry[t];
 
-           this.backendName = null, this.backendInstance = null, this.pendingBackendInit = null;
 
-         }, t.nextTensorId = 0, t.nextVariableId = 0, t;
 
-       }();
 
-     exports.tensor_util = At;
 
-     var Nt = function () {
 
-       var t = function () {
 
-         if (null == St) {
 
-           var t = void 0;
 
-           if ("undefined" != typeof window) t = window; else if ("undefined" != typeof global) t = global; else if ("undefined" != typeof process) t = process; else {
 
-             if ("undefined" == typeof self) throw new Error("Could not find a global object");
 
-             t = self;
 
-           }
 
-           St = t;
 
-         }
 
-         return St;
 
-       }();
 
-       if (null == t._tfengine) {
 
-         var e = new o(t);
 
-         t._tfengine = new Tt(e);
 
-       }
 
-       return function (t) {
 
-         exports.ENV = i = t;
 
-       }(t._tfengine.ENV), ht = function () {
 
-         return t._tfengine;
 
-       }, t._tfengine;
 
-     }();
 
-     function Ft() {
 
-       return "undefined" != typeof window && null != window.document || "undefined" != typeof WorkerGlobalScope;
 
-     }
 
-     var Ot = a();
 
-     Ot.registerFlag("DEBUG", function () {
 
-       return !1;
 
-     }, function (t) {
 
-       t && console.warn("Debugging mode is ON. The output of every math call will be downloaded to CPU and checked for NaNs. This significantly impacts performance.");
 
-     }), Ot.registerFlag("IS_BROWSER", function () {
 
-       return Ft();
 
-     }), Ot.registerFlag("IS_NODE", function () {
 
-       return "undefined" != typeof process && void 0 !== process.versions && void 0 !== process.versions.node;
 
-     }), Ot.registerFlag("IS_CHROME", function () {
 
-       return "undefined" != typeof navigator && null != navigator && null != navigator.userAgent && /Chrome/.test(navigator.userAgent) && /Google Inc/.test(navigator.vendor);
 
-     }), Ot.registerFlag("PROD", function () {
 
-       return !1;
 
-     }), Ot.registerFlag("TENSORLIKE_CHECK_SHAPE_CONSISTENCY", function () {
 
-       return Ot.getBool("DEBUG");
 
-     }), Ot.registerFlag("DEPRECATION_WARNINGS_ENABLED", function () {
 
-       return !0;
 
-     }), Ot.registerFlag("IS_TEST", function () {
 
-       return !1;
 
-     });
 
-     var _t,
 
-       Mt,
 
-       Bt,
 
-       Pt = {},
 
-       Lt = {
 
-         alpha: !1,
 
-         antialias: !1,
 
-         premultipliedAlpha: !1,
 
-         preserveDrawingBuffer: !1,
 
-         depth: !1,
 
-         stencil: !1,
 
-         failIfMajorPerformanceCaveat: !0
 
-       };
 
-     function Wt(t, e) {
 
-       Pt[t] = e;
 
-     }
 
-     function Ut(t) {
 
-       t in Pt || (Pt[t] = function (t) {
 
-         if (1 !== t && 2 !== t) throw new Error("Cannot get WebGL rendering context, WebGL is disabled.");
 
-         var e = Vt(t);
 
-         if (e.addEventListener("webglcontextlost", function (e) {
 
-           e.preventDefault(), delete Pt[t];
 
-         }, !1), 1 === t) return e.getContext("webgl", Lt) || e.getContext("experimental-webgl", Lt);
 
-         return e.getContext("webgl2", Lt);
 
-       }(t));
 
-       var e = Pt[t];
 
-       return e.isContextLost() ? (delete Pt[t], Ut(t)) : (e.disable(e.DEPTH_TEST), e.disable(e.STENCIL_TEST), e.disable(e.BLEND), e.disable(e.DITHER), e.disable(e.POLYGON_OFFSET_FILL), e.disable(e.SAMPLE_COVERAGE), e.enable(e.SCISSOR_TEST), e.enable(e.CULL_FACE), e.cullFace(e.BACK), Pt[t]);
 
-     }
 
-     function Vt(t) {
 
-       if ("undefined" != typeof OffscreenCanvas && 2 === t) return new OffscreenCanvas(300, 150);
 
-       if ("undefined" != typeof document) return document.createElement("canvas");
 
-       throw new Error("Cannot create a canvas in this context");
 
-     }
 
-     function zt(t, e) {
 
-       return [e, t];
 
-     }
 
-     function Gt(t) {
 
-       var e = w(t);
 
-       return I(Math.ceil(e / 4));
 
-     }
 
-     function Ht(t, e) {
 
-       return [Math.max(1, Math.ceil(e / 2)), Math.max(1, Math.ceil(t / 2))];
 
-     }
 
-     function qt(t, e) {
 
-       var n,
 
-         r,
 
-         o,
 
-         i,
 
-         u,
 
-         s,
 
-         c,
 
-         l,
 
-         h,
 
-         f = t;
 
-       return 2 === a().getNumber("WEBGL_VERSION") ? (n = f.R32F, r = f.R16F, o = f.RGBA16F, i = f.RGBA32F, u = f.RED, s = 4, c = 1, l = f.HALF_FLOAT, h = f.FLOAT) : (n = t.RGBA, r = t.RGBA, o = t.RGBA, i = f.RGBA, u = t.RGBA, s = 4, c = 4, l = null != e ? e.HALF_FLOAT_OES : null, h = t.FLOAT), {
 
-         internalFormatFloat: n,
 
-         internalFormatHalfFloat: r,
 
-         internalFormatPackedHalfFloat: o,
 
-         internalFormatPackedFloat: i,
 
-         textureFormatFloat: u,
 
-         downloadTextureFormat: t.RGBA,
 
-         downloadUnpackNumChannels: s,
 
-         defaultNumChannels: c,
 
-         textureTypeHalfFloat: l,
 
-         textureTypeFloat: h
 
-       };
 
-     }
 
-     function Kt(t, e, n) {
 
-       var r = n();
 
-       return e && function (t) {
 
-         var e = t.getError();
 
-         if (e !== t.NO_ERROR) throw new Error("WebGL Error: " + Yt(t, e));
 
-       }(t), r;
 
-     }
 
-     !function (t) {
 
-       t[t.DENSE = 0] = "DENSE", t[t.SHARED_BATCH = 1] = "SHARED_BATCH";
 
-     }(_t || (_t = {})), function (t) {
 
-       t[t.RENDER = 0] = "RENDER", t[t.UPLOAD = 1] = "UPLOAD", t[t.PIXELS = 2] = "PIXELS", t[t.DOWNLOAD = 3] = "DOWNLOAD";
 
-     }(Mt || (Mt = {})), function (t) {
 
-       t[t.UNPACKED_FLOAT16 = 0] = "UNPACKED_FLOAT16", t[t.UNPACKED_FLOAT32 = 1] = "UNPACKED_FLOAT32", t[t.PACKED_4X1_UNSIGNED_BYTE = 2] = "PACKED_4X1_UNSIGNED_BYTE", t[t.PACKED_2X2_FLOAT32 = 3] = "PACKED_2X2_FLOAT32", t[t.PACKED_2X2_FLOAT16 = 4] = "PACKED_2X2_FLOAT16";
 
-     }(Bt || (Bt = {}));
 
-     var jt = 5.96e-8,
 
-       Xt = 65504;
 
-     function $t(t) {
 
-       return !!(a().getBool("WEBGL_RENDER_FLOAT32_ENABLED") || 0 === t || jt < Math.abs(t) && Math.abs(t) < Xt);
 
-     }
 
-     function Yt(t, e) {
 
-       switch (e) {
 
-         case t.NO_ERROR:
 
-           return "NO_ERROR";
 
-         case t.INVALID_ENUM:
 
-           return "INVALID_ENUM";
 
-         case t.INVALID_VALUE:
 
-           return "INVALID_VALUE";
 
-         case t.INVALID_OPERATION:
 
-           return "INVALID_OPERATION";
 
-         case t.INVALID_FRAMEBUFFER_OPERATION:
 
-           return "INVALID_FRAMEBUFFER_OPERATION";
 
-         case t.OUT_OF_MEMORY:
 
-           return "OUT_OF_MEMORY";
 
-         case t.CONTEXT_LOST_WEBGL:
 
-           return "CONTEXT_LOST_WEBGL";
 
-         default:
 
-           return "Unknown error code " + e;
 
-       }
 
-     }
 
-     function Qt(t, e, n) {
 
-       return be(t, e, function () {
 
-         return t.getExtension(n);
 
-       }, 'Extension "' + n + '" not supported on this browser.');
 
-     }
 
-     function Jt(t, e, n) {
 
-       var r = be(t, e, function () {
 
-         return t.createShader(t.VERTEX_SHADER);
 
-       }, "Unable to create vertex WebGLShader.");
 
-       if (Kt(t, e, function () {
 
-         return t.shaderSource(r, n);
 
-       }), Kt(t, e, function () {
 
-         return t.compileShader(r);
 
-       }), !1 === t.getShaderParameter(r, t.COMPILE_STATUS)) throw console.log(t.getShaderInfoLog(r)), new Error("Failed to compile vertex shader.");
 
-       return r;
 
-     }
 
-     function Zt(t, e, n) {
 
-       var r = be(t, e, function () {
 
-         return t.createShader(t.FRAGMENT_SHADER);
 
-       }, "Unable to create fragment WebGLShader.");
 
-       if (Kt(t, e, function () {
 
-         return t.shaderSource(r, n);
 
-       }), Kt(t, e, function () {
 
-         return t.compileShader(r);
 
-       }), !1 === t.getShaderParameter(r, t.COMPILE_STATUS)) throw function (t, e) {
 
-         var n = ne.exec(e);
 
-         if (null == n) return console.log("Couldn't parse line number in error: " + e), void console.log(t);
 
-         for (var r = +n[1], o = t.split("\n"), a = o.length.toString().length + 2, i = o.map(function (t, e) {
 
-           return k((e + 1).toString(), a) + t;
 
-         }), u = 0, s = 0; s < i.length; s++) u = Math.max(i[s].length, u);
 
-         var c = i.slice(0, r - 1),
 
-           l = i.slice(r - 1, r),
 
-           h = i.slice(r);
 
-         console.log(c.join("\n")), console.log(e.split("\n")[0]), console.log("%c " + k(l[0], u), "border:1px solid red; background-color:#e3d2d2; color:#a61717"), console.log(h.join("\n"));
 
-       }(n, t.getShaderInfoLog(r)), new Error("Failed to compile fragment shader.");
 
-       return r;
 
-     }
 
-     var te,
 
-       ee,
 
-       ne = /ERROR: [0-9]+:([0-9]+):/g;
 
-     function re(t, e) {
 
-       return be(t, e, function () {
 
-         return t.createProgram();
 
-       }, "Unable to create WebGLProgram.");
 
-     }
 
-     function oe(t, e, n) {
 
-       if (Kt(t, e, function () {
 
-         return t.linkProgram(n);
 
-       }), !1 === t.getProgramParameter(n, t.LINK_STATUS)) throw console.log(t.getProgramInfoLog(n)), new Error("Failed to link vertex and fragment shaders.");
 
-     }
 
-     function ae(t, e, n) {
 
-       if (Kt(t, e, function () {
 
-         return t.validateProgram(n);
 
-       }), !1 === t.getProgramParameter(n, t.VALIDATE_STATUS)) throw console.log(t.getProgramInfoLog(n)), new Error("Shader program validation failed.");
 
-     }
 
-     function ie(t, e, n) {
 
-       var r = be(t, e, function () {
 
-         return t.createBuffer();
 
-       }, "Unable to create WebGLBuffer");
 
-       return Kt(t, e, function () {
 
-         return t.bindBuffer(t.ARRAY_BUFFER, r);
 
-       }), Kt(t, e, function () {
 
-         return t.bufferData(t.ARRAY_BUFFER, n, t.STATIC_DRAW);
 
-       }), r;
 
-     }
 
-     function ue(t, e, n) {
 
-       var r = be(t, e, function () {
 
-         return t.createBuffer();
 
-       }, "Unable to create WebGLBuffer");
 
-       return Kt(t, e, function () {
 
-         return t.bindBuffer(t.ELEMENT_ARRAY_BUFFER, r);
 
-       }), Kt(t, e, function () {
 
-         return t.bufferData(t.ELEMENT_ARRAY_BUFFER, n, t.STATIC_DRAW);
 
-       }), r;
 
-     }
 
-     function se(t, e) {
 
-       return be(t, e, function () {
 
-         return t.createTexture();
 
-       }, "Unable to create WebGLTexture.");
 
-     }
 
-     function ce(t, e) {
 
-       var n = a().getNumber("WEBGL_MAX_TEXTURE_SIZE");
 
-       if (t <= 0 || e <= 0) {
 
-         var r = "[" + t + "x" + e + "]";
 
-         throw new Error("Requested texture size " + r + " is invalid.");
 
-       }
 
-       if (t > n || e > n) {
 
-         r = "[" + t + "x" + e + "]";
 
-         throw new Error("Requested texture size " + r + " greater than WebGL maximum on this browser / GPU " + ("[" + n + "x" + n + "]") + ".");
 
-       }
 
-     }
 
-     function le(t, e) {
 
-       return be(t, e, function () {
 
-         return t.createFramebuffer();
 
-       }, "Unable to create WebGLFramebuffer.");
 
-     }
 
-     function he(t, e, n, r, o, a, i, u) {
 
-       var s = t.getAttribLocation(n, r);
 
-       return -1 !== s && (Kt(t, e, function () {
 
-         return t.bindBuffer(t.ARRAY_BUFFER, o);
 
-       }), Kt(t, e, function () {
 
-         return t.vertexAttribPointer(s, a, t.FLOAT, !1, i, u);
 
-       }), Kt(t, e, function () {
 
-         return t.enableVertexAttribArray(s);
 
-       }), !0);
 
-     }
 
-     function fe(t, e, n, r) {
 
-       we(t, r), Kt(t, e, function () {
 
-         return t.activeTexture(t.TEXTURE0 + r);
 
-       }), Kt(t, e, function () {
 
-         return t.bindTexture(t.TEXTURE_2D, n);
 
-       });
 
-     }
 
-     function pe(t, e, n, r) {
 
-       return be(t, e, function () {
 
-         return t.getUniformLocation(n, r);
 
-       }, 'uniform "' + r + '" not present in program.');
 
-     }
 
-     function de(t, e, n) {
 
-       return t.getUniformLocation(e, n);
 
-     }
 
-     function ve(t, e, n, r, o, a) {
 
-       Kt(t, e, function () {
 
-         return fe(t, e, r, a);
 
-       }), Kt(t, e, function () {
 
-         return t.uniform1i(o, a);
 
-       });
 
-     }
 
-     function me(t, e, n, r) {
 
-       Kt(t, e, function () {
 
-         return t.bindFramebuffer(t.FRAMEBUFFER, r);
 
-       }), Kt(t, e, function () {
 
-         return t.framebufferTexture2D(t.FRAMEBUFFER, t.COLOR_ATTACHMENT0, t.TEXTURE_2D, n, 0);
 
-       });
 
-     }
 
-     function ge(t, e, n) {
 
-       Kt(t, e, function () {
 
-         return t.bindFramebuffer(t.FRAMEBUFFER, n);
 
-       }), Kt(t, e, function () {
 
-         return t.framebufferTexture2D(t.FRAMEBUFFER, t.COLOR_ATTACHMENT0, t.TEXTURE_2D, null, 0);
 
-       });
 
-     }
 
-     function ye(t) {
 
-       var e = t.checkFramebufferStatus(t.FRAMEBUFFER);
 
-       if (e !== t.FRAMEBUFFER_COMPLETE) throw new Error("Error binding framebuffer: " + xe(t, e));
 
-     }
 
-     function xe(t, e) {
 
-       switch (e) {
 
-         case t.FRAMEBUFFER_INCOMPLETE_ATTACHMENT:
 
-           return "FRAMEBUFFER_INCOMPLETE_ATTACHMENT";
 
-         case t.FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT:
 
-           return "FRAMEBUFFER_INCOMPLETE_MISSING_ATTACHMENT";
 
-         case t.FRAMEBUFFER_INCOMPLETE_DIMENSIONS:
 
-           return "FRAMEBUFFER_INCOMPLETE_DIMENSIONS";
 
-         case t.FRAMEBUFFER_UNSUPPORTED:
 
-           return "FRAMEBUFFER_UNSUPPORTED";
 
-         default:
 
-           return "unknown error " + e;
 
-       }
 
-     }
 
-     function be(t, e, n, r) {
 
-       var o = Kt(t, e, function () {
 
-         return n();
 
-       });
 
-       if (null == o) throw new Error(r);
 
-       return o;
 
-     }
 
-     function we(t, e) {
 
-       var n = t.MAX_COMBINED_TEXTURE_IMAGE_UNITS - 1,
 
-         r = e + t.TEXTURE0;
 
-       if (r < t.TEXTURE0 || r > n) throw new Error("textureUnit must be in " + ("[gl.TEXTURE0, gl.TEXTURE" + n + "]") + ".");
 
-     }
 
-     function Ce(t, e) {
 
-       return void 0 === e && (e = 2), w(t.slice(0, t.length - e));
 
-     }
 
-     function Ee(t) {
 
-       if (0 === t.length) throw Error("Cannot get rows and columns of an empty shape array.");
 
-       return [t.length > 1 ? t[t.length - 2] : 1, t[t.length - 1]];
 
-     }
 
-     function Re(t) {
 
-       var e = [1, 1, 1];
 
-       return 0 === t.length || 1 === t.length && 1 === t[0] || (e = [Ce(t)].concat(Ee(t))), e;
 
-     }
 
-     function Ie(t, e) {
 
-       var n;
 
-       void 0 === e && (e = !1);
 
-       var r = a().getNumber("WEBGL_MAX_TEXTURE_SIZE");
 
-       if (e && (r *= 2, 1 === (t = t.map(function (e, n) {
 
-         return n >= t.length - 2 ? v(t[n]) : t[n];
 
-       })).length && (t = [2, t[0]])), 2 !== t.length) {
 
-         var o = T(t);
 
-         t = o.newShape;
 
-       }
 
-       var i = w(t);
 
-       if (t.length <= 1 && i <= r) return [1, i];
 
-       if (2 === t.length && t[0] <= r && t[1] <= r) return t;
 
-       if (3 === t.length && t[0] * t[1] <= r && t[2] <= r) return [t[0] * t[1], t[2]];
 
-       if (3 === t.length && t[0] <= r && t[1] * t[2] <= r) return [t[0], t[1] * t[2]];
 
-       if (4 === t.length && t[0] * t[1] * t[2] <= r && t[3] <= r) return [t[0] * t[1] * t[2], t[3]];
 
-       if (4 === t.length && t[0] <= r && t[1] * t[2] * t[3] <= r) return [t[0], t[1] * t[2] * t[3]];
 
-       if (e) {
 
-         var u = Ce(t),
 
-           s = 2,
 
-           c = 2;
 
-         return t.length && (s = (n = Ee(t))[0], c = n[1]), I(i = u * (s / 2) * (c / 2)).map(function (t) {
 
-           return 2 * t;
 
-         });
 
-       }
 
-       return I(i);
 
-     }
 
-     function ke(t) {
 
-       return t % 2 == 0;
 
-     }
 
-     function Se(t, e) {
 
-       if (C(t = t.slice(-2), e = e.slice(-2))) return !0;
 
-       if (!t.length || !e.length) return !0;
 
-       if (0 === t[0] || 0 === t[1] || 0 === e[0] || 0 === e[1]) return !0;
 
-       if (t.length !== e.length) {
 
-         var n = t.slice(-1)[0],
 
-           r = e.slice(-1)[0];
 
-         if (n === r) return !0;
 
-         if (ke(n) && ke(r) && (1 === t[0] || 1 === e[0])) return !0;
 
-       }
 
-       return t[1] === e[1] && ke(t[0]) && ke(e[0]);
 
-     }
 
-     function Ae(t) {
 
-       if (null == te) {
 
-         var e = Ut(t);
 
-         te = e.getParameter(e.MAX_TEXTURE_SIZE);
 
-       }
 
-       return te;
 
-     }
 
-     function De(t) {
 
-       if (null == ee) {
 
-         var e = Ut(t);
 
-         ee = e.getParameter(e.MAX_TEXTURE_IMAGE_UNITS);
 
-       }
 
-       return Math.min(16, ee);
 
-     }
 
-     function Te(t) {
 
-       if (0 === t) return 0;
 
-       var e = Ut(t);
 
-       return Ne(e, "EXT_disjoint_timer_query_webgl2") && 2 === t ? 2 : Ne(e, "EXT_disjoint_timer_query") ? 1 : 0;
 
-     }
 
-     function Ne(t, e) {
 
-       return null != t.getExtension(e);
 
-     }
 
-     function Fe(t) {
 
-       try {
 
-         if (null != Ut(t)) return !0;
 
-       } catch (t) {
 
-         return !1;
 
-       }
 
-       return !1;
 
-     }
 
-     function Oe(t) {
 
-       if (0 === t) return !1;
 
-       var e = Ut(t);
 
-       if (1 === t) {
 
-         if (!Ne(e, "OES_texture_float")) return !1;
 
-       } else if (!Ne(e, "EXT_color_buffer_float")) return !1;
 
-       return Me(e);
 
-     }
 
-     function _e(t) {
 
-       if (0 === t) return !1;
 
-       var e = Ut(t);
 
-       if (1 !== t) {
 
-         if (Ne(e, "EXT_color_buffer_float")) return Me(e);
 
-         if (Ne(e, "EXT_color_buffer_half_float")) {
 
-           var n = e.getExtension("EXT_color_buffer_half_float");
 
-           return function (t, e) {
 
-             var n = qt(t, e),
 
-               r = t.createTexture();
 
-             t.bindTexture(t.TEXTURE_2D, r);
 
-             t.texImage2D(t.TEXTURE_2D, 0, n.internalFormatHalfFloat, 1, 1, 0, n.textureFormatFloat, n.textureTypeHalfFloat, null);
 
-             var o = t.createFramebuffer();
 
-             t.bindFramebuffer(t.FRAMEBUFFER, o), t.framebufferTexture2D(t.FRAMEBUFFER, t.COLOR_ATTACHMENT0, t.TEXTURE_2D, r, 0);
 
-             var a = t.checkFramebufferStatus(t.FRAMEBUFFER) === t.FRAMEBUFFER_COMPLETE;
 
-             return t.bindTexture(t.TEXTURE_2D, null), t.bindFramebuffer(t.FRAMEBUFFER, null), t.deleteTexture(r), t.deleteFramebuffer(o), a;
 
-           }(e, n);
 
-         }
 
-         return !1;
 
-       }
 
-       return !!Ne(e, "OES_texture_float") && !!Ne(e, "WEBGL_color_buffer_float") && Me(e);
 
-     }
 
-     function Me(t) {
 
-       var e = qt(t),
 
-         n = t.createTexture();
 
-       t.bindTexture(t.TEXTURE_2D, n);
 
-       t.texImage2D(t.TEXTURE_2D, 0, e.internalFormatFloat, 1, 1, 0, e.textureFormatFloat, e.textureTypeFloat, null);
 
-       var r = t.createFramebuffer();
 
-       t.bindFramebuffer(t.FRAMEBUFFER, r), t.framebufferTexture2D(t.FRAMEBUFFER, t.COLOR_ATTACHMENT0, t.TEXTURE_2D, n, 0);
 
-       var o = t.checkFramebufferStatus(t.FRAMEBUFFER) === t.FRAMEBUFFER_COMPLETE;
 
-       return t.bindTexture(t.TEXTURE_2D, null), t.bindFramebuffer(t.FRAMEBUFFER, null), t.deleteTexture(n), t.deleteFramebuffer(r), o;
 
-     }
 
-     function Be(t) {
 
-       return 2 === t && null != Ut(t).fenceSync;
 
-     }
 
-     var Pe = Object.freeze({
 
-       callAndCheck: Kt,
 
-       canBeRepresented: $t,
 
-       getWebGLErrorMessage: Yt,
 
-       getExtensionOrThrow: Qt,
 
-       createVertexShader: Jt,
 
-       createFragmentShader: Zt,
 
-       createProgram: re,
 
-       linkProgram: oe,
 
-       validateProgram: ae,
 
-       createStaticVertexBuffer: ie,
 
-       createStaticIndexBuffer: ue,
 
-       getNumChannels: function () {
 
-         return 2 === a().getNumber("WEBGL_VERSION") ? 1 : 4;
 
-       },
 
-       createTexture: se,
 
-       validateTextureSize: ce,
 
-       createFramebuffer: le,
 
-       bindVertexBufferToProgramAttribute: he,
 
-       bindTextureUnit: fe,
 
-       unbindTextureUnit: function (t, e, n) {
 
-         we(t, n), Kt(t, e, function () {
 
-           return t.activeTexture(t.TEXTURE0 + n);
 
-         }), Kt(t, e, function () {
 
-           return t.bindTexture(t.TEXTURE_2D, null);
 
-         });
 
-       },
 
-       getProgramUniformLocationOrThrow: pe,
 
-       getProgramUniformLocation: de,
 
-       bindTextureToProgramUniformSampler: ve,
 
-       bindCanvasToFramebuffer: function (t, e) {
 
-         Kt(t, e, function () {
 
-           return t.bindFramebuffer(t.FRAMEBUFFER, null);
 
-         }), Kt(t, e, function () {
 
-           return t.viewport(0, 0, t.canvas.width, t.canvas.height);
 
-         }), Kt(t, e, function () {
 
-           return t.scissor(0, 0, t.canvas.width, t.canvas.height);
 
-         });
 
-       },
 
-       bindColorTextureToFramebuffer: me,
 
-       unbindColorTextureFromFramebuffer: ge,
 
-       validateFramebuffer: ye,
 
-       getFramebufferErrorMessage: xe,
 
-       getBatchDim: Ce,
 
-       getRowsCols: Ee,
 
-       getShapeAs3D: Re,
 
-       getTextureShapeFromLogicalShape: Ie,
 
-       isReshapeFree: Se,
 
-       getWebGLMaxTextureSize: Ae,
 
-       resetMaxTextureSize: function () {
 
-         te = null;
 
-       },
 
-       resetMaxTexturesInShader: function () {
 
-         ee = null;
 
-       },
 
-       getMaxTexturesInShader: De,
 
-       getWebGLDisjointQueryTimerVersion: Te,
 
-       hasExtension: Ne,
 
-       isWebGLVersionEnabled: Fe,
 
-       isCapableOfRenderingToFloatTexture: Oe,
 
-       isDownloadFloatTextureEnabled: _e,
 
-       isWebGLFenceEnabled: Be
 
-     }),
 
-       Le = a();
 
-     function We() {
 
-       a().set("PROD", !0);
 
-     }
 
-     function Ue() {
 
-       a().set("DEBUG", !0);
 
-     }
 
-     function Ve() {
 
-       a().set("DEPRECATION_WARNINGS_ENABLED", !1), console.warn("TensorFlow.js deprecation warnings have been disabled.");
 
-     }
 
-     function ze(t) {
 
-       a().getBool("DEPRECATION_WARNINGS_ENABLED") && console.warn(t + " You can disable deprecation warnings with tf.disableDeprecationWarnings().");
 
-     }
 
-     function Ge() {
 
-       Nt.disposeVariables();
 
-     }
 
-     function He() {
 
-       return Nt;
 
-     }
 
-     function qe() {
 
-       return Nt.memory();
 
-     }
 
-     function Ke(t) {
 
-       return Nt.profile(t);
 
-     }
 
-     function je(t, e) {
 
-       return Nt.tidy(t, e);
 
-     }
 
-     function Xe(t) {
 
-       kt(t).forEach(function (t) {
 
-         return t.dispose();
 
-       });
 
-     }
 
-     function $e(t) {
 
-       return Nt.keep(t);
 
-     }
 
-     function Ye(t) {
 
-       return Nt.time(t);
 
-     }
 
-     function Qe(t) {
 
-       return Nt.setBackend(t);
 
-     }
 
-     function Je() {
 
-       return Nt.ready();
 
-     }
 
-     function Ze() {
 
-       return Nt.backendName;
 
-     }
 
-     function tn(t) {
 
-       Nt.removeBackend(t);
 
-     }
 
-     function en(t) {
 
-       return Nt.findBackend(t);
 
-     }
 
-     function nn(t) {
 
-       return Nt.findBackendFactory(t);
 
-     }
 
-     function rn(t, e, n) {
 
-       return void 0 === n && (n = 1), Nt.registerBackend(t, e, n);
 
-     }
 
-     function on() {
 
-       return Nt.backend;
 
-     }
 
-     function an(t, e) {
 
-       a().setPlatform(t, e);
 
-     }
 
-     function un() {
 
-       for (var t = [], e = 0; e < arguments.length; e++) t[e] = arguments[e];
 
-       a().getBool("IS_TEST") || console.warn.apply(console, t);
 
-     }
 
-     function sn(t, e) {
 
-       var n = t;
 
-       if (B(t)) return "string" === e ? [] : [t.length];
 
-       if (!Array.isArray(t)) return [];
 
-       for (var r = []; Array.isArray(n) || B(n) && "string" !== e;) r.push(n.length), n = n[0];
 
-       return Array.isArray(t) && a().getBool("TENSORLIKE_CHECK_SHAPE_CONSISTENCY") && function t(e, n, r) {
 
-         r = r || [];
 
-         if (!Array.isArray(e) && !B(e)) return void g(0 === n.length, function () {
 
-           return "Element arr[" + r.join("][") + "] is a primitive, but should be an array/TypedArray of " + n[0] + " elements";
 
-         });
 
-         g(n.length > 0, function () {
 
-           return "Element arr[" + r.join("][") + "] should be a primitive, but is an array of " + e.length + " elements";
 
-         });
 
-         g(e.length === n[0], function () {
 
-           return "Element arr[" + r.join("][") + "] should have " + n[0] + " elements, but has " + e.length + " elements";
 
-         });
 
-         var o = n.slice(1);
 
-         for (var a = 0; a < e.length; ++a) t(e[a], o, r.concat(a));
 
-       }(t, r, []), r;
 
-     }
 
-     function cn(t, e, n, r) {
 
-       if (null != t && ("numeric" !== t && t !== e || "numeric" === t && "string" === e)) throw new Error("Argument '" + n + "' passed to '" + r + "' must be " + t + " tensor, but got " + e + " tensor");
 
-     }
 
-     function ln(t, e, n, r) {
 
-       if (void 0 === r && (r = "numeric"), t instanceof dt) return cn(r, t.dtype, e, n), t;
 
-       var o = z(t);
 
-       if ("string" !== o && ["bool", "int32", "float32"].indexOf(r) >= 0 && (o = r), cn(r, o, e, n), null == t || !B(t) && !Array.isArray(t) && "number" != typeof t && "boolean" != typeof t && "string" != typeof t) {
 
-         var i = null == t ? "null" : t.constructor.name;
 
-         throw new Error("Argument '" + e + "' passed to '" + n + "' must be a Tensor or TensorLike, but got '" + i + "'");
 
-       }
 
-       var u = sn(t, o);
 
-       B(t) || Array.isArray(t) || (t = [t]);
 
-       var s = "string" !== o ? K(t, o, a().getBool("DEBUG")) : b(t, [], !0);
 
-       return Nt.makeTensor(s, u, o);
 
-     }
 
-     function hn(t, e, n, r) {
 
-       if (void 0 === r && (r = "numeric"), !Array.isArray(t)) throw new Error("Argument " + e + " passed to " + n + " must be a `Tensor[]` or `TensorLike[]`");
 
-       return t.map(function (t, r) {
 
-         return ln(t, e + "[" + r + "]", n);
 
-       }, r);
 
-     }
 
-     function fn(t, e) {
 
-       for (var n = 0; n < t.length; ++n) if (t[t.length - n - 1] !== e - 1 - n) return !1;
 
-       return !0;
 
-     }
 
-     function pn(t, e, n) {
 
-       for (var r = t.length + e.length, o = [], a = 0, i = 0, u = 0; u < r; u++) -1 === n.indexOf(u) ? o.push(t[a++]) : o.push(e[i++]);
 
-       return o;
 
-     }
 
-     function dn(t, e) {
 
-       for (var n = [], r = t.length, o = 0; o < r; o++) -1 === e.indexOf(o) && n.push(t[o]);
 
-       return [n, e.map(function (e) {
 
-         return t[e];
 
-       })];
 
-     }
 
-     function vn(t, e) {
 
-       return pn(t, e.map(function (t) {
 
-         return 1;
 
-       }), e);
 
-     }
 
-     function mn(t, e, n) {
 
-       g(fn(e, n), function () {
 
-         return t + " supports only inner-most axes for now. Got axes " + e + " and rank-" + n + " input.";
 
-       });
 
-     }
 
-     function gn(t, e) {
 
-       if (fn(t, e)) return null;
 
-       for (var n = [], r = 0; r < e; ++r) -1 === t.indexOf(r) && n.push(r);
 
-       return t.forEach(function (t) {
 
-         return n.push(t);
 
-       }), n;
 
-     }
 
-     function yn(t) {
 
-       return t.map(function (t, e) {
 
-         return [e, t];
 
-       }).sort(function (t, e) {
 
-         return t[1] - e[1];
 
-       }).map(function (t) {
 
-         return t[0];
 
-       });
 
-     }
 
-     function xn(t, e) {
 
-       for (var n = [], r = e - t; r < e; ++r) n.push(r);
 
-       return n;
 
-     }
 
-     function bn(t, e) {
 
-       var n = t[0].length;
 
-       t.forEach(function (t, e) {
 
-         g(t.length === n, function () {
 
-           return "Error in concat" + n + "D: rank of tensors[" + e + "] must be the same as the rank of the rest (" + n + ")";
 
-         });
 
-       }), g(e >= 0 && e < n, function () {
 
-         return "Error in concat" + n + "D: axis must be between 0 and " + (n - 1) + ".";
 
-       });
 
-       var r = t[0];
 
-       t.forEach(function (t, o) {
 
-         for (var a = 0; a < n; a++) g(a === e || t[a] === r[a], function () {
 
-           return "Error in concat" + n + "D: Shape of tensors[" + o + "] (" + t + ") does not match the shape of the rest (" + r + ") along the non-concatenated axis " + o + ".";
 
-         });
 
-       });
 
-     }
 
-     function wn(t, e) {
 
-       for (var n = t[0].slice(), r = 1; r < t.length; r++) n[e] += t[r][e];
 
-       return n;
 
-     }
 
-     function Cn(t) {
 
-       var e = Object.keys(t);
 
-       if (1 !== e.length) throw new Error("Please provide an object with a single key (operation name) mapping to a function. Got an object with " + e.length + " keys.");
 
-       var n = e[0],
 
-         r = t[n];
 
-       n.endsWith("_") && (n = n.substring(0, n.length - 1));
 
-       var o = function () {
 
-         for (var t = [], e = 0; e < arguments.length; e++) t[e] = arguments[e];
 
-         Nt.startScope(n);
 
-         try {
 
-           var o = r.apply(void 0, t);
 
-           return o instanceof Promise && console.error("Cannot return a Promise inside of tidy."), Nt.endScope(o), o;
 
-         } catch (t) {
 
-           throw Nt.endScope(null), t;
 
-         }
 
-       };
 
-       return Object.defineProperty(o, "name", {
 
-         value: n,
 
-         configurable: !0
 
-       }), o;
 
-     }
 
-     Le.registerFlag("HAS_WEBGL", function () {
 
-       return Le.getNumber("WEBGL_VERSION") > 0;
 
-     }), Le.registerFlag("WEBGL_VERSION", function () {
 
-       return Fe(2) ? 2 : Fe(1) ? 1 : 0;
 
-     }), Le.registerFlag("WEBGL_BUFFER_SUPPORTED", function () {
 
-       return 2 === Le.get("WEBGL_VERSION");
 
-     }), Le.registerFlag("WEBGL_CPU_FORWARD", function () {
 
-       return !0;
 
-     }), Le.registerFlag("WEBGL_FORCE_F16_TEXTURES", function () {
 
-       return !1;
 
-     }), Le.registerFlag("WEBGL_PACK", function () {
 
-       return Le.getBool("HAS_WEBGL");
 
-     }), Le.registerFlag("WEBGL_PACK_NORMALIZATION", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_PACK_CLIP", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_PACK_DEPTHWISECONV", function () {
 
-       return !1;
 
-     }), Le.registerFlag("WEBGL_PACK_BINARY_OPERATIONS", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_PACK_UNARY_OPERATIONS", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_PACK_ARRAY_OPERATIONS", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_PACK_IMAGE_OPERATIONS", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_PACK_REDUCE", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_LAZILY_UNPACK", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_CONV_IM2COL", function () {
 
-       return Le.getBool("WEBGL_PACK");
 
-     }), Le.registerFlag("WEBGL_MAX_TEXTURE_SIZE", function () {
 
-       return Ae(Le.getNumber("WEBGL_VERSION"));
 
-     }), Le.registerFlag("WEBGL_MAX_TEXTURES_IN_SHADER", function () {
 
-       return De(Le.getNumber("WEBGL_VERSION"));
 
-     }), Le.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION", function () {
 
-       var t = Le.getNumber("WEBGL_VERSION");
 
-       return 0 === t ? 0 : Te(t);
 
-     }), Le.registerFlag("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_RELIABLE", function () {
 
-       return Le.getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 && (t = navigator.userAgent || navigator.vendor || window.opera, !(/(android|bb\d+|meego).+mobile|avantgo|bada\/|blackberry|blazer|compal|elaine|fennec|hiptop|iemobile|ip(hone|od)|iris|kindle|lge |maemo|midp|mmp|mobile.+firefox|netfront|opera m(ob|in)i|palm( os)?|phone|p(ixi|re)\/|plucker|pocket|psp|series(4|6)0|symbian|treo|up\.(browser|link)|vodafone|wap|windows ce|xda|xiino/i.test(t) || /1207|6310|6590|3gso|4thp|50[1-6]i|770s|802s|a wa|abac|ac(er|oo|s\-)|ai(ko|rn)|al(av|ca|co)|amoi|an(ex|ny|yw)|aptu|ar(ch|go)|as(te|us)|attw|au(di|\-m|r |s )|avan|be(ck|ll|nq)|bi(lb|rd)|bl(ac|az)|br(e|v)w|bumb|bw\-(n|u)|c55\/|capi|ccwa|cdm\-|cell|chtm|cldc|cmd\-|co(mp|nd)|craw|da(it|ll|ng)|dbte|dc\-s|devi|dica|dmob|do(c|p)o|ds(12|\-d)|el(49|ai)|em(l2|ul)|er(ic|k0)|esl8|ez([4-7]0|os|wa|ze)|fetc|fly(\-|_)|g1 u|g560|gene|gf\-5|g\-mo|go(\.w|od)|gr(ad|un)|haie|hcit|hd\-(m|p|t)|hei\-|hi(pt|ta)|hp( i|ip)|hs\-c|ht(c(\-| |_|a|g|p|s|t)|tp)|hu(aw|tc)|i\-(20|go|ma)|i230|iac( |\-|\/)|ibro|idea|ig01|ikom|im1k|inno|ipaq|iris|ja(t|v)a|jbro|jemu|jigs|kddi|keji|kgt( |\/)|klon|kpt |kwc\-|kyo(c|k)|le(no|xi)|lg( g|\/(k|l|u)|50|54|\-[a-w])|libw|lynx|m1\-w|m3ga|m50\/|ma(te|ui|xo)|mc(01|21|ca)|m\-cr|me(rc|ri)|mi(o8|oa|ts)|mmef|mo(01|02|bi|de|do|t(\-| |o|v)|zz)|mt(50|p1|v )|mwbp|mywa|n10[0-2]|n20[2-3]|n30(0|2)|n50(0|2|5)|n7(0(0|1)|10)|ne((c|m)\-|on|tf|wf|wg|wt)|nok(6|i)|nzph|o2im|op(ti|wv)|oran|owg1|p800|pan(a|d|t)|pdxg|pg(13|\-([1-8]|c))|phil|pire|pl(ay|uc)|pn\-2|po(ck|rt|se)|prox|psio|pt\-g|qa\-a|qc(07|12|21|32|60|\-[2-7]|i\-)|qtek|r380|r600|raks|rim9|ro(ve|zo)|s55\/|sa(ge|ma|mm|ms|ny|va)|sc(01|h\-|oo|p\-)|sdk\/|se(c(\-|0|1)|47|mc|nd|ri)|sgh\-|shar|sie(\-|m)|sk\-0|sl(45|id)|sm(al|ar|b3|it|t5)|so(ft|ny)|sp(01|h\-|v\-|v )|sy(01|mb)|t2(18|50)|t6(00|10|18)|ta(gt|lk)|tcl\-|tdg\-|tel(i|m)|tim\-|t\-mo|to(pl|sh)|ts(70|m\-|m3|m5)|tx\-9|up(\.b|g1|si)|utst|v400|v750|veri|vi(rg|te)|vk(40|5[0-3]|\-v)|vm40|voda|vulc|vx(52|53|60|61|70|80|81|83|85|98)|w3c(\-| )|webc|whit|wi(g |nc|nw)|wmlb|wonu|x700|yas\-|your|zeto|zte\-/i.test(t.substr(0, 4))));
 
-       var t;
 
-     }), Le.registerFlag("WEBGL_RENDER_FLOAT32_CAPABLE", function () {
 
-       return Oe(Le.getNumber("WEBGL_VERSION"));
 
-     }), Le.registerFlag("WEBGL_RENDER_FLOAT32_ENABLED", function () {
 
-       return !Le.getBool("WEBGL_FORCE_F16_TEXTURES") && Le.getBool("WEBGL_RENDER_FLOAT32_CAPABLE");
 
-     }), Le.registerFlag("WEBGL_DOWNLOAD_FLOAT_ENABLED", function () {
 
-       return _e(Le.getNumber("WEBGL_VERSION"));
 
-     }), Le.registerFlag("WEBGL_FENCE_API_ENABLED", function () {
 
-       return Be(Le.getNumber("WEBGL_VERSION"));
 
-     }), Le.registerFlag("WEBGL_SIZE_UPLOAD_UNIFORM", function () {
 
-       return Le.getBool("WEBGL_RENDER_FLOAT32_ENABLED") ? 4 : 0;
 
-     }), pt = ze;
 
-     var En = Cn({
 
-       complex_: function (t, e) {
 
-         var n = ln(t, "real", "complex"),
 
-           r = ln(e, "imag", "complex");
 
-         return y(n.shape, r.shape, "real and imag shapes, " + n.shape + " and " + r.shape + ", must match in call to tf.complex()."), Nt.runKernelFunc(function (t) {
 
-           return t.complex(n, r);
 
-         }, {
 
-           $real: n,
 
-           $imag: r
 
-         });
 
-       }
 
-     }),
 
-       Rn = Cn({
 
-         real_: function (t) {
 
-           var e = ln(t, "input", "real");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.real(e);
 
-           }, {
 
-             $input: e
 
-           });
 
-         }
 
-       }),
 
-       In = Cn({
 
-         imag_: function (t) {
 
-           var e = ln(t, "input", "imag");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.imag(e);
 
-           }, {
 
-             $input: e
 
-           });
 
-         }
 
-       });
 
-     exports.imag = In;
 
-     exports.real = Rn;
 
-     exports.complex = En;
 
-     function kn(t, e, n) {
 
-       return Sn(t, e, sn(t, n), n);
 
-     }
 
-     function Sn(t, e, n, r) {
 
-       if (null == r && (r = z(t)), "complex64" === r) throw new Error("Cannot construct a complex64 tensor directly. Please use tf.complex(real, imag).");
 
-       if (!B(t) && !Array.isArray(t) && "number" != typeof t && "boolean" != typeof t && "string" != typeof t) throw new Error("values passed to tensor(values) must be a number/boolean/string or an array of numbers/booleans/strings, or a TypedArray");
 
-       if (null != e) {
 
-         Q(e);
 
-         var o = w(e),
 
-           i = w(n);
 
-         g(o === i, function () {
 
-           return "Based on the provided shape, [" + e + "], the tensor should have " + o + " values but has " + i;
 
-         });
 
-         for (var u = 0; u < n.length; ++u) {
 
-           var s = n[u],
 
-             c = u !== n.length - 1 || s !== w(e.slice(u));
 
-           g(n[u] === e[u] || !c, function () {
 
-             return "Error creating a new Tensor. Inferred shape (" + n + ") does not match the provided shape (" + e + "). ";
 
-           });
 
-         }
 
-       }
 
-       return B(t) || Array.isArray(t) || (t = [t]), e = e || n, t = "string" !== r ? K(t, r, a().getBool("DEBUG")) : b(t, [], !0), Nt.makeTensor(t, e, r);
 
-     }
 
-     function An(t, e) {
 
-       if ((B(t) && "string" !== e || Array.isArray(t)) && "complex64" !== e) throw new Error("Error creating a new Scalar: value must be a primitive (number|boolean|string)");
 
-       if ("string" === e && B(t) && !(t instanceof Uint8Array)) throw new Error("When making a scalar from encoded string, the value must be `Uint8Array`.");
 
-       return Sn(t, [], [], e);
 
-     }
 
-     function Dn(t, e) {
 
-       x(t);
 
-       var n = sn(t, e);
 
-       if (1 !== n.length) throw new Error("tensor1d() requires values to be a flat/TypedArray");
 
-       return Sn(t, null, n, e);
 
-     }
 
-     function Tn(t, e, n) {
 
-       if (x(t), null != e && 2 !== e.length) throw new Error("tensor2d() requires shape to have two numbers");
 
-       var r = sn(t, n);
 
-       if (2 !== r.length && 1 !== r.length) throw new Error("tensor2d() requires values to be number[][] or flat/TypedArray");
 
-       if (1 === r.length && null == e) throw new Error("tensor2d() requires shape to be provided when `values` are a flat/TypedArray");
 
-       return Sn(t, e, r, n);
 
-     }
 
-     function Nn(t, e, n) {
 
-       if (x(t), null != e && 3 !== e.length) throw new Error("tensor3d() requires shape to have three numbers");
 
-       var r = sn(t, n);
 
-       if (3 !== r.length && 1 !== r.length) throw new Error("tensor3d() requires values to be number[][][] or flat/TypedArray");
 
-       if (1 === r.length && null == e) throw new Error("tensor3d() requires shape to be provided when `values` are a flat array");
 
-       return Sn(t, e, r, n);
 
-     }
 
-     function Fn(t, e, n) {
 
-       if (x(t), null != e && 4 !== e.length) throw new Error("tensor4d() requires shape to have four numbers");
 
-       var r = sn(t, n);
 
-       if (4 !== r.length && 1 !== r.length) throw new Error("tensor4d() requires values to be number[][][][] or flat/TypedArray");
 
-       if (1 === r.length && null == e) throw new Error("tensor4d() requires shape to be provided when `values` are a flat array");
 
-       return Sn(t, e, r, n);
 
-     }
 
-     function On(t, e, n) {
 
-       if (x(t), null != e && 5 !== e.length) throw new Error("tensor5d() requires shape to have five numbers");
 
-       var r = sn(t, n);
 
-       if (5 !== r.length && 1 !== r.length) throw new Error("tensor5d() requires values to be number[][][][][] or flat/TypedArray");
 
-       if (1 === r.length && null == e) throw new Error("tensor5d() requires shape to be provided when `values` are a flat array");
 
-       return Sn(t, e, r, n);
 
-     }
 
-     function _n(t, e, n) {
 
-       if (x(t), null != e && 6 !== e.length) throw new Error("tensor6d() requires shape to have six numbers");
 
-       var r = sn(t, n);
 
-       if (6 !== r.length && 1 !== r.length) throw new Error("tensor6d() requires values to be number[][][][][][] or flat/TypedArray");
 
-       if (1 === r.length && null == e) throw new Error("tensor6d() requires shape to be provided when `values` are a flat array");
 
-       return Sn(t, e = e || r, r, n);
 
-     }
 
-     function Mn(t, e, n, r) {
 
-       return void 0 === e && (e = !0), Nt.makeVariable(t, e, n, r);
 
-     }
 
-     function Bn(t, e) {
 
-       if (void 0 === e && (e = "float32"), "complex64" === e) {
 
-         var n = Bn(t, "float32"),
 
-           r = Pn(t, "float32");
 
-         return En(n, r);
 
-       }
 
-       var o = X(w(t), e);
 
-       return Nt.makeTensor(o, t, e);
 
-     }
 
-     function Pn(t, e) {
 
-       if (void 0 === e && (e = "float32"), "complex64" === e) {
 
-         var n = Pn(t, "float32"),
 
-           r = Pn(t, "float32");
 
-         return En(n, r);
 
-       }
 
-       var o = $(w(t), e);
 
-       return Nt.makeTensor(o, t, e);
 
-     }
 
-     function Ln(t, e, n) {
 
-       return Nt.runKernelFunc(function (r) {
 
-         return r.fill(t, e, n);
 
-       }, {});
 
-     }
 
-     function Wn(t, e, n) {
 
-       if (n <= 0) throw new Error("The number of values should be positive.");
 
-       return Nt.runKernelFunc(function (r) {
 
-         return r.linspace(t, e, n);
 
-       }, {});
 
-     }
 
-     function Un(t, e, n, r) {
 
-       if (void 0 === n && (n = 1), void 0 === r && (r = "float32"), 0 === n) throw new Error("Cannot have a step of zero");
 
-       if (t === e || t < e && n < 0 || e < t && n > 1) return Pn([0], r);
 
-       var o = $(Math.abs(Math.ceil((e - t) / n)), r);
 
-       e < t && 1 === n && (n = -1), o[0] = t;
 
-       for (var a = 1; a < o.length; a++) o[a] = o[a - 1] + n;
 
-       return Dn(o, r);
 
-     }
 
-     var Vn = Cn({
 
-       onesLike_: function (t) {
 
-         var e = ln(t, "x", "onesLike");
 
-         if ("complex64" === e.dtype) {
 
-           var n = Vn(Rn(e)),
 
-             r = zn(In(e));
 
-           return En(n, r);
 
-         }
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.onesLike(e);
 
-         }, {
 
-           $x: e
 
-         }, function (t, e) {
 
-           return {
 
-             $x: function () {
 
-               return zn(t);
 
-             }
 
-           };
 
-         });
 
-       }
 
-     }),
 
-       zn = Cn({
 
-         zerosLike_: function (t) {
 
-           var e = ln(t, "x", "zerosLike");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.zerosLike(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       });
 
-     exports.zerosLike = zn;
 
-     exports.onesLike = Vn;
 
-     var Gn = Cn({
 
-       concat_: function (t, e) {
 
-         void 0 === e && (e = 0), g(t.length >= 1, function () {
 
-           return "Pass at least one tensor to concat";
 
-         });
 
-         var n = hn(t, "tensors", "concat");
 
-         "complex64" === n[0].dtype && n.forEach(function (t) {
 
-           if ("complex64" !== t.dtype) throw new Error("Cannot concatenate complex64 tensors with a tensor\n          with dtype " + t.dtype + ". ");
 
-         }), e = D(e, n[0].shape)[0];
 
-         var r = wn(n.map(function (t) {
 
-           return t.shape;
 
-         }), e);
 
-         if (0 === w(r)) return kn([], r);
 
-         if (1 === (n = n.filter(function (t) {
 
-           return t.size > 0;
 
-         })).length) return n[0];
 
-         var o = n.map(function (t) {
 
-           return t.shape;
 
-         });
 
-         bn(o, e);
 
-         var a = n;
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.concat(n, e);
 
-         }, a, function (t) {
 
-           var n = o.map(function (t) {
 
-             return t[e];
 
-           });
 
-           return Xn(t, n, e).map(function (t) {
 
-             return function () {
 
-               return t;
 
-             };
 
-           });
 
-         });
 
-       }
 
-     }),
 
-       Hn = Cn({
 
-         concat1d_: function (t) {
 
-           return Gn(t, 0);
 
-         }
 
-       }),
 
-       qn = Cn({
 
-         concat2d_: function (t, e) {
 
-           return Gn(t, e);
 
-         }
 
-       }),
 
-       Kn = Cn({
 
-         concat3d_: function (t, e) {
 
-           return Gn(t, e);
 
-         }
 
-       }),
 
-       jn = Cn({
 
-         concat4d_: function (t, e) {
 
-           return Gn(t, e);
 
-         }
 
-       }),
 
-       Xn = Cn({
 
-         split_: function (t, e, n) {
 
-           void 0 === n && (n = 0);
 
-           var r,
 
-             o = ln(t, "x", "split");
 
-           return n = D(n, o.shape)[0], "number" == typeof e ? (g(o.shape[n] % e == 0, function () {
 
-             return "Number of splits must evenly divide the axis.";
 
-           }), r = new Array(e).fill(o.shape[n] / e)) : (g(o.shape[n] === e.reduce(function (t, e) {
 
-             return t + e;
 
-           }), function () {
 
-             return "The sum of sizes must match the size of the axis dimension.";
 
-           }), r = e), Nt.runKernelFunc(function (t) {
 
-             return t.split(o, r, n);
 
-           }, {
 
-             $x: o
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return Gn(t, n);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       });
 
-     exports.split = Xn;
 
-     exports.concat4d = jn;
 
-     exports.concat3d = Kn;
 
-     exports.concat2d = qn;
 
-     exports.concat1d = Hn;
 
-     exports.concat = Gn;
 
-     "undefined" != typeof globalThis ? globalThis : "undefined" != typeof window ? window : "undefined" != typeof global ? global : "undefined" != typeof self && self;
 
-     function $n(t, e) {
 
-       return t(e = {
 
-         exports: {}
 
-       }, e.exports), e.exports;
 
-     }
 
-     var Yn = $n(function (t) {
 
-       !function (t, e, n) {
 
-         function r(t) {
 
-           var e,
 
-             n = this,
 
-             r = (e = 4022871197, function (t) {
 
-               t = t.toString();
 
-               for (var n = 0; n < t.length; n++) {
 
-                 var r = .02519603282416938 * (e += t.charCodeAt(n));
 
-                 r -= e = r >>> 0, e = (r *= e) >>> 0, e += 4294967296 * (r -= e);
 
-               }
 
-               return 2.3283064365386963e-10 * (e >>> 0);
 
-             });
 
-           n.next = function () {
 
-             var t = 2091639 * n.s0 + 2.3283064365386963e-10 * n.c;
 
-             return n.s0 = n.s1, n.s1 = n.s2, n.s2 = t - (n.c = 0 | t);
 
-           }, n.c = 1, n.s0 = r(" "), n.s1 = r(" "), n.s2 = r(" "), n.s0 -= r(t), n.s0 < 0 && (n.s0 += 1), n.s1 -= r(t), n.s1 < 0 && (n.s1 += 1), n.s2 -= r(t), n.s2 < 0 && (n.s2 += 1), r = null;
 
-         }
 
-         function o(t, e) {
 
-           return e.c = t.c, e.s0 = t.s0, e.s1 = t.s1, e.s2 = t.s2, e;
 
-         }
 
-         function a(t, e) {
 
-           var n = new r(t),
 
-             a = e && e.state,
 
-             i = n.next;
 
-           return i.int32 = function () {
 
-             return 4294967296 * n.next() | 0;
 
-           }, i.double = function () {
 
-             return i() + 1.1102230246251565e-16 * (2097152 * i() | 0);
 
-           }, i.quick = i, a && ("object" == typeof a && o(a, n), i.state = function () {
 
-             return o(n, {});
 
-           }), i;
 
-         }
 
-         e && e.exports ? e.exports = a : n && n.amd ? n(function () {
 
-           return a;
 
-         }) : this.alea = a;
 
-       }(0, t, !1);
 
-     }),
 
-       Qn = $n(function (t) {
 
-         !function (t, e, n) {
 
-           function r(t) {
 
-             var e = this,
 
-               n = "";
 
-             e.x = 0, e.y = 0, e.z = 0, e.w = 0, e.next = function () {
 
-               var t = e.x ^ e.x << 11;
 
-               return e.x = e.y, e.y = e.z, e.z = e.w, e.w ^= e.w >>> 19 ^ t ^ t >>> 8;
 
-             }, t === (0 | t) ? e.x = t : n += t;
 
-             for (var r = 0; r < n.length + 64; r++) e.x ^= 0 | n.charCodeAt(r), e.next();
 
-           }
 
-           function o(t, e) {
 
-             return e.x = t.x, e.y = t.y, e.z = t.z, e.w = t.w, e;
 
-           }
 
-           function a(t, e) {
 
-             var n = new r(t),
 
-               a = e && e.state,
 
-               i = function () {
 
-                 return (n.next() >>> 0) / 4294967296;
 
-               };
 
-             return i.double = function () {
 
-               do {
 
-                 var t = ((n.next() >>> 11) + (n.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, i.int32 = n.next, i.quick = i, a && ("object" == typeof a && o(a, n), i.state = function () {
 
-               return o(n, {});
 
-             }), i;
 
-           }
 
-           e && e.exports ? e.exports = a : n && n.amd ? n(function () {
 
-             return a;
 
-           }) : this.xor128 = a;
 
-         }(0, t, !1);
 
-       }),
 
-       Jn = $n(function (t) {
 
-         !function (t, e, n) {
 
-           function r(t) {
 
-             var e = this,
 
-               n = "";
 
-             e.next = function () {
 
-               var t = e.x ^ e.x >>> 2;
 
-               return e.x = e.y, e.y = e.z, e.z = e.w, e.w = e.v, (e.d = e.d + 362437 | 0) + (e.v = e.v ^ e.v << 4 ^ t ^ t << 1) | 0;
 
-             }, e.x = 0, e.y = 0, e.z = 0, e.w = 0, e.v = 0, t === (0 | t) ? e.x = t : n += t;
 
-             for (var r = 0; r < n.length + 64; r++) e.x ^= 0 | n.charCodeAt(r), r == n.length && (e.d = e.x << 10 ^ e.x >>> 4), e.next();
 
-           }
 
-           function o(t, e) {
 
-             return e.x = t.x, e.y = t.y, e.z = t.z, e.w = t.w, e.v = t.v, e.d = t.d, e;
 
-           }
 
-           function a(t, e) {
 
-             var n = new r(t),
 
-               a = e && e.state,
 
-               i = function () {
 
-                 return (n.next() >>> 0) / 4294967296;
 
-               };
 
-             return i.double = function () {
 
-               do {
 
-                 var t = ((n.next() >>> 11) + (n.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, i.int32 = n.next, i.quick = i, a && ("object" == typeof a && o(a, n), i.state = function () {
 
-               return o(n, {});
 
-             }), i;
 
-           }
 
-           e && e.exports ? e.exports = a : n && n.amd ? n(function () {
 
-             return a;
 
-           }) : this.xorwow = a;
 
-         }(0, t, !1);
 
-       }),
 
-       Zn = $n(function (t) {
 
-         !function (t, e, n) {
 
-           function r(t) {
 
-             var e = this;
 
-             e.next = function () {
 
-               var t,
 
-                 n,
 
-                 r = e.x,
 
-                 o = e.i;
 
-               return t = r[o], n = (t ^= t >>> 7) ^ t << 24, n ^= (t = r[o + 1 & 7]) ^ t >>> 10, n ^= (t = r[o + 3 & 7]) ^ t >>> 3, n ^= (t = r[o + 4 & 7]) ^ t << 7, t = r[o + 7 & 7], n ^= (t ^= t << 13) ^ t << 9, r[o] = n, e.i = o + 1 & 7, n;
 
-             }, function (t, e) {
 
-               var n,
 
-                 r = [];
 
-               if (e === (0 | e)) r[0] = e; else for (e = "" + e, n = 0; n < e.length; ++n) r[7 & n] = r[7 & n] << 15 ^ e.charCodeAt(n) + r[n + 1 & 7] << 13;
 
-               for (; r.length < 8;) r.push(0);
 
-               for (n = 0; n < 8 && 0 === r[n]; ++n);
 
-               for (8 == n ? r[7] = -1 : r[n], t.x = r, t.i = 0, n = 256; n > 0; --n) t.next();
 
-             }(e, t);
 
-           }
 
-           function o(t, e) {
 
-             return e.x = t.x.slice(), e.i = t.i, e;
 
-           }
 
-           function a(t, e) {
 
-             null == t && (t = +new Date());
 
-             var n = new r(t),
 
-               a = e && e.state,
 
-               i = function () {
 
-                 return (n.next() >>> 0) / 4294967296;
 
-               };
 
-             return i.double = function () {
 
-               do {
 
-                 var t = ((n.next() >>> 11) + (n.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, i.int32 = n.next, i.quick = i, a && (a.x && o(a, n), i.state = function () {
 
-               return o(n, {});
 
-             }), i;
 
-           }
 
-           e && e.exports ? e.exports = a : n && n.amd ? n(function () {
 
-             return a;
 
-           }) : this.xorshift7 = a;
 
-         }(0, t, !1);
 
-       }),
 
-       tr = $n(function (t) {
 
-         !function (t, e, n) {
 
-           function r(t) {
 
-             var e = this;
 
-             e.next = function () {
 
-               var t,
 
-                 n,
 
-                 r = e.w,
 
-                 o = e.X,
 
-                 a = e.i;
 
-               return e.w = r = r + 1640531527 | 0, n = o[a + 34 & 127], t = o[a = a + 1 & 127], n ^= n << 13, t ^= t << 17, n ^= n >>> 15, t ^= t >>> 12, n = o[a] = n ^ t, e.i = a, n + (r ^ r >>> 16) | 0;
 
-             }, function (t, e) {
 
-               var n,
 
-                 r,
 
-                 o,
 
-                 a,
 
-                 i,
 
-                 u = [],
 
-                 s = 128;
 
-               for (e === (0 | e) ? (r = e, e = null) : (e += "\0", r = 0, s = Math.max(s, e.length)), o = 0, a = -32; a < s; ++a) e && (r ^= e.charCodeAt((a + 32) % e.length)), 0 === a && (i = r), r ^= r << 10, r ^= r >>> 15, r ^= r << 4, r ^= r >>> 13, a >= 0 && (i = i + 1640531527 | 0, o = 0 == (n = u[127 & a] ^= r + i) ? o + 1 : 0);
 
-               for (o >= 128 && (u[127 & (e && e.length || 0)] = -1), o = 127, a = 512; a > 0; --a) r = u[o + 34 & 127], n = u[o = o + 1 & 127], r ^= r << 13, n ^= n << 17, r ^= r >>> 15, n ^= n >>> 12, u[o] = r ^ n;
 
-               t.w = i, t.X = u, t.i = o;
 
-             }(e, t);
 
-           }
 
-           function o(t, e) {
 
-             return e.i = t.i, e.w = t.w, e.X = t.X.slice(), e;
 
-           }
 
-           function a(t, e) {
 
-             null == t && (t = +new Date());
 
-             var n = new r(t),
 
-               a = e && e.state,
 
-               i = function () {
 
-                 return (n.next() >>> 0) / 4294967296;
 
-               };
 
-             return i.double = function () {
 
-               do {
 
-                 var t = ((n.next() >>> 11) + (n.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, i.int32 = n.next, i.quick = i, a && (a.X && o(a, n), i.state = function () {
 
-               return o(n, {});
 
-             }), i;
 
-           }
 
-           e && e.exports ? e.exports = a : n && n.amd ? n(function () {
 
-             return a;
 
-           }) : this.xor4096 = a;
 
-         }(0, t, !1);
 
-       }),
 
-       er = $n(function (t) {
 
-         !function (t, e, n) {
 
-           function r(t) {
 
-             var e = this,
 
-               n = "";
 
-             e.next = function () {
 
-               var t = e.b,
 
-                 n = e.c,
 
-                 r = e.d,
 
-                 o = e.a;
 
-               return t = t << 25 ^ t >>> 7 ^ n, n = n - r | 0, r = r << 24 ^ r >>> 8 ^ o, o = o - t | 0, e.b = t = t << 20 ^ t >>> 12 ^ n, e.c = n = n - r | 0, e.d = r << 16 ^ n >>> 16 ^ o, e.a = o - t | 0;
 
-             }, e.a = 0, e.b = 0, e.c = -1640531527, e.d = 1367130551, t === Math.floor(t) ? (e.a = t / 4294967296 | 0, e.b = 0 | t) : n += t;
 
-             for (var r = 0; r < n.length + 20; r++) e.b ^= 0 | n.charCodeAt(r), e.next();
 
-           }
 
-           function o(t, e) {
 
-             return e.a = t.a, e.b = t.b, e.c = t.c, e.d = t.d, e;
 
-           }
 
-           function a(t, e) {
 
-             var n = new r(t),
 
-               a = e && e.state,
 
-               i = function () {
 
-                 return (n.next() >>> 0) / 4294967296;
 
-               };
 
-             return i.double = function () {
 
-               do {
 
-                 var t = ((n.next() >>> 11) + (n.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, i.int32 = n.next, i.quick = i, a && ("object" == typeof a && o(a, n), i.state = function () {
 
-               return o(n, {});
 
-             }), i;
 
-           }
 
-           e && e.exports ? e.exports = a : n && n.amd ? n(function () {
 
-             return a;
 
-           }) : this.tychei = a;
 
-         }(0, t, !1);
 
-       }),
 
-       nr = $n(function (t) {
 
-         !function (e, n) {
 
-           var r,
 
-             o = this,
 
-             a = 256,
 
-             i = 6,
 
-             u = "random",
 
-             s = n.pow(a, i),
 
-             c = n.pow(2, 52),
 
-             l = 2 * c,
 
-             h = a - 1;
 
-           function f(t, h, f) {
 
-             var g = [],
 
-               y = v(function t(e, n) {
 
-                 var r,
 
-                   o = [],
 
-                   a = typeof e;
 
-                 if (n && "object" == a) for (r in e) try {
 
-                   o.push(t(e[r], n - 1));
 
-                 } catch (t) { }
 
-                 return o.length ? o : "string" == a ? e : e + "\0";
 
-               }((h = 1 == h ? {
 
-                 entropy: !0
 
-               } : h || {}).entropy ? [t, m(e)] : null == t ? function () {
 
-                 try {
 
-                   var t;
 
-                   return r && (t = r.randomBytes) ? t = t(a) : (t = new Uint8Array(a), (o.crypto || o.msCrypto).getRandomValues(t)), m(t);
 
-                 } catch (t) {
 
-                   var n = o.navigator,
 
-                     i = n && n.plugins;
 
-                   return [+new Date(), o, i, o.screen, m(e)];
 
-                 }
 
-               }() : t, 3), g),
 
-               x = new p(g),
 
-               b = function () {
 
-                 for (var t = x.g(i), e = s, n = 0; t < c;) t = (t + n) * a, e *= a, n = x.g(1);
 
-                 for (; t >= l;) t /= 2, e /= 2, n >>>= 1;
 
-                 return (t + n) / e;
 
-               };
 
-             return b.int32 = function () {
 
-               return 0 | x.g(4);
 
-             }, b.quick = function () {
 
-               return x.g(4) / 4294967296;
 
-             }, b.double = b, v(m(x.S), e), (h.pass || f || function (t, e, r, o) {
 
-               return o && (o.S && d(o, x), t.state = function () {
 
-                 return d(x, {});
 
-               }), r ? (n[u] = t, e) : t;
 
-             })(b, y, "global" in h ? h.global : this == n, h.state);
 
-           }
 
-           function p(t) {
 
-             var e,
 
-               n = t.length,
 
-               r = this,
 
-               o = 0,
 
-               i = r.i = r.j = 0,
 
-               u = r.S = [];
 
-             for (n || (t = [n++]); o < a;) u[o] = o++;
 
-             for (o = 0; o < a; o++) u[o] = u[i = h & i + t[o % n] + (e = u[o])], u[i] = e;
 
-             (r.g = function (t) {
 
-               for (var e, n = 0, o = r.i, i = r.j, u = r.S; t--;) e = u[o = h & o + 1], n = n * a + u[h & (u[o] = u[i = h & i + e]) + (u[i] = e)];
 
-               return r.i = o, r.j = i, n;
 
-             })(a);
 
-           }
 
-           function d(t, e) {
 
-             return e.i = t.i, e.j = t.j, e.S = t.S.slice(), e;
 
-           }
 
-           function v(t, e) {
 
-             for (var n, r = t + "", o = 0; o < r.length;) e[h & o] = h & (n ^= 19 * e[h & o]) + r.charCodeAt(o++);
 
-             return m(e);
 
-           }
 
-           function m(t) {
 
-             return String.fromCharCode.apply(0, t);
 
-           }
 
-           if (n["seed" + u] = f, v(n.random(), e), t.exports) {
 
-             t.exports = f;
 
-             try {
 
-               r = require("crypto");
 
-             } catch (t) { }
 
-           }
 
-         }([], Math);
 
-       });
 
-     nr.alea = Yn, nr.xor128 = Qn, nr.xorwow = Jn, nr.xorshift7 = Zn, nr.xor4096 = tr, nr.tychei = er;
 
-     var rr = nr.alea,
 
-       or = function () {
 
-         function t(t, e, n, r, o) {
 
-           this.mean = t, this.stdDev = e, this.dtype = n, this.nextVal = NaN, this.truncated = r, this.truncated && (this.upper = this.mean + 2 * this.stdDev, this.lower = this.mean - 2 * this.stdDev);
 
-           var a = o || Math.random();
 
-           this.random = rr(a.toString());
 
-         }
 
-         return t.prototype.nextValue = function () {
 
-           if (!isNaN(this.nextVal)) {
 
-             var t = this.nextVal;
 
-             return this.nextVal = NaN, t;
 
-           }
 
-           for (var e, n, r = !1; !r;) {
 
-             var o = void 0,
 
-               a = void 0,
 
-               i = void 0;
 
-             do {
 
-               i = (o = 2 * this.random() - 1) * o + (a = 2 * this.random() - 1) * a;
 
-             } while (i >= 1 || 0 === i);
 
-             var u = Math.sqrt(-2 * Math.log(i) / i);
 
-             e = this.mean + this.stdDev * o * u, n = this.mean + this.stdDev * a * u, this.truncated && !this.isValidTruncated(e) || (r = !0);
 
-           }
 
-           return this.truncated && !this.isValidTruncated(n) || (this.nextVal = this.convertValue(n)), this.convertValue(e);
 
-         }, t.prototype.convertValue = function (t) {
 
-           return null == this.dtype || "float32" === this.dtype ? t : Math.round(t);
 
-         }, t.prototype.isValidTruncated = function (t) {
 
-           return t <= this.upper && t >= this.lower;
 
-         }, t;
 
-       }(),
 
-       ar = function () {
 
-         function t(t, e, n, r) {
 
-           this.alpha = t, this.beta = 1 / e, this.dtype = n;
 
-           var o = r || Math.random();
 
-           this.randu = rr(o.toString()), this.randn = new or(0, 1, n, !1, this.randu()), this.d = t < 1 ? t + 2 / 3 : t - 1 / 3, this.c = 1 / Math.sqrt(9 * this.d);
 
-         }
 
-         return t.prototype.nextValue = function () {
 
-           for (var t, e, n, r, o, a; ;) {
 
-             do {
 
-               r = this.randn.nextValue(), a = 1 + this.c * r;
 
-             } while (a <= 0);
 
-             if (a *= a * a, e = 1 - .331 * (t = r * r) * t, n = .5 * t + this.d * (1 - a + Math.log(a)), (o = this.randu()) < e || Math.log(o) < n) break;
 
-           }
 
-           return a = 1 / this.beta * this.d * a, this.alpha < 1 && (a *= Math.pow(this.randu(), 1 / this.alpha)), this.convertValue(a);
 
-         }, t.prototype.convertValue = function (t) {
 
-           return "float32" === this.dtype ? t : Math.round(t);
 
-         }, t;
 
-       }(),
 
-       ir = function () {
 
-         function t(t, e, n, r) {
 
-           var o = this;
 
-           if (void 0 === t && (t = 0), void 0 === e && (e = 1), this.canReturnFloat = function () {
 
-             return null == o.dtype || "float32" === o.dtype;
 
-           }, this.min = t, this.range = e - t, this.dtype = n, null == r && (r = Math.random()), "number" == typeof r && (r = r.toString()), !this.canReturnFloat() && this.range <= 1) throw new Error("The difference between " + t + " - " + e + " <= 1 and dtype is not float");
 
-           this.random = rr(r);
 
-         }
 
-         return t.prototype.convertValue = function (t) {
 
-           return this.canReturnFloat() ? t : Math.round(t);
 
-         }, t.prototype.nextValue = function () {
 
-           return this.convertValue(this.min + this.range * this.random());
 
-         }, t;
 
-       }();
 
-     function ur(t, e, n) {
 
-       return void 0 === e && (e = "float32"), e = e || "float32", Q(t), new lt(t, e, n);
 
-     }
 
-     function sr(t, e) {
 
-       void 0 === e && (e = !1), console.log(t.toString(e));
 
-     }
 
-     var cr = Cn({
 
-       batchToSpaceND_: function (t, e, n) {
 
-         var r = ln(t, "x", "batchToSpaceND"),
 
-           o = e.reduce(function (t, e) {
 
-             return t * e;
 
-           });
 
-         return g(r.rank >= 1 + e.length, function () {
 
-           return "input rank is " + r.rank + " but should be > than blockShape.length " + e.length;
 
-         }), g(n.length === e.length, function () {
 
-           return "crops.length is " + n.length + " but should be equal to blockShape.length  " + e.length;
 
-         }), g(r.shape[0] % o == 0, function () {
 
-           return "input tensor batch is " + r.shape[0] + " but is not divisible by the product of the elements of blockShape " + e.join(" * ") + " === " + o;
 
-         }), Nt.runKernelFunc(function (t) {
 
-           return t.batchToSpaceND(r, e, n);
 
-         }, {
 
-           $x: r
 
-         }, function (t) {
 
-           return {
 
-             $x: function () {
 
-               return t.spaceToBatchND(e, n);
 
-             }
 
-           };
 
-         });
 
-       }
 
-     }),
 
-       lr = Cn({
 
-         cast_: function (t, e) {
 
-           var n = ln(t, "x", "cast");
 
-           if (!_(e)) throw new Error("Failed to cast to unknown dtype " + e);
 
-           if ("string" === e && "string" !== n.dtype || "string" !== e && "string" === n.dtype) throw new Error("Only strings can be casted to strings");
 
-           var r = {
 
-             dtype: e
 
-           };
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.cast(n, e);
 
-           }, {
 
-             x: n
 
-           }, function (t) {
 
-             return {
 
-               x: function () {
 
-                 return t.clone();
 
-               }
 
-             };
 
-           }, "Cast", r);
 
-         }
 
-       }),
 
-       hr = Cn({
 
-         clone_: function (t) {
 
-           var e = ln(t, "x", "clone", null);
 
-           return Nt.runKernelFunc(function () {
 
-             return Nt.makeTensorFromDataId(e.dataId, e.shape, e.dtype);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return t.toFloat();
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       fr = Cn({
 
-         cumsum_: function (t, e, n, r) {
 
-           void 0 === e && (e = 0), void 0 === n && (n = !1), void 0 === r && (r = !1);
 
-           var o = ln(t, "x", "cumsum"),
 
-             a = gn([e |= 0], o.rank),
 
-             i = o;
 
-           null != a && (i = o.transpose(a));
 
-           var u = xn(1, o.rank)[0],
 
-             s = Nt.runKernelFunc(function (t) {
 
-               return t.cumsum(i, u, n, r);
 
-             }, {
 
-               permutedX: i
 
-             }, function (t) {
 
-               return {
 
-                 permutedX: function () {
 
-                   return t.cumsum(e, n, !r);
 
-                 }
 
-               };
 
-             });
 
-           return null != a && (s = s.transpose(a)), s;
 
-         }
 
-       }),
 
-       pr = Cn({
 
-         depthToSpace_: function (t, e, n) {
 
-           void 0 === n && (n = "NHWC");
 
-           var r = ln(t, "x", "depthToSpace"),
 
-             o = "NHWC" === n ? r.shape[1] : r.shape[2],
 
-             a = "NHWC" === n ? r.shape[2] : r.shape[3],
 
-             i = "NHWC" === n ? r.shape[3] : r.shape[1];
 
-           return g(o * e >= 0, function () {
 
-             return "Negative dimension size caused by overflow when multiplying\n      " + o + " and " + e + "  for depthToSpace with input shape\n      " + r.shape;
 
-           }), g(a * e >= 0, function () {
 
-             return "Negative dimension size caused by overflow when multiplying\n      " + a + " and " + e + " for depthToSpace with input shape\n          " + r.shape;
 
-           }), g(i % (e * e) == 0, function () {
 
-             return "Dimension size must be evenly divisible by " + e * e + " but is " + i + " for depthToSpace with input shape " + r.shape;
 
-           }), Nt.runKernelFunc(function (t) {
 
-             return t.depthToSpace(r, e, n);
 
-           }, {
 
-             $x: r
 
-           });
 
-         }
 
-       }),
 
-       dr = Cn({
 
-         expandDims_: function (t, e) {
 
-           void 0 === e && (e = 0);
 
-           var n = ln(t, "x", "expandDims", null);
 
-           g(e <= n.rank, function () {
 
-             return "Axis must be <= rank of the tensor";
 
-           });
 
-           var r = n.shape.slice();
 
-           return e < 0 && (g(-(n.rank + 1) <= e, function () {
 
-             return "Axis must be in the interval [" + -(n.rank + 1) + ", " + n.rank + "]";
 
-           }), e = n.rank + e + 1), r.splice(e, 0, 1), Sr(n, r);
 
-         }
 
-       }),
 
-       vr = Cn({
 
-         eye_: function (t, e, n, r) {
 
-           void 0 === r && (r = "float32"), null == e && (e = t);
 
-           for (var o = ur([t, e], r), a = t <= e ? t : e, i = 0; i < a; ++i) o.set(1, i, i);
 
-           var u = o.toTensor().as2D(t, e);
 
-           if (null == n) return u;
 
-           if (1 === n.length) return Nr(dr(u, 0), [n[0], 1, 1]);
 
-           if (2 === n.length) return Nr(dr(dr(u, 0), 0), [n[0], n[1], 1, 1]);
 
-           if (3 === n.length) return Nr(dr(dr(dr(u, 0), 0), 0), [n[0], n[1], n[2], 1, 1]);
 
-           throw new Error("eye() currently supports only 1D and 2D batchShapes, but received " + n.length + "D.");
 
-         }
 
-       }),
 
-       mr = Cn({
 
-         multinomial_: function (t, e, n, r) {
 
-           void 0 === r && (r = !1);
 
-           var o = ln(t, "logits", "multinomial"),
 
-             a = o.size,
 
-             i = o.rank;
 
-           if (a < 2) throw new Error("Error in multinomial: you need at least 2 outcomes, but got " + a + ".");
 
-           if (i > 2) throw new Error("Rank of probabilities must be 1 or 2, but is " + i);
 
-           n = n || Math.random();
 
-           var u = 1 === i ? o.as2D(1, -1) : o,
 
-             s = Nt.runKernelFunc(function (t) {
 
-               return t.multinomial(u, r, e, n);
 
-             }, {
 
-               logits2D: u
 
-             });
 
-           return 1 === i ? s.as1D() : s;
 
-         }
 
-       }),
 
-       gr = Cn({
 
-         oneHot_: function (t, e, n, r) {
 
-           if (void 0 === n && (n = 1), void 0 === r && (r = 0), e < 2) throw new Error("Error in oneHot: depth must be >=2, but it is " + e);
 
-           var o = ln(t, "indices", "oneHot", "int32"),
 
-             a = o.shape.concat([e]);
 
-           return o = o.flatten(), Nt.runKernelFunc(function (t) {
 
-             return t.oneHot(o, e, n, r);
 
-           }, {
 
-             $indices: o
 
-           }, function (t) {
 
-             return {
 
-               $indices: function () {
 
-                 return Pn(o.shape, "float32");
 
-               }
 
-             };
 
-           }).reshape(a);
 
-         }
 
-       }),
 
-       yr = Cn({
 
-         pad_: function (t, e, n) {
 
-           void 0 === n && (n = 0);
 
-           var r = ln(t, "x", "pad");
 
-           if (0 === r.rank) throw new Error("pad(scalar) is not defined. Pass non-scalar to pad");
 
-           var o = e.map(function (t) {
 
-             return t[0];
 
-           });
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.pad(r, e, n);
 
-           }, {
 
-             $x: r
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return t.slice(o, r.shape);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       xr = Cn({
 
-         pad1d_: function (t, e, n) {
 
-           return void 0 === n && (n = 0), g(2 === e.length, function () {
 
-             return "Invalid number of paddings. Must be length of 2.";
 
-           }), yr(t, [e], n);
 
-         }
 
-       }),
 
-       br = Cn({
 
-         pad2d_: function (t, e, n) {
 
-           return void 0 === n && (n = 0), g(2 === e.length && 2 === e[0].length && 2 === e[1].length, function () {
 
-             return "Invalid number of paddings. Must be length of 2 each.";
 
-           }), yr(t, e, n);
 
-         }
 
-       }),
 
-       wr = Cn({
 
-         pad3d_: function (t, e, n) {
 
-           return void 0 === n && (n = 0), g(3 === e.length && 2 === e[0].length && 2 === e[1].length && 2 === e[2].length, function () {
 
-             return "Invalid number of paddings. Must be length of 2 each.";
 
-           }), yr(t, e, n);
 
-         }
 
-       }),
 
-       Cr = Cn({
 
-         pad4d_: function (t, e, n) {
 
-           return void 0 === n && (n = 0), g(4 === e.length && 2 === e[0].length && 2 === e[1].length && 2 === e[2].length && 2 === e[3].length, function () {
 
-             return "Invalid number of paddings. Must be length of 2 each.";
 
-           }), yr(t, e, n);
 
-         }
 
-       }),
 
-       Er = Cn({
 
-         rand_: function (t, e, n) {
 
-           var r = w(t),
 
-             o = null;
 
-           if (null == n || "float32" === n) o = new Float32Array(r); else if ("int32" === n) o = new Int32Array(r); else {
 
-             if ("bool" !== n) throw new Error("Unknown data type " + n);
 
-             o = new Uint8Array(r);
 
-           }
 
-           for (var a = 0; a < r; a++) o[a] = e();
 
-           return Nt.makeTensor(o, t, n);
 
-         }
 
-       }),
 
-       Rr = Cn({
 
-         randomNormal_: function (t, e, n, r, o) {
 
-           if (void 0 === e && (e = 0), void 0 === n && (n = 1), null != r && "bool" === r) throw new Error("Unsupported data type " + r);
 
-           for (var a = new or(e, n, r, !1, o), i = ur(t, r), u = 0; u < i.values.length; u++) i.values[u] = a.nextValue();
 
-           return i.toTensor();
 
-         }
 
-       }),
 
-       Ir = Cn({
 
-         randomGamma_: function (t, e, n, r, o) {
 
-           if (void 0 === n && (n = 1), void 0 === r && (r = "float32"), null == n && (n = 1), null == r && (r = "float32"), "float32" !== r && "int32" !== r) throw new Error("Unsupported data type " + r);
 
-           for (var a = new ar(e, n, r, o), i = ur(t, r), u = 0; u < i.values.length; u++) i.values[u] = a.nextValue();
 
-           return i.toTensor();
 
-         }
 
-       }),
 
-       kr = Cn({
 
-         randomUniform_: function (t, e, n, r, o) {
 
-           void 0 === e && (e = 0), void 0 === n && (n = 1), void 0 === r && (r = "float32");
 
-           for (var a = ur(t, r), i = new ir(e, n, null, o), u = 0; u < a.values.length; u++) a.values[u] = i.nextValue();
 
-           return a.toTensor();
 
-         }
 
-       }),
 
-       Sr = Cn({
 
-         reshape_: function (t, e) {
 
-           var n = ln(t, "x", "reshape", null);
 
-           e = A(e, n.size), g(n.size === w(e), function () {
 
-             return "new shape and old shape must have the same number of elements.";
 
-           });
 
-           var r = {
 
-             shape: e
 
-           };
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.reshape(n, e);
 
-           }, {
 
-             x: n
 
-           }, function (t) {
 
-             return {
 
-               x: function () {
 
-                 return t.reshape(n.shape);
 
-               }
 
-             };
 
-           }, "Reshape", r);
 
-         }
 
-       }),
 
-       Ar = Cn({
 
-         spaceToBatchND_: function (t, e, n) {
 
-           var r = ln(t, "x", "spaceToBatchND");
 
-           return g(r.rank >= 1 + e.length, function () {
 
-             return "input rank " + r.rank + " should be > than [blockShape] " + e.length;
 
-           }), g(n.length === e.length, function () {
 
-             return "paddings.shape[0] " + n.length + " must be equal to [blockShape] " + e.length;
 
-           }), g(r.shape.reduce(function (t, r, o) {
 
-             return o > 0 && o <= e.length ? t && (r + n[o - 1][0] + n[o - 1][1]) % e[o - 1] == 0 : t;
 
-           }, !0), function () {
 
-             return "input spatial dimensions " + r.shape.slice(1) + " with paddings " + n.toString() + " must be divisible by blockShapes " + e.toString();
 
-           }), Nt.runKernelFunc(function (t) {
 
-             return t.spaceToBatchND(r, e, n);
 
-           }, {
 
-             $x: r
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return t.batchToSpaceND(e, n);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Dr = Cn({
 
-         squeeze_: function (t, e) {
 
-           var n = ln(t, "x", "squeeze");
 
-           return Sr(n, T(n.shape, e).newShape);
 
-         }
 
-       }),
 
-       Tr = Cn({
 
-         stack_: function (t, e) {
 
-           void 0 === e && (e = 0);
 
-           var n = hn(t, "tensors", "stack");
 
-           if (g(n.length >= 1, function () {
 
-             return "Pass at least one tensor to tf.stack";
 
-           }), 1 === n.length) return n[0].expandDims(e);
 
-           var r = n[0].rank,
 
-             o = n[0].shape,
 
-             a = n[0].dtype;
 
-           g(e <= r, function () {
 
-             return "Axis must be <= rank of the tensor";
 
-           }), n.forEach(function (t) {
 
-             y(o, t.shape, "All tensors passed to stack must have matching shapes");
 
-           }), n.forEach(function (t) {
 
-             g(a === t.dtype, function () {
 
-               return "All tensors passed to stack must have matching dtypes";
 
-             });
 
-           });
 
-           var i = n.map(function (t) {
 
-             return t.expandDims(e);
 
-           });
 
-           return Gn(i, e);
 
-         }
 
-       }),
 
-       Nr = Cn({
 
-         tile_: function (t, e) {
 
-           var n = ln(t, "x", "tile", null);
 
-           return g(n.rank === e.length, function () {
 
-             return "Error in transpose: rank of input " + n.rank + " must match length of reps " + e + ".";
 
-           }), Nt.runKernelFunc(function (t, r) {
 
-             var o = t.tile(n, e);
 
-             return r([n]), o;
 
-           }, {
 
-             $x: n
 
-           }, function (t, n) {
 
-             var r = n[0];
 
-             return {
 
-               $x: function () {
 
-                 var n = zn(r);
 
-                 if (1 === r.rank) for (var o = 0; o < e[0]; ++o) n = n.add(t.slice([o * r.shape[0]], [r.shape[0]])); else if (2 === r.rank) for (o = 0; o < e[0]; ++o) for (var a = 0; a < e[1]; ++a) n = n.add(t.slice([o * r.shape[0], a * r.shape[1]], [r.shape[0], r.shape[1]])); else if (3 === r.rank) for (o = 0; o < e[0]; ++o) for (a = 0; a < e[1]; ++a) for (var i = 0; i < e[2]; ++i) n = n.add(t.slice([o * r.shape[0], a * r.shape[1], i * r.shape[2]], [r.shape[0], r.shape[1], r.shape[2]])); else {
 
-                   if (4 !== r.rank) throw new Error("Gradient for tile operation is not implemented for rank-" + r.rank + " tensors yet.");
 
-                   for (o = 0; o < e[0]; ++o) for (a = 0; a < e[1]; ++a) for (i = 0; i < e[2]; ++i) for (var u = 0; u < e[3]; ++u) n = n.add(t.slice([o * r.shape[0], a * r.shape[1], i * r.shape[2], u * r.shape[3]], [r.shape[0], r.shape[1], r.shape[2], r.shape[3]]));
 
-                 }
 
-                 return n;
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Fr = Cn({
 
-         truncatedNormal_: function (t, e, n, r, o) {
 
-           if (void 0 === e && (e = 0), void 0 === n && (n = 1), null != r && "bool" === r) throw new Error("Unsupported data type " + r);
 
-           for (var a = new or(e, n, r, !0, o), i = ur(t, r), u = 0; u < i.values.length; u++) i.values[u] = a.nextValue();
 
-           return i.toTensor();
 
-         }
 
-       }),
 
-       Or = Cn({
 
-         unstack_: function (t, e) {
 
-           void 0 === e && (e = 0), e = e || 0;
 
-           var n = ln(t, "x", "unstack");
 
-           return g(e >= -n.shape.length && e < n.shape.length, function () {
 
-             return "Axis = " + e + " is not in [-" + n.shape.length + ", " + n.shape.length + ")";
 
-           }), e < 0 && (e += n.shape.length), Nt.runKernelFunc(function (t) {
 
-             return t.unstack(n, e);
 
-           }, {
 
-             $x: n
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return Tr(t, e);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       _r = function (t, e) {
 
-         return n(this, void 0, void 0, function () {
 
-           var n, o, a, i, u, s, c, l, h, f;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return n = ln(t, "x", "setdiff1d"), o = ln(e, "y", "setdiff1d"), g(n.dtype === o.dtype, function () {
 
-                   return "x and y should have the same dtype, but got x (" + n.dtype + ") and y (" + o.dtype + ").";
 
-                 }), g(1 === n.rank, function () {
 
-                   return "x should be 1D tensor, but got x (" + n.shape + ").";
 
-                 }), g(1 === o.rank, function () {
 
-                   return "y should be 1D tensor, but got y (" + o.shape + ").";
 
-                 }), [4, n.data()];
 
-               case 1:
 
-                 return a = r.sent(), [4, o.data()];
 
-               case 2:
 
-                 for (i = r.sent(), u = new Set(i), s = 0, h = 0; h < a.length; h++) u.has(a[h]) || s++;
 
-                 for (c = new lt([s], n.dtype), l = new lt([s], "int32"), h = 0, f = 0; h < a.length; h++) u.has(a[h]) || (c.values[f] = a[h], l.values[f] = h, f++);
 
-                 return [2, [c.toTensor(), l.toTensor()]];
 
-             }
 
-           });
 
-         });
 
-       };
 
-     exports.setdiff1dAsync = _r;
 
-     exports.unstack = Or;
 
-     exports.truncatedNormal = Fr;
 
-     exports.tile = Nr;
 
-     exports.stack = Tr;
 
-     exports.squeeze = Dr;
 
-     exports.spaceToBatchND = Ar;
 
-     exports.reshape = Sr;
 
-     exports.randomUniform = kr;
 
-     exports.randomGamma = Ir;
 
-     exports.randomNormal = Rr;
 
-     exports.rand = Er;
 
-     exports.pad4d = Cr;
 
-     exports.pad3d = wr;
 
-     exports.pad2d = br;
 
-     exports.pad1d = xr;
 
-     exports.pad = yr;
 
-     exports.oneHot = gr;
 
-     exports.multinomial = mr;
 
-     exports.eye = vr;
 
-     exports.expandDims = dr;
 
-     exports.depthToSpace = pr;
 
-     exports.cumsum = fr;
 
-     exports.clone = hr;
 
-     exports.cast = lr;
 
-     exports.batchToSpaceND = cr;
 
-     function Mr(t, e, n, r) {
 
-       void 0 === r && (r = !0);
 
-       var o = [];
 
-       if (r) (o = o.concat(e.slice(0))).push(t[0] / n), o = o.concat(t.slice(1)); else {
 
-         o = o.concat(t[0]);
 
-         for (var a = e.length, i = 0; i < a; ++i) o = o.concat([t[i + 1] / e[i], e[i]]);
 
-         o = o.concat(t.slice(a + 1));
 
-       }
 
-       return o;
 
-     }
 
-     function Br(t, e, n) {
 
-       void 0 === n && (n = !0);
 
-       var r = [];
 
-       if (n) {
 
-         r.push(e);
 
-         for (var o = e + 1; o < t; ++o) o <= 2 * e ? (r.push(o), r.push(o - (e + 1))) : r.push(o);
 
-       } else {
 
-         var a = [],
 
-           i = [];
 
-         for (o = 1; o < t; ++o) o >= 2 * e + 1 || o % 2 == 1 ? i.push(o) : a.push(o);
 
-         r.push.apply(r, a), r.push(0), r.push.apply(r, i);
 
-       }
 
-       return r;
 
-     }
 
-     function Pr(t, e, n, r) {
 
-       void 0 === r && (r = !0);
 
-       var o = [];
 
-       r ? o.push(t[0] / n) : o.push(t[0] * n);
 
-       for (var a = 1; a < t.length; ++a) a <= e.length ? r ? o.push(e[a - 1] * t[a]) : o.push(t[a] / e[a - 1]) : o.push(t[a]);
 
-       return o;
 
-     }
 
-     function Lr(t, e) {
 
-       for (var n = [0], r = 0; r < e; ++r) n.push(t[r][0]);
 
-       return n;
 
-     }
 
-     function Wr(t, e, n) {
 
-       for (var r = t.slice(0, 1), o = 0; o < n; ++o) r.push(t[o + 1] - e[o][0] - e[o][1]);
 
-       return r;
 
-     }
 
-     function Ur(t, e) {
 
-       if (t.rank < 1) throw new Error("tf.gatherND() expects the input to be rank 1 or higher, but the rank was " + t.rank + ".");
 
-       if (e.rank < 1) throw new Error("tf.gatherND() expects the indices to be rank 1 or higher, but the rank was " + e.rank + ".");
 
-       if ("int32" !== e.dtype) throw new Error("tf.gatherND() expects the indices to be int32 type, but the dtype was " + e.dtype + ".");
 
-       if (e.shape[e.rank - 1] > t.rank) throw new Error("index innermost dimension length must be <= tensor rank; saw: " + e.shape[e.rank - 1] + " vs. " + t.rank);
 
-       if (0 === t.size) throw new Error("Requested more than 0 entries, but input is empty. Input shape: " + t.shape + ".");
 
-       for (var n = e.shape, r = n[n.length - 1], o = 1, a = 0; a < n.length - 1; ++a) o *= n[a];
 
-       var i = t.shape,
 
-         u = n.slice();
 
-       u.pop();
 
-       var s = 1;
 
-       for (a = r; a < t.rank; ++a) s *= i[a], u.push(i[a]);
 
-       var c = q(t.shape).map(function (t) {
 
-         return t / s;
 
-       }).concat([1]).slice(0, r);
 
-       return [u, o, s, c];
 
-     }
 
-     var Vr = 30;
 
-     function zr(t) {
 
-       return t <= Vr ? t : H(t, Math.floor(Math.sqrt(t)));
 
-     }
 
-     function Gr(t, e, n) {
 
-       if (e.rank < 1) throw new Error("tf.scatterND() expects the indices to be rank 1 or higher, but the rank was " + e.rank + ".");
 
-       if (t.rank < 1) throw new Error("tf.scatterND() expects the updates to be rank 1 or higher, but the rank was " + t.rank + ".");
 
-       if ("int32" !== e.dtype) throw new Error("The dtype of 'indices' should be int32, but got dtype: " + e.dtype);
 
-       if (n.length < 1) throw new Error("Output rank must be greater or equal to 1, but got shape: " + n);
 
-       if (0 === n.length) {
 
-         if (0 === e.size) throw new Error("Indices specified for empty output. indices shape: " + e.shape);
 
-         if (0 === t.size) throw new Error("Updates specified for empty output. updates shape: " + t.shape);
 
-       }
 
-       !function (t, e, n) {
 
-         var r = e.rank > 1 ? e.shape[e.rank - 1] : 1,
 
-           o = e.rank > 1 ? e.rank - 1 : 1,
 
-           a = "Must have updates.shape = indices.shape[:batchDim] + shape[sliceDim:], got updates.shape: " + n.shape + ", indices.shape: " + e.shape + ", shape: " + t + ", sliceDim: " + r + ", and batchDim: " + o + ".";
 
-         if (n.rank < o) throw new Error(a + " update.rank < " + o + ". ");
 
-         if (t.length < r + (n.rank - o)) throw new Error(a + " Output shape length < " + (r + (n.rank - o)));
 
-         if (n.rank !== o + t.length - r) throw new Error(a + " update.rank != " + (o + t.length - r));
 
-         for (var i = 0; i < o; ++i) if (n.shape[i] !== e.shape[i]) throw new Error(a + " updates.shape[" + i + "] (" + n.shape[i] + ") != indices.shape[" + i + "] (" + e.shape[i] + ").");
 
-         for (i = 0; i < n.rank - o; ++i) if (n.shape[i + o] !== t[i + r]) throw new Error(a + " updates.shape[" + (i + o) + "] (" + n.shape[i + o] + ") != shape[" + (i + o) + "] (" + t[i + o] + ")");
 
-       }(n, e, t);
 
-     }
 
-     function Hr(t, e, n) {
 
-       for (var r = e.rank > 1 ? e.shape[e.rank - 1] : 1, o = n.length, a = 1, i = r; i < o; ++i) a *= n[i];
 
-       var u = r < 1 ? 1 : r;
 
-       return {
 
-         sliceRank: r,
 
-         numUpdates: e.size / u,
 
-         sliceSize: a,
 
-         strides: q(n.slice(0, r)).concat([1]),
 
-         outputSize: w(n)
 
-       };
 
-     }
 
-     function qr(t, e, n) {
 
-       g(t.rank === e.length, function () {
 
-         return "Error in slice" + t.rank + "D: Length of begin " + e + " must match the rank of the array (" + t.rank + ").";
 
-       }), g(t.rank === n.length, function () {
 
-         return "Error in slice" + t.rank + "D: Length of size " + n + " must match the rank of the array (" + t.rank + ").";
 
-       });
 
-       for (var r = function (r) {
 
-         g(e[r] + n[r] <= t.shape[r], function () {
 
-           return "Error in slice" + t.rank + "D: begin[" + r + "] + size[" + r + "] (" + (e[r] + n[r]) + ") would overflow input.shape[" + r + "] (" + t.shape[r] + ")";
 
-         });
 
-       }, o = 0; o < t.rank; ++o) r(o);
 
-     }
 
-     function Kr(t) {
 
-       for (var e = [], n = 0; t > 0;) 1 & t && e.push(n), t /= 2, n++;
 
-       return e;
 
-     }
 
-     function jr(t, e, n) {
 
-       for (var r = [], o = 0; o < t.length; o++) r[o] = Math.ceil((e[o] - t[o]) / n[o]);
 
-       return r;
 
-     }
 
-     function Xr(t, e, n, r, o) {
 
-       var a = e[o],
 
-         i = n[o] || 1;
 
-       (t & 1 << o || null == a) && (a = i > 0 ? Number.MIN_SAFE_INTEGER : Number.MAX_SAFE_INTEGER);
 
-       var u = r[o];
 
-       return a < 0 && (a += u), a = d(0, a, u - 1);
 
-     }
 
-     function $r(t, e, n, r, o) {
 
-       var a = e[o],
 
-         i = n[o] || 1;
 
-       (t & 1 << o || null == a) && (a = i > 0 ? Number.MAX_SAFE_INTEGER : Number.MIN_SAFE_INTEGER);
 
-       var u = r[o];
 
-       return a < 0 && (a += u), a = i > 0 ? d(0, a, u) : d(-1, a, u - 1);
 
-     }
 
-     function Yr(t, e, n) {
 
-       for (var r = n.length, o = 0; o < n.length; o++) if (n[o] > 1) {
 
-         r = o;
 
-         break;
 
-       }
 
-       for (o = r + 1; o < n.length; o++) if (e[o] > 0 || n[o] !== t[o]) return !1;
 
-       return !0;
 
-     }
 
-     function Qr(t, e) {
 
-       for (var n = t.length > 0 ? t[t.length - 1] : 1, r = 0; r < t.length - 1; r++) n += t[r] * e[r];
 
-       return n;
 
-     }
 
-     var Jr = Object.freeze({
 
-       assertParamsValid: qr,
 
-       maskToAxes: Kr,
 
-       computeOutShape: jr,
 
-       startForAxis: Xr,
 
-       stopForAxis: $r,
 
-       isSliceContinous: Yr,
 
-       computeFlatOffset: Qr
 
-     });
 
-     exports.slice_util = Jr;
 
-     function Zr(t) {
 
-       return g(G(t), function () {
 
-         return "The f passed in grad(f) must be a function";
 
-       }), function (e, n) {
 
-         var r = ln(e, "x", "tf.grad", null),
 
-           o = null != n ? ln(n, "dy", "tf.grad") : null;
 
-         return Nt.tidy(function () {
 
-           var e = Nt.gradients(function () {
 
-             return t(r);
 
-           }, [r], o),
 
-             n = e.value,
 
-             a = e.grads;
 
-           return null != o && y(n.shape, o.shape, "The shape of dy passed in grad(f)(x, dy) must match the shape returned by f(x)"), ao(a), a[0];
 
-         });
 
-       };
 
-     }
 
-     function to(t) {
 
-       return g(G(t), function () {
 
-         return "The f passed in grads(f) must be a function";
 
-       }), function (e, n) {
 
-         g(Array.isArray(e), function () {
 
-           return "The args passed in grads(f)(args) must be an array of `Tensor`s or `TensorLike`s";
 
-         });
 
-         var r = hn(e, "args", "tf.grads", null),
 
-           o = null != n ? ln(n, "dy", "tf.grads") : null;
 
-         return Nt.tidy(function () {
 
-           var e = Nt.gradients(function () {
 
-             return t.apply(void 0, r);
 
-           }, r, o),
 
-             n = e.value,
 
-             a = e.grads;
 
-           return null != o && y(n.shape, o.shape, "The shape of dy passed in grads(f)([x1,...], dy) must match the shape returned by f([x1,...])"), ao(a), a;
 
-         });
 
-       };
 
-     }
 
-     function eo(t) {
 
-       return g(G(t), function () {
 
-         return "The f passed in valueAndGrad(f) must be a function";
 
-       }), function (e, n) {
 
-         g(e instanceof dt, function () {
 
-           return "The x passed in valueAndGrad(f)(x) must be a tensor";
 
-         }), g(null == n || n instanceof dt, function () {
 
-           return "The dy passed in valueAndGrad(f)(x, dy) must be a tensor";
 
-         });
 
-         var r = Nt.gradients(function () {
 
-           return t(e);
 
-         }, [e], n),
 
-           o = r.grads,
 
-           a = r.value;
 
-         return ao(o), {
 
-           grad: o[0],
 
-           value: a
 
-         };
 
-       };
 
-     }
 
-     function no(t) {
 
-       return g(G(t), function () {
 
-         return "The f passed in valueAndGrads(f) must be a function";
 
-       }), function (e, n) {
 
-         g(Array.isArray(e) && e.every(function (t) {
 
-           return t instanceof dt;
 
-         }), function () {
 
-           return "The args passed in valueAndGrads(f)(args) must be array of tensors";
 
-         }), g(null == n || n instanceof dt, function () {
 
-           return "The dy passed in valueAndGrads(f)(args, dy) must be a tensor";
 
-         });
 
-         var r = Nt.gradients(function () {
 
-           return t.apply(void 0, e);
 
-         }, e, n);
 
-         return null != n && y(r.value.shape, n.shape, "The shape of dy passed in valueAndGrads(f)([x1,...], dy) must match the shape returned by f([x1,...])"), ao(r.grads), r;
 
-       };
 
-     }
 
-     function ro(t, e) {
 
-       g(G(t), function () {
 
-         return "The f passed in variableGrads(f) must be a function";
 
-       }), g(null == e || Array.isArray(e) && e.every(function (t) {
 
-         return t instanceof bt;
 
-       }), function () {
 
-         return "The varList passed in variableGrads(f, varList) must be an array of variables";
 
-       });
 
-       var n = null != e;
 
-       if (!n) for (var r in e = [], Nt.registeredVariables) e.push(Nt.registeredVariables[r]);
 
-       var o = n ? e.filter(function (t) {
 
-         return !t.trainable;
 
-       }) : null,
 
-         a = e.length;
 
-       g((e = e.filter(function (t) {
 
-         return t.trainable;
 
-       })).length > 0, function () {
 
-         return "variableGrads() expects at least one of the input variables to be trainable, but none of the " + a + " variables is trainable.";
 
-       });
 
-       var i = Nt.gradients(t, e, null, !0),
 
-         u = i.value,
 
-         s = i.grads;
 
-       g(s.some(function (t) {
 
-         return null != t;
 
-       }), function () {
 
-         return "Cannot find a connection between any variable and the result of the loss function y=f(x). Please make sure the operations that use variables are inside the function f passed to minimize().";
 
-       }), g(0 === u.rank, function () {
 
-         return "The f passed in variableGrads(f) must return a scalar, but it returned a rank-" + u.rank + " tensor";
 
-       });
 
-       var c = {};
 
-       return e.forEach(function (t, e) {
 
-         null != s[e] && (c[t.name] = s[e]);
 
-       }), null != o && o.forEach(function (t) {
 
-         return c[t.name] = null;
 
-       }), {
 
-         value: u,
 
-         grads: c
 
-       };
 
-     }
 
-     function oo(t) {
 
-       return Nt.customGrad(t);
 
-     }
 
-     function ao(t) {
 
-       if (t.filter(function (t) {
 
-         return null == t;
 
-       }).length > 0) throw new Error("Cannot compute gradient of y=f(x) with respect to x. Make sure that\n    the f you passed encloses all operations that lead from x to y.");
 
-     }
 
-     var io = Cn({
 
-       softmax_: function (t, e) {
 
-         void 0 === e && (e = -1);
 
-         var n = ln(t, "logits", "softmax");
 
-         if (-1 === e && (e = n.rank - 1), e !== n.rank - 1) throw Error("Softmax along a non-last dimension is not yet supported. Logits was rank " + n.rank + " and dim was " + e);
 
-         return oo(function (t, n) {
 
-           var r = t.logSumExp([e], !0),
 
-             o = t.toFloat().sub(r).exp();
 
-           return n([o]), {
 
-             value: o,
 
-             gradFunc: function (t, n) {
 
-               var r = n[0],
 
-                 o = t.mul(r);
 
-               return o.sub(o.sum([e], !0).mul(r));
 
-             }
 
-           };
 
-         })(n);
 
-       }
 
-     }),
 
-       uo = Cn({
 
-         logSoftmax_: function (t, e) {
 
-           void 0 === e && (e = -1);
 
-           var n = ln(t, "logits", "logSoftmax");
 
-           if (-1 === e && (e = n.rank - 1), e !== n.rank - 1) throw Error("Log Softmax along a non-last dimension is not yet supported. Logits was rank " + n.rank + " and axis was " + e);
 
-           return oo(function (t, n) {
 
-             var r = t.max(e, !0),
 
-               o = t.sub(r),
 
-               a = o.toFloat().sub(o.exp().sum(e, !0).log());
 
-             return n([a]), {
 
-               value: a,
 
-               gradFunc: function (t, n) {
 
-                 var r = n[0].exp();
 
-                 return t.sub(t.sum(e, !0).mul(r));
 
-               }
 
-             };
 
-           })(n);
 
-         }
 
-       }),
 
-       so = function () {
 
-         function t(t, e) {
 
-           this.backend = t, this.dataMover = e, this.data = new WeakMap(), this.dataIdsCount = 0;
 
-         }
 
-         return t.prototype.get = function (t) {
 
-           return this.data.has(t) || this.dataMover.moveData(this.backend, t), this.data.get(t);
 
-         }, t.prototype.set = function (t, e) {
 
-           this.dataIdsCount++, this.data.set(t, e);
 
-         }, t.prototype.has = function (t) {
 
-           return this.data.has(t);
 
-         }, t.prototype.delete = function (t) {
 
-           return this.dataIdsCount--, this.data.delete(t);
 
-         }, t.prototype.numDataIds = function () {
 
-           return this.dataIdsCount;
 
-         }, t;
 
-       }(),
 
-       co = function () {
 
-         function t() { }
 
-         return t.prototype.time = function (t) {
 
-           return lo();
 
-         }, t.prototype.read = function (t) {
 
-           return lo();
 
-         }, t.prototype.readSync = function (t) {
 
-           return lo();
 
-         }, t.prototype.numDataIds = function () {
 
-           return lo();
 
-         }, t.prototype.disposeData = function (t) {
 
-           return lo();
 
-         }, t.prototype.fromPixels = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.write = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.move = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.memory = function () {
 
-           return lo();
 
-         }, t.prototype.floatPrecision = function () {
 
-           return lo();
 
-         }, t.prototype.epsilon = function () {
 
-           return 32 === this.floatPrecision() ? 1e-7 : 1e-4;
 
-         }, t.prototype.batchMatMul = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.fusedBatchMatMul = function (t) {
 
-           t.a, t.b, t.transposeA, t.transposeB, t.bias, t.activation, t.preluActivationWeights;
 
-           return lo();
 
-         }, t.prototype.slice = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.stridedSlice = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.unstack = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.reverse = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.concat = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.neg = function (t) {
 
-           return lo();
 
-         }, t.prototype.add = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.addN = function (t) {
 
-           return lo();
 
-         }, t.prototype.subtract = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.multiply = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.realDivide = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.floorDiv = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.sum = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.prod = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.unsortedSegmentSum = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.argMin = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.argMax = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.equal = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.notEqual = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.less = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.lessEqual = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.greater = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.greaterEqual = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.logicalNot = function (t) {
 
-           return lo();
 
-         }, t.prototype.logicalAnd = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.logicalOr = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.where = function (t) {
 
-           return lo();
 
-         }, t.prototype.select = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.topk = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.min = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.minimum = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.mod = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.max = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.maximum = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.all = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.any = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.squaredDifference = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.ceil = function (t) {
 
-           return lo();
 
-         }, t.prototype.floor = function (t) {
 
-           return lo();
 
-         }, t.prototype.round = function (t) {
 
-           return lo();
 
-         }, t.prototype.sign = function (t) {
 
-           return lo();
 
-         }, t.prototype.isNaN = function (t) {
 
-           return lo();
 
-         }, t.prototype.isInf = function (t) {
 
-           return lo();
 
-         }, t.prototype.isFinite = function (t) {
 
-           return lo();
 
-         }, t.prototype.pow = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.exp = function (t) {
 
-           return lo();
 
-         }, t.prototype.expm1 = function (t) {
 
-           return lo();
 
-         }, t.prototype.log = function (t) {
 
-           return lo();
 
-         }, t.prototype.log1p = function (t) {
 
-           return lo();
 
-         }, t.prototype.sqrt = function (t) {
 
-           return lo();
 
-         }, t.prototype.rsqrt = function (t) {
 
-           return lo();
 
-         }, t.prototype.square = function (t) {
 
-           return lo();
 
-         }, t.prototype.reciprocal = function (t) {
 
-           return lo();
 
-         }, t.prototype.relu = function (t) {
 
-           return lo();
 
-         }, t.prototype.relu6 = function (t) {
 
-           return lo();
 
-         }, t.prototype.prelu = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.elu = function (t) {
 
-           return lo();
 
-         }, t.prototype.eluDer = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.selu = function (t) {
 
-           return lo();
 
-         }, t.prototype.int = function (t) {
 
-           return lo();
 
-         }, t.prototype.clip = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.abs = function (t) {
 
-           return lo();
 
-         }, t.prototype.complexAbs = function (t) {
 
-           return lo();
 
-         }, t.prototype.sigmoid = function (t) {
 
-           return lo();
 
-         }, t.prototype.softplus = function (t) {
 
-           return lo();
 
-         }, t.prototype.sin = function (t) {
 
-           return lo();
 
-         }, t.prototype.cos = function (t) {
 
-           return lo();
 
-         }, t.prototype.tan = function (t) {
 
-           return lo();
 
-         }, t.prototype.asin = function (t) {
 
-           return lo();
 
-         }, t.prototype.acos = function (t) {
 
-           return lo();
 
-         }, t.prototype.atan = function (t) {
 
-           return lo();
 
-         }, t.prototype.atan2 = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.sinh = function (t) {
 
-           return lo();
 
-         }, t.prototype.cosh = function (t) {
 
-           return lo();
 
-         }, t.prototype.tanh = function (t) {
 
-           return lo();
 
-         }, t.prototype.asinh = function (t) {
 
-           return lo();
 
-         }, t.prototype.acosh = function (t) {
 
-           return lo();
 
-         }, t.prototype.atanh = function (t) {
 
-           return lo();
 
-         }, t.prototype.erf = function (t) {
 
-           return lo();
 
-         }, t.prototype.step = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.fusedConv2d = function (t) {
 
-           t.input, t.filter, t.convInfo, t.bias, t.activation, t.preluActivationWeights;
 
-           return lo();
 
-         }, t.prototype.conv2d = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.conv2dDerInput = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.conv2dDerFilter = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.fusedDepthwiseConv2D = function (t) {
 
-           t.input, t.filter, t.convInfo, t.bias, t.activation, t.preluActivationWeights;
 
-           return lo();
 
-         }, t.prototype.depthwiseConv2D = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.depthwiseConv2DDerInput = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.depthwiseConv2DDerFilter = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.conv3d = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.conv3dDerInput = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.conv3dDerFilter = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.maxPool = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.maxPoolBackprop = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.avgPool = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.avgPoolBackprop = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.avgPool3d = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.avgPool3dBackprop = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.maxPool3d = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.maxPool3dBackprop = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.reshape = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.cast = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.tile = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.pad = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.transpose = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.gather = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.gatherND = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.scatterND = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.batchToSpaceND = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.spaceToBatchND = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.resizeBilinear = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.resizeBilinearBackprop = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.resizeNearestNeighbor = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.resizeNearestNeighborBackprop = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.batchNormalization = function (t, e, n, r, o, a) {
 
-           return lo();
 
-         }, t.prototype.localResponseNormalization4D = function (t, e, n, r, o) {
 
-           return lo();
 
-         }, t.prototype.LRNGrad = function (t, e, n, r, o, a, i) {
 
-           return lo();
 
-         }, t.prototype.multinomial = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.oneHot = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.cumsum = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.nonMaxSuppression = function (t, e, n, r, o) {
 
-           return lo();
 
-         }, t.prototype.fft = function (t) {
 
-           return lo();
 
-         }, t.prototype.ifft = function (t) {
 
-           return lo();
 
-         }, t.prototype.complex = function (t, e) {
 
-           return lo();
 
-         }, t.prototype.real = function (t) {
 
-           return lo();
 
-         }, t.prototype.imag = function (t) {
 
-           return lo();
 
-         }, t.prototype.cropAndResize = function (t, e, n, r, o, a) {
 
-           return lo();
 
-         }, t.prototype.depthToSpace = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.split = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.sparseToDense = function (t, e, n, r) {
 
-           return lo();
 
-         }, t.prototype.diag = function (t) {
 
-           return lo();
 
-         }, t.prototype.fill = function (t, e, n) {
 
-           throw new Error("Not yet implemented.");
 
-         }, t.prototype.onesLike = function (t) {
 
-           return lo();
 
-         }, t.prototype.zerosLike = function (t) {
 
-           return lo();
 
-         }, t.prototype.linspace = function (t, e, n) {
 
-           return lo();
 
-         }, t.prototype.dispose = function () {
 
-           return lo();
 
-         }, t;
 
-       }();
 
-     exports.KernelBackend = co;
 
-     exports.DataStorage = so;
 
-     exports.logSoftmax = uo;
 
-     exports.softmax = io;
 
-     function lo() {
 
-       throw new Error("Not yet implemented or not found in the registry. Did you forget to import the kernel?");
 
-     }
 
-     function ho(t, e) {
 
-       for (var n = t.length, r = [], o = 0; o < n; o++) {
 
-         var a = n - 1 - o,
 
-           i = t[a] || 1;
 
-         (e[e.length - 1 - o] || 1) > 1 && 1 === i && r.unshift(a);
 
-       }
 
-       return r;
 
-     }
 
-     function fo(t, e) {
 
-       for (var n = [], r = 0; r < e.length; r++) {
 
-         var o = t[t.length - r - 1],
 
-           a = e.length - r - 1,
 
-           i = e[a];
 
-         (null == o || 1 === o && i > 1) && n.unshift(a);
 
-       }
 
-       return n;
 
-     }
 
-     function po(t, e) {
 
-       for (var n = [], r = Math.max(t.length, e.length), o = 0; o < r; o++) {
 
-         var a = t[t.length - o - 1];
 
-         null == a && (a = 1);
 
-         var i = e[e.length - o - 1];
 
-         if (null == i && (i = 1), 1 === a) n.unshift(i); else if (1 === i) n.unshift(a); else {
 
-           if (a !== i) throw Error("Operands could not be broadcast together with shapes " + t + " and " + e + ".");
 
-           n.unshift(a);
 
-         }
 
-       }
 
-       return n;
 
-     }
 
-     function vo(t, e, n, r, o, a, i) {
 
-       void 0 === i && (i = "channelsLast");
 
-       var u,
 
-         s = bo(e),
 
-         c = s[0],
 
-         l = s[1];
 
-       if ("channelsLast" === i) u = [c, l, t[3], t[3]]; else {
 
-         if ("channelsFirst" !== i) throw new Error("Unknown dataFormat " + i);
 
-         u = [c, l, t[1], t[1]];
 
-       }
 
-       return go(t, u, n, r, o, a, !1, i);
 
-     }
 
-     function mo(t, e, n, r, o, a, i) {
 
-       void 0 === i && (i = "NDHWC");
 
-       var u,
 
-         s,
 
-         c = wo(e),
 
-         l = c[0],
 
-         h = c[1],
 
-         f = c[2];
 
-       if ("NDHWC" === i) s = "channelsLast", u = [l, h, f, t[4], t[4]]; else {
 
-         if ("NCDHW" !== i) throw new Error("Unknown dataFormat " + i);
 
-         s = "channelsFirst", u = [l, h, f, t[1], t[1]];
 
-       }
 
-       return yo(t, u, n, r, o, !1, s, a);
 
-     }
 
-     function go(t, e, n, r, o, a, i, u) {
 
-       void 0 === i && (i = !1), void 0 === u && (u = "channelsLast");
 
-       var s = [-1, -1, -1, -1],
 
-         c = s[0],
 
-         l = s[1],
 
-         h = s[2],
 
-         f = s[3];
 
-       if ("channelsLast" === u) c = t[0], l = t[1], h = t[2], f = t[3]; else {
 
-         if ("channelsFirst" !== u) throw new Error("Unknown dataFormat " + u);
 
-         c = t[0], f = t[1], l = t[2], h = t[3];
 
-       }
 
-       var p,
 
-         d = e[0],
 
-         v = e[1],
 
-         m = e[3],
 
-         y = bo(n),
 
-         x = y[0],
 
-         b = y[1],
 
-         w = bo(r),
 
-         C = w[0],
 
-         R = w[1],
 
-         I = Co(d, C),
 
-         k = Co(v, R),
 
-         S = function (t, e, n, r, o, a, i, u) {
 
-           var s, c, l;
 
-           if ("number" == typeof t) {
 
-             var h = 0 === t ? "VALID" : "NUMBER";
 
-             s = {
 
-               top: t,
 
-               bottom: t,
 
-               left: t,
 
-               right: t,
 
-               type: h
 
-             };
 
-             var f = function (t, e, n, r, o) {
 
-               null == r && (r = xo(t, e, n));
 
-               var a = t[0],
 
-                 i = t[1],
 
-                 u = Eo((a - e + 2 * r) / n + 1, o);
 
-               g(E(u), function () {
 
-                 return "The output # of rows (" + u + ") must be an integer. Change the stride and/or zero pad parameters";
 
-               });
 
-               var s = Eo((i - e + 2 * r) / n + 1, o);
 
-               return g(E(s), function () {
 
-                 return "The output # of columns (" + s + ") must be an integer. Change the stride and/or zero pad parameters";
 
-               }), [u, s];
 
-             }([e, n], a, r, t, u);
 
-             c = f[0], l = f[1];
 
-           } else if ("same" === t) {
 
-             c = Math.ceil(e / r), l = Math.ceil(n / o);
 
-             var p = Math.max(0, (c - 1) * r + a - e),
 
-               d = Math.max(0, (l - 1) * o + i - n),
 
-               v = Math.floor(p / 2),
 
-               m = p - v,
 
-               y = Math.floor(d / 2),
 
-               x = d - y;
 
-             s = {
 
-               top: v,
 
-               bottom: m,
 
-               left: y,
 
-               right: x,
 
-               type: "SAME"
 
-             };
 
-           } else {
 
-             if ("valid" !== t) throw Error("Unknown padding parameter: " + t);
 
-             s = {
 
-               top: 0,
 
-               bottom: 0,
 
-               left: 0,
 
-               right: 0,
 
-               type: "VALID"
 
-             }, c = Math.ceil((e - a + 1) / r), l = Math.ceil((n - i + 1) / o);
 
-           }
 
-           return {
 
-             padInfo: s,
 
-             outHeight: c,
 
-             outWidth: l
 
-           };
 
-         }(o, l, h, x, b, I, k, a),
 
-         A = S.padInfo,
 
-         D = S.outHeight,
 
-         T = S.outWidth,
 
-         N = i ? m * f : m;
 
-       return "channelsFirst" === u ? p = [c, N, D, T] : "channelsLast" === u && (p = [c, D, T, N]), {
 
-         batchSize: c,
 
-         dataFormat: u,
 
-         inHeight: l,
 
-         inWidth: h,
 
-         inChannels: f,
 
-         outHeight: D,
 
-         outWidth: T,
 
-         outChannels: N,
 
-         padInfo: A,
 
-         strideHeight: x,
 
-         strideWidth: b,
 
-         filterHeight: d,
 
-         filterWidth: v,
 
-         effectiveFilterHeight: I,
 
-         effectiveFilterWidth: k,
 
-         dilationHeight: C,
 
-         dilationWidth: R,
 
-         inShape: t,
 
-         outShape: p,
 
-         filterShape: e
 
-       };
 
-     }
 
-     function yo(t, e, n, r, o, a, i, u) {
 
-       void 0 === a && (a = !1), void 0 === i && (i = "channelsLast");
 
-       var s = [-1, -1, -1, -1, -1],
 
-         c = s[0],
 
-         l = s[1],
 
-         h = s[2],
 
-         f = s[3],
 
-         p = s[4];
 
-       if ("channelsLast" === i) c = t[0], l = t[1], h = t[2], f = t[3], p = t[4]; else {
 
-         if ("channelsFirst" !== i) throw new Error("Unknown dataFormat " + i);
 
-         c = t[0], p = t[1], l = t[2], h = t[3], f = t[4];
 
-       }
 
-       var d,
 
-         v = e[0],
 
-         m = e[1],
 
-         y = e[2],
 
-         x = e[4],
 
-         b = wo(n),
 
-         w = b[0],
 
-         C = b[1],
 
-         R = b[2],
 
-         I = wo(r),
 
-         k = I[0],
 
-         S = I[1],
 
-         A = I[2],
 
-         D = Co(v, k),
 
-         T = Co(m, S),
 
-         N = Co(y, A),
 
-         F = function (t, e, n, r, o, a, i, u, s, c, l) {
 
-           var h, f, p, d;
 
-           if ("number" == typeof t) {
 
-             var v = 0 === t ? "VALID" : "NUMBER";
 
-             h = {
 
-               top: t,
 
-               bottom: t,
 
-               left: t,
 
-               right: t,
 
-               front: t,
 
-               back: t,
 
-               type: v
 
-             };
 
-             var m = function (t, e, n, r, o, a) {
 
-               null == o && (o = xo(t, e, r));
 
-               var i = t[0],
 
-                 u = t[1],
 
-                 s = t[2],
 
-                 c = Eo((i - e + 2 * o) / r + 1, a);
 
-               g(E(c), function () {
 
-                 return "The output # of depths (" + c + ") must be an integer. Change the stride and/or zero pad parameters";
 
-               });
 
-               var l = Eo((u - e + 2 * o) / r + 1, a);
 
-               g(E(l), function () {
 
-                 return "The output # of rows (" + l + ") must be an integer. Change the stride and/or zero pad parameters";
 
-               });
 
-               var h = Eo((s - e + 2 * o) / r + 1, a);
 
-               return g(E(h), function () {
 
-                 return "The output # of columns (" + h + ") must be an integer. Change the stride and/or zero pad parameters";
 
-               }), [c, l, h, n];
 
-             }([e, n, r, 1], u, 1, o, t, l);
 
-             f = m[0], p = m[1], d = m[2];
 
-           } else if ("same" === t) {
 
-             f = Math.ceil(e / o), p = Math.ceil(n / a), d = Math.ceil(r / i);
 
-             var y = (f - 1) * o + u - e,
 
-               x = (p - 1) * a + s - n,
 
-               b = (d - 1) * i + c - r,
 
-               w = Math.floor(y / 2),
 
-               C = y - w,
 
-               R = Math.floor(x / 2),
 
-               I = x - R,
 
-               k = Math.floor(b / 2),
 
-               S = b - k;
 
-             h = {
 
-               top: R,
 
-               bottom: I,
 
-               left: k,
 
-               right: S,
 
-               front: w,
 
-               back: C,
 
-               type: "SAME"
 
-             };
 
-           } else {
 
-             if ("valid" !== t) throw Error("Unknown padding parameter: " + t);
 
-             h = {
 
-               top: 0,
 
-               bottom: 0,
 
-               left: 0,
 
-               right: 0,
 
-               front: 0,
 
-               back: 0,
 
-               type: "VALID"
 
-             }, f = Math.ceil((e - u + 1) / o), p = Math.ceil((n - s + 1) / a), d = Math.ceil((r - c + 1) / i);
 
-           }
 
-           return {
 
-             padInfo: h,
 
-             outDepth: f,
 
-             outHeight: p,
 
-             outWidth: d
 
-           };
 
-         }(o, l, h, f, w, C, R, D, T, N, u),
 
-         O = F.padInfo,
 
-         _ = F.outDepth,
 
-         M = F.outHeight,
 
-         B = F.outWidth,
 
-         P = a ? x * p : x;
 
-       return "channelsFirst" === i ? d = [c, P, _, M, B] : "channelsLast" === i && (d = [c, _, M, B, P]), {
 
-         batchSize: c,
 
-         dataFormat: i,
 
-         inDepth: l,
 
-         inHeight: h,
 
-         inWidth: f,
 
-         inChannels: p,
 
-         outDepth: _,
 
-         outHeight: M,
 
-         outWidth: B,
 
-         outChannels: P,
 
-         padInfo: O,
 
-         strideDepth: w,
 
-         strideHeight: C,
 
-         strideWidth: R,
 
-         filterDepth: v,
 
-         filterHeight: m,
 
-         filterWidth: y,
 
-         effectiveFilterDepth: D,
 
-         effectiveFilterHeight: T,
 
-         effectiveFilterWidth: N,
 
-         dilationDepth: k,
 
-         dilationHeight: S,
 
-         dilationWidth: A,
 
-         inShape: t,
 
-         outShape: d,
 
-         filterShape: e
 
-       };
 
-     }
 
-     function xo(t, e, n, r) {
 
-       void 0 === r && (r = 1);
 
-       var o = Co(e, r);
 
-       return Math.floor((t[0] * (n - 1) - n + o) / 2);
 
-     }
 
-     function bo(t) {
 
-       return "number" == typeof t ? [t, t, t] : 2 === t.length ? [t[0], t[1], 1] : t;
 
-     }
 
-     function wo(t) {
 
-       return "number" == typeof t ? [t, t, t] : t;
 
-     }
 
-     function Co(t, e) {
 
-       return e <= 1 ? t : t + (t - 1) * (e - 1);
 
-     }
 
-     function Eo(t, e) {
 
-       if (!e) return t;
 
-       switch (e) {
 
-         case "round":
 
-           return Math.round(t);
 
-         case "ceil":
 
-           return Math.ceil(t);
 
-         case "floor":
 
-           return Math.floor(t);
 
-         default:
 
-           throw new Error("Unknown roundingMode " + e);
 
-       }
 
-     }
 
-     function Ro(t) {
 
-       var e = bo(t),
 
-         n = e[0],
 
-         r = e[1],
 
-         o = e[2];
 
-       return 1 === n && 1 === r && 1 === o;
 
-     }
 
-     function Io(t, e) {
 
-       return Ro(t) || Ro(e);
 
-     }
 
-     function ko(t) {
 
-       if ("NHWC" === t) return "channelsLast";
 
-       if ("NCHW" === t) return "channelsFirst";
 
-       throw new Error("Unknown dataFormat " + t);
 
-     }
 
-     function So(t, e, n) {
 
-       if ("complex64" === e) {
 
-         if ("complex64" === t.dtype) return t.clone();
 
-         var r = Pn(t.shape),
 
-           o = t.toFloat(),
 
-           a = n.complex(o, r);
 
-         return r.dispose(), o.dispose(), a;
 
-       }
 
-       if (!M(t.dtype, e)) return Nt.makeTensorFromDataId(t.dataId, t.shape, e);
 
-       if ("complex64" === t.dtype) {
 
-         var i = n.real(t);
 
-         a = i.cast(e);
 
-         return i.dispose(), a;
 
-       }
 
-       if ("int32" === e) return n.int(t);
 
-       if ("bool" === e) {
 
-         var u = An(0, t.dtype);
 
-         a = n.notEqual(t, u);
 
-         return u.dispose(), a;
 
-       }
 
-       throw new Error("Error in Cast: failed to cast " + t.dtype + " to " + e);
 
-     }
 
-     function Ao(t, e) {
 
-       return Nt.makeTensorFromDataId(t.dataId, e, t.dtype);
 
-     }
 
-     function Do(t, e, n) {
 
-       var r = (e - t) / (n - 1),
 
-         o = $(n, "float32");
 
-       o[0] = t;
 
-       for (var a = 1; a < o.length; a++) o[a] = o[a - 1] + r;
 
-       return Dn(o, "float32");
 
-     }
 
-     var To = Object.freeze({
 
-       castTensor: So,
 
-       reshapeTensor: Ao,
 
-       linspaceImpl: Do,
 
-       upcastType: Ct,
 
-       axesAreInnerMostDims: fn,
 
-       combineLocations: pn,
 
-       computeOutAndReduceShapes: dn,
 
-       expandShapeToKeepDim: vn,
 
-       assertAxesAreInnerMostDims: mn,
 
-       getAxesPermutation: gn,
 
-       getUndoAxesPermutation: yn,
 
-       getInnerMostAxes: xn,
 
-       getBroadcastDims: ho,
 
-       getReductionAxes: fo,
 
-       assertAndGetBroadcastShape: po,
 
-       assertParamsConsistent: bn,
 
-       computeOutShape: wn,
 
-       computePool2DInfo: vo,
 
-       computePool3DInfo: mo,
 
-       computeConv2DInfo: go,
 
-       computeConv3DInfo: yo,
 
-       computeDefaultPad: xo,
 
-       tupleValuesAreOne: Ro,
 
-       eitherStridesOrDilationsAreOne: Io,
 
-       convertConv2DDataFormat: ko
 
-     });
 
-     exports.backend_util = To;
 
-     function No(t, e) {
 
-       if (t.length !== e.length) throw new Error("Cannot merge real and imag arrays of different lengths. real:" + t.length + ", imag: " + e.length + ".");
 
-       for (var n = new Float32Array(2 * t.length), r = 0; r < n.length; r += 2) n[r] = t[r / 2], n[r + 1] = e[r / 2];
 
-       return n;
 
-     }
 
-     function Fo(t, e) {
 
-       return {
 
-         real: t[2 * e],
 
-         imag: t[2 * e + 1]
 
-       };
 
-     }
 
-     function Oo(t, e, n, r) {
 
-       t[2 * r] = e, t[2 * r + 1] = n;
 
-     }
 
-     function _o(t, e, n) {
 
-       var r = (n ? 2 : -2) * Math.PI * (t / e);
 
-       return {
 
-         real: Math.cos(r),
 
-         imag: Math.sin(r)
 
-       };
 
-     }
 
-     function Mo(t, e, n, r, o) {
 
-       for (var a = Array.from(e).map(function (t, e) {
 
-         return {
 
-           score: t,
 
-           boxIndex: e
 
-         };
 
-       }).filter(function (t) {
 
-         return t.score > o;
 
-       }).sort(function (t, e) {
 
-         return e.score - t.score;
 
-       }), i = [], u = 0; u < a.length; u++) {
 
-         var s = a[u],
 
-           c = s.score,
 
-           l = s.boxIndex;
 
-         if (c < o) break;
 
-         for (var h = !1, f = i.length - 1; f >= 0; --f) {
 
-           if (Bo(t, l, i[f]) >= r) {
 
-             h = !0;
 
-             break;
 
-           }
 
-         }
 
-         if (!h && (i.push(l), i.length >= n)) break;
 
-       }
 
-       return Dn(i, "int32");
 
-     }
 
-     function Bo(t, e, n) {
 
-       var r = t.subarray(4 * e, 4 * e + 4),
 
-         o = t.subarray(4 * n, 4 * n + 4),
 
-         a = Math.min(r[0], r[2]),
 
-         i = Math.min(r[1], r[3]),
 
-         u = Math.max(r[0], r[2]),
 
-         s = Math.max(r[1], r[3]),
 
-         c = Math.min(o[0], o[2]),
 
-         l = Math.min(o[1], o[3]),
 
-         h = Math.max(o[0], o[2]),
 
-         f = Math.max(o[1], o[3]),
 
-         p = (u - a) * (s - i),
 
-         d = (h - c) * (f - l);
 
-       if (p <= 0 || d <= 0) return 0;
 
-       var v = Math.max(a, c),
 
-         m = Math.max(i, l),
 
-         g = Math.min(u, h),
 
-         y = Math.min(s, f),
 
-         x = Math.max(g - v, 0) * Math.max(y - m, 0);
 
-       return x / (p + d - x);
 
-     }
 
-     function Po(t, e, n) {
 
-       var r = new Array(t.rank).fill(0),
 
-         o = t.shape.slice();
 
-       return e.map(function (e) {
 
-         o[n] = e;
 
-         var a = t.slice(r, o);
 
-         return r[n] += e, a;
 
-       });
 
-     }
 
-     function Lo(t, e) {
 
-       for (var n = new Array(t.rank), r = 0; r < n.length; r++) n[r] = t.shape[r] * e[r];
 
-       var o = ur(n, t.dtype);
 
-       for (r = 0; r < o.values.length; ++r) {
 
-         for (var a = o.indexToLoc(r), i = new Array(t.rank), u = 0; u < i.length; u++) i[u] = a[u] % t.shape[u];
 
-         var s = t.locToIndex(i);
 
-         o.values[r] = t.values[s];
 
-       }
 
-       return o.toTensor();
 
-     }
 
-     function Wo(t, e, n, r, o) {
 
-       for (var a = e[e.length - 1], i = [t.length / a, a], u = i[0], s = i[1], c = N(n, u * r), l = N("int32", u * r), h = 0; h < u; h++) {
 
-         for (var f = h * s, p = t.subarray(f, f + s), d = [], v = 0; v < p.length; v++) d.push({
 
-           value: p[v],
 
-           index: v
 
-         });
 
-         d.sort(function (t, e) {
 
-           return e.value - t.value;
 
-         });
 
-         var m = h * r,
 
-           g = c.subarray(m, m + r),
 
-           y = l.subarray(m, m + r);
 
-         for (v = 0; v < r; v++) g[v] = d[v].value, y[v] = d[v].index;
 
-       }
 
-       var x = e.slice();
 
-       return x[x.length - 1] = r, [kn(c, x, n), kn(l, x, "int32")];
 
-     }
 
-     function Uo(t, e) {
 
-       for (var n = [], r = 0; r < e.length; r++) e[r] && n.push(r);
 
-       var o = ur(t, "int32"),
 
-         a = ur([n.length, t.length], "int32");
 
-       for (r = 0; r < n.length; r++) {
 
-         var i = o.indexToLoc(n[r]),
 
-           u = r * t.length;
 
-         a.values.set(i, u);
 
-       }
 
-       return a.toTensor();
 
-     }
 
-     var Vo = function () {
 
-       return function (t, e) {
 
-         this.outputShape = [], this.outputShape = t, this.variableNames = e.map(function (t, e) {
 
-           return "T" + e;
 
-         });
 
-         var n = [];
 
-         this.variableNames.forEach(function (t) {
 
-           n.push("float v" + t + " = get" + t + "AtOutCoords();");
 
-         });
 
-         var r = this.variableNames.map(function (t) {
 
-           return "v" + t;
 
-         }).join(" + ");
 
-         this.userCode = "\n      void main() {\n        " + n.join("\n        ") + "\n\n        float result = " + r + ";\n        setOutput(result);\n      }\n    ";
 
-       };
 
-     }(),
 
-       zo = function () {
 
-         return function (t, e) {
 
-           this.outputShape = [], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t, this.variableNames = e.map(function (t, e) {
 
-             return "T" + e;
 
-           });
 
-           var n = [];
 
-           this.variableNames.forEach(function (t) {
 
-             n.push("vec4 v" + t + " = get" + t + "AtOutCoords();");
 
-           });
 
-           var r = this.variableNames.map(function (t) {
 
-             return "v" + t;
 
-           }).join(" + ");
 
-           this.userCode = "\n      void main() {\n        " + n.join("\n        ") + "\n\n        vec4 result = " + r + ";\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Go = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["A"];
 
-           var r = t.windowSize,
 
-             o = t.batchSize,
 
-             a = t.inSize,
 
-             i = Math.ceil(a / r);
 
-           n || this.variableNames.push("bestIndicesA"), this.outputShape = [o, i];
 
-           var u = "max" === e ? ">" : "<",
 
-             s = n ? "inOffset + i;" : "round(getBestIndicesA(batch, inOffset + i));";
 
-           this.userCode = "\n      void main() {\n        ivec2 coords = getOutputCoords();\n        int batch = coords[0];\n        int outIdx = coords[1];\n        int inOffset = outIdx * " + r + ";\n\n        int bestIndex = inOffset;\n        float bestValue = getA(batch, bestIndex);\n\n        for (int i = 0; i < " + r + "; i++) {\n          int inIdx = " + s + ";\n          float candidate = getA(batch, inIdx);\n          if (candidate " + u + " bestValue) {\n            bestValue = candidate;\n            bestIndex = inIdx;\n          }\n        }\n        setOutput(float(bestIndex));\n      }\n    ";
 
-         };
 
-       }();
 
-     function Ho(t, e) {
 
-       return ["x", "y", "z", "w", "u", "v"].slice(0, e).map(function (e) {
 
-         return t + "." + e;
 
-       });
 
-     }
 
-     function qo(t, e) {
 
-       return 1 === e ? [t] : Ho(t, e);
 
-     }
 
-     function Ko() {
 
-       var t, e, n, r, o, i, u, s, c, l;
 
-       return 2 === a().getNumber("WEBGL_VERSION") ? (t = "#version 300 es", e = "in", n = "out", r = "in", o = "texture", i = "outputColor", u = "out vec4 outputColor;", s = "\n      bool isnan_custom(float val) {\n        return (val > 0.0 || val < 0.0) ? false : val != 0.0;\n      }\n\n      bvec4 isnan_custom(vec4 val) {\n        return bvec4(isnan_custom(val.x),\n          isnan_custom(val.y), isnan_custom(val.z), isnan_custom(val.w));\n      }\n\n      #define isnan(value) isnan_custom(value)\n    ", c = "", l = "\n      #define round(value) newRound(value)\n      int newRound(float value) {\n        return int(floor(value + 0.5));\n      }\n\n      ivec4 newRound(vec4 value) {\n        return ivec4(floor(value + vec4(0.5)));\n      }\n    ") : (t = "", e = "attribute", n = "varying", r = "varying", o = "texture2D", i = "gl_FragColor", u = "", s = "\n      #define isnan(value) isnan_custom(value)\n      bool isnan_custom(float val) {\n        return (val > 0. || val < 1. || val == 0.) ? false : true;\n      }\n      bvec4 isnan_custom(vec4 val) {\n        return bvec4(isnan(val.x), isnan(val.y), isnan(val.z), isnan(val.w));\n      }\n    ", c = "\n      uniform float INFINITY;\n\n      bool isinf(float val) {\n        return abs(val) == INFINITY;\n      }\n      bvec4 isinf(vec4 val) {\n        return equal(abs(val), vec4(INFINITY));\n      }\n    ", l = "\n      int round(float value) {\n        return int(floor(value + 0.5));\n      }\n\n      ivec4 round(vec4 value) {\n        return ivec4(floor(value + vec4(0.5)));\n      }\n    "), {
 
-         version: t,
 
-         attribute: e,
 
-         varyingVs: n,
 
-         varyingFs: r,
 
-         texture2D: o,
 
-         output: i,
 
-         defineOutput: u,
 
-         defineSpecialNaN: s,
 
-         defineSpecialInf: c,
 
-         defineRound: l
 
-       };
 
-     }
 
-     function jo(t, e, n) {
 
-       void 0 === n && (n = "index");
 
-       var r = q(e);
 
-       return r.map(function (e, o) {
 
-         return "int " + t[o] + " = " + n + " / " + e + "; " + (o === r.length - 1 ? "int " + t[o + 1] + " = " + n + " - " + t[o] + " * " + e : "index -= " + t[o] + " * " + e) + ";";
 
-       }).join("");
 
-     }
 
-     function Xo(t) {
 
-       var e = q(t).map(function (t) {
 
-         return t.toString();
 
-       });
 
-       return "\n  int getFlatIndex(ivec3 coords) {\n    return coords.x * " + e[0] + " + coords.y * " + e[1] + " + coords.z;\n  }\n";
 
-     }
 
-     var $o = "\n  const float FLOAT_MAX = 1.70141184e38;\n  const float FLOAT_MIN = 1.17549435e-38;\n\n  lowp vec4 encode_float(highp float v) {\n    if (isnan(v)) {\n      return vec4(255, 255, 255, 255);\n    }\n\n    highp float av = abs(v);\n\n    if(av < FLOAT_MIN) {\n      return vec4(0.0, 0.0, 0.0, 0.0);\n    } else if(v > FLOAT_MAX) {\n      return vec4(0.0, 0.0, 128.0, 127.0) / 255.0;\n    } else if(v < -FLOAT_MAX) {\n      return vec4(0.0, 0.0,  128.0, 255.0) / 255.0;\n    }\n\n    highp vec4 c = vec4(0,0,0,0);\n\n    highp float e = floor(log2(av));\n    highp float m = exp2(fract(log2(av))) - 1.0;\n\n    c[2] = floor(128.0 * m);\n    m -= c[2] / 128.0;\n    c[1] = floor(32768.0 * m);\n    m -= c[1] / 32768.0;\n    c[0] = floor(8388608.0 * m);\n\n    highp float ebias = e + 127.0;\n    c[3] = floor(ebias / 2.0);\n    ebias -= c[3] * 2.0;\n    c[2] += floor(ebias) * 128.0;\n\n    c[3] += 128.0 * step(0.0, -v);\n\n    return c / 255.0;\n  }\n";
 
-     function Yo(t, e, n, r) {
 
-       var o = [];
 
-       t.forEach(function (t) {
 
-         var e = w(t.shapeInfo.logicalShape);
 
-         t.shapeInfo.isUniform ? o.push("uniform float " + t.name + (e > 1 ? "[" + e + "]" : "") + ";") : (o.push("uniform sampler2D " + t.name + ";"), o.push("uniform int offset" + t.name + ";"));
 
-       });
 
-       var a,
 
-         i,
 
-         u = o.join("\n"),
 
-         s = t.map(function (t) {
 
-           return function (t, e, n) {
 
-             void 0 === n && (n = !1);
 
-             var r = "";
 
-             r += n ? Jo(t) : Qo(t);
 
-             var o = t.shapeInfo.logicalShape,
 
-               a = e.logicalShape;
 
-             o.length <= a.length && (r += n ? function (t, e) {
 
-               var n,
 
-                 r = t.name,
 
-                 o = r.charAt(0).toUpperCase() + r.slice(1),
 
-                 a = "get" + o + "AtOutCoords",
 
-                 i = t.shapeInfo.logicalShape.length,
 
-                 u = e.logicalShape.length,
 
-                 s = ho(t.shapeInfo.logicalShape, e.logicalShape),
 
-                 c = aa(u),
 
-                 l = u - i,
 
-                 h = ["x", "y", "z", "w", "u", "v"];
 
-               n = 0 === i ? "" : u < 2 && s.length >= 1 ? "coords = 0;" : s.map(function (t) {
 
-                 return "coords." + h[t + l] + " = 0;";
 
-               }).join("\n");
 
-               var f = "";
 
-               f = u < 2 && i > 0 ? "coords" : t.shapeInfo.logicalShape.map(function (t, e) {
 
-                 return "coords." + h[e + l];
 
-               }).join(", ");
 
-               var p = "return outputValue;",
 
-                 d = 1 === w(t.shapeInfo.logicalShape),
 
-                 v = 1 === w(e.logicalShape);
 
-               if (1 !== i || d || v) {
 
-                 if (d && !v) p = 1 === u ? "\n        return vec4(outputValue.x, outputValue.x, 0., 0.);\n      " : "\n        return vec4(outputValue.x);\n      "; else if (s.length) {
 
-                   var m = i - 2,
 
-                     g = i - 1;
 
-                   s.indexOf(m) > -1 && s.indexOf(g) > -1 ? p = "return vec4(outputValue.x);" : s.indexOf(m) > -1 ? p = "return vec4(outputValue.x, outputValue.y, outputValue.x, outputValue.y);" : s.indexOf(g) > -1 && (p = "return vec4(outputValue.xx, outputValue.zz);");
 
-                 }
 
-               } else p = "\n      return vec4(outputValue.xy, outputValue.xy);\n    ";
 
-               return "\n    vec4 " + a + "() {\n      " + c + " coords = getOutputCoords();\n      " + n + "\n      vec4 outputValue = get" + o + "(" + f + ");\n      " + p + "\n    }\n  ";
 
-             }(t, e) : function (t, e) {
 
-               var n = t.name,
 
-                 r = n.charAt(0).toUpperCase() + n.slice(1),
 
-                 o = "get" + r + "AtOutCoords",
 
-                 a = e.texShape,
 
-                 i = t.shapeInfo.texShape,
 
-                 u = t.shapeInfo.logicalShape.length,
 
-                 s = e.logicalShape.length;
 
-               if (!t.shapeInfo.isUniform && u === s && null == t.shapeInfo.flatOffset && C(i, a)) return "\n      float " + o + "() {\n        return sampleTexture(" + n + ", resultUV);\n      }\n    ";
 
-               var c,
 
-                 l = aa(s),
 
-                 h = ho(t.shapeInfo.logicalShape, e.logicalShape),
 
-                 f = s - u,
 
-                 p = ["x", "y", "z", "w", "u", "v"];
 
-               c = 0 === u ? "" : s < 2 && h.length >= 1 ? "coords = 0;" : h.map(function (t) {
 
-                 return "coords." + p[t + f] + " = 0;";
 
-               }).join("\n");
 
-               var d = "";
 
-               d = s < 2 && u > 0 ? "coords" : t.shapeInfo.logicalShape.map(function (t, e) {
 
-                 return "coords." + p[e + f];
 
-               }).join(", ");
 
-               return "\n    float " + o + "() {\n      " + l + " coords = getOutputCoords();\n      " + c + "\n      return get" + r + "(" + d + ");\n    }\n  ";
 
-             }(t, e));
 
-             return r;
 
-           }(t, e, r);
 
-         }).join("\n"),
 
-         c = e.texShape,
 
-         l = Ko(),
 
-         h = function (t) {
 
-           return "\n    float sampleTexture(sampler2D textureSampler, vec2 uv) {\n      return " + t.texture2D + "(textureSampler, uv).r;\n    }\n  ";
 
-         }(l),
 
-         f = function (t) {
 
-           return t.version + "\n    precision highp float;\n    precision highp int;\n    precision highp sampler2D;\n    " + t.varyingFs + " vec2 resultUV;\n    " + t.defineOutput + "\n    const vec2 halfCR = vec2(0.5, 0.5);\n\n    struct ivec5\n    {\n      int x;\n      int y;\n      int z;\n      int w;\n      int u;\n    };\n\n    struct ivec6\n    {\n      int x;\n      int y;\n      int z;\n      int w;\n      int u;\n      int v;\n    };\n\n    uniform float NAN;\n    " + t.defineSpecialNaN + "\n    " + t.defineSpecialInf + "\n    " + t.defineRound + "\n\n    int imod(int x, int y) {\n      return x - y * (x / y);\n    }\n\n    int idiv(int a, int b, float sign) {\n      int res = a / b;\n      int mod = imod(a, b);\n      if (sign < 0. && mod != 0) {\n        res -= 1;\n      }\n      return res;\n    }\n\n    //Based on the work of Dave Hoskins\n    //https://www.shadertoy.com/view/4djSRW\n    #define HASHSCALE1 443.8975\n    float random(float seed){\n      vec2 p = resultUV * seed;\n      vec3 p3  = fract(vec3(p.xyx) * HASHSCALE1);\n      p3 += dot(p3, p3.yzx + 19.19);\n      return fract((p3.x + p3.y) * p3.z);\n    }\n\n    " + Zo + "\n    " + ta + "\n    " + ea + "\n  ";
 
-         }(l);
 
-       return e.isPacked ? (a = function (t, e) {
 
-         switch (t.length) {
 
-           case 0:
 
-             return "\n    int getOutputCoords() {\n      return 0;\n    }\n  ";
 
-           case 1:
 
-             return function (t, e) {
 
-               var n = [Math.ceil(e[0] / 2), Math.ceil(e[1] / 2)];
 
-               if (1 === n[0]) return "\n      int getOutputCoords() {\n        return 2 * int(resultUV.x * " + n[1] + ".0);\n      }\n    ";
 
-               if (1 === n[1]) return "\n      int getOutputCoords() {\n        return 2 * int(resultUV.y * " + n[0] + ".0);\n      }\n    ";
 
-               return "\n    int getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + n[0] + ", " + n[1] + "));\n      return 2 * (resTexRC.x * " + n[1] + " + resTexRC.y);\n    }\n  ";
 
-             }(0, e);
 
-           case 2:
 
-             return function (t, e) {
 
-               var n = [Math.ceil(e[0] / 2), Math.ceil(e[1] / 2)];
 
-               if (C(t, e)) return "\n      ivec2 getOutputCoords() {\n        return 2 * ivec2(resultUV.yx * vec2(" + n[0] + ", " + n[1] + "));\n      }\n    ";
 
-               var r = Math.ceil(t[1] / 2);
 
-               return "\n    ivec2 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + n[0] + ", " + n[1] + "));\n\n      int index = resTexRC.x * " + n[1] + " + resTexRC.y;\n      int r = 2 * (index / " + r + ");\n      int c = imod(index, " + r + ") * 2;\n\n      return ivec2(r, c);\n    }\n  ";
 
-             }(t, e);
 
-           case 3:
 
-             return n = t, r = e, o = [Math.ceil(r[0] / 2), Math.ceil(r[1] / 2)], a = Math.ceil(n[2] / 2), i = a * Math.ceil(n[1] / 2), "\n    ivec3 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + o[0] + ", " + o[1] + "));\n      int index = resTexRC.x * " + o[1] + " + resTexRC.y;\n\n      int b = index / " + i + ";\n      index -= b * " + i + ";\n\n      int r = 2 * (index / " + a + ");\n      int c = imod(index, " + a + ") * 2;\n\n      return ivec3(b, r, c);\n    }\n  ";
 
-           default:
 
-             return function (t, e) {
 
-               for (var n = [Math.ceil(e[0] / 2), Math.ceil(e[1] / 2)], r = Math.ceil(t[t.length - 1] / 2), o = r * Math.ceil(t[t.length - 2] / 2), a = o, i = "", u = "b, r, c", s = 2; s < t.length - 1; s++) a *= t[t.length - s - 1], i = "\n      int b" + s + " = index / " + a + ";\n      index -= b" + s + " * " + a + ";\n    " + i, u = "b" + s + ", " + u;
 
-               return "\n    ivec" + t.length + " getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + n[0] + ", " + n[1] + "));\n      int index = resTexRC.x * " + n[1] + " + resTexRC.y;\n\n      " + i + "\n\n      int b = index / " + o + ";\n      index -= b * " + o + ";\n\n      int r = 2 * (index / " + r + ");\n      int c = imod(index, " + r + ") * 2;\n\n      return ivec" + t.length + "(" + u + ");\n    }\n  ";
 
-             }(t, e);
 
-         }
 
-         var n, r, o, a, i;
 
-       }(e.logicalShape, c), i = function (t) {
 
-         return "\n    void setOutput(vec4 val) {\n      " + t.output + " = val;\n    }\n  ";
 
-       }(l)) : (a = function (t, e) {
 
-         switch (t.length) {
 
-           case 0:
 
-             return "\n    int getOutputCoords() {\n      return 0;\n    }\n  ";
 
-           case 1:
 
-             return function (t, e) {
 
-               if (1 === e[0]) return "\n      int getOutputCoords() {\n        return int(resultUV.x * " + e[1] + ".0);\n      }\n    ";
 
-               if (1 === e[1]) return "\n      int getOutputCoords() {\n        return int(resultUV.y * " + e[0] + ".0);\n      }\n    ";
 
-               return "\n    int getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + e[0] + ", " + e[1] + "));\n      return resTexRC.x * " + e[1] + " + resTexRC.y;\n    }\n  ";
 
-             }(0, e);
 
-           case 2:
 
-             return function (t, e) {
 
-               if (C(t, e)) return "\n      ivec2 getOutputCoords() {\n        return ivec2(resultUV.yx * vec2(" + e[0] + ", " + e[1] + "));\n      }\n    ";
 
-               if (1 === t[1]) return "\n      ivec2 getOutputCoords() {\n        ivec2 resTexRC = ivec2(resultUV.yx *\n                               vec2(" + e[0] + ", " + e[1] + "));\n        int index = resTexRC.x * " + e[1] + " + resTexRC.y;\n        return ivec2(index, 0);\n      }\n    ";
 
-               if (1 === t[0]) return "\n      ivec2 getOutputCoords() {\n        ivec2 resTexRC = ivec2(resultUV.yx *\n                               vec2(" + e[0] + ", " + e[1] + "));\n        int index = resTexRC.x * " + e[1] + " + resTexRC.y;\n        return ivec2(0, index);\n      }\n    ";
 
-               return "\n    ivec2 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + e[0] + ", " + e[1] + "));\n      int index = resTexRC.x * " + e[1] + " + resTexRC.y;\n      int r = index / " + t[1] + ";\n      int c = index - r * " + t[1] + ";\n      return ivec2(r, c);\n    }\n  ";
 
-             }(t, e);
 
-           case 3:
 
-             return n = e, r = jo(["r", "c", "d"], t), "\n    ivec3 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n                             vec2(" + n[0] + ", " + n[1] + "));\n      int index = resTexRC.x * " + n[1] + " + resTexRC.y;\n      " + r + "\n      return ivec3(r, c, d);\n    }\n  ";
 
-           case 4:
 
-             return function (t, e) {
 
-               var n = jo(["r", "c", "d", "d2"], t);
 
-               return "\n    ivec4 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n        vec2(" + e[0] + ", " + e[1] + "));\n      int index = resTexRC.x * " + e[1] + " + resTexRC.y;\n      " + n + "\n      return ivec4(r, c, d, d2);\n    }\n  ";
 
-             }(t, e);
 
-           case 5:
 
-             return function (t, e) {
 
-               var n = jo(["r", "c", "d", "d2", "d3"], t);
 
-               return "\n    ivec5 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx * vec2(" + e[0] + ",\n                             " + e[1] + "));\n\n      int index = resTexRC.x * " + e[1] + " + resTexRC.y;\n\n      " + n + "\n\n      ivec5 outShape = ivec5(r, c, d, d2, d3);\n      return outShape;\n    }\n  ";
 
-             }(t, e);
 
-           case 6:
 
-             return function (t, e) {
 
-               var n = jo(["r", "c", "d", "d2", "d3", "d4"], t);
 
-               return "\n    ivec6 getOutputCoords() {\n      ivec2 resTexRC = ivec2(resultUV.yx *\n        vec2(" + e[0] + ", " + e[1] + "));\n      int index = resTexRC.x * " + e[1] + " + resTexRC.y;\n\n      " + n + "\n\n      ivec6 result = ivec6(r, c, d, d2, d3, d4);\n      return result;\n    }\n  ";
 
-             }(t, e);
 
-           default:
 
-             throw new Error(t.length + "-D output sampling is not yet supported");
 
-         }
 
-         var n, r;
 
-       }(e.logicalShape, c), i = function (t) {
 
-         return "\n    void setOutput(float val) {\n      " + t.output + " = vec4(val, 0, 0, 0);\n    }\n  ";
 
-       }(l)), r && (f += na), [f, h, i, u, a, s, n].join("\n");
 
-     }
 
-     function Qo(t) {
 
-       var e = t.shapeInfo.logicalShape;
 
-       switch (e.length) {
 
-         case 0:
 
-           return function (t) {
 
-             var e = t.name,
 
-               n = "get" + e.charAt(0).toUpperCase() + e.slice(1);
 
-             if (t.shapeInfo.isUniform) return "float " + n + "() {return " + e + ";}";
 
-             var r = t.shapeInfo.texShape,
 
-               o = r[0],
 
-               a = r[1];
 
-             if (1 === o && 1 === a) return "\n      float " + n + "() {\n        return sampleTexture(" + e + ", halfCR);\n      }\n    ";
 
-             var i = t.shapeInfo.texShape,
 
-               u = i[0],
 
-               s = i[1],
 
-               c = ra(e);
 
-             return "\n    float " + n + "() {\n      vec2 uv = uvFromFlat(" + u + ", " + s + ", " + c + ");\n      return sampleTexture(" + e + ", uv);\n    }\n  ";
 
-           }(t);
 
-         case 1:
 
-           return function (t) {
 
-             var e = t.name,
 
-               n = "get" + e.charAt(0).toUpperCase() + e.slice(1);
 
-             if (t.shapeInfo.isUniform) return "\n      float " + n + "(int index) {\n        " + oa(t) + "\n      }\n    ";
 
-             var r = t.shapeInfo.texShape,
 
-               o = r[0],
 
-               a = r[1];
 
-             if (1 === a && 1 === o) return "\n      float " + n + "(int index) {\n        return sampleTexture(" + e + ", halfCR);\n      }\n    ";
 
-             var i = ra(e);
 
-             if (1 === a) return "\n      float " + n + "(int index) {\n        vec2 uv = vec2(0.5, (float(index + " + i + ") + 0.5) / " + o + ".0);\n        return sampleTexture(" + e + ", uv);\n      }\n    ";
 
-             if (1 === o) return "\n      float " + n + "(int index) {\n        vec2 uv = vec2((float(index + " + i + ") + 0.5) / " + a + ".0, 0.5);\n        return sampleTexture(" + e + ", uv);\n      }\n    ";
 
-             return "\n    float " + n + "(int index) {\n      vec2 uv = uvFromFlat(" + o + ", " + a + ", index + " + i + ");\n      return sampleTexture(" + e + ", uv);\n    }\n  ";
 
-           }(t);
 
-         case 2:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = t.shapeInfo.texShape;
 
-             if (null != o && C(e, o)) {
 
-               var a = o[0],
 
-                 i = o[1];
 
-               return "\n    float " + r + "(int row, int col) {\n      vec2 uv = (vec2(col, row) + halfCR) / vec2(" + i + ".0, " + a + ".0);\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-             }
 
-             var u = T(e),
 
-               s = u.newShape,
 
-               c = u.keptDims,
 
-               l = s;
 
-             if (l.length < e.length) {
 
-               var h = ia(t, l);
 
-               return "\n      " + Qo(h) + "\n      float " + r + "(int row, int col) {\n        return " + r + "(" + ua(["row", "col"], c) + ");\n      }\n    ";
 
-             }
 
-             if (t.shapeInfo.isUniform) return "\n      float " + r + "(int row, int col) {\n        int index = round(dot(vec2(row, col), vec2(" + e[1] + ", 1)));\n        " + oa(t) + "\n      }\n    ";
 
-             var f = o[0],
 
-               p = o[1],
 
-               d = ra(n);
 
-             if (1 === p) return "\n    float " + r + "(int row, int col) {\n      float index = dot(vec3(row, col, " + d + "), vec3(" + e[1] + ", 1, 1));\n      vec2 uv = vec2(0.5, (index + 0.5) / " + f + ".0);\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-             if (1 === f) return "\n    float " + r + "(int row, int col) {\n      float index = dot(vec3(row, col, " + d + "), vec3(" + e[1] + ", 1, 1));\n      vec2 uv = vec2((index + 0.5) / " + p + ".0, 0.5);\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-             return "\n  float " + r + "(int row, int col) {\n    // Explicitly use integer operations as dot() only works on floats.\n    int index = row * " + e[1] + " + col + " + d + ";\n    vec2 uv = uvFromFlat(" + f + ", " + p + ", index);\n    return sampleTexture(" + n + ", uv);\n  }\n";
 
-           }(t);
 
-         case 3:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = e[1] * e[2],
 
-               a = e[2],
 
-               i = T(e),
 
-               u = i.newShape,
 
-               s = i.keptDims,
 
-               c = u;
 
-             if (c.length < e.length) {
 
-               var l = ia(t, c);
 
-               return "\n        " + Qo(l) + "\n        float " + r + "(int row, int col, int depth) {\n          return " + r + "(" + ua(["row", "col", "depth"], s) + ");\n        }\n      ";
 
-             }
 
-             if (t.shapeInfo.isUniform) return "\n      float " + r + "(int row, int col, int depth) {\n        int index = round(dot(vec3(row, col, depth),\n                          vec3(" + o + ", " + a + ", 1)));\n        " + oa(t) + "\n      }\n    ";
 
-             var h = t.shapeInfo.texShape,
 
-               f = h[0],
 
-               p = h[1],
 
-               d = t.shapeInfo.flatOffset;
 
-             if (p === o && null == d) return "\n        float " + r + "(int row, int col, int depth) {\n          float texR = float(row);\n          float texC = dot(vec2(col, depth), vec2(" + a + ", 1));\n          vec2 uv = (vec2(texC, texR) + halfCR) /\n                     vec2(" + p + ".0, " + f + ".0);\n          return sampleTexture(" + n + ", uv);\n        }\n      ";
 
-             if (p === a && null == d) return "\n    float " + r + "(int row, int col, int depth) {\n      float texR = dot(vec2(row, col), vec2(" + e[1] + ", 1));\n      float texC = float(depth);\n      vec2 uv = (vec2(texC, texR) + halfCR) / vec2(" + p + ".0, " + f + ".0);\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-             var v = ra(n);
 
-             return "\n      float " + r + "(int row, int col, int depth) {\n        // Explicitly use integer operations as dot() only works on floats.\n        int index = row * " + o + " + col * " + a + " + depth + " + v + ";\n        vec2 uv = uvFromFlat(" + f + ", " + p + ", index);\n        return sampleTexture(" + n + ", uv);\n      }\n  ";
 
-           }(t);
 
-         case 4:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = e[3],
 
-               a = e[2] * o,
 
-               i = e[1] * a,
 
-               u = T(e),
 
-               s = u.newShape,
 
-               c = u.keptDims;
 
-             if (s.length < e.length) {
 
-               var l = ia(t, s);
 
-               return "\n      " + Qo(l) + "\n      float " + r + "(int row, int col, int depth, int depth2) {\n        return " + r + "(" + ua(["row", "col", "depth", "depth2"], c) + ");\n      }\n    ";
 
-             }
 
-             if (t.shapeInfo.isUniform) return "\n      float " + r + "(int row, int col, int depth, int depth2) {\n        int index = round(dot(vec4(row, col, depth, depth2),\n                          vec4(" + i + ", " + a + ", " + o + ", 1)));\n        " + oa(t) + "\n      }\n    ";
 
-             var h = t.shapeInfo.flatOffset,
 
-               f = t.shapeInfo.texShape,
 
-               p = f[0],
 
-               d = f[1];
 
-             if (d === i && null == h) return "\n      float " + r + "(int row, int col, int depth, int depth2) {\n        float texR = float(row);\n        float texC =\n            dot(vec3(col, depth, depth2),\n                vec3(" + a + ", " + o + ", 1));\n        vec2 uv = (vec2(texC, texR) + halfCR) /\n                   vec2(" + d + ".0, " + p + ".0);\n        return sampleTexture(" + n + ", uv);\n      }\n    ";
 
-             if (d === o && null == h) return "\n      float " + r + "(int row, int col, int depth, int depth2) {\n        float texR = dot(vec3(row, col, depth),\n                         vec3(" + e[1] * e[2] + ", " + e[2] + ", 1));\n        float texC = float(depth2);\n        vec2 uv = (vec2(texC, texR) + halfCR) /\n                  vec2(" + d + ".0, " + p + ".0);\n        return sampleTexture(" + n + ", uv);\n      }\n    ";
 
-             var v = ra(n);
 
-             return "\n    float " + r + "(int row, int col, int depth, int depth2) {\n      // Explicitly use integer operations as dot() only works on floats.\n      int index = row * " + i + " + col * " + a + " +\n          depth * " + o + " + depth2;\n      vec2 uv = uvFromFlat(" + p + ", " + d + ", index + " + v + ");\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-           }(t);
 
-         case 5:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = e[4],
 
-               a = e[3] * o,
 
-               i = e[2] * a,
 
-               u = e[1] * i,
 
-               s = T(e),
 
-               c = s.newShape,
 
-               l = s.keptDims;
 
-             if (c.length < e.length) {
 
-               var h = ia(t, c);
 
-               return "\n      " + Qo(h) + "\n      float " + r + "(int row, int col, int depth, int depth2, int depth3) {\n        return " + r + "(" + ua(["row", "col", "depth", "depth2", "depth3"], l) + ");\n      }\n    ";
 
-             }
 
-             if (t.shapeInfo.isUniform) return "\n      float " + r + "(int row, int col, int depth, int depth2, int depth3) {\n        float index = dot(\n          vec4(row, col, depth, depth2),\n          vec4(" + u + ", " + i + ", " + a + ", " + o + ")) +\n          depth3;\n        " + oa(t) + "\n      }\n    ";
 
-             var f = t.shapeInfo.flatOffset,
 
-               p = t.shapeInfo.texShape,
 
-               d = p[0],
 
-               v = p[1];
 
-             if (v === u && null == f) return "\n      float " + r + "(int row, int col, int depth, int depth2, int depth3) {\n        int texR = row;\n        float texC = dot(vec4(col, depth, depth2, depth3),\n                         vec4(" + i + ", " + a + ", " + o + ", 1));\n        vec2 uv = (vec2(texC, texR) + halfCR) /\n                   vec2(" + v + ".0, " + d + ".0);\n        return sampleTexture(" + n + ", uv);\n      }\n    ";
 
-             if (v === o && null == f) return "\n      float " + r + "(int row, int col, int depth, int depth2, int depth3) {\n        float texR = dot(\n          vec4(row, col, depth, depth2),\n          vec4(" + e[1] * e[2] * e[3] + ",\n               " + e[2] * e[3] + ", " + e[3] + ", 1));\n        int texC = depth3;\n        vec2 uv = (vec2(texC, texR) + halfCR) /\n                  vec2(" + v + ".0, " + d + ".0);\n        return sampleTexture(" + n + ", uv);\n      }\n    ";
 
-             var m = ra(n);
 
-             return "\n    float " + r + "(int row, int col, int depth, int depth2, int depth3) {\n      // Explicitly use integer operations as dot() only works on floats.\n      int index = row * " + u + " + col * " + i + " + depth * " + a + " +\n          depth2 * " + o + " + depth3 + " + m + ";\n      vec2 uv = uvFromFlat(" + d + ", " + v + ", index);\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-           }(t);
 
-         case 6:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = T(e),
 
-               a = o.newShape,
 
-               i = o.keptDims;
 
-             if (a.length < e.length) {
 
-               var u = ia(t, a);
 
-               return "\n      " + Qo(u) + "\n      float " + r + "(int row, int col, int depth,\n                    int depth2, int depth3, int depth4) {\n        return " + r + "(" + ua(["row", "col", "depth", "depth2", "depth3", "depth4"], i) + ");\n      }\n    ";
 
-             }
 
-             var s = e[5],
 
-               c = e[4] * s,
 
-               l = e[3] * c,
 
-               h = e[2] * l,
 
-               f = e[1] * h;
 
-             if (t.shapeInfo.isUniform) return "\n      float " + r + "(int row, int col, int depth,\n                  int depth2, int depth3, int depth4) {\n        int index = round(dot(\n          vec4(row, col, depth, depth2),\n          vec4(" + f + ", " + h + ", " + l + ", " + c + ")) +\n          dot(\n            vec2(depth3, depth4),\n            vec2(" + s + ", 1)));\n        " + oa(t) + "\n      }\n    ";
 
-             var p = t.shapeInfo.flatOffset,
 
-               d = t.shapeInfo.texShape,
 
-               v = d[0],
 
-               m = d[1];
 
-             if (m === f && null == p) return "\n      float " + r + "(int row, int col, int depth,\n                    int depth2, int depth3, int depth4) {\n        int texR = row;\n        float texC = dot(vec4(col, depth, depth2, depth3),\n          vec4(" + h + ", " + l + ", " + c + ", " + s + ")) +\n               float(depth4);\n        vec2 uv = (vec2(texC, texR) + halfCR) /\n                   vec2(" + m + ".0, " + v + ".0);\n        return sampleTexture(" + n + ", uv);\n      }\n    ";
 
-             if (m === s && null == p) return "\n      float " + r + "(int row, int col, int depth,\n                    int depth2, int depth3, int depth4) {\n        float texR = dot(vec4(row, col, depth, depth2),\n          vec4(" + e[1] * e[2] * e[3] * e[4] + ",\n               " + e[2] * e[3] * e[4] + ",\n               " + e[3] * e[4] + ",\n               " + e[4] + ")) + float(depth3);\n        int texC = depth4;\n        vec2 uv = (vec2(texC, texR) + halfCR) /\n                  vec2(" + m + ".0, " + v + ".0);\n        return sampleTexture(" + n + ", uv);\n      }\n    ";
 
-             var g = ra(n);
 
-             return "\n    float " + r + "(int row, int col, int depth,\n                  int depth2, int depth3, int depth4) {\n      // Explicitly use integer operations as dot() only works on floats.\n      int index = row * " + f + " + col * " + h + " + depth * " + l + " +\n          depth2 * " + c + " + depth3 * " + s + " + depth4 + " + g + ";\n      vec2 uv = uvFromFlat(" + v + ", " + m + ", index);\n      return sampleTexture(" + n + ", uv);\n    }\n  ";
 
-           }(t);
 
-         default:
 
-           throw new Error(e.length + "-D input sampling is not yet supported");
 
-       }
 
-     }
 
-     function Jo(t) {
 
-       var e, n, r;
 
-       switch (t.shapeInfo.logicalShape.length) {
 
-         case 0:
 
-           return e = t.name, n = "get" + e.charAt(0).toUpperCase() + e.slice(1), r = Ko(), "\n    vec4 " + n + "() {\n      return " + r.texture2D + "(" + e + ", halfCR);\n    }\n  ";
 
-         case 1:
 
-           return function (t) {
 
-             var e = t.name,
 
-               n = "get" + e.charAt(0).toUpperCase() + e.slice(1),
 
-               r = t.shapeInfo.texShape,
 
-               o = [Math.ceil(r[0] / 2), Math.ceil(r[1] / 2)],
 
-               a = Ko();
 
-             return "\n    vec4 " + n + "(int index) {\n      vec2 uv = packedUVfrom1D(\n        " + o[0] + ", " + o[1] + ", index);\n      return " + a.texture2D + "(" + e + ", uv);\n    }\n  ";
 
-           }(t);
 
-         case 2:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = t.shapeInfo.texShape,
 
-               a = o[0],
 
-               i = o[1],
 
-               u = Ko();
 
-             if (null != o && C(e, o)) return "\n      vec4 " + r + "(int row, int col) {\n        vec2 uv = (vec2(col, row) + halfCR) / vec2(" + i + ".0, " + a + ".0);\n\n        return " + u.texture2D + "(" + n + ", uv);\n      }\n    ";
 
-             var s = [Math.ceil(o[0] / 2), Math.ceil(o[1] / 2)],
 
-               c = Math.ceil(e[1] / 2);
 
-             return "\n    vec4 " + r + "(int row, int col) {\n      vec2 uv = packedUVfrom2D(" + c + ", " + s[0] + ", " + s[1] + ", row, col);\n      return " + u.texture2D + "(" + n + ", uv);\n    }\n  ";
 
-           }(t);
 
-         case 3:
 
-           return function (t) {
 
-             var e = t.shapeInfo.logicalShape,
 
-               n = t.name,
 
-               r = "get" + n.charAt(0).toUpperCase() + n.slice(1),
 
-               o = t.shapeInfo.texShape,
 
-               a = [Math.ceil(o[0] / 2), Math.ceil(o[1] / 2)];
 
-             if (1 === e[0]) {
 
-               var i = e.slice(1),
 
-                 u = ia(t, i);
 
-               return "\n        " + Jo(u) + "\n        vec4 " + r + "(int b, int row, int col) {\n          return " + r + "(" + ua(["b", "row", "col"], [1, 2]) + ");\n        }\n      ";
 
-             }
 
-             var s = a[0],
 
-               c = a[1],
 
-               l = Math.ceil(e[2] / 2),
 
-               h = l * Math.ceil(e[1] / 2),
 
-               f = Ko();
 
-             return "\n    vec4 " + r + "(int b, int row, int col) {\n      vec2 uv = packedUVfrom3D(\n        " + s + ", " + c + ", " + h + ", " + l + ", b, row, col);\n      return " + f.texture2D + "(" + n + ", uv);\n    }\n  ";
 
-           }(t);
 
-         default:
 
-           return function (t) {
 
-             for (var e = t.shapeInfo.logicalShape, n = e.length, r = t.name, o = "get" + r.charAt(0).toUpperCase() + r.slice(1), a = t.shapeInfo.texShape, i = [Math.ceil(a[0] / 2), Math.ceil(a[1] / 2)], u = i[0], s = i[1], c = Math.ceil(e[n - 1] / 2), l = c * Math.ceil(e[n - 2] / 2), h = "int b, int row, int col", f = "b * " + l + " + (row / 2) * " + c + " + (col / 2)", p = 2; p < n - 1; p++) h = "int b" + p + ", " + h, l *= e[n - p - 1], f = "b" + p + " * " + l + " + " + f;
 
-             var d = Ko();
 
-             return "\n    vec4 " + o + "(" + h + ") {\n      int index = " + f + ";\n      int texR = index / " + s + ";\n      int texC = index - texR * " + s + ";\n      vec2 uv = (vec2(texC, texR) + halfCR) / vec2(" + s + ", " + u + ");\n      return " + d.texture2D + "(" + r + ", uv);\n    }\n  ";
 
-           }(t);
 
-       }
 
-     }
 
-     var Zo = "\nvec2 uvFromFlat(int texNumR, int texNumC, int index) {\n  int texR = index / texNumC;\n  int texC = index - texR * texNumC;\n  return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\nvec2 packedUVfrom1D(int texNumR, int texNumC, int index) {\n  int texelIndex = index / 2;\n  int texR = texelIndex / texNumC;\n  int texC = texelIndex - texR * texNumC;\n  return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n",
 
-       ta = "\nvec2 packedUVfrom2D(int texelsInLogicalRow, int texNumR,\n  int texNumC, int row, int col) {\n  int texelIndex = (row / 2) * texelsInLogicalRow + (col / 2);\n  int texR = texelIndex / texNumC;\n  int texC = texelIndex - texR * texNumC;\n  return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n",
 
-       ea = "\nvec2 packedUVfrom3D(int texNumR, int texNumC,\n    int texelsInBatch, int texelsInLogicalRow, int b,\n    int row, int col) {\n  int index = b * texelsInBatch + (row / 2) * texelsInLogicalRow + (col / 2);\n  int texR = index / texNumC;\n  int texC = index - texR * texNumC;\n  return (vec2(texC, texR) + halfCR) / vec2(texNumC, texNumR);\n}\n",
 
-       na = "\n  float getChannel(vec4 frag, vec2 innerDims) {\n    vec2 modCoord = mod(innerDims, 2.);\n    return modCoord.x == 0. ?\n      (modCoord.y == 0. ? frag.r : frag.g) :\n      (modCoord.y == 0. ? frag.b : frag.a);\n  }\n  float getChannel(vec4 frag, int dim) {\n    float modCoord = mod(float(dim), 2.);\n    return modCoord == 0. ? frag.r : frag.g;\n  }\n";
 
-     function ra(t) {
 
-       return "offset" + t;
 
-     }
 
-     function oa(t) {
 
-       var e = t.name,
 
-         n = w(t.shapeInfo.logicalShape);
 
-       return n < 2 ? "return " + e + ";" : "\n    for (int i = 0; i < " + n + "; i++) {\n      if (i == index) {\n        return " + e + "[i];\n      }\n    }\n  ";
 
-     }
 
-     function aa(t) {
 
-       if (t <= 1) return "int";
 
-       if (2 === t) return "ivec2";
 
-       if (3 === t) return "ivec3";
 
-       if (4 === t) return "ivec4";
 
-       if (5 === t) return "ivec5";
 
-       if (6 === t) return "ivec6";
 
-       throw Error("GPU for rank " + t + " is not yet supported");
 
-     }
 
-     function ia(t, e) {
 
-       var n = JSON.parse(JSON.stringify(t));
 
-       return n.shapeInfo.logicalShape = e, n;
 
-     }
 
-     function ua(t, e) {
 
-       return e.map(function (e) {
 
-         return t[e];
 
-       }).join(", ");
 
-     }
 
-     var sa = function () {
 
-       return function (t, e, n, r) {
 
-         this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, g(t.length > 2, function () {
 
-           return "Packed arg" + (n.charAt(0).toUpperCase() + n.slice(1)) + " supports only inputs with rank above 2.";
 
-         });
 
-         var o = t[t.length - 1],
 
-           a = Math.ceil(o / e);
 
-         this.outputShape = t.slice(0, -1), a > 1 && this.outputShape.push(a), r || this.variableNames.push("bestIndicesA");
 
-         var i,
 
-           u,
 
-           s = this.outputShape,
 
-           c = s.length,
 
-           l = aa(c),
 
-           h = qo("coords", c);
 
-         if (1 === a) {
 
-           var f = aa(u = c + 1);
 
-           i = "\n        " + f + " sourceLocR = " + f + "(" + h.join() + ", 0);\n        ++" + h[c - 1] + ";\n        " + f + " sourceLocG = " + f + "(" + h.join() + ", 0);\n        ++" + h[c - 2] + ";\n        " + f + " sourceLocA = " + f + "(" + h.join() + ", 0);\n        --" + h[c - 1] + ";\n        " + f + " sourceLocB = " + f + "(" + h.join() + ", 0);\n        --" + h[c - 2] + ";";
 
-         } else u = c, i = "\n        " + l + " sourceLocR = coords;\n        ++" + h[c - 1] + ";\n        " + l + " sourceLocG = coords;\n        ++" + h[c - 2] + ";\n        " + l + " sourceLocA = coords;\n        --" + h[c - 1] + ";\n        " + l + " sourceLocB = coords;\n        --" + h[c - 2] + ";";
 
-         var p = ["x", "y", "z", "w", "u", "v"].slice(0, u),
 
-           d = "." + p[u - 1],
 
-           v = p.map(function (t) {
 
-             return "int " + t;
 
-           }),
 
-           m = qo("sourceLocR", u - 1).concat("inIdx.r"),
 
-           y = qo("sourceLocG", u - 1).concat("inIdx.g"),
 
-           x = qo("sourceLocB", u - 1).concat("inIdx.b"),
 
-           b = qo("sourceLocA", u - 1).concat("inIdx.a"),
 
-           w = "max" === n ? "greaterThan" : "lessThan",
 
-           C = r ? "" : "\n          inIdx = round(vec4(getBestIndicesAChannel(" + m.join() + "),\n                             getBestIndicesAChannel(" + y.join() + "),\n                             getBestIndicesAChannel(" + x.join() + "),\n                             getBestIndicesAChannel(" + b.join() + ")));",
 
-           E = "vec4(\n            getAChannel(" + m.join() + "),\n            hasNextCol ? getAChannel(" + y.join() + ") : 0.,\n            hasNextRow ? getAChannel(" + x.join() + ") : 0.,\n            hasNextRow && hasNextCol ? getAChannel(" + b.join() + ") : 0.)",
 
-           R = r ? "" : "\n      float getBestIndicesAChannel(" + v.join() + ") {\n        return getChannel(getBestIndicesA(" + p.join() + "),\n                                          vec2(" + p.slice(-2).join() + "));\n      }";
 
-         this.userCode = "\n      float getAChannel(" + v.join() + ") {\n        return getChannel(getA(" + p.join() + "),\n                               vec2(" + p.slice(-2).join() + "));\n      }\n      " + R + "\n      void main() {\n        " + l + " coords = getOutputCoords();\n        bool hasNextCol = " + h[c - 1] + " < " + (s[c - 1] - 1) + ";\n        bool hasNextRow = " + h[c - 2] + " < " + (s[c - 2] - 1) + ";\n        " + i + "\n        ivec4 srcIdx = ivec4(sourceLocR" + d + ", sourceLocG" + d + ",\n          sourceLocB" + d + ", sourceLocA" + d + ") * " + e + ";\n        ivec4 inIdx = srcIdx;\n        vec4 bestIndex = vec4(inIdx);\n        vec4 bestValue = " + E + ";\n\n        for (int i = 0; i < " + e + "; i++) {\n          inIdx = srcIdx;\n          " + C + "\n          vec4 candidate = " + E + ";\n          bvec4 nan = isnan(candidate);\n          bvec4 replace = bvec4(\n            vec4(" + w + "(candidate, bestValue)) * (vec4(1.0) - vec4(nan)));\n\n          bestValue = vec4(replace.x  ? candidate.x : bestValue.x,\n                           replace.y  ? candidate.y : bestValue.y,\n                           replace.z  ? candidate.z : bestValue.z,\n                           replace.w  ? candidate.w : bestValue.w);\n          bestIndex = mix(bestIndex, vec4(inIdx), vec4(replace));\n          srcIdx++;\n        }\n        setOutput(bestIndex);\n      }\n    ";
 
-       };
 
-     }(),
 
-       ca = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy"], this.outputShape = t.inShape;
 
-           var e = t.filterHeight,
 
-             n = t.filterWidth,
 
-             r = t.strideHeight,
 
-             o = t.strideWidth,
 
-             a = t.dilationHeight,
 
-             i = t.dilationWidth,
 
-             u = t.effectiveFilterHeight,
 
-             s = t.effectiveFilterWidth,
 
-             c = u - 1 - t.padInfo.top,
 
-             l = s - 1 - t.padInfo.left,
 
-             h = 1 / (e * n);
 
-           this.userCode = "\n      const ivec2 pads = ivec2(" + c + ", " + l + ");\n      const float avgMultiplier = float(" + h + ");\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n\n        ivec2 dyRCCorner = coords.yz - pads;\n        int dyRCorner = dyRCCorner.x;\n        int dyCCorner = dyRCCorner.y;\n\n        // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n        for (int wR = 0; wR < " + u + ";\n            wR += " + a + ") {\n          float dyR = float(dyRCorner + wR) / " + r + ".0;\n\n          if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 || fract(dyR) > 0.0) {\n            continue;\n          }\n          int idyR = int(dyR);\n\n          for (int wC = 0; wC < " + s + ";\n            wC+= " + i + ") {\n            float dyC = float(dyCCorner + wC) / " + o + ".0;\n\n            if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                fract(dyC) > 0.0) {\n              continue;\n            }\n            int idyC = int(dyC);\n\n            float dyValue = getDy(b, idyR, idyC, d);\n\n            dotProd += dyValue * avgMultiplier;\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       la = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy"], this.outputShape = t.inShape;
 
-           var e = t.filterDepth,
 
-             n = t.filterHeight,
 
-             r = t.filterWidth,
 
-             o = t.strideDepth,
 
-             a = t.strideHeight,
 
-             i = t.strideWidth,
 
-             u = t.dilationDepth,
 
-             s = t.dilationHeight,
 
-             c = t.dilationWidth,
 
-             l = t.effectiveFilterDepth,
 
-             h = t.effectiveFilterHeight,
 
-             f = t.effectiveFilterWidth,
 
-             p = l - 1 - t.padInfo.front,
 
-             d = h - 1 - t.padInfo.top,
 
-             v = f - 1 - t.padInfo.left,
 
-             m = 1 / (e * n * r);
 
-           this.userCode = "\n      const ivec3 pads = ivec3(" + p + ", " + d + ", " + v + ");\n      const float avgMultiplier = float(" + m + ");\n\n      void main() {\n        ivec5 coords = getOutputCoords();\n        int batch = coords.x;\n        int ch = coords.u;\n\n        ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n        int dyDCorner = dyCorner.x;\n        int dyRCorner = dyCorner.y;\n        int dyCCorner = dyCorner.z;\n\n        // Convolve dy(?, ?, ?, d) with pos mask(:, :, :, ch) to get\n        // dx(xD, xR, xC, ch).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n\n        for (int wD = 0; wD < " + l + ";\n            wD += " + u + ") {\n          float dyD = float(dyDCorner + wD) / " + o + ".0;\n\n          if (dyD < 0.0 || dyD >= " + t.outDepth + ".0 || fract(dyD) > 0.0) {\n            continue;\n          }\n          int idyD = int(dyD);\n\n          for (int wR = 0; wR < " + h + ";\n              wR += " + s + ") {\n            float dyR = float(dyRCorner + wR) / " + a + ".0;\n\n            if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 ||\n                fract(dyR) > 0.0) {\n              continue;\n            }\n            int idyR = int(dyR);\n\n            for (int wC = 0; wC < " + f + ";\n                wC += " + c + ") {\n              float dyC = float(dyCCorner + wC) / " + i + ".0;\n\n              if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                  fract(dyC) > 0.0) {\n                continue;\n              }\n              int idyC = int(dyC);\n\n              float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n\n              dotProd += dyValue * avgMultiplier;\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       ha = function () {
 
-         return function (t, e, n, r, o, a) {
 
-           this.outputShape = [], this.variableNames = ["x", "mean", "variance"], po(t, e), po(t, n);
 
-           var i = "0.0";
 
-           null != r && (po(t, r), this.variableNames.push("offset"), i = "getOffsetAtOutCoords()");
 
-           var u = "1.0";
 
-           null != o && (po(t, o), this.variableNames.push("scale"), u = "getScaleAtOutCoords()"), this.outputShape = t, this.userCode = "\n      void main() {\n        float x = getXAtOutCoords();\n        float mean = getMeanAtOutCoords();\n        float variance = getVarianceAtOutCoords();\n        float offset = " + i + ";\n        float scale = " + u + ";\n        float inv = scale * inversesqrt(variance + float(" + a + "));\n        setOutput(dot(vec3(x, -mean, offset), vec3(inv, inv, 1)));\n      }\n    ";
 
-         };
 
-       }(),
 
-       fa = function () {
 
-         return function (t, e, n, r, o, a) {
 
-           this.packedInputs = !0, this.packedOutput = !0, this.variableNames = ["x", "mean", "variance"], po(t, e), po(t, n);
 
-           var i = "vec4(0.0)";
 
-           null != r && (po(t, r), this.variableNames.push("offset"), i = "getOffsetAtOutCoords()");
 
-           var u = "vec4(1.0)";
 
-           null != o && (po(t, o), this.variableNames.push("scale"), u = "getScaleAtOutCoords()"), this.outputShape = t, this.userCode = "\n      void main() {\n        vec4 offset = " + i + ";\n        vec4 scale = " + u + ";\n\n        vec4 x = getXAtOutCoords();\n        vec4 mean = getMeanAtOutCoords();\n        vec4 variance = getVarianceAtOutCoords();\n\n        vec4 inv = scale * inversesqrt(variance + vec4(" + a + "));\n\n        setOutput((x - mean) * inv + offset);\n      }\n    ";
 
-         };
 
-       }(),
 
-       pa = "return areal * breal - aimag * bimag;",
 
-       da = "return areal * bimag + aimag * breal;",
 
-       va = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["AReal", "AImag", "BReal", "BImag"], this.outputShape = po(e, n), this.userCode = "\n      float binaryOpComplex(\n          float areal, float aimag, float breal, float bimag) {\n        " + t + "\n      }\n\n      void main() {\n        float areal = getARealAtOutCoords();\n        float aimag = getAImagAtOutCoords();\n        float breal = getBRealAtOutCoords();\n        float bimag = getBImagAtOutCoords();\n        setOutput(binaryOpComplex(areal, aimag, breal, bimag));\n      }\n    ";
 
-         };
 
-       }(),
 
-       ma = "return a + b;",
 
-       ga = "return a - b;",
 
-       ya = "return a * b;",
 
-       xa = "return (a < 0.) ? b * a : a;",
 
-       ba = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["A", "B"], this.outputShape = po(e, n), this.userCode = "\n      float binaryOperation(float a, float b) {\n        " + t + "\n      }\n\n      void main() {\n        float a = getAAtOutCoords();\n        float b = getBAtOutCoords();\n        setOutput(binaryOperation(a, b));\n      }\n    ";
 
-         };
 
-       }(),
 
-       wa = "\n  vec4 aLessThanZero = vec4(lessThan(a, vec4(0.)));\n  return (aLessThanZero * (b * a)) + ((vec4(1.0) - aLessThanZero) * a);\n",
 
-       Ca = function () {
 
-         return function (t, e, n, r) {
 
-           void 0 === r && (r = !1), this.variableNames = ["A", "B"], this.supportsBroadcasting = !0, this.packedInputs = !0, this.packedOutput = !0, this.outputShape = po(e, n);
 
-           var o = this.outputShape.length,
 
-             a = "";
 
-           if (r) if (0 === o || 1 === w(this.outputShape)) a = "\n          result.y = 0.;\n          result.z = 0.;\n          result.w = 0.;\n        "; else if (a = "\n          " + aa(o) + " coords = getOutputCoords();\n        ", 1 === o) a += "\n            result.y = (coords + 1) >= " + this.outputShape[0] + " ? 0. : result.y;\n            result.z = 0.;\n            result.w = 0.;\n          "; else {
 
-             var i = qo("coords", o);
 
-             a += "\n            bool nextRowOutOfBounds =\n              (" + i[o - 2] + " + 1) >= " + this.outputShape[o - 2] + ";\n            bool nextColOutOfBounds =\n              (" + i[o - 1] + " + 1) >= " + this.outputShape[o - 1] + ";\n            result.y = nextColOutOfBounds ? 0. : result.y;\n            result.z = nextRowOutOfBounds ? 0. : result.z;\n            result.w = nextColOutOfBounds || nextRowOutOfBounds ? 0. : result.w;\n          ";
 
-           }
 
-           this.userCode = "\n      vec4 binaryOperation(vec4 a, vec4 b) {\n        " + t + "\n      }\n\n      void main() {\n        vec4 a = getAAtOutCoords();\n        vec4 b = getBAtOutCoords();\n\n        vec4 result = binaryOperation(a, b);\n        " + a + "\n\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ea = function () {
 
-         function t(t) {
 
-           this.variableNames = ["A"], this.outputShape = t, this.userCode = "\n      uniform float minVal;\n      uniform float maxVal;\n\n      void main() {\n        float value = getAAtOutCoords();\n        if (isnan(value)) {\n          setOutput(value);\n          return;\n        }\n\n        setOutput(clamp(value, minVal, maxVal));\n      }\n    ";
 
-         }
 
-         return t.prototype.getCustomSetupFunc = function (t, e) {
 
-           var n = this;
 
-           return function (r, o) {
 
-             null == n.minLoc && (n.minLoc = r.getUniformLocationNoThrow(o, "minVal"), n.maxLoc = r.getUniformLocationNoThrow(o, "maxVal")), r.gl.uniform1f(n.minLoc, t), r.gl.uniform1f(n.maxLoc, e);
 
-           };
 
-         }, t;
 
-       }(),
 
-       Ra = function () {
 
-         function t(t) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t, this.userCode = "\n      uniform float minVal;\n      uniform float maxVal;\n\n      void main() {\n        vec4 value = getAAtOutCoords();\n\n        if (any(isnan(value))) {\n          setOutput(value);\n          return;\n        }\n\n        setOutput(clamp(value, vec4(minVal), vec4(maxVal)));\n      }\n    ";
 
-         }
 
-         return t.prototype.getCustomSetupFunc = function (t, e) {
 
-           var n = this;
 
-           return function (r, o) {
 
-             null == n.minLoc && (n.minLoc = r.getUniformLocationNoThrow(o, "minVal"), n.maxLoc = r.getUniformLocationNoThrow(o, "maxVal")), r.gl.uniform1f(n.minLoc, t), r.gl.uniform1f(n.maxLoc, e);
 
-           };
 
-         }, t;
 
-       }(),
 
-       Ia = function () {
 
-         return function (t) {
 
-           this.variableNames = ["real", "imag"], this.outputShape = t, this.userCode = "\n      void main() {\n        float re = abs(getRealAtOutCoords());\n        float im = abs(getImagAtOutCoords());\n        float mx = max(re, im);\n\n        // sadly the length function in glsl is not underflow-safe\n        // (at least not on Intel GPUs). So the safe solution is\n        // to ensure underflow-safety in all cases.\n        setOutput(\n          mx == 0.0 ? 0.0 : mx * length(vec2(1, min(re, im)/mx))\n        );\n      }\n    ";
 
-         };
 
-       }(),
 
-       ka = function () {
 
-         return function (t) {
 
-           this.outputShape = [], this.outputShape = wn(t, 1), this.variableNames = t.map(function (t, e) {
 
-             return "T" + e;
 
-           });
 
-           var e = new Array(t.length - 1);
 
-           e[0] = t[0][1];
 
-           for (var n = 1; n < e.length; n++) e[n] = e[n - 1] + t[n][1];
 
-           var r = ["if (yC < " + e[0] + ") setOutput(getT0(yR, yC));"];
 
-           for (n = 1; n < e.length; n++) {
 
-             var o = e[n - 1];
 
-             r.push("else if (yC < " + e[n] + ") setOutput(getT" + n + "(yR, yC-" + o + "));");
 
-           }
 
-           var a = e.length,
 
-             i = e[e.length - 1];
 
-           r.push("else setOutput(getT" + a + "(yR, yC-" + i + "));"), this.userCode = "\n      void main() {\n        ivec2 coords = getOutputCoords();\n        int yR = coords.x;\n        int yC = coords.y;\n\n        " + r.join("\n        ") + "\n      }\n    ";
 
-         };
 
-       }(),
 
-       Sa = function () {
 
-         return function (t, e) {
 
-           this.packedInputs = !0, this.packedOutput = !0, this.outputShape = [], this.outputShape = wn(t, e);
 
-           var n = this.outputShape,
 
-             r = n.length,
 
-             o = aa(r),
 
-             a = qo("coords", r),
 
-             i = ["x", "y", "z", "w", "u", "v"].slice(0, r);
 
-           this.variableNames = t.map(function (t, e) {
 
-             return "T" + e;
 
-           });
 
-           var u = new Array(t.length - 1);
 
-           u[0] = t[0][e];
 
-           for (var s = 1; s < u.length; s++) u[s] = u[s - 1] + t[s][e];
 
-           var c = i[e],
 
-             l = i.slice(-2),
 
-             h = i.join(),
 
-             f = "if (" + c + " < " + u[0] + ") {\n        return getChannel(\n            getT0(" + h + "), vec2(" + l.join() + "));\n        }";
 
-           for (s = 1; s < u.length; s++) {
 
-             var p = u[s - 1];
 
-             f += "\n        if (" + c + " < " + u[s] + "  && " + c + " >= " + u[s - 1] + ") {\n          return getChannel(\n            getT" + s + "(" + Aa(i, c, p) + "),\n            vec2(" + Aa(l, c, p) + "));\n        }";
 
-           }
 
-           var d = u.length,
 
-             v = u[u.length - 1];
 
-           f += "\n        return getChannel(\n          getT" + d + "(" + Aa(i, c, v) + "),\n          vec2(" + Aa(l, c, v) + "));", this.userCode = "\n      float getValue(" + i.map(function (t) {
 
-             return "int " + t;
 
-           }) + ") {\n        " + f + "\n      }\n\n      void main() {\n        " + o + " coords = getOutputCoords();\n        vec4 result = vec4(getValue(" + a + "), 0., 0., 0.);\n\n        " + a[r - 1] + " = " + a[r - 1] + " + 1;\n        if (" + a[r - 1] + " < " + n[r - 1] + ") {\n          result.g = getValue(" + a + ");\n        }\n\n        " + a[r - 2] + " = " + a[r - 2] + " + 1;\n        if (" + a[r - 2] + " < " + n[r - 2] + ") {\n          result.a = getValue(" + a + ");\n        }\n\n        " + a[r - 1] + " = " + a[r - 1] + " - 1;\n        if (" + a[r - 2] + " < " + n[r - 2] + " &&\n            " + a[r - 1] + " < " + n[r - 1] + ") {\n          result.b = getValue(" + a + ");\n        }\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }();
 
-     function Aa(t, e, n) {
 
-       var r = t.indexOf(e);
 
-       return t.map(function (t, e) {
 
-         return e === r ? t + " - " + n : t;
 
-       }).join();
 
-     }
 
-     var Da = function () {
 
-       return function (t) {
 
-         this.variableNames = ["x", "dy"], this.outputShape = t.filterShape;
 
-         var e = t.strideHeight,
 
-           n = t.strideWidth,
 
-           r = t.padInfo.top,
 
-           o = t.padInfo.left,
 
-           a = "channelsLast" === t.dataFormat;
 
-         this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int wR = coords.x;\n        int wC = coords.y;\n        int d1 = coords.z;\n        int d2 = coords.w;\n\n        // Convolve x(?, ?, d1) with dy(:, :, d2) to get dw(wR, wC, d1, d2).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n\n        for (int b = 0; b < " + t.batchSize + "; b++) {\n          for (int yR = 0; yR < " + t.outHeight + "; yR++) {\n            int xR = wR + yR * " + e + " - " + r + ";\n\n            if (xR < 0 || xR >= " + t.inHeight + ") {\n              continue;\n            }\n\n            for (int yC = 0; yC < " + t.outWidth + "; yC++) {\n              int xC = wC + yC * " + n + " - " + o + ";\n\n              if (xC < 0 || xC >= " + t.inWidth + ") {\n                continue;\n              }\n\n              if (" + a + ") {\n                float dyValue = getDy(b, yR, yC, d2);\n                float xValue = getX(b, xR, xC, d1);\n                dotProd += (xValue * dyValue);\n              } else {\n                float dyValue = getDy(b, d2, yR, yC);\n                float xValue = getX(b, d1, xR, xC);\n                dotProd += (xValue * dyValue);\n              }\n\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-       };
 
-     }(),
 
-       Ta = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy", "W"], this.outputShape = t.inShape;
 
-           var e = t.filterHeight,
 
-             n = t.filterWidth,
 
-             r = t.strideHeight,
 
-             o = t.strideWidth,
 
-             a = "channelsLast" === t.dataFormat,
 
-             i = e - 1 - t.padInfo.top,
 
-             u = n - 1 - t.padInfo.left,
 
-             s = a ? 1 : 2,
 
-             c = a ? 2 : 3,
 
-             l = a ? 3 : 1;
 
-           this.userCode = "\n      const ivec2 pads = ivec2(" + i + ", " + u + ");\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int batch = coords[0];\n        int d1 = coords[" + l + "];\n\n        ivec2 dyCorner = ivec2(coords[" + s + "], coords[" + c + "]) - pads;\n        int dyRCorner = dyCorner.x;\n        int dyCCorner = dyCorner.y;\n\n        // Convolve dy(?, ?, d2) with w(:, :, d1, d2) to compute dx(xR, xC, d1).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n        for (int wR = 0; wR < " + e + "; wR++) {\n          float dyR = float(dyRCorner + wR) / " + r + ".0;\n\n          if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 || fract(dyR) > 0.0) {\n            continue;\n          }\n          int idyR = int(dyR);\n\n          int wRPerm = " + e + " - 1 - wR;\n\n          for (int wC = 0; wC < " + n + "; wC++) {\n            float dyC = float(dyCCorner + wC) / " + o + ".0;\n\n            if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                fract(dyC) > 0.0) {\n              continue;\n            }\n            int idyC = int(dyC);\n\n            int wCPerm = " + n + " - 1 - wC;\n\n            for (int d2 = 0; d2 < " + t.outChannels + "; d2++) {\n\n              if (" + a + ") {\n                float xValue = getDy(batch, idyR, idyC, d2);\n                float wValue = getW(wRPerm, wCPerm, d1, d2);\n                dotProd += xValue * wValue;\n              } else {\n                float xValue = getDy(batch, d2, idyR, idyC);\n                float wValue = getW(wRPerm, wCPerm, d1, d2);\n                dotProd += xValue * wValue;\n              }\n\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Na = function () {
 
-         return function (t) {
 
-           this.variableNames = ["x", "dy"], this.outputShape = t.filterShape;
 
-           var e = t.strideDepth,
 
-             n = t.strideHeight,
 
-             r = t.strideWidth,
 
-             o = t.padInfo.front,
 
-             a = t.padInfo.top,
 
-             i = t.padInfo.left;
 
-           this.userCode = "\n      void main() {\n        ivec5 coords = getOutputCoords();\n        int wF = coords.x;\n        int wR = coords.y;\n        int wC = coords.z;\n        int d1 = coords.w;\n        int d2 = coords.u;\n\n        float dotProd = 0.0;\n\n        for (int b = 0; b < " + t.batchSize + "; b++) {\n          for (int yF = 0; yF < " + t.outDepth + "; yF++) {\n            int xF = wF + yF * " + e + " - " + o + ";\n\n            if (xF < 0 || xF >= " + t.inDepth + ") {\n              continue;\n            }\n\n            for (int yR = 0; yR < " + t.outHeight + "; yR++) {\n              int xR = wR + yR * " + n + " - " + a + ";\n\n              if (xR < 0 || xR >= " + t.inHeight + ") {\n                continue;\n              }\n\n              for (int yC = 0; yC < " + t.outWidth + "; yC++) {\n                int xC = wC + yC * " + r + " - " + i + ";\n\n                if (xC < 0 || xC >= " + t.inWidth + ") {\n                  continue;\n                }\n\n                float dyValue = getDy(b, yF, yR, yC, d2);\n                float xValue = getX(b, xF, xR, xC, d1);\n                dotProd += (xValue * dyValue);\n              }\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Fa = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy", "W"], this.outputShape = t.inShape;
 
-           var e = t.filterDepth,
 
-             n = t.filterHeight,
 
-             r = t.filterWidth,
 
-             o = t.strideDepth,
 
-             a = t.strideHeight,
 
-             i = t.strideWidth,
 
-             u = e - 1 - t.padInfo.front,
 
-             s = n - 1 - t.padInfo.top,
 
-             c = r - 1 - t.padInfo.left;
 
-           this.userCode = "\n      const ivec3 pads = ivec3(" + u + ", " + s + ", " + c + ");\n\n      void main() {\n        ivec5 coords = getOutputCoords();\n        int batch = coords.x;\n        int d1 = coords.u;\n\n\n        ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n        int dyFCorner = dyCorner.x;\n        int dyRCorner = dyCorner.y;\n        int dyCCorner = dyCorner.z;\n\n        float dotProd = 0.0;\n        for (int wF = 0; wF < " + e + "; wF++) {\n          float dyF = float(dyFCorner + wF) / " + o + ".0;\n\n          if (dyF < 0.0 || dyF >= " + t.outDepth + ".0 || fract(dyF) > 0.0) {\n            continue;\n          }\n          int idyF = int(dyF);\n\n          int wFPerm = " + e + " - 1 - wF;\n\n          for (int wR = 0; wR < " + n + "; wR++) {\n            float dyR = float(dyRCorner + wR) / " + a + ".0;\n\n            if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 ||\n              fract(dyR) > 0.0) {\n              continue;\n            }\n            int idyR = int(dyR);\n\n            int wRPerm = " + n + " - 1 - wR;\n\n            for (int wC = 0; wC < " + r + "; wC++) {\n              float dyC = float(dyCCorner + wC) / " + i + ".0;\n\n              if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                  fract(dyC) > 0.0) {\n                continue;\n              }\n              int idyC = int(dyC);\n\n              int wCPerm = " + r + " - 1 - wC;\n\n              for (int d2 = 0; d2 < " + t.outChannels + "; d2++) {\n                float xValue = getDy(batch, idyF, idyR, idyC, d2);\n                float wValue = getW(wFPerm, wRPerm, wCPerm, d1, d2);\n                dotProd += xValue * wValue;\n              }\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Oa = function () {
 
-         return function (t) {
 
-           this.variableNames = ["x", "dy"], this.outputShape = t.filterShape;
 
-           var e = t.strideHeight,
 
-             n = t.strideWidth,
 
-             r = t.padInfo.top,
 
-             o = t.padInfo.left,
 
-             a = t.outChannels / t.inChannels;
 
-           this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int wR = coords.x;\n        int wC = coords.y;\n        int d1 = coords.z;\n        int dm = coords.w;\n        int d2 = d1 * " + a + " + dm;\n\n        float dotProd = 0.0;\n\n        // TO DO: Vec4 over the batch size\n        for (int b = 0; b < " + t.batchSize + "; b++) {\n          for (int yR = 0; yR < " + t.outHeight + "; yR++) {\n            int xR = wR + yR * " + e + " - " + r + ";\n\n            if (xR < 0 || xR >= " + t.inHeight + ") {\n              continue;\n            }\n\n            for (int yC = 0; yC < " + t.outWidth + "; yC++) {\n              int xC = wC + yC * " + n + " - " + o + ";\n\n              if (xC < 0 || xC >= " + t.inWidth + ") {\n                continue;\n              }\n\n              float dyValue = getDy(b, yR, yC, d2);\n              float xValue = getX(b, xR, xC, d1);\n              dotProd += (xValue * dyValue);\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       _a = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy", "W"], this.outputShape = t.inShape;
 
-           var e = t.filterHeight,
 
-             n = t.filterWidth,
 
-             r = t.strideHeight,
 
-             o = t.strideWidth,
 
-             a = e - 1 - t.padInfo.top,
 
-             i = n - 1 - t.padInfo.left,
 
-             u = t.outChannels / t.inChannels;
 
-           this.userCode = "\n      const ivec2 pads = ivec2(" + a + ", " + i + ");\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int batch = coords[0];\n        int d1 = coords[3];\n        ivec2 dyCorner = coords.yz - pads;\n        int dyRCorner = dyCorner.x;\n        int dyCCorner = dyCorner.y;\n\n        float dotProd = 0.0;\n\n        for (int wR = 0; wR < " + e + "; wR++) {\n          float dyR = float(dyRCorner + wR) / " + r + ".0;\n\n          if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 || fract(dyR) > 0.0) {\n            continue;\n          }\n          int idyR = int(dyR);\n\n          int wRPerm = " + e + " - 1 - wR;\n\n          for (int wC = 0; wC < " + n + "; wC++) {\n            float dyC = float(dyCCorner + wC) / " + o + ".0;\n\n            if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                fract(dyC) > 0.0) {\n              continue;\n            }\n            int idyC = int(dyC);\n\n            int wCPerm = " + n + " - 1 - wC;\n\n            // TO DO: Vec4 over the channelMul\n            for (int dm = 0; dm < " + u + "; dm++) {\n              int d2 = d1 * " + u + " + dm;\n              float xValue = getDy(batch, idyR, idyC, d2);\n              float wValue = getW(wRPerm, wCPerm, d1, dm);\n              dotProd += xValue * wValue;\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ma = function () {
 
-         return function (t, e, n, r) {
 
-           void 0 === e && (e = !1), void 0 === n && (n = null), void 0 === r && (r = !1), this.variableNames = ["x", "W"], this.outputShape = t.outShape;
 
-           var o = t.padInfo.top,
 
-             a = t.padInfo.left,
 
-             i = t.strideHeight,
 
-             u = t.strideWidth,
 
-             s = t.dilationHeight,
 
-             c = t.dilationWidth,
 
-             l = t.filterHeight,
 
-             h = t.filterWidth,
 
-             f = 4 * Math.floor(t.inChannels / 4),
 
-             p = t.inChannels % 4,
 
-             d = "channelsLast" === t.dataFormat,
 
-             v = d ? 1 : 2,
 
-             m = d ? 2 : 3,
 
-             g = d ? 3 : 1,
 
-             y = "",
 
-             x = "";
 
-           n && (y = r ? "float activation(float a) {\n          float b = getPreluActivationWeightsAtOutCoords();\n          " + n + "\n        }" : "\n          float activation(float x) {\n            " + n + "\n          }\n        ", x = "result = activation(result);");
 
-           var b = e ? "result += getBiasAtOutCoords();" : "";
 
-           e && this.variableNames.push("bias"), r && this.variableNames.push("preluActivationWeights"), this.userCode = "\n      " + y + "\n\n      const ivec2 strides = ivec2(" + i + ", " + u + ");\n      const ivec2 pads = ivec2(" + o + ", " + a + ");\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int batch = coords[0];\n        int d2 = coords[" + g + "];\n\n        ivec2 xRCCorner =\n            ivec2(coords[" + v + "], coords[" + m + "]) * strides - pads;\n        int xRCorner = xRCCorner.x;\n        int xCCorner = xRCCorner.y;\n\n        // Convolve x(?, ?, d1) with w(:, :, d1, d2) to get y(yR, yC, d2).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n        for (int wR = 0; wR < " + l + "; wR++) {\n          int xR = xRCorner + wR * " + s + ";\n\n          if (xR < 0 || xR >= " + t.inHeight + ") {\n            continue;\n          }\n\n          for (int wC = 0; wC < " + h + "; wC++) {\n            int xC = xCCorner + wC * " + c + ";\n\n            if (xC < 0 || xC >= " + t.inWidth + ") {\n              continue;\n            }\n\n            for (int d1 = 0; d1 < " + f + "; d1 += 4) {\n              vec4 wValues = vec4(\n                getW(wR, wC, d1, d2),\n                getW(wR, wC, d1 + 1, d2),\n                getW(wR, wC, d1 + 2, d2),\n                getW(wR, wC, d1 + 3, d2)\n              );\n\n              if (" + d + ") {\n                vec4 xValues = vec4(\n                  getX(batch, xR, xC, d1),\n                  getX(batch, xR, xC, d1 + 1),\n                  getX(batch, xR, xC, d1 + 2),\n                  getX(batch, xR, xC, d1 + 3)\n                );\n                dotProd += dot(xValues, wValues);\n              } else {\n                vec4 xValues = vec4(\n                  getX(batch, d1, xR, xC),\n                  getX(batch, d1 + 1, xR, xC),\n                  getX(batch, d1 + 2, xR, xC),\n                  getX(batch, d1 + 3, xR, xC)\n                );\n                dotProd += dot(xValues, wValues);\n              }\n            }\n\n            if (" + (1 === p) + ") {\n\n              if (" + d + ") {\n                dotProd +=\n                    getX(batch, xR, xC, " + f + ") *\n                    getW(wR, wC, " + f + ", d2);\n              } else {\n                dotProd +=\n                    getX(batch, " + f + ", xR, xC) *\n                    getW(wR, wC, " + f + ", d2);\n              }\n\n            } else if (" + (2 === p) + ") {\n              vec2 wValues = vec2(\n                getW(wR, wC, " + f + ", d2),\n                getW(wR, wC, " + f + " + 1, d2)\n              );\n\n              if (" + d + ") {\n                vec2 xValues = vec2(\n                  getX(batch, xR, xC, " + f + "),\n                  getX(batch, xR, xC, " + f + " + 1)\n                );\n                dotProd += dot(xValues, wValues);\n              } else {\n                vec2 xValues = vec2(\n                  getX(batch, " + f + ", xR, xC),\n                  getX(batch, " + f + " + 1, xR, xC)\n                );\n                dotProd += dot(xValues, wValues);\n              }\n\n            } else if (" + (3 === p) + ") {\n              vec3 wValues = vec3(\n                getW(wR, wC, " + f + ", d2),\n                getW(wR, wC, " + f + " + 1, d2),\n                getW(wR, wC, " + f + " + 2, d2)\n              );\n\n              if (" + d + ") {\n                vec3 xValues = vec3(\n                  getX(batch, xR, xC, " + f + "),\n                  getX(batch, xR, xC, " + f + " + 1),\n                  getX(batch, xR, xC, " + f + " + 2)\n                );\n                dotProd += dot(xValues, wValues);\n              } else {\n                vec3 xValues = vec3(\n                  getX(batch, " + f + ", xR, xC),\n                  getX(batch, " + f + " + 1, xR, xC),\n                  getX(batch, " + f + " + 2, xR, xC)\n                );\n                dotProd += dot(xValues, wValues);\n              }\n\n            }\n          }\n        }\n\n        float result = dotProd;\n        " + b + "\n        " + x + "\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ba = function () {
 
-         return function (t) {
 
-           this.variableNames = ["x", "W"], this.outputShape = t.outShape;
 
-           var e = t.padInfo.front,
 
-             n = t.padInfo.top,
 
-             r = t.padInfo.left,
 
-             o = t.strideDepth,
 
-             a = t.strideHeight,
 
-             i = t.strideWidth,
 
-             u = t.dilationDepth,
 
-             s = t.dilationHeight,
 
-             c = t.dilationWidth,
 
-             l = t.filterDepth,
 
-             h = t.filterHeight,
 
-             f = t.filterWidth,
 
-             p = 4 * Math.floor(t.inChannels / 4),
 
-             d = t.inChannels % 4;
 
-           this.userCode = "\n      const ivec3 strides = ivec3(" + o + ", " + a + ", " + i + ");\n      const ivec3 pads = ivec3(" + e + ", " + n + ", " + r + ");\n\n      void main() {\n        ivec5 coords = getOutputCoords();\n        int batch = coords.x;\n        int d2 = coords.u;\n\n        ivec3 xFRCCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n        int xFCorner = xFRCCorner.x;\n        int xRCorner = xFRCCorner.y;\n        int xCCorner = xFRCCorner.z;\n\n        // Convolve x(?, ?, ?, d1) with w(:, :, :, d1, d2) to get\n        // y(yF, yR, yC, d2). ? = to be determined. : = across all\n        // values in that axis.\n        float dotProd = 0.0;\n        for (int wF = 0; wF < " + l + "; wF++) {\n          int xF = xFCorner + wF * " + u + ";\n\n          if (xF < 0 || xF >= " + t.inDepth + ") {\n            continue;\n          }\n\n          for (int wR = 0; wR < " + h + "; wR++) {\n            int xR = xRCorner + wR * " + s + ";\n\n            if (xR < 0 || xR >= " + t.inHeight + ") {\n              continue;\n            }\n\n            for (int wC = 0; wC < " + f + "; wC++) {\n              int xC = xCCorner + wC * " + c + ";\n\n              if (xC < 0 || xC >= " + t.inWidth + ") {\n                continue;\n              }\n\n              for (int d1 = 0; d1 < " + p + "; d1 += 4) {\n                vec4 xValues = vec4(\n                  getX(batch, xF, xR, xC, d1),\n                  getX(batch, xF, xR, xC, d1 + 1),\n                  getX(batch, xF, xR, xC, d1 + 2),\n                  getX(batch, xF, xR, xC, d1 + 3)\n                );\n                vec4 wValues = vec4(\n                  getW(wF, wR, wC, d1, d2),\n                  getW(wF, wR, wC, d1 + 1, d2),\n                  getW(wF, wR, wC, d1 + 2, d2),\n                  getW(wF, wR, wC, d1 + 3, d2)\n                );\n\n                dotProd += dot(xValues, wValues);\n              }\n\n              if (" + (1 === d) + ") {\n                dotProd +=\n                  getX(batch, xF, xR, xC, " + p + ") *\n                  getW(wF, wR, wC, " + p + ", d2);\n              } else if (" + (2 === d) + ") {\n                vec2 xValues = vec2(\n                  getX(batch, xF, xR, xC, " + p + "),\n                  getX(batch, xF, xR, xC, " + p + " + 1)\n                );\n                vec2 wValues = vec2(\n                  getW(wF, wR, wC, " + p + ", d2),\n                  getW(wF, wR, wC, " + p + " + 1, d2)\n                );\n                dotProd += dot(xValues, wValues);\n              } else if (" + (3 === d) + ") {\n                vec3 xValues = vec3(\n                  getX(batch, xF, xR, xC, " + p + "),\n                  getX(batch, xF, xR, xC, " + p + " + 1),\n                  getX(batch, xF, xR, xC, " + p + " + 2)\n                );\n                vec3 wValues = vec3(\n                  getW(wF, wR, wC, " + p + ", d2),\n                  getW(wF, wR, wC, " + p + " + 1, d2),\n                  getW(wF, wR, wC, " + p + " + 2, d2)\n                );\n                dotProd += dot(xValues, wValues);\n              }\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Pa = function () {
 
-         return function (t, e, n, r) {
 
-           void 0 === e && (e = !1), void 0 === n && (n = null), void 0 === r && (r = !1), this.variableNames = ["x", "W"], this.outputShape = t.outShape;
 
-           var o = t.inHeight,
 
-             a = t.inWidth,
 
-             i = t.padInfo.top,
 
-             u = t.padInfo.left,
 
-             s = t.strideHeight,
 
-             c = t.strideWidth,
 
-             l = t.dilationHeight,
 
-             h = t.dilationWidth,
 
-             f = t.filterHeight,
 
-             p = t.filterWidth,
 
-             d = t.outChannels / t.inChannels,
 
-             v = "",
 
-             m = "";
 
-           n && (v = r ? "float activation(float a) {\n          float b = getPreluActivationWeightsAtOutCoords();\n          " + n + "\n        }" : "\n          float activation(float x) {\n            " + n + "\n          }\n        ", m = "result = activation(result);");
 
-           var g = e ? "result += getBiasAtOutCoords();" : "";
 
-           e && this.variableNames.push("bias"), r && this.variableNames.push("preluActivationWeights"), this.userCode = "\n      " + v + "\n\n      const ivec2 strides = ivec2(" + s + ", " + c + ");\n      const ivec2 pads = ivec2(" + i + ", " + u + ");\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int batch = coords.x;\n        ivec2 xRCCorner = coords.yz * strides - pads;\n        int d2 = coords.w;\n        int d1 = d2 / " + d + ";\n        int q = d2 - d1 * " + d + ";\n\n        int xRCorner = xRCCorner.x;\n        int xCCorner = xRCCorner.y;\n\n        // Convolve x(?, ?, d1) with w(:, :, d1, q) to get y(yR, yC, d2).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n        // TO DO(dsmilkov): Flatten the two for loops and vec4 the operations.\n        for (int wR = 0; wR < " + f + "; wR++) {\n          int xR = xRCorner + wR * " + l + ";\n\n          if (xR < 0 || xR >= " + o + ") {\n            continue;\n          }\n\n          for (int wC = 0; wC < " + p + "; wC++) {\n            int xC = xCCorner + wC * " + h + ";\n\n            if (xC < 0 || xC >= " + a + ") {\n              continue;\n            }\n\n            float xVal = getX(batch, xR, xC, d1);\n            float wVal = getW(wR, wC, d1, q);\n            dotProd += xVal * wVal;\n          }\n        }\n\n        float result = dotProd;\n        " + g + "\n        " + m + "\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       La = function () {
 
-         return function (t, e, n, r) {
 
-           void 0 === e && (e = !1), void 0 === n && (n = null), void 0 === r && (r = !1), this.variableNames = ["x", "W"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t.outShape;
 
-           for (var o = t.inHeight, a = t.inWidth, i = t.padInfo.top, u = t.padInfo.left, s = t.strideHeight, c = t.strideWidth, l = t.dilationHeight, h = t.dilationWidth, f = t.filterHeight, p = t.filterWidth, d = p, m = "int xR; int xC; int xCOffset;", g = 0; g < f; g++) for (var y = 0; y < p; y++) m += "\n          vec4 xTexelR" + g + "C" + 2 * y + " = vec4(0.);\n          vec4 wR" + g + "C" + y + " = vec4(0.);\n          vec4 xR" + g + "C" + y + " = vec4(0.);";
 
-           for (g = 0; g < f; g++) for (var x = 0; x < d; x++) {
 
-             if (m += "\n          xR = xRCorner + " + g * l + ";\n          xC = xCCorner + " + (y = 2 * x) * h + ";\n        ", 1 === c) {
 
-               if (y < p && (m += u % 2 == 1 ? "\n                xCOffset = xC + 1;\n                if(xR >= 0 && xR < " + o + " && xCOffset >= 0 && xCOffset < " + a + ") {\n                  xTexelR" + g + "C" + y + " = getX(batch, xR, xCOffset, d1);\n                } else {\n                  xTexelR" + g + "C" + y + " = vec4(0.);\n                }\n\n                xCOffset = xC + 1 - 2;\n                if(xR >= 0 && xR < " + o + " && xCOffset >= 0 && xCOffset < " + a + ") {\n                  vec4 previous = getX(batch, xR, xCOffset, d1);\n                  xR" + g + "C" + y + " = vec4(previous.zw, xTexelR" + g + "C" + y + ".xy);\n                } else {\n                  xR" + g + "C" + y + " = vec4(0, 0, xTexelR" + g + "C" + y + ".xy);\n                }\n              " : "\n                if(xR >= 0 && xR < " + o + " && xC >= 0 && xC < " + a + ") {\n                  xTexelR" + g + "C" + y + " = getX(batch, xR, xC, d1);\n                } else {\n                  xTexelR" + g + "C" + y + " = vec4(0.);\n                }\n\n                xR" + g + "C" + y + " = xTexelR" + g + "C" + y + ";\n              ", y + 1 < p)) {
 
-                 var b = u % 2 == 0 ? v(h) : h;
 
-                 h % 2 == 0 && u % 2 == 1 || h % 2 != 0 && u % 2 != 1 ? (m += "\n                  xCOffset = xC + " + u % 2 + " + " + b + ";\n\n                  if(xR >= 0 && xR < " + o + " &&\n                    xCOffset >= 0 && xCOffset < " + a + ") {\n                    xTexelR" + g + "C" + (y + 2) + " = getX(batch, xR, xCOffset, d1);\n                  }\n                ", h > 1 && (m += "\n                    xCOffset -= 2;\n                    if(xR >= 0 && xR < " + o + " &&\n                      xCOffset >= 0 && xCOffset < " + a + ") {\n                      xTexelR" + g + "C" + y + " = getX(batch, xR, xCOffset, d1);\n                    } else {\n                      xTexelR" + g + "C" + y + " = vec4(0.);\n                    }\n                  "), m += "\n                  xR" + g + "C" + (y + 1) + " = vec4(\n                    xTexelR" + g + "C" + y + ".zw, xTexelR" + g + "C" + (y + 2) + ".xy);\n                ") : m += "\n                  xCOffset = xC + " + b + ";\n\n                  if(xR >= 0 && xR < " + o + " &&\n                    xCOffset >= 0 && xCOffset < " + a + ") {\n                    xTexelR" + g + "C" + (y + 2) + " = getX(batch, xR, xCOffset, d1);\n                  }\n\n                  xR" + g + "C" + (y + 1) + " = xTexelR" + g + "C" + (y + 2) + ";\n                ";
 
-               }
 
-             } else y < p && (m += "\n              if(xR >= 0 && xR < " + o + ") {\n            ", u % 2 == 1 ? (m += "\n                xCOffset = xC + 1 - " + c + ";\n                if(xCOffset >= 0 && xCOffset < " + a + ") {\n                  xTexelR" + g + "C" + y + " = getX(batch, xR, xCOffset, d1);\n                } else {\n                  xTexelR" + g + "C" + y + " = vec4(0.);\n                }\n\n                if(xC + 1 >= 0 && xC + 1 < " + a + ") {\n                  xTexelR" + g + "C" + (y + 2) + " = getX(batch, xR, xC + 1, d1);\n                } else {\n                  xTexelR" + g + "C" + (y + 2) + " = vec4(0.);\n                }\n\n                xR" + g + "C" + y + " = vec4(\n                  xTexelR" + g + "C" + y + ".zw, xTexelR" + g + "C" + (y + 2) + ".zw);\n              ", y + 1 < p && (m += "\n                  vec4 final = vec4(0.);\n                  xCOffset = xC + 1 + " + c + ";\n                  if(xCOffset >= 0 && xCOffset < " + a + ") {\n                    final = getX(batch, xR, xCOffset, d1);\n                  }\n                  xR" + g + "C" + (y + 1) + " = vec4(xTexelR" + g + "C" + (y + 2) + ".xy, final.xy);\n                ")) : (m += "\n                if(xC >= 0 && xC < " + a + ") {\n                  xTexelR" + g + "C" + y + " = getX(batch, xR, xC, d1);\n                } else {\n                  xTexelR" + g + "C" + y + " = vec4(0.);\n                }\n\n                xCOffset = xC + " + c + ";\n                if(xCOffset >= 0 && xCOffset < " + a + ") {\n                  xTexelR" + g + "C" + (y + 2) + " = getX(batch, xR, xCOffset, d1);\n                } else {\n                  xTexelR" + g + "C" + (y + 2) + " = vec4(0.);\n                }\n\n                xR" + g + "C" + y + " = vec4(\n                  xTexelR" + g + "C" + y + ".xy, xTexelR" + g + "C" + (y + 2) + ".xy);\n              ", y + 1 < p && (m += "\n                  xR" + g + "C" + (y + 1) + " = vec4(\n                    xTexelR" + g + "C" + y + ".zw, xTexelR" + g + "C" + (y + 2) + ".zw);\n                ")), m += "}");
 
-             y < p && (m += "\n            vec4 wTexelR" + g + "C" + y + " = getW(" + g + ", " + y + ", d1, q);\n            wR" + g + "C" + y + " = vec4(wTexelR" + g + "C" + y + ".xz, wTexelR" + g + "C" + y + ".xz);\n          ", y + 1 < p && (m += "\n              vec4 wTexelR" + g + "C" + (y + 1) + " = getW(" + g + ", " + (y + 1) + ", d1, q);\n              wR" + g + "C" + (y + 1) + " =\n                vec4(wTexelR" + g + "C" + (y + 1) + ".xz, wTexelR" + g + "C" + (y + 1) + ".xz);"));
 
-           }
 
-           for (g = 0; g < f; g++) for (y = 0; y < p; y++) m += "dotProd += xR" + g + "C" + y + " * wR" + g + "C" + y + ";";
 
-           var w = "",
 
-             C = "";
 
-           n && (w = r ? "vec4 activation(vec4 a) {\n          vec4 b = getPreluActivationWeightsAtOutCoords();\n          " + n + "\n        }" : "vec4 activation(vec4 x) {\n          " + n + "\n        }", C = "result = activation(result);");
 
-           var E = e ? "result += getBiasAtOutCoords();" : "";
 
-           e && this.variableNames.push("bias"), r && this.variableNames.push("preluActivationWeights"), this.userCode = "\n      " + w + "\n\n      const ivec2 strides = ivec2(" + s + ", " + c + ");\n      const ivec2 pads = ivec2(" + i + ", " + u + ");\n\n      void main() {\n\n        ivec4 coords = getOutputCoords();\n        int batch = coords.x;\n        ivec2 xRCCorner = coords.yz * strides - pads;\n        int d2 = coords.w;\n        int d1 = d2;\n        int q = 0;\n        int xRCorner = xRCCorner.x;\n        int xCCorner = xRCCorner.y;\n\n        vec4 dotProd = vec4(0.);\n\n        " + m + "\n\n        vec4 result = dotProd;\n        " + E + "\n        " + C + "\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Wa = function () {
 
-         return function (t, e, n, r, o) {
 
-           this.variableNames = ["Image", "Boxes", "BoxInd"], this.outputShape = [];
 
-           var a = t[0],
 
-             i = t[1],
 
-             u = t[2],
 
-             s = t[3],
 
-             c = e[0],
 
-             l = n[0],
 
-             h = n[1];
 
-           this.outputShape = [c, l, h, s];
 
-           var f = "bilinear" === r ? 1 : 0,
 
-             p = [i - 1 + ".0", u - 1 + ".0"],
 
-             d = p[0],
 
-             v = p[1],
 
-             m = l > 1 ? ["" + (i - 1) / (l - 1), "(y2-y1) * height_ratio", "y1*" + d + " + float(y)*(height_scale)"] : ["0.0", "0.0", "0.5 * (y1+y2) * " + d],
 
-             g = m[0],
 
-             y = m[1],
 
-             x = m[2],
 
-             b = h > 1 ? ["" + (u - 1) / (h - 1), "(x2-x1) * width_ratio", "x1*" + v + " + float(x)*(width_scale)"] : ["0.0", "0.0", "0.5 * (x1+x2) * " + v],
 
-             w = b[0],
 
-             C = b[1],
 
-             E = b[2];
 
-           this.userCode = "\n      const float height_ratio = float(" + g + ");\n      const float width_ratio = float(" + w + ");\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int y = coords[1];\n        int x = coords[2];\n        int d = coords[3];\n\n        // get box vals\n        float y1 = getBoxes(b,0);\n        float x1 = getBoxes(b,1);\n        float y2 = getBoxes(b,2);\n        float x2 = getBoxes(b,3);\n\n        // get image in batch index\n        int bInd = round(getBoxInd(b));\n        if(bInd < 0 || bInd >= " + a + ") {\n          return;\n        }\n\n        float height_scale = " + y + ";\n        float width_scale = " + C + ";\n\n        float in_y = " + x + ";\n        if( in_y < 0.0 || in_y > " + d + " ) {\n          setOutput(float(" + o + "));\n          return;\n        }\n        float in_x = " + E + ";\n        if( in_x < 0.0 || in_x > " + v + " ) {\n          setOutput(float(" + o + "));\n          return;\n        }\n\n        vec2 sourceFracIndexCR = vec2(in_x,in_y);\n        if(" + f + " == 1) {\n          // Compute the four integer indices.\n          ivec2 sourceFloorCR = ivec2(sourceFracIndexCR);\n          ivec2 sourceCeilCR = ivec2(ceil(sourceFracIndexCR));\n\n          float topLeft = getImage(b, sourceFloorCR.y, sourceFloorCR.x, d);\n          float bottomLeft = getImage(b, sourceCeilCR.y, sourceFloorCR.x, d);\n          float topRight = getImage(b, sourceFloorCR.y, sourceCeilCR.x, d);\n          float bottomRight = getImage(b, sourceCeilCR.y, sourceCeilCR.x, d);\n\n          vec2 fracCR = sourceFracIndexCR - vec2(sourceFloorCR);\n\n          float top = topLeft + (topRight - topLeft) * fracCR.x;\n          float bottom = bottomLeft + (bottomRight - bottomLeft) * fracCR.x;\n          float newValue = top + (bottom - top) * fracCR.y;\n          setOutput(newValue);\n        } else {\n          // Compute the coordinators of nearest neighbor point.\n          ivec2 sourceNearestCR = ivec2(floor(\n            sourceFracIndexCR + vec2(0.5,0.5)));\n          float newValue = getImage(b, sourceNearestCR.y, sourceNearestCR.x, d);\n          setOutput(newValue);\n        }\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ua = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["x"], this.outputShape = t;
 
-           var r = t.length,
 
-             o = t[t.length - 1],
 
-             a = n ? "<" : ">";
 
-           this.userCode = "\n      int getIndex(int i) {\n        " + (n ? "return " + o + " -i - 1;" : "return i;") + "\n      }\n\n      void main() {\n        " + aa(r) + " coords = getOutputCoords();\n        int end = " + Va(r, "coords") + ";\n        float val = 0.0;\n        for (int i = " + o + " - 1; i >= 0; i -= 1) {\n          int idx = getIndex(i);\n          if (idx " + a + " end) {\n            continue;\n          }\n          if (idx == end && " + e + ") {\n            continue;\n          }\n          " + Va(r, "coords") + " = idx;\n          val += getX(" + function (t, e) {
 
-             if (1 === t) return "" + e;
 
-             if (2 === t) return e + ".x, " + e + ".y";
 
-             if (3 === t) return e + ".x, " + e + ".y, " + e + ".z";
 
-             if (4 === t) return e + ".x, " + e + ".y, " + e + ".z, " + e + ".w";
 
-             throw Error("Cumulative sum for rank " + t + " is not yet supported");
 
-           }(r, "coords") + ");\n        }\n        setOutput(val);\n      }\n    ";
 
-         };
 
-       }();
 
-     function Va(t, e) {
 
-       if (1 === t) return "" + e;
 
-       if (2 === t) return e + ".y";
 
-       if (3 === t) return e + ".z";
 
-       if (4 === t) return e + ".w";
 
-       throw Error("Cumulative sum for rank " + t + " is not yet supported");
 
-     }
 
-     var za = function () {
 
-       return function (t) {
 
-         this.variableNames = ["A"], this.packedInputs = !1, this.packedOutput = !0, this.outPackingScheme = _t.DENSE;
 
-         var e = Gt(t),
 
-           n = Ko();
 
-         this.outputShape = t, this.userCode = "\n      ivec3 outCoordsFromFlatIndex(int index) {\n        " + jo(["r", "c", "d"], t) + "\n        return ivec3(r, c, d);\n      }\n\n      void main() {\n        ivec2 resTexRC = ivec2(resultUV.yx *\n          vec2(" + e[0] + ", " + e[1] + "));\n        int index = 4 * (resTexRC.x * " + e[1] + " + resTexRC.y);\n\n        vec4 result = vec4(0.);\n\n        for (int i=0; i<4; i++) {\n          int flatIndex = index + i;\n          ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n          result[i] = getA(rc.x, rc.y, rc.z);\n        }\n\n        " + n.output + " = result;\n      }\n    ";
 
-       };
 
-     }(),
 
-       Ga = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, this.outPackingScheme = _t.DENSE;
 
-           var e = Gt(t),
 
-             n = Ko();
 
-           this.outputShape = t, this.userCode = "\n      ivec3 outCoordsFromFlatIndex(int index) {\n        " + jo(["r", "c", "d"], t) + "\n        return ivec3(r, c, d);\n      }\n\n      void main() {\n        ivec2 resTexRC = ivec2(resultUV.yx *\n          vec2(" + e[0] + ", " + e[1] + "));\n        int index = 4 * (resTexRC.x * " + e[1] + " + resTexRC.y);\n\n        vec4 result = vec4(0.);\n\n        for (int i=0; i<4; i++) {\n          int flatIndex = index + i;\n          ivec3 rc = outCoordsFromFlatIndex(flatIndex);\n          result[i] = getChannel(getA(rc.x, rc.y, rc.z), vec2(rc.y, rc.z));\n        }\n\n        " + n.output + " = result;\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ha = function () {
 
-         function t(t, e, n) {
 
-           this.variableNames = ["x"], this.outputShape = [], this.outputShape = t, this.blockSize = e, this.dataFormat = n, this.userCode = "\n    void main() {\n      ivec4 coords = getOutputCoords();\n      int b = coords[0];\n      int h = " + this.getHeightCoordString() + ";\n      int w = " + this.getWidthCoordString() + ";\n      int d = " + this.getDepthCoordString() + ";\n\n      int in_h = h / " + e + ";\n      int offset_h = imod(h, " + e + ");\n      int in_w = w / " + e + ";\n      int offset_w = imod(w, " + e + ");\n      int offset_d = (offset_h * " + e + " + offset_w) *\n        " + this.getOutputDepthSize() + ";\n      int in_d = d + offset_d;\n\n      float result = " + this.getInputSamplingString() + ";\n      setOutput(result);\n    }\n  ";
 
-         }
 
-         return t.prototype.getHeightCoordString = function () {
 
-           return "NHWC" === this.dataFormat ? "coords[1]" : "coords[2]";
 
-         }, t.prototype.getWidthCoordString = function () {
 
-           return "NHWC" === this.dataFormat ? "coords[2]" : "coords[3]";
 
-         }, t.prototype.getDepthCoordString = function () {
 
-           return "NHWC" === this.dataFormat ? "coords[3]" : "coords[1]";
 
-         }, t.prototype.getOutputDepthSize = function () {
 
-           return "NHWC" === this.dataFormat ? this.outputShape[3] : this.outputShape[1];
 
-         }, t.prototype.getInputSamplingString = function () {
 
-           return "NHWC" === this.dataFormat ? "getX(b, in_h, in_w, in_d)" : "getX(b, in_d, in_h, in_w)";
 
-         }, t;
 
-       }(),
 
-       qa = function () {
 
-         return function (t) {
 
-           this.variableNames = ["X"], this.outputShape = [t, t], this.userCode = "\n      void main() {\n          ivec2 coords = getOutputCoords();\n          float val = coords[0] == coords[1] ? getX(coords[0]) : 0.0;\n          setOutput(val);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ka = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"], this.outTexUsage = Mt.DOWNLOAD;
 
-           var e = Ko();
 
-           this.outputShape = t, this.userCode = "\n      " + $o + "\n\n      void main() {\n        float x = getAAtOutCoords();\n        " + e.output + " = encode_float(x);\n      }\n    ";
 
-         };
 
-       }(),
 
-       ja = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !1, this.outTexUsage = Mt.DOWNLOAD;
 
-           var e = Ko();
 
-           this.outputShape = t, this.userCode = "\n      " + $o + "\n\n      void main() {\n        ivec3 coords = getOutputCoords();\n        float x = getChannel(getAAtOutCoords(), vec2(coords.y, coords.z));\n        " + e.output + " = encode_float(x);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Xa = function () {
 
-         return function (t, e, n) {
 
-           void 0 === n && (n = !1), this.variableNames = ["A"];
 
-           var r = Ko(),
 
-             o = e[0],
 
-             a = e[1];
 
-           this.outputShape = t;
 
-           var i = "result";
 
-           n && (i = "floor(result * 255. + 0.5)"), this.userCode = "\n      " + Xo(t) + "\n\n      void main() {\n        ivec3 coords = getOutputCoords();\n\n        int flatIndex = getFlatIndex(coords);\n        int offset = imod(flatIndex, 4);\n\n        flatIndex = idiv(flatIndex, 4, 1.);\n        \n        int r = flatIndex / " + a + ";\n        int c = imod(flatIndex, " + a + ");\n        vec2 uv = (vec2(c, r) + halfCR) / vec2(" + a + ".0, " + o + ".0);\n        vec4 values = " + r.texture2D + "(A, uv);\n\n        float result;\n\n        if(offset == 0) {\n          result = values[0];\n        } else if(offset == 1) {\n          result = values[1];\n        } else if(offset == 2) {\n          result = values[2];\n        } else {\n          result = values[3];\n        }\n\n        " + r.output + " = vec4(" + i + ", 0., 0., 0.);\n      }\n    ";
 
-         };
 
-       }(),
 
-       $a = function () {
 
-         return function (t, e, n) {
 
-           void 0 === n && (n = !1), this.variableNames = ["A"], this.packedInputs = !1, this.packedOutput = !0;
 
-           var r = Ko(),
 
-             o = e[0],
 
-             a = e[1];
 
-           this.outputShape = t;
 
-           var i = "",
 
-             u = "result";
 
-           n && (u = "floor(result * 255. + 0.5)");
 
-           for (var s = 0; s <= 1; s++) for (var c = 0; c <= 1; c++) {
 
-             var l = 2 * s + c;
 
-             i += "\n          localCoords = coords;\n          if(localCoords[2] + " + c + " < " + t[2] + ") {\n            localCoords[2] += " + c + ";\n            if(localCoords[1] + " + s + " < " + t[1] + ") {\n              localCoords[1] += " + s + ";\n\n              flatIndex = getFlatIndex(localCoords);\n              offset = imod(flatIndex, 4);\n\n              flatIndex = idiv(flatIndex, 4, 1.);\n\n              r = flatIndex / " + a + ";\n              c = imod(flatIndex, " + a + ");\n              uv = (vec2(c, r) + halfCR) / vec2(" + a + ".0, " + o + ".0);\n              values = " + r.texture2D + "(A, uv);\n\n              if(offset == 0) {\n                result[" + l + "] = values[0];\n              } else if(offset == 1) {\n                result[" + l + "] = values[1];\n              } else if(offset == 2) {\n                result[" + l + "] = values[2];\n              } else {\n                result[" + l + "] = values[3];\n              }\n            }\n          }\n        ";
 
-           }
 
-           this.userCode = "\n      " + Xo(t) + "\n\n      void main() {\n        ivec3 coords = getOutputCoords();\n\n        vec4 result = vec4(0.);\n        int flatIndex, r, c, offset;\n        ivec3 localCoords;\n        vec2 uv;\n        vec4 values;\n\n        " + i + "\n\n        " + r.output + " = " + u + ";\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ya = "return real * expR - imag * expI;",
 
-       Qa = "return real * expI + imag * expR;",
 
-       Ja = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["real", "imag"];
 
-           var r = e[1];
 
-           this.outputShape = e;
 
-           var o = n ? "2.0 * " + Math.PI : "-2.0 * " + Math.PI,
 
-             a = n ? r + ".0" : "1.0";
 
-           this.userCode = "\n      const float exponentMultiplier = " + o + ";\n\n      float unaryOpComplex(float real, float expR, float imag, float expI) {\n        " + t + "\n      }\n\n      float mulMatDFT(int batch, int index) {\n        float indexRatio = float(index) / float(" + r + ");\n        float exponentMultiplierTimesIndexRatio =\n            exponentMultiplier * indexRatio;\n\n        float result = 0.0;\n\n        for (int i = 0; i < " + r + "; i++) {\n          // x = (-2|2 * PI / N) * index * i;\n          float x = exponentMultiplierTimesIndexRatio * float(i);\n          float expR = cos(x);\n          float expI = sin(x);\n          float real = getReal(batch, i);\n          float imag = getImag(batch, i);\n\n          result +=\n              unaryOpComplex(real, expR, imag, expI) / " + a + ";\n        }\n\n        return result;\n      }\n\n      void main() {\n        ivec2 coords = getOutputCoords();\n        setOutput(mulMatDFT(coords[0], coords[1]));\n      }\n    ";
 
-         };
 
-       }(),
 
-       Za = function () {
 
-         function t(t, e) {
 
-           this.outputShape = [], this.variableNames = ["x"], this.outputShape = t, this.userCode = "\n      uniform float value;\n      void main() {\n        // Input can be obtained from uniform value.\n        setOutput(value);\n      }\n    ";
 
-         }
 
-         return t.prototype.getCustomSetupFunc = function (t) {
 
-           var e = this;
 
-           return function (n, r) {
 
-             null == e.valueLoc && (e.valueLoc = n.getUniformLocationNoThrow(r, "value")), n.gl.uniform1f(e.valueLoc, t);
 
-           };
 
-         }, t;
 
-       }(),
 
-       ti = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"];
 
-           var e = Ko(),
 
-             n = t[0],
 
-             r = t[1];
 
-           this.outputShape = t, this.userCode = "\n      void main() {\n        ivec3 coords = getOutputCoords();\n        int texR = coords[0];\n        int texC = coords[1];\n        int depth = coords[2];\n        vec2 uv = (vec2(texC, texR) + halfCR) / vec2(" + r + ".0, " + n + ".0);\n\n        vec4 values = " + e.texture2D + "(A, uv);\n        float value;\n        if (depth == 0) {\n          value = values.r;\n        } else if (depth == 1) {\n          value = values.g;\n        } else if (depth == 2) {\n          value = values.b;\n        } else if (depth == 3) {\n          value = values.a;\n        }\n\n        setOutput(floor(value * 255.0 + 0.5));\n      }\n    ";
 
-         };
 
-       }(),
 
-       ei = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"], this.packedInputs = !1, this.packedOutput = !0;
 
-           var e = Ko(),
 
-             n = t[0],
 
-             r = t[1];
 
-           this.outputShape = t, this.userCode = "\n      void main() {\n        ivec3 coords = getOutputCoords();\n        int texR = coords[0];\n        int texC = coords[1];\n        int depth = coords[2];\n\n        vec4 result = vec4(0.);\n\n        for(int row=0; row<=1; row++) {\n          for(int col=0; col<=1; col++) {\n            texC = coords[1] + row;\n            depth = coords[2] + col;\n\n            vec2 uv = (vec2(texC, texR) + halfCR) /\n                       vec2(" + r + ".0, " + n + ".0);\n            vec4 values = " + e.texture2D + "(A, uv);\n            float value;\n            if (depth == 0) {\n              value = values.r;\n            } else if (depth == 1) {\n              value = values.g;\n            } else if (depth == 2) {\n              value = values.b;\n            } else if (depth == 3) {\n              value = values.a;\n            }\n\n            result[row * 2 + col] = floor(value * 255.0 + 0.5);\n          }\n        }\n\n        " + e.output + " = result;\n      }\n    ";
 
-         };
 
-       }(),
 
-       ni = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["A", "indices"];
 
-           var r = t.slice();
 
-           r[n] = e, this.outputShape = r, this.rank = r.length;
 
-           var o = aa(this.rank),
 
-             a = function (t, e) {
 
-               var n = t.length;
 
-               if (n > 4) throw Error("Gather for rank " + n + " is not yet supported");
 
-               if (1 === n) return "int(getIndices(resRC))";
 
-               for (var r = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"], o = [], a = 0; a < t.length; a++) a === e ? o.push("int(getIndices(" + r[a] + "))") : o.push("" + r[a]);
 
-               return o.join();
 
-             }(t, n);
 
-           this.userCode = "\n      void main() {\n        " + o + " resRC = getOutputCoords();\n        setOutput(getA(" + a + "));\n      }\n    ";
 
-         };
 
-       }();
 
-     var ri = function () {
 
-       return function (t, e, n) {
 
-         this.sliceDim = t, this.strides = e, this.variableNames = ["x", "indices"], this.outputShape = n;
 
-         var r = aa(e.length),
 
-           o = aa(n.length),
 
-           a = this.sliceDim > 1 ? "strides[j]" : "strides";
 
-         this.userCode = "\n        " + r + " strides = " + r + "(" + this.strides + ");\n         void main() {\n          " + o + " coords = getOutputCoords();\n          int flattenIndex = 0;\n          for (int j = 0; j < " + this.sliceDim + "; j++) {\n            int index = round(getIndices(coords[0], j));\n            flattenIndex += index * " + a + ";\n          }\n          setOutput(getX(flattenIndex, coords[1]));\n        }\n      ";
 
-       };
 
-     }();
 
-     function oi(t, e) {
 
-       var n = Ko();
 
-       return Jt(t, e, n.version + "\n    precision highp float;\n    " + n.attribute + " vec3 clipSpacePos;\n    " + n.attribute + " vec2 uv;\n    " + n.varyingVs + " vec2 resultUV;\n\n    void main() {\n      gl_Position = vec4(clipSpacePos, 1);\n      resultUV = uv;\n    }");
 
-     }
 
-     function ai(t, e) {
 
-       return ie(t, e, new Float32Array([-1, 1, 0, 0, 1, -1, -1, 0, 0, 0, 1, 1, 0, 1, 1, 1, -1, 0, 1, 0]));
 
-     }
 
-     function ii(t, e) {
 
-       return ue(t, e, new Uint16Array([0, 1, 2, 2, 1, 3]));
 
-     }
 
-     function ui(t, e, n, r, o, a, i) {
 
-       ce(n, r);
 
-       var u = se(t, e),
 
-         s = t.TEXTURE_2D;
 
-       return Kt(t, e, function () {
 
-         return t.bindTexture(s, u);
 
-       }), Kt(t, e, function () {
 
-         return t.texParameteri(s, t.TEXTURE_WRAP_S, t.CLAMP_TO_EDGE);
 
-       }), Kt(t, e, function () {
 
-         return t.texParameteri(s, t.TEXTURE_WRAP_T, t.CLAMP_TO_EDGE);
 
-       }), Kt(t, e, function () {
 
-         return t.texParameteri(s, t.TEXTURE_MIN_FILTER, t.NEAREST);
 
-       }), Kt(t, e, function () {
 
-         return t.texParameteri(s, t.TEXTURE_MAG_FILTER, t.NEAREST);
 
-       }), Kt(t, e, function () {
 
-         return t.texImage2D(s, 0, o, n, r, 0, a, i, null);
 
-       }), Kt(t, e, function () {
 
-         return t.bindTexture(t.TEXTURE_2D, null);
 
-       }), u;
 
-     }
 
-     function si(t, e, n, r, o) {
 
-       var a = zt(n, r);
 
-       return ui(t, e, a[0], a[1], o.internalFormatFloat, o.textureFormatFloat, t.FLOAT);
 
-     }
 
-     function ci(t, e, n, r, o) {
 
-       var a = zt(n, r);
 
-       return ui(t, e, a[0], a[1], o.internalFormatHalfFloat, o.textureFormatFloat, o.textureTypeHalfFloat);
 
-     }
 
-     function li(t, e, n, r, o) {
 
-       var a = zt(n, r);
 
-       return ui(t, e, a[0], a[1], t.RGBA, t.RGBA, t.UNSIGNED_BYTE);
 
-     }
 
-     function hi(t, e, n, r, o) {
 
-       var a = Ht(n, r);
 
-       return ui(t, e, a[0], a[1], o.internalFormatPackedFloat, t.RGBA, t.FLOAT);
 
-     }
 
-     function fi(t, e, n, r, o) {
 
-       var a = Ht(n, r);
 
-       return ui(t, e, a[0], a[1], o.internalFormatPackedHalfFloat, t.RGBA, o.textureTypeHalfFloat);
 
-     }
 
-     function pi(t, e, n, r) {
 
-       return Kt(t, e, function () {
 
-         return t.bindBuffer(t.ARRAY_BUFFER, r);
 
-       }), he(t, e, n, "clipSpacePos", r, 3, 20, 0) && he(t, e, n, "uv", r, 2, 20, 12);
 
-     }
 
-     function di(t, e, n, r, o, a, i) {
 
-       var u, s, c;
 
-       Kt(t, e, function () {
 
-         return t.bindTexture(t.TEXTURE_2D, n);
 
-       }), a instanceof Uint8Array ? (u = new Uint8Array(r * o * 4), s = t.UNSIGNED_BYTE, c = t.RGBA) : (u = new Float32Array(r * o * 4), s = t.FLOAT, c = i.internalFormatPackedFloat), u.set(a), Kt(t, e, function () {
 
-         return t.texImage2D(t.TEXTURE_2D, 0, c, r, o, 0, t.RGBA, s, u);
 
-       }), Kt(t, e, function () {
 
-         return t.bindTexture(t.TEXTURE_2D, null);
 
-       });
 
-     }
 
-     function vi(t, e, n, r) {
 
-       Kt(t, e, function () {
 
-         return t.bindTexture(t.TEXTURE_2D, n);
 
-       }), r.data instanceof Uint8Array ? Kt(t, e, function () {
 
-         return t.texImage2D(t.TEXTURE_2D, 0, t.RGBA, r.width, r.height, 0, t.RGBA, t.UNSIGNED_BYTE, r.data);
 
-       }) : Kt(t, e, function () {
 
-         return t.texImage2D(t.TEXTURE_2D, 0, t.RGBA, t.RGBA, t.UNSIGNED_BYTE, r);
 
-       }), Kt(t, e, function () {
 
-         return t.bindTexture(t.TEXTURE_2D, null);
 
-       });
 
-     }
 
-     function mi(t, e, n, r, o) {
 
-       var a = t.createBuffer();
 
-       Kt(t, e, function () {
 
-         return t.bindBuffer(t.PIXEL_PACK_BUFFER, a);
 
-       });
 
-       var i = 16 * n * r;
 
-       return Kt(t, e, function () {
 
-         return t.bufferData(t.PIXEL_PACK_BUFFER, i, t.STREAM_READ);
 
-       }), Kt(t, e, function () {
 
-         return t.readPixels(0, 0, r, n, t.RGBA, t.FLOAT, 0);
 
-       }), Kt(t, e, function () {
 
-         return t.bindBuffer(t.PIXEL_PACK_BUFFER, null);
 
-       }), a;
 
-     }
 
-     function gi(t, e, n) {
 
-       var r = t,
 
-         o = new Float32Array(n);
 
-       return r.bindBuffer(r.PIXEL_PACK_BUFFER, e), r.getBufferSubData(r.PIXEL_PACK_BUFFER, 0, o), r.bindBuffer(r.PIXEL_PACK_BUFFER, null), o;
 
-     }
 
-     function yi(t, e, n, r, o) {
 
-       var a = zt(n, r),
 
-         i = a[0],
 
-         u = a[1],
 
-         s = new Uint8Array(n * r * 4);
 
-       return Kt(t, e, function () {
 
-         return t.readPixels(0, 0, i, u, o.downloadTextureFormat, t.UNSIGNED_BYTE, s);
 
-       }), new Float32Array(s.buffer);
 
-     }
 
-     function xi(t, e, n, r, o, a, i, u) {
 
-       var s = t,
 
-         c = new Float32Array(function (t, e) {
 
-           var n = Ht(t, e);
 
-           return n[0] * n[1] * 4;
 
-         }(a, i));
 
-       return s.bindBuffer(s.PIXEL_PACK_BUFFER, e), s.getBufferSubData(s.PIXEL_PACK_BUFFER, 0, c), s.bindBuffer(s.PIXEL_PACK_BUFFER, null), c;
 
-     }
 
-     function bi(t, e, n, r) {
 
-       var o = new Float32Array(n * r * 4);
 
-       return Kt(t, e, function () {
 
-         return t.readPixels(0, 0, r, n, t.RGBA, t.FLOAT, o);
 
-       }), o;
 
-     }
 
-     var wi = Object.freeze({
 
-       createVertexShader: oi,
 
-       createVertexBuffer: ai,
 
-       createIndexBuffer: ii,
 
-       createFloat32MatrixTexture: si,
 
-       createFloat16MatrixTexture: ci,
 
-       createUnsignedBytesMatrixTexture: li,
 
-       createPackedMatrixTexture: hi,
 
-       createFloat16PackedMatrixTexture: fi,
 
-       bindVertexProgramAttributeStreams: pi,
 
-       uploadDenseMatrixToTexture: di,
 
-       uploadPixelDataToTexture: vi,
 
-       createBufferFromOutputTexture: mi,
 
-       downloadFloat32MatrixFromBuffer: gi,
 
-       downloadByteEncodedFloatMatrixFromOutputTexture: yi,
 
-       downloadPackedMatrixFromBuffer: xi,
 
-       downloadMatrixFromPackedOutputTexture: bi
 
-     }),
 
-       Ci = function () {
 
-         function t(t) {
 
-           this.outputTexture = null, this.program = null, this.disposed = !1, this.vertexAttrsAreBound = !1, this.itemsToPoll = [];
 
-           var e = a().getNumber("WEBGL_VERSION");
 
-           if (null != t ? (this.gl = t, Wt(e, t)) : this.gl = Ut(e), 1 === a().getNumber("WEBGL_VERSION")) this.textureFloatExtension = Qt(this.gl, this.debug, "OES_texture_float"), this.colorBufferFloatExtension = this.gl.getExtension("WEBGL_color_buffer_float"), this.textureHalfFloatExtension = Qt(this.gl, this.debug, "OES_texture_half_float"), this.colorBufferHalfFloatExtension = this.gl.getExtension("EXT_color_buffer_half_float"); else {
 
-             if (Ne(this.gl, "EXT_color_buffer_float")) this.colorBufferFloatExtension = this.gl.getExtension("EXT_color_buffer_float"); else {
 
-               if (!Ne(this.gl, "EXT_color_buffer_half_float")) throw new Error("GL context does not support color renderable floats");
 
-               this.colorBufferHalfFloatExtension = this.gl.getExtension("EXT_color_buffer_half_float");
 
-             }
 
-           }
 
-           this.vertexBuffer = ai(this.gl, this.debug), this.indexBuffer = ii(this.gl, this.debug), this.framebuffer = le(this.gl, this.debug), this.textureConfig = qt(this.gl, this.textureHalfFloatExtension);
 
-         }
 
-         return Object.defineProperty(t.prototype, "debug", {
 
-           get: function () {
 
-             return a().getBool("DEBUG");
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.dispose = function () {
 
-           var t = this;
 
-           if (!this.disposed) {
 
-             null != this.program && console.warn("Disposing a GPGPUContext that still has a bound WebGLProgram. This is probably a resource leak, delete the program with GPGPUContext.deleteProgram before disposing."), null != this.outputTexture && console.warn("Disposing a GPGPUContext that still has a bound output matrix texture.  This is probably a resource leak, delete the output matrix texture with GPGPUContext.deleteMatrixTexture before disposing.");
 
-             var e = this.gl;
 
-             Kt(e, this.debug, function () {
 
-               return e.finish();
 
-             }), Kt(e, this.debug, function () {
 
-               return e.bindFramebuffer(e.FRAMEBUFFER, null);
 
-             }), Kt(e, this.debug, function () {
 
-               return e.deleteFramebuffer(t.framebuffer);
 
-             }), Kt(e, this.debug, function () {
 
-               return e.bindBuffer(e.ARRAY_BUFFER, null);
 
-             }), Kt(e, this.debug, function () {
 
-               return e.bindBuffer(e.ELEMENT_ARRAY_BUFFER, null);
 
-             }), Kt(e, this.debug, function () {
 
-               return e.deleteBuffer(t.indexBuffer);
 
-             }), this.disposed = !0;
 
-           }
 
-         }, t.prototype.createFloat32MatrixTexture = function (t, e) {
 
-           return this.throwIfDisposed(), si(this.gl, this.debug, t, e, this.textureConfig);
 
-         }, t.prototype.createFloat16MatrixTexture = function (t, e) {
 
-           return this.throwIfDisposed(), ci(this.gl, this.debug, t, e, this.textureConfig);
 
-         }, t.prototype.createUnsignedBytesMatrixTexture = function (t, e) {
 
-           return this.throwIfDisposed(), li(this.gl, this.debug, t, e, this.textureConfig);
 
-         }, t.prototype.uploadPixelDataToTexture = function (t, e) {
 
-           this.throwIfDisposed(), vi(this.gl, this.debug, t, e);
 
-         }, t.prototype.uploadDenseMatrixToTexture = function (t, e, n, r) {
 
-           this.throwIfDisposed(), di(this.gl, this.debug, t, e, n, r, this.textureConfig);
 
-         }, t.prototype.createFloat16PackedMatrixTexture = function (t, e) {
 
-           return this.throwIfDisposed(), fi(this.gl, this.debug, t, e, this.textureConfig);
 
-         }, t.prototype.createPackedMatrixTexture = function (t, e) {
 
-           return this.throwIfDisposed(), hi(this.gl, this.debug, t, e, this.textureConfig);
 
-         }, t.prototype.deleteMatrixTexture = function (t) {
 
-           var e = this;
 
-           this.throwIfDisposed(), this.outputTexture === t && (ge(this.gl, this.debug, this.framebuffer), this.outputTexture = null), Kt(this.gl, this.debug, function () {
 
-             return e.gl.deleteTexture(t);
 
-           });
 
-         }, t.prototype.downloadByteEncodedFloatMatrixFromOutputTexture = function (t, e, n) {
 
-           var r = this;
 
-           return this.downloadMatrixDriver(t, function () {
 
-             return yi(r.gl, r.debug, e, n, r.textureConfig);
 
-           });
 
-         }, t.prototype.downloadPackedMatrixFromBuffer = function (t, e, n, r, o, a) {
 
-           return xi(this.gl, t, 0, 0, 0, o, a, this.textureConfig);
 
-         }, t.prototype.downloadFloat32MatrixFromBuffer = function (t, e) {
 
-           return gi(this.gl, t, e);
 
-         }, t.prototype.createBufferFromTexture = function (t, e, n) {
 
-           this.bindTextureToFrameBuffer(t);
 
-           var r = mi(this.gl, this.debug, e, n, this.textureConfig);
 
-           return this.unbindTextureToFrameBuffer(), r;
 
-         }, t.prototype.createAndWaitForFence = function () {
 
-           var t = this.createFence(this.gl);
 
-           return this.pollFence(t);
 
-         }, t.prototype.createFence = function (t) {
 
-           var e,
 
-             n,
 
-             r = this;
 
-           if (a().getBool("WEBGL_FENCE_API_ENABLED")) {
 
-             var o = t,
 
-               i = o.fenceSync(o.SYNC_GPU_COMMANDS_COMPLETE, 0);
 
-             t.flush(), n = function () {
 
-               var t = o.clientWaitSync(i, 0, 0);
 
-               return t === o.ALREADY_SIGNALED || t === o.CONDITION_SATISFIED;
 
-             }, e = i;
 
-           } else a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 ? (e = this.beginQuery(), this.endQuery(), n = function () {
 
-             return r.isQueryAvailable(e, a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"));
 
-           }) : n = function () {
 
-             return !0;
 
-           };
 
-           return {
 
-             query: e,
 
-             isFencePassed: n
 
-           };
 
-         }, t.prototype.downloadMatrixFromPackedTexture = function (t, e, n) {
 
-           var r = this;
 
-           return this.downloadMatrixDriver(t, function () {
 
-             return bi(r.gl, r.debug, e, n);
 
-           });
 
-         }, t.prototype.createProgram = function (t) {
 
-           this.throwIfDisposed();
 
-           var e = this.gl,
 
-             n = Zt(e, this.debug, t),
 
-             r = oi(e, this.debug),
 
-             o = re(e, this.debug);
 
-           return Kt(e, this.debug, function () {
 
-             return e.attachShader(o, r);
 
-           }), Kt(e, this.debug, function () {
 
-             return e.attachShader(o, n);
 
-           }), oe(e, this.debug, o), this.debug && ae(e, this.debug, o), this.vertexAttrsAreBound || (this.setProgram(o), this.vertexAttrsAreBound = pi(e, this.debug, this.program, this.vertexBuffer)), o;
 
-         }, t.prototype.deleteProgram = function (t) {
 
-           var e = this;
 
-           this.throwIfDisposed(), t === this.program && (this.program = null), null != t && Kt(this.gl, this.debug, function () {
 
-             return e.gl.deleteProgram(t);
 
-           });
 
-         }, t.prototype.setProgram = function (t) {
 
-           var e = this;
 
-           this.throwIfDisposed(), this.program = t, null != this.program && this.debug && ae(this.gl, this.debug, this.program), Kt(this.gl, this.debug, function () {
 
-             return e.gl.useProgram(t);
 
-           });
 
-         }, t.prototype.getUniformLocation = function (t, e, n) {
 
-           return void 0 === n && (n = !0), this.throwIfDisposed(), n ? pe(this.gl, this.debug, t, e) : de(this.gl, t, e);
 
-         }, t.prototype.getAttributeLocation = function (t, e) {
 
-           var n = this;
 
-           return this.throwIfDisposed(), Kt(this.gl, this.debug, function () {
 
-             return n.gl.getAttribLocation(t, e);
 
-           });
 
-         }, t.prototype.getUniformLocationNoThrow = function (t, e) {
 
-           return this.throwIfDisposed(), this.gl.getUniformLocation(t, e);
 
-         }, t.prototype.setInputMatrixTexture = function (t, e, n) {
 
-           this.throwIfDisposed(), this.throwIfNoProgram(), ve(this.gl, this.debug, this.program, t, e, n);
 
-         }, t.prototype.setOutputMatrixTexture = function (t, e, n) {
 
-           this.setOutputMatrixTextureDriver(t, n, e);
 
-         }, t.prototype.setOutputPackedMatrixTexture = function (t, e, n) {
 
-           this.throwIfDisposed();
 
-           var r = Ht(e, n),
 
-             o = r[0],
 
-             a = r[1];
 
-           this.setOutputMatrixTextureDriver(t, o, a);
 
-         }, t.prototype.setOutputMatrixWriteRegion = function (t, e, n, r) {
 
-           this.setOutputMatrixWriteRegionDriver(n, t, r, e);
 
-         }, t.prototype.setOutputPackedMatrixWriteRegion = function (t, e, n, r) {
 
-           throw new Error("setOutputPackedMatrixWriteRegion not implemented.");
 
-         }, t.prototype.debugValidate = function () {
 
-           null != this.program && ae(this.gl, this.debug, this.program), ye(this.gl);
 
-         }, t.prototype.executeProgram = function () {
 
-           this.throwIfDisposed(), this.throwIfNoProgram();
 
-           var t = this.gl;
 
-           this.debug && this.debugValidate(), Kt(t, this.debug, function () {
 
-             return t.drawElements(t.TRIANGLES, 6, t.UNSIGNED_SHORT, 0);
 
-           });
 
-         }, t.prototype.blockUntilAllProgramsCompleted = function () {
 
-           var t = this;
 
-           this.throwIfDisposed(), Kt(this.gl, this.debug, function () {
 
-             return t.gl.finish();
 
-           });
 
-         }, t.prototype.getQueryTimerExtension = function () {
 
-           return null == this.disjointQueryTimerExtension && (this.disjointQueryTimerExtension = Qt(this.gl, this.debug, 2 === a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") ? "EXT_disjoint_timer_query_webgl2" : "EXT_disjoint_timer_query")), this.disjointQueryTimerExtension;
 
-         }, t.prototype.getQueryTimerExtensionWebGL2 = function () {
 
-           return this.getQueryTimerExtension();
 
-         }, t.prototype.getQueryTimerExtensionWebGL1 = function () {
 
-           return this.getQueryTimerExtension();
 
-         }, t.prototype.beginQuery = function () {
 
-           if (2 === a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")) {
 
-             var t = this.gl,
 
-               e = this.getQueryTimerExtensionWebGL2(),
 
-               n = t.createQuery();
 
-             return t.beginQuery(e.TIME_ELAPSED_EXT, n), n;
 
-           }
 
-           var r = this.getQueryTimerExtensionWebGL1(),
 
-             o = r.createQueryEXT();
 
-           return r.beginQueryEXT(r.TIME_ELAPSED_EXT, o), o;
 
-         }, t.prototype.endQuery = function () {
 
-           if (2 !== a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION")) {
 
-             var t = this.getQueryTimerExtensionWebGL1();
 
-             t.endQueryEXT(t.TIME_ELAPSED_EXT);
 
-           } else {
 
-             var e = this.gl,
 
-               n = this.getQueryTimerExtensionWebGL2();
 
-             e.endQuery(n.TIME_ELAPSED_EXT);
 
-           }
 
-         }, t.prototype.waitForQueryAndGetTime = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             var e = this;
 
-             return r(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return [4, S(function () {
 
-                     return e.disposed || e.isQueryAvailable(t, a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"));
 
-                   })];
 
-                 case 1:
 
-                   return n.sent(), [2, this.getQueryTime(t, a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION"))];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.getQueryTime = function (t, e) {
 
-           if (0 === e) return null;
 
-           if (2 === e) {
 
-             var n = this.gl;
 
-             return n.getQueryParameter(t, n.QUERY_RESULT) / 1e6;
 
-           }
 
-           var r = this.getQueryTimerExtensionWebGL1();
 
-           return r.getQueryObjectEXT(t, r.QUERY_RESULT_EXT) / 1e6;
 
-         }, t.prototype.isQueryAvailable = function (t, e) {
 
-           if (0 === e) return !0;
 
-           if (2 === e) {
 
-             var n = this.gl,
 
-               r = this.getQueryTimerExtensionWebGL2(),
 
-               o = n.getQueryParameter(t, n.QUERY_RESULT_AVAILABLE);
 
-             return null == this.disjoint && (this.disjoint = this.gl.getParameter(r.GPU_DISJOINT_EXT)), o && !this.disjoint;
 
-           }
 
-           o = (r = this.getQueryTimerExtensionWebGL1()).getQueryObjectEXT(t, r.QUERY_RESULT_AVAILABLE_EXT);
 
-           return null == this.disjoint && (this.disjoint = this.gl.getParameter(r.GPU_DISJOINT_EXT)), o && !this.disjoint;
 
-         }, t.prototype.pollFence = function (t) {
 
-           var e = this;
 
-           return new Promise(function (n) {
 
-             e.addItemToPoll(function () {
 
-               return t.isFencePassed();
 
-             }, function () {
 
-               return n();
 
-             });
 
-           });
 
-         }, t.prototype.pollItems = function () {
 
-           for (var t = function (t) {
 
-             for (var e = 0; e < t.length; ++e) {
 
-               var n = t[e]();
 
-               if (!n) break;
 
-             }
 
-             return e - 1;
 
-           }(this.itemsToPoll.map(function (t) {
 
-             return t.isDoneFn;
 
-           })), e = 0; e <= t; ++e) {
 
-             (0, this.itemsToPoll[e].resolveFn)();
 
-           }
 
-           this.itemsToPoll = this.itemsToPoll.slice(t + 1);
 
-         }, t.prototype.addItemToPoll = function (t, e) {
 
-           var n = this;
 
-           this.itemsToPoll.push({
 
-             isDoneFn: t,
 
-             resolveFn: e
 
-           }), this.itemsToPoll.length > 1 || S(function () {
 
-             return n.pollItems(), 0 === n.itemsToPoll.length;
 
-           });
 
-         }, t.prototype.bindTextureToFrameBuffer = function (t) {
 
-           this.throwIfDisposed(), me(this.gl, this.debug, t, this.framebuffer), this.debug && ye(this.gl);
 
-         }, t.prototype.unbindTextureToFrameBuffer = function () {
 
-           null != this.outputTexture ? (me(this.gl, this.debug, this.outputTexture, this.framebuffer), this.debug && ye(this.gl)) : ge(this.gl, this.debug, this.framebuffer);
 
-         }, t.prototype.downloadMatrixDriver = function (t, e) {
 
-           this.bindTextureToFrameBuffer(t);
 
-           var n = e();
 
-           return this.unbindTextureToFrameBuffer(), n;
 
-         }, t.prototype.setOutputMatrixTextureDriver = function (t, e, n) {
 
-           this.throwIfDisposed();
 
-           var r = this.gl;
 
-           me(r, this.debug, t, this.framebuffer), this.debug && ye(r), this.outputTexture = t, Kt(r, this.debug, function () {
 
-             return r.viewport(0, 0, e, n);
 
-           }), Kt(r, this.debug, function () {
 
-             return r.scissor(0, 0, e, n);
 
-           });
 
-         }, t.prototype.setOutputMatrixWriteRegionDriver = function (t, e, n, r) {
 
-           var o = this;
 
-           this.throwIfDisposed(), Kt(this.gl, this.debug, function () {
 
-             return o.gl.scissor(t, e, n, r);
 
-           });
 
-         }, t.prototype.throwIfDisposed = function () {
 
-           if (this.disposed) throw new Error("Attempted to use disposed GPGPUContext.");
 
-         }, t.prototype.throwIfNoProgram = function () {
 
-           if (null == this.program) throw new Error("No GPU program is currently set.");
 
-         }, t;
 
-       }();
 
-     function Ei(t, e) {
 
-       if (t.length !== e.length) throw Error("Binary was compiled with " + t.length + " inputs, but was executed with " + e.length + " inputs");
 
-       t.forEach(function (t, n) {
 
-         var r = t.logicalShape,
 
-           o = e[n],
 
-           a = o.shape;
 
-         if (!C(r, a)) throw Error("Binary was compiled with different shapes than the current args. Shapes " + r + " and " + a + " must match");
 
-         if (!t.isUniform || !o.isUniform) {
 
-           var i = t.texShape,
 
-             u = o.isUniform ? null : o.texData.texShape;
 
-           if (!C(i, u)) throw Error("Binary was compiled with different texture shapes than the current args. Shape " + i + " and " + u + " must match");
 
-         }
 
-       });
 
-     }
 
-     var Ri = function () {
 
-       return function (t, e, n) {
 
-         this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t;
 
-         for (var r = n.filterWidth, o = n.inChannels, a = n.strideWidth, i = n.strideHeight, u = n.padInfo, s = n.outWidth, c = n.dilationWidth, l = n.dilationHeight, h = n.dataFormat, f = u.left, p = u.top, d = o * r, v = Ko(), m = "channelsLast" === h, g = m ? 0 : 1, y = m ? 1 : 2, x = "", b = 0; b <= 1; b++) for (var w = 0; w <= 1; w++) x += "\n          blockIndex = rc.y + " + w + ";\n          pos = rc.x + " + b + ";\n\n          if(blockIndex < " + t[1] + " && pos < " + t[0] + ") {\n            offsetY = int(blockIndex / (" + s + ")) * " + i + " - " + p + ";\n            d0 = offsetY + " + l + " * (pos / " + d + ");\n\n            if(d0 < " + e[g] + " && d0 >= 0) {\n\n              offsetX = int(mod(float(blockIndex), " + s + ".) * " + a + ". - " + f + ".);\n              d1 = offsetX + " + c + " * (int(mod(float(pos), " + d + ".) / " + o + ".));\n\n              if(d1 < " + e[y] + " && d1 >= 0) {\n\n                ch = int(mod(float(pos), " + o + ".));\n\n                if (" + m + ") {\n                  innerDims = vec2(d1, ch);\n                  result[" + (2 * b + w) + "] = getChannel(\n                    getA(d0, int(innerDims.x),\n                    int(innerDims.y)), innerDims);\n                } else {\n                  innerDims = vec2(d0, d1);\n                  result[" + (2 * b + w) + "] = getChannel(\n                    getA(ch, int(innerDims.x),\n                    int(innerDims.y)), innerDims);\n                }\n              }\n            }\n          }\n        ";
 
-         this.userCode = "\n      void main() {\n        ivec2 rc = getOutputCoords();\n\n        vec4 result = vec4(0);\n\n        int blockIndex, pos, offsetY, d0, offsetX, d1, ch;\n        vec2 innerDims;\n\n        " + x + "\n\n        " + v.output + " = result;\n      }\n    ";
 
-       };
 
-     }(),
 
-       Ii = function () {
 
-         return function (t, e, n, r, o) {
 
-           this.variableNames = ["x"], this.outputShape = [];
 
-           var a,
 
-             i = e,
 
-             u = t[3] - 1;
 
-           this.outputShape = t;
 
-           var s = "float(" + n + ") + float(" + r + ") * sum";
 
-           a = .5 === o ? "inversesqrt(" + s + ")" : 1 === o ? "1.0/(" + s + ")" : "exp(log(" + s + ") * float(-" + o + "));", this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int r = coords[1];\n        int c = coords[2];\n        int d = coords[3];\n        float x = getX(b, r, c, d);\n        float sum = 0.0;\n        for (int j = -" + i + "; j <= " + i + "; j++) {\n          int idx = d + j;\n          if (idx >= 0 && idx <=  " + u + ") {\n            float z = getX(b, r, c, idx);\n            sum += z * z;\n          }\n        }\n        float val = x * " + a + ";\n        setOutput(val);\n      }\n    ";
 
-         };
 
-       }(),
 
-       ki = function () {
 
-         return function (t, e, n, r, o) {
 
-           this.variableNames = ["inputImage", "outputImage", "dy"], this.outputShape = [], this.outputShape = t, this.depth = t[3], this.depthRadius = e, this.bias = n, this.alpha = r, this.beta = o, this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int r = coords[1];\n        int c = coords[2];\n\n        float result = 0.0;\n        for (int d = 0; d < " + this.depth + "; ++d) {\n          int depthBegin = int(max(0.0, float(d - " + e + ")));\n          int depthEnd = int(min(float(" + this.depth + "),\n              float(d + " + e + " + 1)));\n\n          const int MIN_DEPTH_BEGIN = 0;\n          const int MAX_DEPTH_END = " + this.depth + ";\n\n          float norm = 0.0;\n          for (int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k) {\n            if (k < depthBegin){\n              continue;\n            }\n            else if (k >= depthBegin && k < depthEnd) {\n              norm += getInputImage(b, r, c, k) * getInputImage(b, r, c, k);\n            }\n            else {\n              break;\n            }\n          }\n\n          norm = float(" + r + ") * norm + float(" + n + ");\n\n          for(int k = MIN_DEPTH_BEGIN; k < MAX_DEPTH_END; ++k){\n            if (k < depthBegin){\n              continue;\n            }\n            else if (k >= depthBegin && k < depthEnd){\n              float dyi = -2.0 * float(" + r + ")\n                * float(" + o + ")\n                * getInputImage(b ,r ,c, k) * getOutputImage(b, r, c, d)\n                / norm;\n              if (k == d) {\n                dyi += pow(norm, -1.0 * " + o + ");\n              }\n              if (k == coords[3]) {\n                dyi *= getDy(b, r, c, d);\n                result += dyi;\n              }\n            }\n            else {\n              break;\n            }\n          }\n      }\n      setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Si = function () {
 
-         return function (t, e, n, r, o) {
 
-           this.variableNames = ["x"], this.outputShape = [], this.packedInputs = !0, this.packedOutput = !0;
 
-           var a,
 
-             i = e,
 
-             u = t[3] - 1;
 
-           this.outputShape = t;
 
-           var s = "float(" + n + ") + float(" + r + ") * sum";
 
-           a = .5 === o ? "inversesqrt(" + s + ")" : 1 === o ? "1.0/(" + s + ")" : "exp(log(" + s + ") * float(-" + o + "));", this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords.x;\n        int r = coords.y;\n        int c = coords.z;\n        int d = coords.w;\n\n        bool hasNextCol = d < " + this.outputShape[3] + ";\n        bool hasNextRow = c < " + this.outputShape[2] + ";\n\n        vec4 sum = vec4(0.);\n        vec4 xFragAtOutputCoords = getX(b, r, c, d);\n\n        vec4 xAtOutputCoords = vec4(\n          getChannel(xFragAtOutputCoords, vec2(c, d)),\n          hasNextCol ?\n            getChannel(xFragAtOutputCoords, vec2(c, d + 1)) : 0.0,\n          hasNextRow ?\n            getChannel(xFragAtOutputCoords , vec2(c + 1, d)) : 0.0,\n          (hasNextRow && hasNextCol) ?\n            getChannel(xFragAtOutputCoords, vec2(c + 1, d + 1)) : 0.0\n        );\n\n        int firstChannel = d - " + i + ";\n        vec2 cache = vec2(0.);\n        if(firstChannel >= 0){\n          vec4 firstChannelFrag = getX(b, r, c, firstChannel);\n          cache.x = getChannel(firstChannelFrag, vec2(c, firstChannel));\n            if(hasNextRow){\n              cache.y = getChannel(firstChannelFrag, vec2(c + 1, firstChannel));\n            }\n        }\n\n        ivec2 depth = ivec2(d, d + 1);\n        for (int j = - " + i + "; j <= " + i + "; j++) {\n          ivec2 idx = depth + j;\n          bvec2 aboveLowerBound = greaterThanEqual(idx, ivec2(0));\n          bvec2 belowUpperBound = lessThanEqual(idx, ivec2(" + u + "));\n\n          bool depthInRange = aboveLowerBound.x && belowUpperBound.x;\n          bool depthPlusOneInRange = aboveLowerBound.y && belowUpperBound.y;\n\n          if(depthInRange || depthPlusOneInRange){\n            vec4 z = vec4(0.);\n            vec4 xFragAtCurrentDepth;\n            z.xz = cache.xy;\n            if(depthPlusOneInRange && hasNextCol){\n              xFragAtCurrentDepth = idx.y != d ?\n                getX(b, r, c, idx.y) : xFragAtOutputCoords;\n              z.y = getChannel(xFragAtCurrentDepth, vec2(c, idx.y));\n              if(hasNextRow){\n                z.w = getChannel(xFragAtCurrentDepth, vec2(c + 1, idx.y));\n              }\n            }\n            cache.xy = z.yw;\n            sum += z * z;\n          }\n        }\n        vec4 result = xAtOutputCoords * " + a + ";\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ai = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy", "maxPos"], this.outputShape = t.inShape;
 
-           var e = t.strideHeight,
 
-             n = t.strideWidth,
 
-             r = t.dilationHeight,
 
-             o = t.effectiveFilterHeight,
 
-             a = t.effectiveFilterWidth,
 
-             i = o - 1 - t.padInfo.top,
 
-             u = a - 1 - t.padInfo.left,
 
-             s = o * a - 1;
 
-           this.userCode = "\n      const ivec2 pads = ivec2(" + i + ", " + u + ");\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n\n        ivec2 dyRCCorner = coords.yz - pads;\n        int dyRCorner = dyRCCorner.x;\n        int dyCCorner = dyRCCorner.y;\n\n        // Convolve dy(?, ?, d) with pos mask(:, :, d) to get dx(xR, xC, d).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n        for (int wR = 0; wR < " + o + ";\n          wR += " + r + ") {\n          float dyR = float(dyRCorner + wR) / " + e + ".0;\n\n          if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 || fract(dyR) > 0.0) {\n            continue;\n          }\n          int idyR = int(dyR);\n\n          for (int wC = 0; wC < " + a + "; wC++) {\n            float dyC = float(dyCCorner + wC) / " + n + ".0;\n\n            if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                fract(dyC) > 0.0) {\n              continue;\n            }\n            int idyC = int(dyC);\n\n            float dyValue = getDy(b, idyR, idyC, d);\n            int maxPosValue = " + s + " - int(getMaxPos(b, idyR, idyC, d));\n\n            // Get the current value, check it against the value from the\n            // position matrix.\n            int curPosValue = wR * " + a + " + wC;\n            float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n            dotProd += dyValue * mask;\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Di = function () {
 
-         return function (t) {
 
-           this.variableNames = ["dy", "maxPos"], this.outputShape = t.inShape;
 
-           var e = t.strideDepth,
 
-             n = t.strideHeight,
 
-             r = t.strideWidth,
 
-             o = t.dilationDepth,
 
-             a = t.dilationHeight,
 
-             i = t.dilationWidth,
 
-             u = t.effectiveFilterDepth,
 
-             s = t.effectiveFilterHeight,
 
-             c = t.effectiveFilterWidth,
 
-             l = u - 1 - t.padInfo.front,
 
-             h = s - 1 - t.padInfo.top,
 
-             f = c - 1 - t.padInfo.left,
 
-             p = u * s * c - 1;
 
-           this.userCode = "\n      const ivec3 pads = ivec3(" + l + ", " + h + ", " + f + ");\n\n      void main() {\n        ivec5 coords = getOutputCoords();\n        int batch = coords.x;\n        int ch = coords.u;\n\n        ivec3 dyCorner = ivec3(coords.y, coords.z, coords.w) - pads;\n        int dyDCorner = dyCorner.x;\n        int dyRCorner = dyCorner.y;\n        int dyCCorner = dyCorner.z;\n\n        // Convolve dy(?, ?, ?, ch) with pos mask(:, :, :, d) to get\n        // dx(xD, xR, xC, ch).\n        // ? = to be determined. : = across all values in that axis.\n        float dotProd = 0.0;\n\n        for (int wD = 0; wD < " + u + ";\n           wD += " + o + ") {\n          float dyD = float(dyDCorner + wD) / " + e + ".0;\n\n          if (dyD < 0.0 || dyD >= " + t.outDepth + ".0 || fract(dyD) > 0.0) {\n            continue;\n          }\n          int idyD = int(dyD);\n\n          for (int wR = 0; wR < " + s + ";\n              wR += " + a + ") {\n            float dyR = float(dyRCorner + wR) / " + n + ".0;\n\n            if (dyR < 0.0 || dyR >= " + t.outHeight + ".0 ||\n                fract(dyR) > 0.0) {\n              continue;\n            }\n            int idyR = int(dyR);\n\n            for (int wC = 0; wC < " + c + ";\n                wC += " + i + ") {\n              float dyC = float(dyCCorner + wC) / " + r + ".0;\n\n              if (dyC < 0.0 || dyC >= " + t.outWidth + ".0 ||\n                  fract(dyC) > 0.0) {\n                continue;\n              }\n              int idyC = int(dyC);\n\n              float dyValue = getDy(batch, idyD, idyR, idyC, ch);\n              int maxPosValue = " + p + " -\n                  int(getMaxPos(batch, idyD, idyR, idyC, ch));\n\n              // Get the current value, check it against the value from the\n              // position matrix.\n              int curPosValue =\n                  wD * " + s + " * " + c + " +\n                  wR * " + c + " + wC;\n              float mask = float(maxPosValue == curPosValue ? 1.0 : 0.0);\n\n              dotProd += dyValue * mask;\n            }\n          }\n        }\n        setOutput(dotProd);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ti = function () {
 
-         return function (t, e, n, r, o, a, i) {
 
-           void 0 === n && (n = !1), void 0 === r && (r = !1), void 0 === o && (o = !1), void 0 === a && (a = null), void 0 === i && (i = !1), this.variableNames = ["matrixA", "matrixB"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = e;
 
-           var u = n ? t[1] : t[2],
 
-             s = Math.ceil(u / 2),
 
-             c = n ? "i * 2, rc.y" : "rc.y, i * 2",
 
-             l = r ? "rc.z, i * 2" : "i * 2, rc.z",
 
-             h = n ? ["a.xxyy", "a.zzww"] : ["a.xxzz", "a.yyww"],
 
-             f = r ? ["b.xzxz", "b.ywyw"] : ["b.xyxy", "b.zwzw"],
 
-             p = "",
 
-             d = "";
 
-           a && (p = i ? "vec4 activation(vec4 a) {\n          vec4 b = getPreluActivationWeightsAtOutCoords();\n          " + a + "\n        }" : "vec4 activation(vec4 x) {\n          " + a + "\n        }", d = "result = activation(result);");
 
-           var v = o ? "result += getBiasAtOutCoords();" : "";
 
-           o && this.variableNames.push("bias"), i && this.variableNames.push("preluActivationWeights"), this.userCode = "\n      " + p + "\n\n      const float sharedDimension = " + s + ".0;\n\n      vec4 dot2x2ARowBCol(ivec3 rc) {\n        vec4 result = vec4(0);\n        for (int i = 0; i < " + s + "; i++) {\n          vec4 a = getMatrixA(rc.x, " + c + ");\n          vec4 b = getMatrixB(rc.x, " + l + ");\n\n          // These swizzled products need to be separately added.\n          // See: https://github.com/tensorflow/tfjs/issues/1735\n          result += (" + h[0] + " * " + f[0] + ");\n          result += (" + h[1] + " * " + f[1] + ");\n        }\n        return result;\n      }\n\n      void main() {\n        ivec3 rc = getOutputCoords();\n        vec4 result = dot2x2ARowBCol(rc);\n\n        " + v + "\n\n        " + d + "\n\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Ni = function () {
 
-         function t(t, e, n) {
 
-           this.variableNames = ["probs"], this.outputShape = [t, n], this.userCode = "\n      uniform float seed;\n\n      void main() {\n        ivec2 coords = getOutputCoords();\n        int batch = coords[0];\n\n        float r = random(seed);\n        float cdf = 0.0;\n\n        for (int i = 0; i < " + (e - 1) + "; i++) {\n          cdf += getProbs(batch, i);\n\n          if (r < cdf) {\n            setOutput(float(i));\n            return;\n          }\n        }\n\n        // If no other event happened, last event happened.\n        setOutput(float(" + (e - 1) + "));\n      }\n    ";
 
-         }
 
-         return t.prototype.getCustomSetupFunc = function (t) {
 
-           var e = this;
 
-           return function (n, r) {
 
-             null == e.seedLoc && (e.seedLoc = n.getUniformLocation(r, "seed")), n.gl.uniform1f(e.seedLoc, t);
 
-           };
 
-         }, t;
 
-       }(),
 
-       Fi = function () {
 
-         return function (t, e, n, r) {
 
-           this.variableNames = ["indices"], this.outputShape = [t, e], this.userCode = "\n      void main() {\n        ivec2 coords = getOutputCoords();\n        int index = round(getIndices(coords.x));\n        setOutput(mix(float(" + r + "), float(" + n + "),\n                      float(index == coords.y)));\n      }\n    ";
 
-         };
 
-       }(),
 
-       Oi = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"], this.packedInputs = !1, this.packedOutput = !0, this.outputShape = t;
 
-           var e = t.length;
 
-           if (0 === e) this.userCode = "\n        void main() {\n          setOutput(vec4(getA(), 0., 0., 0.));\n        }\n      "; else {
 
-             var n = qo("rc", e),
 
-               r = aa(e),
 
-               o = function (t, e, n) {
 
-                 if (1 === t) return "rc > " + e[0];
 
-                 for (var r = "", o = t - 2; o < t; o++) r += n[o] + " >= " + e[o], o < t - 1 && (r += "||");
 
-                 return r;
 
-               }(e, t, n),
 
-               a = function (t, e, n, r) {
 
-                 if (1 === t) return "";
 
-                 var o = r.slice(-2);
 
-                 return "\n    int r = " + o[0] + ";\n    int c = " + o[1] + ";\n    int rp1 = r + 1;\n    int cp1 = c + 1;\n\n    bool cEdge = cp1 >= " + e + ";\n    bool rEdge = rp1 >= " + n + ";\n  ";
 
-               }(e, t[t.length - 1], t[t.length - 2], n),
 
-               i = function (t, e) {
 
-                 var n = t.length,
 
-                   r = function (t, e) {
 
-                     for (var n = [], r = 0; r <= 1; r++) for (var o = 0; o <= 1; o++) {
 
-                       for (var a = (0 === r ? "r" : "rp1") + ", " + (0 === o ? "c" : "cp1"), i = 2; i < t; i++) a = e[e.length - 1 - i] + "," + a;
 
-                       n.push(a);
 
-                     }
 
-                     return n;
 
-                   }(n, e);
 
-                 return 1 === n ? "getA(rc),\n            rc + 1 >= " + t[0] + " ? 0. : getA(rc + 1),\n            0, 0" : "getA(" + r[0] + "),\n          cEdge ? 0. : getA(" + r[1] + "),\n          rEdge ? 0. : getA(" + r[2] + "),\n          rEdge || cEdge ? 0. : getA(" + r[3] + ")";
 
-               }(t, n);
 
-             this.userCode = "\n        void main() {\n          " + r + " rc = getOutputCoords();\n\n          if(" + o + ") {\n            setOutput(vec4(0));\n          } else {\n            " + a + "\n\n            setOutput(vec4(" + i + "));\n          }\n        }\n      ";
 
-           }
 
-         };
 
-       }();
 
-     var _i = function () {
 
-       return function (t, e, n) {
 
-         this.variableNames = ["x"], this.outputShape = e.map(function (e, n) {
 
-           return e[0] + t[n] + e[1];
 
-         });
 
-         var r = t.length,
 
-           o = aa(r),
 
-           a = e.map(function (t) {
 
-             return t[0];
 
-           }).join(","),
 
-           i = e.map(function (e, n) {
 
-             return e[0] + t[n];
 
-           }).join(","),
 
-           u = ["coords[0]", "coords[1]", "coords[2]", "coords[3]"].slice(0, r);
 
-         this.userCode = 1 !== r ? "\n      " + o + " start = " + o + "(" + a + ");\n      " + o + " end = " + o + "(" + i + ");\n\n      void main() {\n        " + o + " outC = getOutputCoords();\n        if (any(lessThan(outC, start)) || any(greaterThanEqual(outC, end))) {\n          setOutput(float(" + n + "));\n        } else {\n          " + o + " coords = outC - start;\n          setOutput(getX(" + u + "));\n        }\n      }\n    " : "\n        int start = " + a + ";\n        int end = " + i + ";\n\n        void main() {\n          int outC = getOutputCoords();\n          if (outC < start || outC >= end) {\n            setOutput(float(" + n + "));\n          } else {\n            setOutput(getX(outC - start));\n          }\n        }\n      ";
 
-       };
 
-     }(),
 
-       Mi = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["x"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = e.map(function (e, n) {
 
-             return e[0] + t[n] + e[1];
 
-           });
 
-           for (var r = t.length, o = aa(r), a = e.map(function (t) {
 
-             return t[0];
 
-           }).join(","), i = e.map(function (e, n) {
 
-             return e[0] + t[n];
 
-           }).join(","), u = qo("rc", r), s = qo("source", r), c = u[r - 1] + " < " + this.outputShape[r - 1], l = 1 === r ? "source" : "vec2(" + s.slice(-2).join() + ")", h = [o + " rc = outputLoc;", u[r - 1] + " += 1;\n       if(" + c + ") {\n      ", 1 === r ? "" : "}\n       rc = outputLoc;\n       " + u[r - 2] + " += 1;\n       if(" + u[r - 2] + " < " + this.outputShape[r - 2] + ") {", 1 === r ? "" : "  " + u[r - 1] + " += 1;\n         if(" + c + ") {"], f = 1 === r ? "rc < start || rc >= end" : "any(lessThan(rc, start)) || any(greaterThanEqual(rc, end))", p = "", d = 0, v = 1 === r ? 2 : 4; d < v; d++) p += "\n        " + h[d] + "\n        if (" + f + ") {\n          result[" + d + "] = float(" + n + ");\n        } else {\n          " + o + " source = rc - start;\n          result[" + d + "] = getChannel(getX(" + s.join() + "), " + l + ");\n        }\n      ";
 
-           p += 1 === r ? "} " : "}}", this.userCode = "\n      const " + o + " start = " + o + "(" + a + ");\n      const " + o + " end = " + o + "(" + i + ");\n\n      void main() {\n        " + o + " outputLoc = getOutputCoords();\n        vec4 result = vec4(0.);\n        " + p + "\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Bi = function () {
 
-         return function (t, e, n) {
 
-           if (this.variableNames = ["x"], "avg" === e && n) throw new Error("Cannot compute positions for average pool.");
 
-           var r = t.filterWidth,
 
-             o = t.strideHeight,
 
-             a = t.strideWidth,
 
-             i = t.dilationHeight,
 
-             u = t.dilationWidth,
 
-             s = t.effectiveFilterHeight,
 
-             c = t.effectiveFilterWidth,
 
-             l = t.padInfo.top,
 
-             h = t.padInfo.left;
 
-           this.outputShape = t.outShape;
 
-           var f = "avg" === e,
 
-             p = "0.0";
 
-           if (f || (p = "-1.0 / 1e-20"), n) this.userCode = "\n        const ivec2 strides = ivec2(" + o + ", " + a + ");\n        const ivec2 pads = ivec2(" + l + ", " + h + ");\n\n        void main() {\n          ivec4 coords = getOutputCoords();\n          int batch = coords[0];\n          int d = coords[3];\n\n          ivec2 xRCCorner = coords.yz * strides - pads;\n          int xRCorner = xRCCorner.x;\n          int xCCorner = xRCCorner.y;\n\n          // max/min x(?, ?, d) to get y(yR, yC, d).\n          // ? = to be determined\n          float minMaxValue = 0.0;\n          float minMaxValueFound = 0.0;\n          int minMaxPosition = 0;\n          float avgValue = 0.0;\n\n          for (int wR = 0; wR < " + s + ";\n              wR += " + i + ") {\n            int xR = xRCorner + wR;\n\n            if (xR < 0 || xR >= " + t.inHeight + ") {\n              continue;\n            }\n\n            for (int wC = 0; wC < " + c + ";\n                wC += " + u + ") {\n              int xC = xCCorner + wC;\n\n              if (xC < 0 || xC >= " + t.inWidth + ") {\n                continue;\n              }\n\n              float value = getX(batch, xR, xC, d);\n\n              // If a min / max value has already been found, use it. If not,\n              // use the current value.\n              float currMinMaxValue = mix(\n                  value, minMaxValue, minMaxValueFound);\n              if (value >= currMinMaxValue) {\n                minMaxValue = value;\n                minMaxValueFound = 1.0;\n                minMaxPosition = wR * " + c + " + wC;\n              }\n            }\n          }\n          setOutput(float(minMaxPosition));\n        }\n      "; else {
 
-             var d = e + "(" + e + "(" + e + "(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])";
 
-             "avg" === e && (d = "avgValue / count");
 
-             var v = 4 * Math.floor(r / 4),
 
-               m = r % 4,
 
-               g = "\n      if (" + f + ") {\n        avgValue += dot(values, ones);\n      } else {\n        minMaxValue = max(values, minMaxValue);\n      }\n    ";
 
-             this.userCode = "\n      const ivec2 strides = ivec2(" + o + ", " + a + ");\n      const ivec2 pads = ivec2(" + l + ", " + h + ");\n      const float initializationValue = " + p + ";\n      const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n      float count = 0.0;\n\n      float getValue(int batch, int xR, int xC, int d) {\n        if (xC < 0 || xC >= " + t.inWidth + ") {\n          return initializationValue;\n        }\n        count += 1.0;\n        return getX(batch, xR, xC, d);\n      }\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int batch = coords[0];\n        int d = coords[3];\n\n        ivec2 xRCCorner = coords.yz * strides - pads;\n        int xRCorner = xRCCorner.x;\n        int xCCorner = xRCCorner.y;\n\n        // max/min x(?, ?, d) to get y(yR, yC, d).\n        // ? = to be determined\n        vec4 minMaxValue = vec4(" + p + ");\n        float avgValue = 0.0;\n        count = 0.0;\n\n        for (int wR = 0; wR < " + s + ";\n            wR += " + i + ") {\n          int xR = xRCorner + wR;\n\n          if (xR < 0 || xR >= " + t.inHeight + ") {\n            continue;\n          }\n\n          for (int wC = 0; wC < " + v + "; wC += 4) {\n            int xC = xCCorner + wC * " + u + ";\n\n            vec4 values = vec4(\n              getValue(batch, xR, xC, d),\n              getValue(batch, xR, xC + " + u + ", d),\n              getValue(batch, xR, xC + 2 * " + u + ", d),\n              getValue(batch, xR, xC + 3 * " + u + ", d)\n            );\n\n            " + g + "\n          }\n\n          int xC = xCCorner + " + v + ";\n          if (" + (1 === m) + ") {\n            vec4 values = vec4(\n              getValue(batch, xR, xC, d),\n              initializationValue,\n              initializationValue,\n              initializationValue\n            );\n\n            " + g + "\n          } else if (" + (2 === m) + ") {\n            vec4 values = vec4(\n              getValue(batch, xR, xC, d),\n              getValue(batch, xR, xC + " + u + ", d),\n              initializationValue,\n              initializationValue\n            );\n\n            " + g + "\n          } else if (" + (3 === m) + ") {\n            vec4 values = vec4(\n              getValue(batch, xR, xC, d),\n              getValue(batch, xR, xC + " + u + ", d),\n              getValue(batch, xR, xC + 2 * " + u + ", d),\n              initializationValue\n            );\n\n            " + g + "\n          }\n        }\n        setOutput(" + d + ");\n      }\n    ";
 
-           }
 
-         };
 
-       }(),
 
-       Pi = function () {
 
-         return function (t, e, n) {
 
-           if (this.variableNames = ["x"], "avg" === e && n) throw new Error("Cannot compute positions for average pool.");
 
-           var r = t.filterWidth,
 
-             o = t.strideDepth,
 
-             a = t.strideHeight,
 
-             i = t.strideWidth,
 
-             u = t.dilationDepth,
 
-             s = t.dilationHeight,
 
-             c = t.dilationWidth,
 
-             l = t.effectiveFilterDepth,
 
-             h = t.effectiveFilterHeight,
 
-             f = t.effectiveFilterWidth,
 
-             p = t.padInfo.front,
 
-             d = t.padInfo.top,
 
-             v = t.padInfo.left;
 
-           this.outputShape = t.outShape;
 
-           var m = "avg" === e,
 
-             g = "0.0";
 
-           if (m || (g = "-1.0 / 1e-20"), n) this.userCode = "\n        const ivec3 strides =\n            ivec3(" + o + ", " + a + ", " + i + ");\n        const ivec3 pads = ivec3(" + p + ", " + d + ", " + v + ");\n\n        void main() {\n          ivec5 coords = getOutputCoords();\n          int batch = coords.x;\n          int ch = coords.u;\n\n          ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n          int xDCorner = xCorner.x;\n          int xRCorner = xCorner.y;\n          int xCCorner = xCorner.z;\n\n          // max/min x(?, ?, ?, ch) to get y(yD, yR, yC, ch).\n          // ? = to be determined\n          float minMaxValue = 0.0;\n          float minMaxValueFound = 0.0;\n          int minMaxPosition = 0;\n\n          for (int wD = 0; wD < " + l + ";\n              wD += " + u + ") {\n            int xD = xDCorner + wD;\n\n            if (xD < 0 || xD >= " + t.inDepth + ") {\n              continue;\n            }\n\n            for (int wR = 0; wR < " + h + ";\n                wR += " + s + ") {\n              int xR = xRCorner + wR;\n\n              if (xR < 0 || xR >= " + t.inHeight + ") {\n                continue;\n              }\n\n              for (int wC = 0; wC < " + f + ";\n                  wC += " + c + ") {\n                int xC = xCCorner + wC;\n\n                if (xC < 0 || xC >= " + t.inWidth + ") {\n                  continue;\n                }\n\n                float value = getX(batch, xD, xR, xC, ch);\n\n                // If a min / max value has already been found, use it. If not,\n                // use the current value.\n                float currMinMaxValue = mix(\n                    value, minMaxValue, minMaxValueFound);\n                if (value >= currMinMaxValue) {\n                  minMaxValue = value;\n                  minMaxValueFound = 1.0;\n                  minMaxPosition =\n                      wD * " + h + " * " + f + " +\n                      wR * " + f + " + wC;;\n                }\n              }\n            }\n          }\n          setOutput(float(minMaxPosition));\n        }\n      "; else {
 
-             var y = e + "(" + e + "(" + e + "(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])";
 
-             "avg" === e && (y = "avgValue / count");
 
-             var x = 4 * Math.floor(r / 4),
 
-               b = r % 4,
 
-               w = "\n      if (" + m + ") {\n        avgValue += dot(values, ones);\n      } else {\n        minMaxValue = max(values, minMaxValue);\n      }\n    ";
 
-             this.userCode = "\n      const ivec3 strides =\n        ivec3(" + o + ", " + a + ", " + i + ");\n      const ivec3 pads = ivec3(" + p + ", " + d + ", " + v + ");\n      const float initializationValue = " + g + ";\n      const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n      float count = 0.0;\n\n      float getValue(int batch, int xD, int xR, int xC, int ch) {\n        if (xC < 0 || xC >= " + t.inWidth + ") {\n          return initializationValue;\n        }\n        count += 1.0;\n        return getX(batch, xD, xR, xC, ch);\n      }\n\n      void main() {\n        ivec5 coords = getOutputCoords();\n        int batch = coords.x;\n        int ch = coords.u;\n\n        ivec3 xCorner = ivec3(coords.y, coords.z, coords.w) * strides - pads;\n        int xDCorner = xCorner.x;\n        int xRCorner = xCorner.y;\n        int xCCorner = xCorner.z;\n\n        // max/min x(?, ?, ?, d) to get y(yD, yR, yC, ch).\n        // ? = to be determined\n        vec4 minMaxValue = vec4(" + g + ");\n        float avgValue = 0.0;\n        count = 0.0;\n\n        for (int wD = 0; wD < " + l + ";\n            wD += " + u + ") {\n          int xD = xDCorner + wD;\n\n          if (xD < 0 || xD >= " + t.inDepth + ") {\n            continue;\n          }\n\n          for (int wR = 0; wR < " + h + ";\n            wR += " + s + ") {\n            int xR = xRCorner + wR;\n\n            if (xR < 0 || xR >= " + t.inHeight + ") {\n              continue;\n            }\n\n            for (int wC = 0; wC < " + x + "; wC += 4) {\n              int xC = xCCorner + wC * " + c + ";\n\n              vec4 values = vec4(\n                getValue(batch, xD, xR, xC, ch),\n                getValue(batch, xD, xR, xC + " + c + ", ch),\n                getValue(batch, xD, xR, xC + 2 * " + c + ", ch),\n                getValue(batch, xD, xR, xC + 3 * " + c + ", ch)\n              );\n\n              " + w + "\n            }\n\n            int xC = xCCorner + " + x + ";\n            if (" + (1 === b) + ") {\n              vec4 values = vec4(\n                getValue(batch, xD, xR, xC, ch),\n                initializationValue,\n                initializationValue,\n                initializationValue\n              );\n\n              " + w + "\n            } else if (" + (2 === b) + ") {\n              vec4 values = vec4(\n                getValue(batch, xD, xR, xC, ch),\n                getValue(batch, xD, xR, xC + " + c + ", ch),\n                initializationValue,\n                initializationValue\n              );\n\n              " + w + "\n            } else if (" + (3 === b) + ") {\n              vec4 values = vec4(\n                getValue(batch, xD, xR, xC, ch),\n                getValue(batch, xD, xR, xC + " + c + ", ch),\n                getValue(batch, xD, xR, xC + 2 * " + c + ", ch),\n                initializationValue\n              );\n\n              " + w + "\n            }\n          }\n          setOutput(" + y + ");\n        }\n      }\n    ";
 
-           }
 
-         };
 
-       }(),
 
-       Li = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["x"];
 
-           var n = t.windowSize,
 
-             r = t.batchSize,
 
-             o = t.inSize,
 
-             a = Math.ceil(o / n);
 
-           this.outputShape = [r, a];
 
-           var i = "0.0",
 
-             u = "";
 
-           "prod" === e ? i = "1.0" : "min" === e ? (i = "1.0 / 1e-20", u = "min") : "max" === e && (i = "-1.0 / 1e-20", u = "max");
 
-           var s = e + "(" + e + "(" + e + "(minMaxValue[0], minMaxValue[1]), minMaxValue[2]), minMaxValue[3])";
 
-           "sum" === e ? s = "sumValue" : "prod" === e ? s = "prodValue" : "all" === e ? s = "allValue" : "any" === e && (s = "anyValue");
 
-           var c = 4 * Math.floor(n / 4),
 
-             l = n % 4,
 
-             h = "\n      if (" + ("sum" === e) + ") {\n        sumValue += dot(values, ones);\n      } else if (" + ("prod" === e) + ") {\n        vec2 tmp = vec2(values[0], values[1]) * vec2(values[2], values[3]);\n        prodValue *= tmp[0] * tmp[1];\n      } else {\n        minMaxValue = " + u + "(values, minMaxValue);\n      }\n    ",
 
-             f = "vec4";
 
-           "all" === e ? (i = "1.0", h = "\n        bool reducedAllValue = all(values);\n        float floatedReducedAllValue = float(reducedAllValue);\n        allValue = float(allValue >= 1.0 && floatedReducedAllValue >= 1.0);\n      ", f = "bvec4") : "any" === e && (i = "0.0", h = "\n        bool reducedAnyValue = any(values);\n        float floatedReducedAnyValue = float(reducedAnyValue);\n        anyValue = float(anyValue >= 1.0 || floatedReducedAnyValue >= 1.0);\n      ", f = "bvec4");
 
-           var p = "";
 
-           o % n > 0 && (p = "\n        if (inIdx < 0 || inIdx >= " + o + ") {\n          return initializationValue;\n        }\n      "), this.userCode = "\n      const float initializationValue = " + i + ";\n      const vec4 ones = vec4(1.0, 1.0, 1.0, 1.0);\n\n      float getValue(int batch, int inIdx) {\n        " + p + "\n        return getX(batch, inIdx);\n      }\n\n      void main() {\n        ivec2 coords = getOutputCoords();\n        int batch = coords[0];\n        int outIdx = coords[1];\n        int inOffset = outIdx * " + n + ";\n\n        vec4 minMaxValue = vec4(" + i + ");\n        float prodValue = 1.0;\n        float sumValue = 0.0;\n        float allValue = 1.0;\n        float anyValue = 0.0;\n\n        for (int i = 0; i < " + c + "; i += 4) {\n          int inIdx = inOffset + i;\n          " + f + " values = " + f + "(\n            getValue(batch, inIdx),\n            getValue(batch, inIdx + 1),\n            getValue(batch, inIdx + 2),\n            getValue(batch, inIdx + 3)\n          );\n\n          " + h + "\n        }\n\n        int inIdx = inOffset + " + c + ";\n        if (" + (1 === l) + ") {\n          " + f + " values = " + f + "(\n            getValue(batch, inIdx),\n            initializationValue,\n            initializationValue,\n            initializationValue\n          );\n\n          " + h + "\n        } else if (" + (2 === l) + ") {\n          " + f + " values = " + f + "(\n            getValue(batch, inIdx),\n            getValue(batch, inIdx + 1),\n            initializationValue,\n            initializationValue\n          );\n\n          " + h + "\n        } else if (" + (3 === l) + ") {\n          " + f + " values = " + f + "(\n            getValue(batch, inIdx),\n            getValue(batch, inIdx + 1),\n            getValue(batch, inIdx + 2),\n            initializationValue\n          );\n\n          " + h + "\n        }\n        setOutput(" + s + ");\n      }\n    ";
 
-         };
 
-       }(),
 
-       Wi = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t;
 
-           for (var n = "", r = 0; r < 4; r++) {
 
-             var o = "thisRC = rc;";
 
-             r % 2 == 1 && (o += "thisRC.z += 1;"), r > 1 && (o += "thisRC.y += 1;"), n += "\n        " + o + "\n        " + (r > 0 ? "if(thisRC.y < rows && thisRC.z < cols){" : "") + "\n          int flatIndex = getFlatIndex(thisRC);\n\n          ivec3 inputRC = inputCoordsFromReshapedOutCoords(flatIndex);\n          vec2 inputRCInnerDims = vec2(float(inputRC.y),float(inputRC.z));\n\n          result[" + r + "] =\n            getChannel(getA(inputRC.x, inputRC.y, inputRC.z), inputRCInnerDims);\n        " + (r > 0 ? "}" : "") + "\n      ";
 
-           }
 
-           this.userCode = "\n      \n    ivec3 inputCoordsFromReshapedOutCoords(int index) {\n      " + jo(["r", "c", "d"], e) + "\n      return ivec3(r, c, d);\n    }\n  \n      " + Xo(t) + "\n\n      void main() {\n        ivec3 rc = getOutputCoords();\n\n        vec4 result = vec4(0.);\n\n        ivec3 thisRC;\n        int rows = " + t[1] + ";\n        int cols = " + t[2] + ";\n\n        " + n + "\n\n        setOutput(result);\n      }\n    ";
 
-         };
 
-       }();
 
-     var Ui = function () {
 
-       return function (t, e, n) {
 
-         this.variableNames = ["dy"], this.outputShape = [], this.outputShape = e.shape;
 
-         var r = e.shape,
 
-           o = r[1],
 
-           a = r[2],
 
-           i = t.shape,
 
-           u = i[1],
 
-           s = i[2],
 
-           c = [n && u > 1 ? o - 1 : o, n && s > 1 ? a - 1 : a],
 
-           l = [n && u > 1 ? u - 1 : u, n && s > 1 ? s - 1 : s],
 
-           h = c[0] / l[0],
 
-           f = c[1] / l[1],
 
-           p = 1 / h,
 
-           d = 1 / f,
 
-           v = 2 * Math.ceil(p) + 2,
 
-           m = 2 * Math.ceil(d) + 2;
 
-         this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n        int r = coords[1];\n        int c = coords[2];\n\n        float accumulator = 0.0;\n\n        const float heightScale = float(" + h + ");\n        const float widthScale = float(" + f + ");\n\n        const float invHeightScale = float(" + p + ");\n        const float invWidthScale = float(" + d + ");\n\n        const int winHeight = int(" + v + ");\n        const int winWidth = int(" + m + ");\n\n        // Compute bounds for where in dy we will look\n        float startRLerp = floor(float(r) * invHeightScale);\n        int startDyR = int(startRLerp - float(winHeight / 2));\n\n        float startCLerp = floor(float(c) * invWidthScale);\n        int startDyC = int(startCLerp - float(winWidth / 2));\n\n        // Loop over dy\n        for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n          int dyR = dyROffset + startDyR;\n\n          // Guard against the window exceeding the bounds of dy\n          if (dyR < 0 || dyR >= " + u + ") {\n            continue;\n          }\n\n          for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n            int dyC = dyCOffset + startDyC;\n\n            // Guard against the window exceeding the bounds of dy\n            if (dyC < 0 || dyC >= " + s + ") {\n              continue;\n            }\n\n            float dxR = float(dyR) * heightScale;\n            int topDxRIndex = int(floor(dxR));\n            int bottomDxRIndex = int(min(ceil(dxR), " + (o - 1) + ".0));\n            float dxRLerp = dxR - float(topDxRIndex);\n            float inverseDxRLerp = 1.0 - dxRLerp;\n\n            float dxC = float(dyC) * widthScale;\n            int leftDxCIndex = int(floor(dxC));\n            int rightDxCIndex = int(min(ceil(dxC), " + (a - 1) + ".0));\n            float dxCLerp = dxC - float(leftDxCIndex);\n            float inverseDxCLerp = 1.0 - dxCLerp;\n\n            if (r == topDxRIndex && c == leftDxCIndex) {\n              // topLeft\n              accumulator +=\n                getDy(b, dyR, dyC, d) * inverseDxRLerp * inverseDxCLerp;\n            }\n\n            if (r == topDxRIndex && c == rightDxCIndex) {\n              // topRight\n              accumulator += getDy(b, dyR, dyC, d) * inverseDxRLerp * dxCLerp;\n            }\n\n            if (r == bottomDxRIndex && c == leftDxCIndex) {\n              // bottomLeft\n              accumulator += getDy(b, dyR, dyC, d) * dxRLerp * inverseDxCLerp;\n            }\n\n            if (r == bottomDxRIndex && c == rightDxCIndex) {\n              // bottomRight\n              accumulator += getDy(b, dyR, dyC, d) * dxRLerp * dxCLerp;\n            }\n          }\n        }\n        // End loop over dy\n\n        setOutput(accumulator);\n      }\n    ";
 
-       };
 
-     }(),
 
-       Vi = function () {
 
-         return function (t, e, n, r) {
 
-           this.variableNames = ["A"], this.outputShape = [];
 
-           var o = t[0],
 
-             a = t[1],
 
-             i = t[2],
 
-             u = t[3];
 
-           this.outputShape = [o, e, n, u];
 
-           var s = [r && e > 1 ? a - 1 : a, r && n > 1 ? i - 1 : i],
 
-             c = [r && e > 1 ? e - 1 : e, r && n > 1 ? n - 1 : n];
 
-           this.userCode = "\n      const vec2 effectiveInputOverOutputRatioRC = vec2(\n          " + s[0] / c[0] + ",\n          " + s[1] / c[1] + ");\n      const vec2 inputShapeRC = vec2(" + a + ".0, " + i + ".0);\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n        ivec2 yRC = coords.yz;\n\n        // Fractional source index.\n        vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;\n\n        // Compute the four integer indices.\n        ivec2 sourceFloorRC = ivec2(sourceFracIndexRC);\n        ivec2 sourceCeilRC = ivec2(\n          min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n        float topLeft = getA(b, sourceFloorRC.x, sourceFloorRC.y, d);\n        float bottomLeft = getA(b, sourceCeilRC.x, sourceFloorRC.y, d);\n        float topRight = getA(b, sourceFloorRC.x, sourceCeilRC.y, d);\n        float bottomRight = getA(b, sourceCeilRC.x, sourceCeilRC.y, d);\n\n        vec2 fracRC = sourceFracIndexRC - vec2(sourceFloorRC);\n\n        float top = topLeft + (topRight - topLeft) * fracRC.y;\n        float bottom = bottomLeft + (bottomRight - bottomLeft) * fracRC.y;\n        float newValue = top + (bottom - top) * fracRC.x;\n\n        setOutput(newValue);\n      }\n    ";
 
-         };
 
-       }(),
 
-       zi = function () {
 
-         return function (t, e, n, r) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = [];
 
-           var o = t[0],
 
-             a = t[1],
 
-             i = t[2],
 
-             u = t[3];
 
-           this.outputShape = [o, e, n, u];
 
-           var s = [r && e > 1 ? a - 1 : a, r && n > 1 ? i - 1 : i],
 
-             c = [r && e > 1 ? e - 1 : e, r && n > 1 ? n - 1 : n];
 
-           this.userCode = "\n      const vec3 effectiveInputOverOutputRatioRC = vec3(\n          " + s[0] / c[0] + ",\n          " + s[1] / c[1] + ",\n          " + s[1] / c[1] + ");\n      const vec3 inputShapeRC = vec3(" + a + ".0, " + i + ".0,\n                                     " + i + ".0);\n\n      float getAValue(int b, int r, int c, int d) {\n        return getChannel(getA(b, r, c, d), vec2(c, d));\n      }\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n        // Calculate values for next column in yRC.z.\n        ivec3 yRC = coords.yzz + ivec3(0, 0, 1);\n\n        // Fractional source index.\n        vec3 sourceFracIndexRC = vec3(yRC) * effectiveInputOverOutputRatioRC;\n\n        // Compute the four integer indices.\n        ivec3 sourceFloorRC = ivec3(sourceFracIndexRC);\n        ivec3 sourceCeilRC = ivec3(\n          min(inputShapeRC - 1.0, ceil(sourceFracIndexRC)));\n\n        // Should we calculate next column and row elements in 2x2 packed cell.\n        bool hasNextCol = d < " + (u - 1) + ";\n        bool hasNextRow = coords.z < " + (n - 1) + ";\n\n        // In parallel, construct four corners for all four components in\n        // packed 2x2 cell.\n        vec4 topLeft = vec4(\n          getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d),\n          hasNextCol ? getAValue(b, sourceFloorRC.x, sourceFloorRC.y, d + 1)\n                     : 0.0,\n          hasNextRow ? getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d)\n                     : 0.0,\n          (hasNextRow && hasNextCol) ?\n            getAValue(b, sourceFloorRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n        vec4 bottomLeft = vec4(\n          getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d),\n          hasNextCol ? getAValue(b, sourceCeilRC.x, sourceFloorRC.y, d + 1)\n                     : 0.0,\n          hasNextRow ? getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d)\n                     : 0.0,\n          (hasNextRow && hasNextCol) ?\n            getAValue(b, sourceCeilRC.x, sourceFloorRC.z, d + 1) : 0.0);\n\n        vec4 topRight = vec4(\n          getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d),\n          hasNextCol ? getAValue(b, sourceFloorRC.x, sourceCeilRC.y, d + 1)\n                     : 0.0,\n          hasNextRow ? getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d)\n                     : 0.0,\n          (hasNextRow && hasNextCol) ?\n            getAValue(b, sourceFloorRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n        vec4 bottomRight = vec4(\n          getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d),\n          hasNextCol ? getAValue(b, sourceCeilRC.x, sourceCeilRC.y, d + 1)\n                     : 0.0,\n          hasNextRow ? getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d)\n                     : 0.0,\n          (hasNextRow && hasNextCol) ?\n            getAValue(b, sourceCeilRC.x, sourceCeilRC.z, d + 1) : 0.0);\n\n        vec3 fracRC = sourceFracIndexRC - vec3(sourceFloorRC);\n\n        vec4 top = mix(topLeft, topRight, fracRC.yyzz);\n        vec4 bottom = mix(bottomLeft, bottomRight, fracRC.yyzz);\n        vec4 newValue = mix(top, bottom, fracRC.x);\n\n        setOutput(newValue);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Gi = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["dy"], this.outputShape = [], this.outputShape = e.shape;
 
-           var r = e.shape,
 
-             o = r[1],
 
-             a = r[2],
 
-             i = t.shape,
 
-             u = i[1],
 
-             s = i[2],
 
-             c = [n && u > 1 ? o - 1 : o, n && s > 1 ? a - 1 : a],
 
-             l = [n && u > 1 ? u - 1 : u, n && s > 1 ? s - 1 : s],
 
-             h = c[0] / l[0],
 
-             f = c[1] / l[1],
 
-             p = 1 / h,
 
-             d = 1 / f,
 
-             v = 2 * Math.ceil(p) + 2,
 
-             m = 2 * Math.ceil(d) + 2;
 
-           this.userCode = "\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n        int r = coords[1];\n        int c = coords[2];\n\n        float accumulator = 0.0;\n\n        const float heightScale = float(" + h + ");\n        const float widthScale = float(" + f + ");\n\n        const float invHeightScale = float(" + p + ");\n        const float invWidthScale = float(" + d + ");\n\n        const int winHeight = int(" + v + ");\n        const int winWidth = int(" + m + ");\n\n        // Compute bounds for where in dy we will look\n        float startRLerp = floor(float(r) * invHeightScale);\n        int startDyR = int(floor(startRLerp - float(winHeight / 2)));\n\n        float startCLerp = floor(float(c) * invWidthScale);\n        int startDyC = int(floor(startCLerp - float(winWidth / 2)));\n\n        // Loop over dy\n        for (int dyROffset = 0; dyROffset < winHeight; dyROffset++) {\n          int dyR = dyROffset + startDyR;\n\n          // Guard against the window exceeding the bounds of dy\n          if (dyR < 0 || dyR >= " + u + ") {\n            continue;\n          }\n\n          for (int dyCOffset = 0; dyCOffset < winWidth; dyCOffset++) {\n            int dyC = dyCOffset + startDyC;\n\n            // Guard against the window exceeding the bounds of dy\n            if (dyC < 0 || dyC >= " + s + ") {\n              continue;\n            }\n\n            float sourceFracRow =\n              float(" + c[0] + ") *\n                (float(dyR) / float(" + l[0] + "));\n\n            float sourceFracCol =\n                float(" + c[1] + ") *\n                  (float(dyC) / float(" + l[1] + "));\n\n            int sourceNearestRow = int(min(\n                float(int(" + o + ") - 1),\n                " + n + " ? float(round(sourceFracRow)) :\n                                  float(floor(sourceFracRow))));\n\n            int sourceNearestCol = int(min(\n                float(int(" + a + ") - 1),\n                " + n + " ? float(round(sourceFracCol)) :\n                                  float(floor(sourceFracCol))));\n\n            if (r == sourceNearestRow && c == sourceNearestCol) {\n              accumulator += getDy(b, dyR, dyC, d);\n            }\n          }\n        }\n        // End loop over dy\n\n        setOutput(accumulator);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Hi = function () {
 
-         return function (t, e, n, r) {
 
-           this.variableNames = ["A"], this.outputShape = [];
 
-           var o = t[0],
 
-             a = t[1],
 
-             i = t[2],
 
-             u = t[3];
 
-           this.outputShape = [o, e, n, u];
 
-           var s = [r && e > 1 ? a - 1 : a, r && n > 1 ? i - 1 : i],
 
-             c = [r && e > 1 ? e - 1 : e, r && n > 1 ? n - 1 : n],
 
-             l = r ? "0.5" : "0.0";
 
-           this.userCode = "\n      const vec2 effectiveInputOverOutputRatioRC = vec2(\n          " + s[0] / c[0] + ",\n          " + s[1] / c[1] + ");\n      const vec2 inputShapeRC = vec2(" + a + ".0, " + i + ".0);\n\n      void main() {\n        ivec4 coords = getOutputCoords();\n        int b = coords[0];\n        int d = coords[3];\n        ivec2 yRC = coords.yz;\n\n        // Fractional source index.\n        vec2 sourceFracIndexRC = vec2(yRC) * effectiveInputOverOutputRatioRC;\n\n        // Compute the coordinators of nearest neighbor point.\n        ivec2 sourceNearestRC = ivec2(\n          min(inputShapeRC - 1.0, floor(sourceFracIndexRC + " + l + ")));\n\n        float newValue = getA(b, sourceNearestRC.x, sourceNearestRC.y, d);\n\n        setOutput(newValue);\n      }\n    ";
 
-         };
 
-       }(),
 
-       qi = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["x"];
 
-           var n = t.length;
 
-           if (n > 4) throw new Error("WebGL backend: Reverse of rank-" + n + " tensor is not yet supported");
 
-           if (this.outputShape = t, 1 !== n) {
 
-             var r = t.map(function (n, r) {
 
-               return function (n) {
 
-                 return -1 !== e.indexOf(n) && 1 !== t[n] ? t[n] + " - coords[" + n + "] - 1" : "coords[" + n + "]";
 
-               }(r);
 
-             }).join(","),
 
-               o = aa(n);
 
-             this.userCode = "\n      void main() {\n        " + o + " coords = getOutputCoords();\n        setOutput(getX(" + r + "));\n      }\n    ";
 
-           } else this.userCode = "\n        void main() {\n          int coord = getOutputCoords();\n          setOutput(getX(" + t[0] + " - coord - 1));\n        }\n      ";
 
-         };
 
-       }(),
 
-       Ki = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["x"], this.packedInputs = !0, this.packedOutput = !0;
 
-           var n = t.length;
 
-           if (n > 4) throw new Error("WebGL backend: Reverse of rank-" + n + " tensor is not yet supported");
 
-           this.outputShape = t;
 
-           var r = qo("rc", n),
 
-             o = r[n - 1] + " + 1 < " + this.outputShape[n - 1],
 
-             a = r[n - 2] + " + 1 < " + this.outputShape[n - 2],
 
-             i = aa(n);
 
-           function u(n) {
 
-             var r = t.map(function (r, o) {
 
-               return function (n, r) {
 
-                 return -1 !== e.indexOf(n) && 1 !== t[n] ? t[n] + " - " + r[n] + " - 1" : "" + r[n];
 
-               }(o, n);
 
-             });
 
-             return "getChannel(getX(" + r.join(",") + "), vec2(" + r.slice(-2).join(",") + "))";
 
-           }
 
-           this.userCode = 1 === n ? "\n        void main(){\n          int rc = getOutputCoords();\n          vec4 result = vec4(0.);\n          result.r = getChannel(getX(" + t[0] + " - rc - 1),\n            " + t[0] + " - rc - 1);\n          if(" + o + "){\n              result.g = getChannel(getX(" + t[0] + " - (rc  + 1) - 1),\n                " + t[0] + " - (rc  + 1) - 1);\n          }\n          setOutput(result);\n        }\n      " : "\n        void main() {\n          " + i + " rc = getOutputCoords();\n          vec4 result = vec4(0.);\n          result.r = " + function (t) {
 
-             return u(t);
 
-           }(r.slice()) + ";\n          if(" + o + "){\n            result.g = " + function (t) {
 
-             return t[n - 1] = "(" + t[n - 1] + " + 1)", u(t);
 
-           }(r.slice()) + ";\n          }\n          if(" + a + ") {\n            result.b = " + function (t) {
 
-             return t[n - 2] = "(" + t[n - 2] + " + 1)", u(t);
 
-           }(r.slice()) + ";\n            if(" + o + ") {\n              result.a = " + function (t) {
 
-             return t[n - 1] = "(" + t[n - 1] + " + 1)", t[n - 2] = "(" + t[n - 2] + " + 1)", u(t);
 
-           }(r.slice()) + ";\n            }\n          }\n          setOutput(result);\n        }\n    ";
 
-         };
 
-       }(),
 
-       ji = function () {
 
-         return function (t, e, n, r, o, a, i) {
 
-           void 0 === i && (i = !0), this.variableNames = ["updates", "indices", "defaultValue"], this.outputShape = a;
 
-           var u = aa(o.length),
 
-             s = aa(a.length),
 
-             c = "";
 
-           1 === n ? c = "i" : 2 === n && (c = "i, j");
 
-           var l = "getIndices(" + c + ")",
 
-             h = "";
 
-           1 === r ? h = "i" : 2 === r && (h = "i, coords[1]");
 
-           var f = "getUpdates(" + h + ")",
 
-             p = e > 1 ? "strides[j]" : "strides";
 
-           this.userCode = "\n        " + u + " strides = " + u + "(" + o + ");\n\n        void main() {\n          " + s + " coords = getOutputCoords();\n          float sum = 0.0;\n          bool found = false;\n          for (int i = 0; i < " + t + "; i++) {\n            int flattenedIndex = 0;\n            for (int j = 0; j < " + e + "; j++) {\n              int index = round(" + l + ");\n              flattenedIndex += index * " + p + ";\n            }\n            if (flattenedIndex == coords[0]) {\n              sum += " + f + ";\n              found = true;\n            }\n          }\n          setOutput(mix(getDefaultValue(), sum, float(found)));\n        }\n      ";
 
-         };
 
-       }(),
 
-       Xi = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["x", "segmentIds"];
 
-           var n = t.windowSize,
 
-             r = t.batchSize,
 
-             o = t.inSize,
 
-             a = t.numSegments,
 
-             i = a * Math.ceil(o / n);
 
-           this.outputShape = [r, i];
 
-           var u = 4 * Math.floor(n / 4),
 
-             s = n % 4,
 
-             c = "\n        sumValue += dot(values, segFilter);\n    ",
 
-             l = "";
 
-           o % n > 0 && (l = "\n        if (inIdx < 0 || inIdx >= " + o + ") {\n          return initializationValue;\n        }\n      ");
 
-           var h = "";
 
-           o % n > 0 && (h = "\n        if (inIdx < 0 || inIdx >= " + o + ") {\n          return -1.0;\n        }\n      "), this.userCode = "\n      const float initializationValue = 0.0;\n\n      float getValue(int batch, int inIdx) {\n        " + l + "\n        return getX(batch, inIdx);\n      }\n\n      float getSegmentIdAtIndex(int inIdx) {\n        " + h + "\n        return getSegmentIds(inIdx);\n      }\n\n      void main() {\n        ivec2 coords = getOutputCoords();\n        int batch = coords[0];\n        int outIdx = coords[1];\n        int inOffset = int(floor(float(outIdx) / float(\n          " + a + ")) * float(" + n + "));\n        int currentSeg = int(mod(float(outIdx), float(" + a + ")));\n\n        float sumValue = 0.0;\n\n        for (int i = 0; i < " + u + "; i += 4) {\n          int inIdx = inOffset + i;\n          vec4 values = vec4(\n            getValue(batch, inIdx),\n            getValue(batch, inIdx + 1),\n            getValue(batch, inIdx + 2),\n            getValue(batch, inIdx + 3)\n          );\n\n          vec4 segFilter = vec4(\n            int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n            int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n            int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n            int(getSegmentIdAtIndex(inIdx + 3)) == currentSeg ? 1 : 0\n          );\n\n          " + c + "\n        }\n\n        int inIdx = inOffset + " + u + ";\n        if (" + (1 === s) + ") {\n          vec4 values = vec4(\n            getValue(batch, inIdx),\n            initializationValue,\n            initializationValue,\n            initializationValue\n          );\n\n          int inIdxSeg = int(getSegmentIdAtIndex(inIdx));\n\n          vec4 segFilter = vec4(\n            int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n            0,\n            0,\n            0\n          );\n\n          " + c + "\n        } else if (" + (2 === s) + ") {\n          vec4 values = vec4(\n            getValue(batch, inIdx),\n            getValue(batch, inIdx + 1),\n            initializationValue,\n            initializationValue\n          );\n\n          vec4 segFilter = vec4(\n            int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n            int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n              0,\n              0\n          );\n\n          " + c + "\n        } else if (" + (3 === s) + ") {\n          vec4 values = vec4(\n            getValue(batch, inIdx),\n            getValue(batch, inIdx + 1),\n            getValue(batch, inIdx + 2),\n            initializationValue\n          );\n\n          vec4 segFilter = vec4(\n            int(getSegmentIdAtIndex(inIdx)) == currentSeg ? 1 : 0,\n            int(getSegmentIdAtIndex(inIdx + 1)) == currentSeg ? 1 : 0,\n            int(getSegmentIdAtIndex(inIdx + 2)) == currentSeg ? 1 : 0,\n            0\n          );\n\n          " + c + "\n        }\n        setOutput(sumValue);\n      }\n    ";
 
-         };
 
-       }(),
 
-       $i = function () {
 
-         return function (t, e, n) {
 
-           var r, o;
 
-           if (this.variableNames = ["c", "a", "b"], this.outputShape = e, n > 4) throw Error("Where for rank " + n + " is not yet supported");
 
-           if (1 === n) o = "resRC", r = "resRC"; else {
 
-             for (var a = ["resRC.x", "resRC.y", "resRC.z", "resRC.w"], i = [], u = [], s = 0; s < e.length; s++) u.push("" + a[s]), s < t && i.push("" + a[s]);
 
-             r = i.join(), o = u.join();
 
-           }
 
-           var c = aa(n);
 
-           this.userCode = "\n      void main() {\n        " + c + " resRC = getOutputCoords();\n        float cVal = getC(" + r + ");\n        if (cVal >= 1.0) {\n          setOutput(getA(" + o + "));\n        } else {\n          setOutput(getB(" + o + "));\n        }\n      }\n    ";
 
-         };
 
-       }(),
 
-       Yi = function () {
 
-         function t(t) {
 
-           this.variableNames = ["source"], this.outputShape = t, this.rank = t.length;
 
-           var e,
 
-             n = aa(this.rank),
 
-             r = "uniform int start[" + this.rank + "];",
 
-             o = function (t) {
 
-               if (1 === t) return "sourceLoc";
 
-               if (t <= 6) return Qi.slice(0, t).map(function (t) {
 
-                 return "sourceLoc." + t;
 
-               }).join(",");
 
-               throw Error("Slicing for rank " + t + " is not yet supported");
 
-             }(this.rank);
 
-           e = "\n        " + n + " sourceLoc;\n        " + n + " coords = getOutputCoords();\n        " + t.map(function (t, e) {
 
-             return "sourceLoc." + Qi[e] + " = start[" + e + "] + coords." + Qi[e] + ";";
 
-           }).join("\n") + "\n      ", this.userCode = "\n      " + r + "\n      void main() {\n        " + e + "\n        setOutput(getSource(" + o + "));\n      }\n    ";
 
-         }
 
-         return t.prototype.getCustomSetupFunc = function (t) {
 
-           var e = this;
 
-           if (t.length !== this.rank) throw Error("The rank (" + this.rank + ") of the program must match the length of start (" + t.length + ")");
 
-           return function (n, r) {
 
-             null == e.startLoc && (e.startLoc = n.getUniformLocationNoThrow(r, "start"), null == e.startLoc) || n.gl.uniform1iv(e.startLoc, t);
 
-           };
 
-         }, t;
 
-       }(),
 
-       Qi = ["x", "y", "z", "w", "u", "v"];
 
-     var Ji = function () {
 
-       function t(t) {
 
-         this.variableNames = ["source"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t, this.rank = t.length;
 
-         var e = aa(this.rank),
 
-           n = qo("coords", this.rank),
 
-           r = qo("sourceLoc", this.rank),
 
-           o = 1 === this.rank ? "sourceLoc" : "vec2(" + r.slice(-2).join() + ")",
 
-           a = "getChannel(getSource(" + r.join() + "), " + o + ")",
 
-           i = "\n      result.x = " + a + ";\n      if (++" + n[this.rank - 1] + " < " + t[this.rank - 1] + ") {\n        ++" + r[this.rank - 1] + ";\n        result.y = " + a + ";\n        --" + r[this.rank - 1] + ";\n      }\n    ",
 
-           u = 1 === this.rank ? "" : "\n      --" + n[this.rank - 1] + ";\n      if (++" + n[this.rank - 2] + " < " + t[this.rank - 2] + ") {\n        ++" + r[this.rank - 2] + ";\n        result.z = " + a + ";\n        if (++" + n[this.rank - 1] + " < " + t[this.rank - 1] + ") {\n          ++" + r[this.rank - 1] + ";\n          result.w = " + a + ";\n        }\n      }\n    ",
 
-           s = this.rank <= 4 ? "sourceLoc = coords +\n            " + e + "(" + t.map(function (t, e) {
 
-             return "start[" + e + "]";
 
-           }).join() + ");" : t.map(function (t, e) {
 
-             return r[e] + " = " + n[e] + " + start[" + e + "];";
 
-           }).join("\n");
 
-         this.userCode = "\n      uniform int start[" + this.rank + "];\n      void main() {\n        " + e + " coords = getOutputCoords();\n        " + e + " sourceLoc;\n        " + s + "\n        vec4 result = vec4(0.);\n        " + i + "\n        " + u + "\n        setOutput(result);\n      }\n    ";
 
-       }
 
-       return t.prototype.getCustomSetupFunc = function (t) {
 
-         var e = this;
 
-         if (t.length !== this.rank) throw Error("The rank (" + this.rank + ") of the program must match the length of start (" + t.length + ")");
 
-         return function (n, r) {
 
-           null == e.startLoc && (e.startLoc = n.getUniformLocationNoThrow(r, "start"), null == e.startLoc) || n.gl.uniform1iv(e.startLoc, t);
 
-         };
 
-       }, t;
 
-     }(),
 
-       Zi = function () {
 
-         return function (t, e, n) {
 
-           this.variableNames = ["x"], this.outputShape = n;
 
-           var r = n.length,
 
-             o = aa(n.length),
 
-             a = aa(n.length),
 
-             i = "";
 
-           if (1 === r) i = "coords * strides + begin"; else {
 
-             var u = 0;
 
-             i = n.map(function (t, e) {
 
-               return u++, 1 === n.length ? "coords * strides[" + e + "] + begin[" + e + "]" : "coords[" + (u - 1) + "] * strides[" + e + "] + begin[" + e + "]";
 
-             }).join(",");
 
-           }
 
-           this.userCode = "\n      " + o + " begin = " + o + "(" + t + ");\n      " + o + " strides = " + o + "(" + e + ");\n\n      void main() {\n        " + a + " coords = getOutputCoords();\n        setOutput(getX(" + i + "));\n      }\n    ";
 
-         };
 
-       }(),
 
-       tu = function () {
 
-         function t(t) {
 
-           this.gpgpu = t, this.numUsedTextures = 0, this.numFreeTextures = 0, this.freeTextures = {}, this.logEnabled = !1, this.usedTextures = {};
 
-         }
 
-         return t.prototype.acquireTexture = function (t, e, n) {
 
-           var r,
 
-             o = eu(e, n),
 
-             a = nu(t, o, n);
 
-           if (a in this.freeTextures || (this.freeTextures[a] = []), a in this.usedTextures || (this.usedTextures[a] = []), this.freeTextures[a].length > 0) {
 
-             this.numFreeTextures--, this.numUsedTextures++, this.log();
 
-             var i = this.freeTextures[a].shift();
 
-             return this.usedTextures[a].push(i), i;
 
-           }
 
-           return this.numUsedTextures++, this.log(), o === Bt.PACKED_2X2_FLOAT32 ? r = this.gpgpu.createPackedMatrixTexture(t[0], t[1]) : o === Bt.PACKED_2X2_FLOAT16 ? r = this.gpgpu.createFloat16PackedMatrixTexture(t[0], t[1]) : o === Bt.UNPACKED_FLOAT32 ? r = this.gpgpu.createFloat32MatrixTexture(t[0], t[1]) : o === Bt.UNPACKED_FLOAT16 ? r = this.gpgpu.createFloat16MatrixTexture(t[0], t[1]) : o === Bt.PACKED_4X1_UNSIGNED_BYTE && (r = this.gpgpu.createUnsignedBytesMatrixTexture(t[0], t[1])), this.usedTextures[a].push(r), r;
 
-         }, t.prototype.releaseTexture = function (t, e, n, r) {
 
-           if (null != this.freeTextures) {
 
-             var o = nu(e, eu(n, r), r);
 
-             o in this.freeTextures || (this.freeTextures[o] = []), this.freeTextures[o].push(t), this.numFreeTextures++, this.numUsedTextures--;
 
-             var a = this.usedTextures[o],
 
-               i = a.indexOf(t);
 
-             if (i < 0) throw new Error("Cannot release a texture that was never provided by this texture manager");
 
-             a.splice(i, 1), this.log();
 
-           }
 
-         }, t.prototype.log = function () {
 
-           if (this.logEnabled) {
 
-             var t = this.numFreeTextures + this.numUsedTextures;
 
-             console.log("Free/Used", this.numFreeTextures + " / " + this.numUsedTextures, "(" + t + ")");
 
-           }
 
-         }, t.prototype.getNumUsedTextures = function () {
 
-           return this.numUsedTextures;
 
-         }, t.prototype.getNumFreeTextures = function () {
 
-           return this.numFreeTextures;
 
-         }, t.prototype.dispose = function () {
 
-           var t = this;
 
-           if (null != this.freeTextures) {
 
-             for (var e in this.freeTextures) this.freeTextures[e].forEach(function (e) {
 
-               t.gpgpu.deleteMatrixTexture(e);
 
-             });
 
-             for (var e in this.usedTextures) this.usedTextures[e].forEach(function (e) {
 
-               t.gpgpu.deleteMatrixTexture(e);
 
-             });
 
-             this.freeTextures = null, this.usedTextures = null, this.numUsedTextures = 0, this.numFreeTextures = 0;
 
-           }
 
-         }, t;
 
-       }();
 
-     function eu(t, e) {
 
-       if (t === Mt.UPLOAD) return Bt.PACKED_2X2_FLOAT32;
 
-       if (t === Mt.RENDER || null == t) return function (t) {
 
-         return a().getBool("WEBGL_RENDER_FLOAT32_ENABLED") ? t ? Bt.PACKED_2X2_FLOAT32 : Bt.UNPACKED_FLOAT32 : t ? Bt.PACKED_2X2_FLOAT16 : Bt.UNPACKED_FLOAT16;
 
-       }(e);
 
-       if (t === Mt.DOWNLOAD || t === Mt.PIXELS) return Bt.PACKED_4X1_UNSIGNED_BYTE;
 
-       throw new Error("Unknown logical texture type " + t);
 
-     }
 
-     function nu(t, e, n) {
 
-       return t[0] + "_" + t[1] + "_" + e + "_" + n;
 
-     }
 
-     var ru = function () {
 
-       return function (t, e) {
 
-         this.variableNames = ["A"];
 
-         for (var n = new Array(t.length), r = 0; r < n.length; r++) n[r] = t[r] * e[r];
 
-         this.outputShape = n, this.rank = n.length;
 
-         var o = aa(this.rank),
 
-           a = function (t) {
 
-             var e = t.length;
 
-             if (e > 5) throw Error("Tile for rank " + e + " is not yet supported");
 
-             if (1 === e) return "imod(resRC, " + t[0] + ")";
 
-             for (var n = ["resRC.x", "resRC.y", "resRC.z", "resRC.w", "resRC.u"], r = [], o = 0; o < t.length; o++) r.push("imod(" + n[o] + ", " + t[o] + ")");
 
-             return r.join();
 
-           }(t);
 
-         this.userCode = "\n      void main() {\n        " + o + " resRC = getOutputCoords();\n        setOutput(getA(" + a + "));\n      }\n    ";
 
-       };
 
-     }();
 
-     var ou = function () {
 
-       return function (t, e) {
 
-         this.variableNames = ["A"];
 
-         for (var n = new Array(t.length), r = 0; r < n.length; r++) n[r] = t[e[r]];
 
-         this.outputShape = n, this.rank = n.length;
 
-         var o = aa(this.rank),
 
-           a = function (t) {
 
-             var e = t.length;
 
-             if (e > 6) throw Error("Transpose for rank " + e + " is not yet supported");
 
-             for (var n = ["resRC.x", "resRC.y", "resRC.z", "resRC.w", "resRC.u", "resRC.v"], r = new Array(e), o = 0; o < t.length; o++) r[t[o]] = n[o];
 
-             return r.join();
 
-           }(e);
 
-         this.userCode = "\n    void main() {\n      " + o + " resRC = getOutputCoords();\n      setOutput(getA(" + a + "));\n    }\n    ";
 
-       };
 
-     }();
 
-     var au = function () {
 
-       return function (t, e) {
 
-         this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0;
 
-         for (var n = new Array(t.length), r = 0; r < n.length; r++) n[r] = t[e[r]];
 
-         if (this.outputShape = n, this.rank = n.length, this.rank > 6) throw Error("Packed transpose for rank " + this.rank + " is not yet supported.");
 
-         var o = aa(this.rank),
 
-           a = Ho("rc", this.rank),
 
-           i = new Array(this.rank);
 
-         for (r = 0; r < e.length; r++) i[e[r]] = a[r];
 
-         var u = "vec2(" + i.slice(-2).join() + ")",
 
-           s = "++" + a[this.rank - 1] + " < " + n[this.rank - 1],
 
-           c = "getChannel(getA(" + i.join() + "), " + u + ")";
 
-         this.userCode = "\n    void main() {\n      " + o + " rc = getOutputCoords();\n      vec4 result = vec4(0.);\n      result[0] = " + c + ";\n      if(" + s + ") {\n        result[1] = " + c + ";\n      }\n      --" + a[this.rank - 1] + ";\n      if(++" + a[this.rank - 2] + " < " + n[this.rank - 2] + ") {\n        result[2] = " + c + ";\n        if(" + s + ") {\n          result[3] = " + c + ";\n        }\n      }\n      setOutput(result);\n    }\n    ";
 
-       };
 
-     }(),
 
-       iu = 1.7580993408473768,
 
-       uu = 1.0507009873554805,
 
-       su = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["A"], this.outputShape = t, this.userCode = "\n      float unaryOperation(float x) {\n        " + e + "\n      }\n\n      void main() {\n        float x = getAAtOutCoords();\n        float y = unaryOperation(x);\n\n        setOutput(y);\n      }\n    ";
 
-         };
 
-       }(),
 
-       cu = "if (isnan(x)) return x;",
 
-       lu = "return x;",
 
-       hu = "return abs(x);",
 
-       fu = cu + "\n  return (x < 0.0) ? 0.0 : x;\n",
 
-       pu = cu + "\n  return (x < 0.0) ? 0.0 : min(6.0, x);\n",
 
-       du = "return (x >= 0.0) ? x : (exp(x) - 1.0);",
 
-       vu = "\n  // Stable and Attracting Fixed Point (0, 1) for Normalized Weights.\n  // see: https://arxiv.org/abs/1706.02515\n  float scaleAlpha = " + iu + ";\n  float scale = " + uu + ";\n  return (x >= 0.0) ? scale * x : scaleAlpha * (exp(x) - 1.0);\n";
 
-     var mu = "return -x;",
 
-       gu = "return ceil(x);",
 
-       yu = "return floor(x);",
 
-       xu = "return exp(x);",
 
-       bu = "return exp(x) - 1.0;",
 
-       wu = cu + "\n  return sin(x);\n",
 
-       Cu = cu + "\n  return cos(x);\n",
 
-       Eu = cu + "\n  if (abs(x) > 1.) {\n    return NAN;\n  }\n  return asin(x);\n",
 
-       Ru = cu + "\n  if (abs(x) > 1.) {\n    return NAN;\n  }\n  return acos(x);\n",
 
-       Iu = cu + "\n  return atan(x);\n",
 
-       ku = cu + "return log(x + sqrt(x * x + 1.0));",
 
-       Su = cu + "\n  if (x < 1.0) return NAN;\n  return log(x + sqrt(x * x - 1.0));",
 
-       Au = cu + "\n  if ((x < -1.0) || (x > 1.0)) return NAN;\n  return (log(1.0 + x) - log(1.0 - x)) / 2.0;",
 
-       Du = "return x;",
 
-       Tu = "return x;",
 
-       Nu = "\n  vec4 result = x * vec4(greaterThanEqual(x, vec4(0.0)));\n  bvec4 isNaN = isnan(x);\n\n  result.r = isNaN.r ? x.r : result.r;\n  result.g = isNaN.g ? x.g : result.g;\n  result.b = isNaN.b ? x.b : result.b;\n  result.a = isNaN.a ? x.a : result.a;\n\n  return result;\n",
 
-       Fu = "\n  vec4 result = min(x, vec4(6.)) * vec4(greaterThanEqual(x, vec4(0.0)));\n  bvec4 isNaN = isnan(x);\n\n  result.r = isNaN.r ? x.r : result.r;\n  result.g = isNaN.g ? x.g : result.g;\n  result.b = isNaN.b ? x.b : result.b;\n  result.a = isNaN.a ? x.a : result.a;\n\n  return result;\n",
 
-       Ou = "\n  vec4 result;\n\n  result.r = (x.r >= 0.0) ? x.r : (exp(x.r) - 1.0);\n  result.g = (x.g >= 0.0) ? x.g : (exp(x.g) - 1.0);\n  result.b = (x.b >= 0.0) ? x.b : (exp(x.b) - 1.0);\n  result.a = (x.a >= 0.0) ? x.a : (exp(x.a) - 1.0);\n\n  return result;\n",
 
-       _u = function () {
 
-         return function (t, e) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !0, this.outputShape = t, this.userCode = "\n      vec4 unaryOperation(vec4 x) {\n        " + e + "\n      }\n\n      void main() {\n        vec4 x = getAAtOutCoords();\n        vec4 y = unaryOperation(x);\n\n        setOutput(y);\n      }\n    ";
 
-         };
 
-       }(),
 
-       Mu = function () {
 
-         return function (t) {
 
-           this.variableNames = ["A"], this.packedInputs = !0, this.packedOutput = !1, this.outputShape = t;
 
-           var e = t.length,
 
-             n = qo("rc", e),
 
-             r = aa(e),
 
-             o = function (t, e) {
 
-               if (1 === t) return "rc";
 
-               for (var n = "", r = 0; r < t; r++) n += e[r], r < t - 1 && (n += ",");
 
-               return n;
 
-             }(e, n),
 
-             a = n.slice(-2),
 
-             i = e <= 1 ? "rc" : "vec2(" + a.join(",") + ")";
 
-           this.userCode = "\n      void main() {\n        " + r + " rc = getOutputCoords();\n        vec4 packedInput = getA(" + o + ");\n\n        setOutput(getChannel(packedInput, " + i + "));\n      }\n    ";
 
-         };
 
-       }(),
 
-       Bu = {};
 
-     function Pu(t, e) {
 
-       if (void 0 === e && (e = !1), "linear" === t) return e ? Tu : lu;
 
-       if ("relu" === t) return e ? Nu : fu;
 
-       if ("elu" === t) return e ? Ou : du;
 
-       if ("relu6" === t) return e ? Fu : pu;
 
-       if ("prelu" === t) return e ? wa : xa;
 
-       throw new Error("Activation " + t + " has not been implemented for the WebGL backend.");
 
-     }
 
-     var Lu = 600;
 
-     var Wu = function (t) {
 
-       function o(e) {
 
-         var n,
 
-           r = t.call(this) || this;
 
-         if (r.gpgpu = e, r.pendingRead = new WeakMap(), r.pendingDisposal = new WeakSet(), r.dataRefCount = new WeakMap(), r.numBytesInGPU = 0, r.uploadWaitMs = 0, r.downloadWaitMs = 0, r.warnedAboutMemory = !1, r.pendingDeletes = 0, r.disposed = !1, !a().getBool("HAS_WEBGL")) throw new Error("WebGL is not supported on this device");
 
-         if (null == e) {
 
-           var o = Ut(a().getNumber("WEBGL_VERSION"));
 
-           r.binaryCache = (n = a().getNumber("WEBGL_VERSION")) in Bu ? Bu[n] : (Bu[n] = {}, Bu[n]), r.gpgpu = new Ci(o), r.canvas = o.canvas, r.gpgpuCreatedLocally = !0;
 
-         } else r.binaryCache = {}, r.gpgpuCreatedLocally = !1, r.canvas = e.gl.canvas;
 
-         return r.textureManager = new tu(r.gpgpu), r.numMBBeforeWarning = null == a().global.screen ? 1024 : a().global.screen.height * a().global.screen.width * window.devicePixelRatio * Lu / 1024 / 1024, r.texData = new so(r, Nt), r;
 
-       }
 
-       return e(o, t), o.prototype.numDataIds = function () {
 
-         return this.texData.numDataIds() + (this.cpuBackend ? this.cpuBackend.numDataIds() : 0) - this.pendingDeletes;
 
-       }, o.prototype.fromPixels = function (t, e) {
 
-         if (null == t) throw new Error("pixels passed to tf.browser.fromPixels() can not be null");
 
-         var n = "undefined" != typeof OffscreenCanvas && t instanceof OffscreenCanvas || "undefined" != typeof HTMLCanvasElement && t instanceof HTMLCanvasElement,
 
-           r = t.data instanceof Uint8Array,
 
-           o = "undefined" != typeof ImageData && t instanceof ImageData,
 
-           i = "undefined" != typeof HTMLVideoElement && t instanceof HTMLVideoElement,
 
-           u = "undefined" != typeof HTMLImageElement && t instanceof HTMLImageElement,
 
-           s = i ? [t.videoWidth, t.videoHeight] : [t.width, t.height],
 
-           c = s[0],
 
-           l = s[1],
 
-           h = [l, c],
 
-           f = [l, c, e];
 
-         if (!(n || r || o || i || u)) throw new Error("pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData in browser, or OffscreenCanvas, ImageData in webworker or {data: Uint32Array, width: number, height: number}, but was " + t.constructor.name);
 
-         (u || i) && (null == this.fromPixels2DContext && (this.fromPixels2DContext = Vt(a().getNumber("WEBGL_VERSION")).getContext("2d")), this.fromPixels2DContext.canvas.width = c, this.fromPixels2DContext.canvas.height = l, this.fromPixels2DContext.drawImage(t, 0, 0, c, l), t = this.fromPixels2DContext.canvas);
 
-         var p,
 
-           d,
 
-           v = this.makeTensorInfo(h, "int32");
 
-         return this.texData.get(v.dataId).usage = Mt.PIXELS, this.gpgpu.uploadPixelDataToTexture(this.getTexture(v.dataId), t), a().getBool("WEBGL_PACK") ? (p = new ei(f), d = this.compileAndRun(p, [v])) : (p = new ti(f), d = this.compileAndRun(p, [v])), this.disposeData(v.dataId), d;
 
-       }, o.prototype.write = function (t, e, n) {
 
-         if (a().getBool("DEBUG") && this.checkNumericalProblems(t), "complex64" === n && null != t) throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");
 
-         var r = {};
 
-         return this.texData.set(r, {
 
-           shape: e,
 
-           dtype: n,
 
-           values: t,
 
-           usage: Mt.UPLOAD
 
-         }), r;
 
-       }, o.prototype.move = function (t, e, n, r) {
 
-         if (a().getBool("DEBUG") && this.checkNumericalProblems(e), "complex64" === r) throw new Error("Cannot write to a complex64 dtype. Please use tf.complex(real, imag).");
 
-         this.texData.set(t, {
 
-           shape: n,
 
-           dtype: r,
 
-           values: e,
 
-           usage: Mt.UPLOAD
 
-         });
 
-       }, o.prototype.readSync = function (t) {
 
-         var e = this.texData.get(t),
 
-           n = e.values,
 
-           r = e.dtype,
 
-           o = e.complexTensors,
 
-           a = e.slice,
 
-           i = e.shape,
 
-           u = e.isPacked;
 
-         if (null != a) {
 
-           var s = void 0;
 
-           s = u ? new _u(i, Du) : new su(i, Du);
 
-           var c = this.runWebGLProgram(s, [{
 
-             dataId: t,
 
-             shape: i,
 
-             dtype: r
 
-           }], r),
 
-             l = this.readSync(c.dataId);
 
-           return this.disposeData(c.dataId), l;
 
-         }
 
-         if (null != n) return this.convertAndCacheOnCPU(t);
 
-         if ("string" === r) return n;
 
-         var h,
 
-           f,
 
-           p = null != this.activeTimers;
 
-         (p && (h = Y()), "complex64" === r) ? f = No(o.real.dataSync(), o.imag.dataSync()) : f = this.getValuesFromTexture(t);
 
-         return p && (this.downloadWaitMs += Y() - h), this.convertAndCacheOnCPU(t, f);
 
-       }, o.prototype.read = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o, i, u, s, c, l, h, f, p, d, v, m, g, y, x, b, C, E, R, I;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 if (this.pendingRead.has(t)) return e = this.pendingRead.get(t), [2, new Promise(function (t) {
 
-                   return e.push(t);
 
-                 })];
 
-                 if (n = this.texData.get(t), o = n.values, i = n.shape, u = n.slice, s = n.dtype, c = n.complexTensors, l = n.isPacked, null != u) return h = void 0, h = l ? new _u(i, Du) : new su(i, Du), f = this.runWebGLProgram(h, [{
 
-                   dataId: t,
 
-                   shape: i,
 
-                   dtype: s
 
-                 }], s), p = this.read(f.dataId), this.disposeData(f.dataId), [2, p];
 
-                 if (null != o) return [2, this.convertAndCacheOnCPU(t)];
 
-                 if (!a().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED") && 2 === a().getNumber("WEBGL_VERSION")) throw new Error("tensor.data() with WEBGL_DOWNLOAD_FLOAT_ENABLED=false and WEBGL_VERSION=2 not yet supported.");
 
-                 return d = null, "complex64" !== s && a().get("WEBGL_BUFFER_SUPPORTED") && (v = this.decode(t), m = this.texData.get(v.dataId), d = (I = this.gpgpu).createBufferFromTexture.apply(I, [m.texture].concat(Gt(i)))), this.pendingRead.set(t, []), "complex64" === s ? [3, 2] : [4, this.gpgpu.createAndWaitForFence()];
 
-               case 1:
 
-                 r.sent(), r.label = 2;
 
-               case 2:
 
-                 return "complex64" !== s ? [3, 4] : [4, Promise.all([c.real.data(), c.imag.data()])];
 
-               case 3:
 
-                 return y = r.sent(), x = y[0], b = y[1], g = No(x, b), [3, 5];
 
-               case 4:
 
-                 null == d ? g = this.getValuesFromTexture(t) : (C = w(i), g = this.gpgpu.downloadFloat32MatrixFromBuffer(d, C)), r.label = 5;
 
-               case 5:
 
-                 return null != v && this.disposeData(v.dataId), E = this.convertAndCacheOnCPU(t, g), R = this.pendingRead.get(t), this.pendingRead.delete(t), R.forEach(function (t) {
 
-                   return t(E);
 
-                 }), this.pendingDisposal.has(t) && (this.pendingDisposal.delete(t), this.disposeData(t), this.pendingDeletes--), [2, E];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.checkNumericalProblems = function (t) {
 
-         if (null != t) for (var e = 0; e < t.length; e++) {
 
-           var n = t[e];
 
-           if (!$t(n)) {
 
-             if (a().getBool("WEBGL_RENDER_FLOAT32_CAPABLE")) throw Error("The value " + n + " cannot be represented with your current settings. Consider enabling float32 rendering: 'tf.env().set('WEBGL_RENDER_FLOAT32_ENABLED', true);'");
 
-             throw Error("The value " + n + " cannot be represented on this device.");
 
-           }
 
-         }
 
-       }, o.prototype.getValuesFromTexture = function (t) {
 
-         var e,
 
-           n = this.texData.get(t),
 
-           r = n.shape,
 
-           o = n.dtype,
 
-           i = n.isPacked,
 
-           u = w(r);
 
-         if (a().getBool("WEBGL_DOWNLOAD_FLOAT_ENABLED")) {
 
-           var s = this.decode(t),
 
-             c = this.texData.get(s.dataId),
 
-             l = (e = this.gpgpu).downloadMatrixFromPackedTexture.apply(e, [c.texture].concat(Gt(r))).subarray(0, u);
 
-           return this.disposeData(s.dataId), l;
 
-         }
 
-         var h = a().getBool("WEBGL_PACK") && !0 === i,
 
-           f = h ? Re(r) : r,
 
-           p = h ? new ja(f) : new Ka(f),
 
-           d = this.runWebGLProgram(p, [{
 
-             shape: f,
 
-             dtype: o,
 
-             dataId: t
 
-           }], "float32"),
 
-           v = this.texData.get(d.dataId),
 
-           m = this.gpgpu.downloadByteEncodedFloatMatrixFromOutputTexture(v.texture, v.texShape[0], v.texShape[1]).subarray(0, u);
 
-         return this.disposeData(d.dataId), m;
 
-       }, o.prototype.time = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o, a, i, u, s;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return e = this.activeTimers, n = [], o = !1, null == this.programTimersStack ? (this.programTimersStack = n, o = !0) : this.activeTimers.push(n), this.activeTimers = n, t(), a = b(this.activeTimers.map(function (t) {
 
-                   return t.query;
 
-                 })).filter(function (t) {
 
-                   return null != t;
 
-                 }), i = b(this.activeTimers.map(function (t) {
 
-                   return t.name;
 
-                 })).filter(function (t) {
 
-                   return null != t;
 
-                 }), this.activeTimers = e, o && (this.programTimersStack = null), [4, Promise.all(a)];
 
-               case 1:
 
-                 return u = r.sent(), s = {
 
-                   uploadWaitMs: this.uploadWaitMs,
 
-                   downloadWaitMs: this.downloadWaitMs,
 
-                   kernelMs: m(u),
 
-                   getExtraProfileInfo: function () {
 
-                     return u.map(function (t, e) {
 
-                       return {
 
-                         name: i[e],
 
-                         ms: t
 
-                       };
 
-                     }).map(function (t) {
 
-                       return t.name + ": " + t.ms;
 
-                     }).join(", ");
 
-                   },
 
-                   wallMs: null
 
-                 }, this.uploadWaitMs = 0, this.downloadWaitMs = 0, [2, s];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.memory = function () {
 
-         return {
 
-           unreliable: !1,
 
-           numBytesInGPU: this.numBytesInGPU
 
-         };
 
-       }, o.prototype.startTimer = function () {
 
-         return a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 ? this.gpgpu.beginQuery() : {
 
-           startMs: Y(),
 
-           endMs: null
 
-         };
 
-       }, o.prototype.endTimer = function (t) {
 
-         return a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 ? (this.gpgpu.endQuery(), t) : (t.endMs = Y(), t);
 
-       }, o.prototype.getQueryTime = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e;
 
-           return r(this, function (n) {
 
-             return a().getNumber("WEBGL_DISJOINT_QUERY_TIMER_EXTENSION_VERSION") > 0 ? [2, this.gpgpu.waitForQueryAndGetTime(t)] : [2, (e = t).endMs - e.startMs];
 
-           });
 
-         });
 
-       }, o.prototype.disposeData = function (t) {
 
-         if (!this.pendingDisposal.has(t)) {
 
-           if (this.pendingRead.has(t)) return this.pendingDisposal.add(t), void this.pendingDeletes++;
 
-           if (this.texData.has(t)) {
 
-             this.releaseGPUData(t);
 
-             var e = this.texData.get(t).complexTensors;
 
-             null != e && (e.real.dispose(), e.imag.dispose()), this.texData.delete(t);
 
-           }
 
-         }
 
-       }, o.prototype.releaseGPUData = function (t) {
 
-         var e = this.texData.get(t),
 
-           n = e.texture,
 
-           r = e.dtype,
 
-           o = e.texShape,
 
-           a = e.usage,
 
-           i = e.isPacked,
 
-           u = e.slice,
 
-           s = u && u.origDataId || t,
 
-           c = this.dataRefCount.get(s);
 
-         c > 1 ? this.dataRefCount.set(s, c - 1) : (this.dataRefCount.delete(s), null != n && (this.numBytesInGPU -= this.computeBytes(o, r), this.textureManager.releaseTexture(n, o, a, i)));
 
-         var l = this.texData.get(t);
 
-         l.texture = null, l.texShape = null, l.isPacked = !1, l.slice = null;
 
-       }, o.prototype.getTexture = function (t) {
 
-         return this.uploadToGPU(t), this.texData.get(t).texture;
 
-       }, o.prototype.getDataInfo = function (t) {
 
-         return this.texData.get(t);
 
-       }, o.prototype.getCPUBackend = function () {
 
-         return a().getBool("WEBGL_CPU_FORWARD") ? (null == this.cpuBackend && (this.cpuBackend = Nt.findBackend("cpu")), this.cpuBackend) : null;
 
-       }, o.prototype.shouldExecuteOnCPU = function (t, e) {
 
-         var n = this;
 
-         return void 0 === e && (e = 128), null != this.getCPUBackend() && t.every(function (t) {
 
-           return null == n.texData.get(t.dataId).texture && t.size < e;
 
-         });
 
-       }, o.prototype.getGPGPUContext = function () {
 
-         return this.gpgpu;
 
-       }, o.prototype.complex = function (t, e) {
 
-         var n = this.makeOutput(t.shape, "complex64");
 
-         return this.texData.get(n.dataId).complexTensors = {
 
-           real: Nt.keep(t.clone()),
 
-           imag: Nt.keep(e.clone())
 
-         }, n;
 
-       }, o.prototype.real = function (t) {
 
-         return this.texData.get(t.dataId).complexTensors.real.clone();
 
-       }, o.prototype.imag = function (t) {
 
-         return this.texData.get(t.dataId).complexTensors.imag.clone();
 
-       }, o.prototype.slice = function (t, e, n) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.slice(t, e, n);
 
-         if (0 === w(n)) return kn([], n, t.dtype);
 
-         var r = this.texData.get(t.dataId).isPacked,
 
-           o = Yr(t.shape, e, n);
 
-         if (r || !o) {
 
-           var i = a().getBool("WEBGL_PACK_ARRAY_OPERATIONS") ? new Ji(n) : new Yi(n),
 
-             u = i.getCustomSetupFunc(e);
 
-           return this.compileAndRun(i, [t], null, u);
 
-         }
 
-         return this.uploadToGPU(t.dataId), this.shallowSlice(t, e, n);
 
-       }, o.prototype.shallowSlice = function (t, e, n) {
 
-         var r = this.texData.get(t.dataId),
 
-           o = this.makeOutput(n, t.dtype),
 
-           a = this.texData.get(o.dataId);
 
-         Object.assign(a, r), a.shape = n, a.dtype = t.dtype;
 
-         var i = Qr(e, t.strides);
 
-         r.slice && (i += r.slice.flatOffset), a.slice = {
 
-           flatOffset: i,
 
-           origDataId: r.slice && r.slice.origDataId || t.dataId
 
-         };
 
-         var u = this.dataRefCount.get(a.slice.origDataId) || 1;
 
-         return this.dataRefCount.set(a.slice.origDataId, u + 1), o;
 
-       }, o.prototype.stridedSlice = function (t, e, n, r) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.stridedSlice(t, e, n, r);
 
-         var o = jr(e, n, r);
 
-         if (o.some(function (t) {
 
-           return 0 === t;
 
-         })) return kn([], o);
 
-         var a = new Zi(e, r, o);
 
-         return this.compileAndRun(a, [t]);
 
-       }, o.prototype.reverse = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_ARRAY_OPERATIONS") ? new Ki(t.shape, e) : new qi(t.shape, e);
 
-         return this.compileAndRun(n, [t]);
 
-       }, o.prototype.concat = function (t, e) {
 
-         if ("complex64" === t[0].dtype) {
 
-           var n = t.map(function (t) {
 
-             return Rn(t);
 
-           }),
 
-             r = t.map(function (t) {
 
-               return In(t);
 
-             });
 
-           return En(this.concat(n, e), this.concat(r, e));
 
-         }
 
-         if (this.shouldExecuteOnCPU(t)) return this.cpuBackend.concat(t, e);
 
-         if (1 === t.length) return t[0];
 
-         if (t.length > a().getNumber("WEBGL_MAX_TEXTURES_IN_SHADER")) {
 
-           var o = Math.floor(t.length / 2),
 
-             i = this.concat(t.slice(0, o), e),
 
-             u = this.concat(t.slice(o), e);
 
-           return this.concat([i, u], e);
 
-         }
 
-         if (a().getBool("WEBGL_PACK_ARRAY_OPERATIONS") && t[0].rank > 1) {
 
-           var s = new Sa(t.map(function (t) {
 
-             return t.shape;
 
-           }), e);
 
-           return this.compileAndRun(s, t);
 
-         }
 
-         var c = wn(t.map(function (t) {
 
-           return t.shape;
 
-         }), e),
 
-           l = t.map(function (t) {
 
-             return t.as2D(-1, w(t.shape.slice(e)));
 
-           }),
 
-           h = new ka(l.map(function (t) {
 
-             return t.shape;
 
-           }));
 
-         return this.compileAndRun(h, l).reshape(c);
 
-       }, o.prototype.neg = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.neg(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, mu, t.dtype);
 
-         var e = new su(t.shape, mu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.batchMatMul = function (t, e, n, r) {
 
-         var o = n ? t.shape[2] : t.shape[1],
 
-           a = r ? e.shape[1] : e.shape[2],
 
-           i = n ? t.shape[1] : t.shape[2],
 
-           u = t.shape[0];
 
-         if ((1 === o || 1 === a) && i > 1e3) {
 
-           n && (t = t.transpose([0, 2, 1])), r && (e = e.transpose([0, 2, 1]));
 
-           var s = 1 === a ? t : t.as3D(u, i, 1),
 
-             c = 1 === a ? 2 : 1,
 
-             l = 1 === a ? e.as3D(u, 1, i) : e;
 
-           return this.multiply(s, l).sum(c, !0);
 
-         }
 
-         var h = Ct(t.dtype, e.dtype),
 
-           f = new Ti(t.shape, [u, o, a], n, r);
 
-         return this.compileAndRun(f, [t, e], h);
 
-       }, o.prototype.fusedBatchMatMul = function (t) {
 
-         var e = t.a,
 
-           n = t.b,
 
-           r = t.transposeA,
 
-           o = t.transposeB,
 
-           a = t.bias,
 
-           i = t.activation,
 
-           u = t.preluActivationWeights,
 
-           s = r ? e.shape[2] : e.shape[1],
 
-           c = o ? n.shape[1] : n.shape[2],
 
-           l = e.shape[0],
 
-           h = Ct(e.dtype, n.dtype),
 
-           f = null != a,
 
-           p = null != u,
 
-           d = i ? Pu(i, !0) : null,
 
-           v = new Ti(e.shape, [l, s, c], r, o, f, d, p),
 
-           m = [e, n];
 
-         return a && m.push(a), u && m.push(u), this.compileAndRun(v, m, h);
 
-       }, o.prototype.multiply = function (t, e) {
 
-         if ("complex64" === t.dtype) {
 
-           var n = this.texData.get(t.dataId),
 
-             r = this.texData.get(e.dataId),
 
-             o = new va(pa, t.shape, e.shape),
 
-             i = new va(da, t.shape, e.shape),
 
-             u = [this.makeComplexComponentTensorInfo(t, n.complexTensors.real), this.makeComplexComponentTensorInfo(t, n.complexTensors.imag), this.makeComplexComponentTensorInfo(e, r.complexTensors.real), this.makeComplexComponentTensorInfo(e, r.complexTensors.imag)],
 
-             s = this.compileAndRun(o, u),
 
-             c = this.compileAndRun(i, u),
 
-             l = this.complex(s, c);
 
-           return s.dispose(), c.dispose(), l;
 
-         }
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.multiply(t, e);
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, ya, t.dtype);
 
-         var h = new ba(ya, t.shape, e.shape);
 
-         return this.compileAndRun(h, [t, e], t.dtype);
 
-       }, o.prototype.batchNormalization = function (t, e, n, r, o, i) {
 
-         var u = [t, e, n],
 
-           s = null;
 
-         null != i && (s = i.shape, u.push(i));
 
-         var c = null;
 
-         if (null != o && (c = o.shape, u.push(o)), a().getBool("WEBGL_PACK_NORMALIZATION")) {
 
-           var l = new fa(t.shape, e.shape, n.shape, s, c, r);
 
-           return this.compileAndRun(l, u);
 
-         }
 
-         var h = new ha(t.shape, e.shape, n.shape, s, c, r);
 
-         return this.compileAndRun(h, u);
 
-       }, o.prototype.localResponseNormalization4D = function (t, e, n, r, o) {
 
-         var i = a().getBool("WEBGL_PACK_NORMALIZATION") ? new Si(t.shape, e, n, r, o) : new Ii(t.shape, e, n, r, o);
 
-         return this.compileAndRun(i, [t]);
 
-       }, o.prototype.LRNGrad = function (t, e, n, r, o, a, i) {
 
-         var u = new ki(e.shape, r, o, a, i);
 
-         return this.compileAndRun(u, [e, n, t]);
 
-       }, o.prototype.tile = function (t, e) {
 
-         if ("string" === t.dtype) {
 
-           var n = this.readSync(t.dataId).map(function (t) {
 
-             return Z(t);
 
-           });
 
-           return Lo(ur(t.shape, t.dtype, n), e);
 
-         }
 
-         var r = new ru(t.shape, e);
 
-         return this.compileAndRun(r, [t]);
 
-       }, o.prototype.pad = function (t, e, n) {
 
-         var r = a().getBool("WEBGL_PACK_ARRAY_OPERATIONS") ? new Mi(t.shape, e, n) : new _i(t.shape, e, n);
 
-         return this.compileAndRun(r, [t]);
 
-       }, o.prototype.transpose = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.transpose(t, e);
 
-         var n = a().getBool("WEBGL_PACK_ARRAY_OPERATIONS") ? new au(t.shape, e) : new ou(t.shape, e);
 
-         return this.compileAndRun(n, [t]);
 
-       }, o.prototype.gather = function (t, e, n) {
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.gather(t, e, n);
 
-         var r = new ni(t.shape, e.size, n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.batchToSpaceND = function (t, e, n) {
 
-         g(t.rank <= 4, function () {
 
-           return "batchToSpaceND for rank > 4 with a WebGL backend not implemented yet";
 
-         });
 
-         var r = e.reduce(function (t, e) {
 
-           return t * e;
 
-         }),
 
-           o = Mr(t.shape, e, r),
 
-           a = Br(o.length, e.length),
 
-           i = Pr(t.shape, e, r),
 
-           u = Lr(n, e.length),
 
-           s = Wr(i, n, e.length);
 
-         return t.reshape(o).transpose(a).reshape(i).slice(u, s);
 
-       }, o.prototype.spaceToBatchND = function (t, e, n) {
 
-         g(t.rank <= 4, function () {
 
-           return "spaceToBatchND for rank > 4 with a WebGL backend not implemented yet";
 
-         });
 
-         var r = e.reduce(function (t, e) {
 
-           return t * e;
 
-         }),
 
-           o = [[0, 0]];
 
-         o.push.apply(o, n);
 
-         for (var a = 1 + e.length; a < t.shape.length; ++a) o.push([0, 0]);
 
-         var i = t.pad(o),
 
-           u = Mr(i.shape, e, r, !1),
 
-           s = Br(u.length, e.length, !1),
 
-           c = Pr(i.shape, e, r, !1);
 
-         return i.reshape(u).transpose(s).reshape(c);
 
-       }, o.prototype.reduce = function (t, e, n) {
 
-         var r = t.shape[0],
 
-           o = t.shape[1],
 
-           a = zr(o),
 
-           i = new Li({
 
-             windowSize: a,
 
-             inSize: o,
 
-             batchSize: r
 
-           }, e),
 
-           u = this.compileAndRun(i, [t], n);
 
-         return 1 === u.shape[1] ? u : this.reduce(u, e, n);
 
-       }, o.prototype.argReduce = function (t, e, n) {
 
-         void 0 === n && (n = null);
 
-         var r = t.shape[0],
 
-           o = t.shape[1];
 
-         null != n && (r = n.shape[0], o = n.shape[1]);
 
-         var a = zr(o),
 
-           i = new Go({
 
-             windowSize: a,
 
-             inSize: o,
 
-             batchSize: r
 
-           }, e, null == n),
 
-           u = [t];
 
-         null != n && u.push(n);
 
-         var s = this.compileAndRun(i, u, "int32");
 
-         return 1 === s.shape[1] ? s : this.argReduce(t, e, s);
 
-       }, o.prototype.argReducePacked = function (t, e, n) {
 
-         void 0 === n && (n = null);
 
-         var r = null != n ? n.shape : t.shape,
 
-           o = zr(r[r.length - 1]),
 
-           a = new sa(r, o, e, null == n),
 
-           i = null == n ? [t] : [t, n],
 
-           u = this.compileAndRun(a, i, "int32");
 
-         return u.rank === t.rank ? this.argReducePacked(t, e, u) : u;
 
-       }, o.prototype.sum = function (t, e) {
 
-         mn("sum", e, t.rank);
 
-         var n = dn(t.shape, e),
 
-           r = n[0],
 
-           o = w(n[1]),
 
-           a = t.as2D(-1, o),
 
-           i = Et(t.dtype);
 
-         return this.reduce(a, "sum", i).reshape(r);
 
-       }, o.prototype.prod = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.prod(t, e);
 
-         var n = dn(t.shape, e),
 
-           r = n[0],
 
-           o = w(n[1]),
 
-           a = t.as2D(-1, o),
 
-           i = Et(t.dtype);
 
-         return this.reduce(a, "prod", i).reshape(r);
 
-       }, o.prototype.unsortedSegmentSum = function (t, e, n) {
 
-         var r = 0,
 
-           o = gn([r], t.rank),
 
-           a = t;
 
-         null != o && (a = t.transpose(o), r = xn(1, t.rank)[0]);
 
-         var i = function (t, e, n) {
 
-           for (var r = [], o = t.length, a = 0; a < o; a++) a !== e ? r.push(t[a]) : r.push(n);
 
-           return r;
 
-         }(a.shape, r, n),
 
-           u = w([a.shape[r]]),
 
-           s = a.as2D(-1, u),
 
-           c = Et(t.dtype),
 
-           l = this.segOpCompute(s, "unsortedSegmentSum", e, c, n).reshape(i);
 
-         return null != o && (l = l.transpose(yn(o))), l;
 
-       }, o.prototype.segOpCompute = function (t, e, n, r, o) {
 
-         var a = t.shape[0],
 
-           i = t.shape[1],
 
-           u = function (t, e) {
 
-             var n,
 
-               r = !1;
 
-             for (t <= Vr ? (n = t, r = !0) : n = H(t, Math.floor(Math.sqrt(t))); !r;) n > e || n === t ? r = !0 : n = H(t, n + 1);
 
-             return n;
 
-           }(i, o),
 
-           s = new Xi({
 
-             windowSize: u,
 
-             inSize: i,
 
-             batchSize: a,
 
-             numSegments: o
 
-           }, e),
 
-           c = this.compileAndRun(s, [t, n], r);
 
-         return c.shape[1] === o ? c : (n = Un(0, o).tile([i / u]), this.segOpCompute(c, e, n, r, o));
 
-       }, o.prototype.argMinMaxReduce = function (t, e, n) {
 
-         var r = [e];
 
-         if (mn("arg" + n.charAt(0).toUpperCase() + n.slice(1), r, t.rank), !a().getBool("WEBGL_PACK_REDUCE") || t.rank <= 2) {
 
-           var o = dn(t.shape, r),
 
-             i = o[0],
 
-             u = w(o[1]),
 
-             s = t.as2D(-1, u);
 
-           return this.argReduce(s, n).reshape(i);
 
-         }
 
-         return this.argReducePacked(t, n);
 
-       }, o.prototype.argMin = function (t, e) {
 
-         return this.argMinMaxReduce(t, e, "min");
 
-       }, o.prototype.argMax = function (t, e) {
 
-         return this.argMinMaxReduce(t, e, "max");
 
-       }, o.prototype.cumsum = function (t, e, n, r) {
 
-         if (e !== t.rank - 1) throw new Error("WebGL cumsum shader expects an inner-most axis=" + (t.rank - 1) + " but got axis=" + e);
 
-         var o = new Ua(t.shape, n, r);
 
-         return this.compileAndRun(o, [t]);
 
-       }, o.prototype.equal = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(equal(a, b));\n", "bool");
 
-         var n = new ba("return float(a == b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.notEqual = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(notEqual(a, b));\n", "bool");
 
-         var n = new ba("return float(a != b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.less = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.less(t, e);
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(lessThan(a, b));\n", "bool");
 
-         var n = new ba("return float(a < b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.lessEqual = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(lessThanEqual(a, b));\n", "bool");
 
-         var n = new ba("return float(a <= b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.greater = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.greater(t, e);
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(greaterThan(a, b));\n", "bool");
 
-         var n = new ba("return float(a > b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.greaterEqual = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(greaterThanEqual(a, b));\n", "bool");
 
-         var n = new ba("return float(a >= b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.logicalNot = function (t) {
 
-         var e = new su(t.shape, "return float(!(x >= 1.0));");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.logicalAnd = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return vec4(\n    vec4(greaterThanEqual(a, vec4(1.0))) *\n    vec4(greaterThanEqual(b, vec4(1.0))));\n", "bool");
 
-         var n = new ba("return float(a >= 1.0 && b >= 1.0);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.logicalOr = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  return min(\n    vec4(greaterThanEqual(a, vec4(1.0))) +\n    vec4(greaterThanEqual(b, vec4(1.0))),\n    vec4(1.0));\n", "bool");
 
-         var n = new ba("return float(a >= 1.0 || b >= 1.0);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "bool");
 
-       }, o.prototype.select = function (t, e, n) {
 
-         var r = new $i(t.rank, e.shape, e.rank);
 
-         return this.compileAndRun(r, [t, e, n], Ct(e.dtype, n.dtype));
 
-       }, o.prototype.where = function (t) {
 
-         un("tf.where() in webgl locks the UI thread. Call tf.whereAsync() instead");
 
-         var e = t.dataSync();
 
-         return Uo(t.shape, e);
 
-       }, o.prototype.topk = function (t, e, n) {
 
-         return Wo(t.dataSync(), t.shape, t.dtype, e);
 
-       }, o.prototype.min = function (t, e) {
 
-         mn("min", e, t.rank);
 
-         var n = dn(t.shape, e),
 
-           r = n[0],
 
-           o = w(n[1]),
 
-           a = t.as2D(-1, o);
 
-         return this.reduce(a, "min", a.dtype).reshape(r);
 
-       }, o.prototype.minimum = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.minimum(t, e);
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("\n  vec4 result = vec4(min(a, b));\n  vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n  \n  result.r = isNaN.r > 0. ? NAN : result.r;\n  result.g = isNaN.g > 0. ? NAN : result.g;\n  result.b = isNaN.b > 0. ? NAN : result.b;\n  result.a = isNaN.a > 0. ? NAN : result.a;\n\n  return result;\n", t.shape, e.shape) : new ba("\n  if (isnan(a)) return a;\n  if (isnan(b)) return b;\n\n  return min(a, b);\n", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.mod = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("\n  vec4 result = mod(a, b);\n  vec4 isNaN = vec4(equal(b, vec4(0.0)));\n  \n  result.r = isNaN.r > 0. ? NAN : result.r;\n  result.g = isNaN.g > 0. ? NAN : result.g;\n  result.b = isNaN.b > 0. ? NAN : result.b;\n  result.a = isNaN.a > 0. ? NAN : result.a;\n\n  return result;\n", t.shape, e.shape) : new ba("if (b == 0.0) return NAN;\n  return mod(a, b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.max = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.max(t, e);
 
-         mn("max", e, t.rank);
 
-         var n = dn(t.shape, e),
 
-           r = n[0],
 
-           o = w(n[1]),
 
-           a = t.as2D(-1, o);
 
-         return this.reduce(a, "max", a.dtype).reshape(r);
 
-       }, o.prototype.maximum = function (t, e) {
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.maximum(t, e);
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("\n  vec4 result = vec4(max(a, b));\n  vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n  \n  result.r = isNaN.r > 0. ? NAN : result.r;\n  result.g = isNaN.g > 0. ? NAN : result.g;\n  result.b = isNaN.b > 0. ? NAN : result.b;\n  result.a = isNaN.a > 0. ? NAN : result.a;\n\n  return result;\n", t.shape, e.shape) : new ba("\n  if (isnan(a)) return a;\n  if (isnan(b)) return b;\n\n  return max(a, b);\n", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.all = function (t, e) {
 
-         mn("all", e, t.rank);
 
-         var n = dn(t.shape, e),
 
-           r = n[0],
 
-           o = w(n[1]),
 
-           a = t.as2D(-1, o);
 
-         return this.reduce(a, "all", a.dtype).reshape(r);
 
-       }, o.prototype.any = function (t, e) {
 
-         mn("any", e, t.rank);
 
-         var n = dn(t.shape, e),
 
-           r = n[0],
 
-           o = w(n[1]),
 
-           a = t.as2D(-1, o);
 
-         return this.reduce(a, "any", a.dtype).reshape(r);
 
-       }, o.prototype.squaredDifference = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("return (a - b) * (a - b);", t.shape, e.shape) : new ba("return (a - b) * (a - b);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.realDivide = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) {
 
-           return this.packedBinaryOp(t, e, "\n  // vec4 one = vec4(equal(a, b));\n  // return one + (vec4(1.0) - one) * a / b;\n  vec4 result = a / b;\n  if(a.x == b.x) {\n    result.x = 1.;\n  }\n  if(a.y == b.y) {\n    result.y = 1.;\n  }\n  if(a.z == b.z) {\n    result.z = 1.;\n  }\n  if(a.w == b.w) {\n    result.w = 1.;\n  }\n\n  return result;\n", "float32", !0);
 
-         }
 
-         var n = new ba("\nif (a == b) {\n  return 1.0;\n};\nreturn a / b;", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "float32");
 
-       }, o.prototype.floorDiv = function (t, e) {
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, "\n  ivec4 ia = round(a);\n  ivec4 ib = round(b);\n  bvec4 cond = notEqual(ib, ivec4(0));\n  ivec4 result = ivec4(0);\n  vec4 s = sign(a) * sign(b);\n\n  // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n  if (cond[0]) {\n    result[0] = idiv(ia[0], ib[0], s[0]);\n  }\n  if (cond[1]) {\n    result[1] = idiv(ia[1], ib[1], s[1]);\n  }\n  if (cond[2]) {\n    result[2] = idiv(ia[2], ib[2], s[2]);\n  }\n  if (cond[3]) {\n    result[3] = idiv(ia[3], ib[3], s[3]);\n  }\n  return vec4(result);\n", "int32");
 
-         var n = new ba("\n  float s = sign(a) * sign(b);\n  int ia = round(a);\n  int ib = round(b);\n  if (ib != 0) {\n    // Windows (D3D) wants guaranteed non-zero int division at compile-time.\n    return float(idiv(ia, ib, s));\n  } else {\n    return NAN;\n  }\n", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e], "int32");
 
-       }, o.prototype.add = function (t, e) {
 
-         if ("complex64" === t.dtype && "complex64" === e.dtype) return this.complexSeparableBinaryOp(t, e, ma);
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.add(t, e);
 
-         var n = Ct(t.dtype, e.dtype);
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, ma, n);
 
-         var r = new ba(ma, t.shape, e.shape);
 
-         return this.compileAndRun(r, [t, e], n);
 
-       }, o.prototype.packedUnaryOp = function (t, e, n) {
 
-         var r = new _u(t.shape, e);
 
-         return this.compileAndRun(r, [t], n);
 
-       }, o.prototype.packedBinaryOp = function (t, e, n, r, o) {
 
-         void 0 === o && (o = !1);
 
-         var a = new Ca(n, t.shape, e.shape, o);
 
-         return this.compileAndRun(a, [t, e], r);
 
-       }, o.prototype.complexSeparableBinaryOp = function (t, e, n) {
 
-         var r = this,
 
-           o = this.texData.get(t.dataId),
 
-           a = this.texData.get(e.dataId),
 
-           i = [[o.complexTensors.real, a.complexTensors.real], [o.complexTensors.imag, a.complexTensors.imag]].map(function (o) {
 
-             var a = o[0],
 
-               i = o[1],
 
-               u = r.makeComplexComponentTensorInfo(t, a),
 
-               s = r.makeComplexComponentTensorInfo(e, i),
 
-               c = new ba(n, t.shape, e.shape);
 
-             return r.compileAndRun(c, [u, s], Ct(a.dtype, i.dtype));
 
-           }),
 
-           u = i[0],
 
-           s = i[1],
 
-           c = this.complex(u, s);
 
-         return u.dispose(), s.dispose(), c;
 
-       }, o.prototype.makeComplexComponentTensorInfo = function (t, e) {
 
-         return {
 
-           dataId: e.dataId,
 
-           dtype: e.dtype,
 
-           shape: t.shape
 
-         };
 
-       }, o.prototype.addN = function (t) {
 
-         if (1 === t.length) return t[0];
 
-         if (t.length > a().get("WEBGL_MAX_TEXTURES_IN_SHADER")) {
 
-           var e = Math.floor(t.length / 2),
 
-             n = this.addN(t.slice(0, e)),
 
-             r = this.addN(t.slice(e));
 
-           return this.addN([n, r]);
 
-         }
 
-         var o = t.map(function (t) {
 
-           return t.dtype;
 
-         }).reduce(function (t, e) {
 
-           return Ct(t, e);
 
-         }),
 
-           i = t.map(function (t) {
 
-             return t.shape;
 
-           }),
 
-           u = a().getBool("WEBGL_PACK") ? new zo(t[0].shape, i) : new Vo(t[0].shape, i);
 
-         return this.compileAndRun(u, t, o);
 
-       }, o.prototype.subtract = function (t, e) {
 
-         if ("complex64" === t.dtype && "complex64" === e.dtype) return this.complexSeparableBinaryOp(t, e, ga);
 
-         if (this.shouldExecuteOnCPU([t, e])) return this.cpuBackend.subtract(t, e);
 
-         var n = Ct(t.dtype, e.dtype);
 
-         if (a().getBool("WEBGL_PACK_BINARY_OPERATIONS")) return this.packedBinaryOp(t, e, ga, t.dtype);
 
-         var r = new ba(ga, t.shape, e.shape);
 
-         return this.compileAndRun(r, [t, e], n);
 
-       }, o.prototype.pow = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("\n  // isModRound1 has 1 for components with round(mod(b, 2.0)) == 1, 0 otherwise.\n  vec4 isModRound1 = vec4(equal(round(mod(b, 2.0)), ivec4(1)));\n  vec4 multiplier = sign(a) * isModRound1 + (vec4(1.0) - isModRound1);\n  vec4 result = multiplier * pow(abs(a), b);\n\n  // Ensure that a^0 = 1, including 0^0 = 1 as this correspond to TF and JS\n  bvec4 isExpZero = equal(b, vec4(0.0));\n  result.r = isExpZero.r ? 1.0 : result.r;\n  result.g = isExpZero.g ? 1.0 : result.g;\n  result.b = isExpZero.b ? 1.0 : result.b;\n  result.a = isExpZero.a ? 1.0 : result.a;\n\n  vec4 isNaN = vec4(lessThan(a, vec4(0.0))) * vec4(lessThan(floor(b), b));\n  \n  result.r = isNaN.r > 0. ? NAN : result.r;\n  result.g = isNaN.g > 0. ? NAN : result.g;\n  result.b = isNaN.b > 0. ? NAN : result.b;\n  result.a = isNaN.a > 0. ? NAN : result.a;\n\n  return result;\n", t.shape, e.shape) : new ba("\nif(a < 0.0 && floor(b) < b){\n  return NAN;\n}\nif (b == 0.0) {\n  return 1.0;\n}\nreturn (round(mod(b, 2.0)) != 1) ?\n    pow(abs(a), b) : sign(a) * pow(abs(a), b);\n", t.shape, e.shape),
 
-           r = Ct(t.dtype, e.dtype);
 
-         return this.compileAndRun(n, [t, e], r);
 
-       }, o.prototype.ceil = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.ceil(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, gu, t.dtype);
 
-         var e = new su(t.shape, gu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.floor = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.floor(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, yu, t.dtype);
 
-         var e = new su(t.shape, yu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.sign = function (t) {
 
-         var e = new su(t.shape, "\n  if (isnan(x)) { return 0.0; }\n  return sign(x);\n");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.isNaN = function (t) {
 
-         var e = new su(t.shape, "return float(isnan(x));");
 
-         return this.compileAndRun(e, [t], "bool");
 
-       }, o.prototype.isInf = function (t) {
 
-         var e = new su(t.shape, "return float(isinf(x));");
 
-         return this.compileAndRun(e, [t], "bool");
 
-       }, o.prototype.isFinite = function (t) {
 
-         var e = new su(t.shape, "return float(!isnan(x) && !isinf(x));");
 
-         return this.compileAndRun(e, [t], "bool");
 
-       }, o.prototype.round = function (t) {
 
-         var e = new su(t.shape, "\n  // OpenGL ES does not support round function.\n  // The algorithm is based on banker's rounding.\n  float base = floor(x);\n  if ((x - base) < 0.5) {\n    return floor(x);\n  } else if ((x - base) > 0.5) {\n    return ceil(x);\n  } else {\n    if (mod(base, 2.0) == 0.0) {\n      return base;\n    } else {\n      return base + 1.0;\n    }\n  }\n");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.exp = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.exp(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, xu, t.dtype);
 
-         var e = new su(t.shape, xu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.expm1 = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.expm1(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, bu, t.dtype);
 
-         var e = new su(t.shape, bu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.log = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.log(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, "\n  vec4 result = log(x);\n  vec4 isNaN = vec4(lessThan(x, vec4(0.0)));\n  result.r = isNaN.r == 1.0 ? NAN : result.r;\n  result.g = isNaN.g == 1.0 ? NAN : result.g;\n  result.b = isNaN.b == 1.0 ? NAN : result.b;\n  result.a = isNaN.a == 1.0 ? NAN : result.a;\n\n  return result;\n", t.dtype);
 
-         var e = new su(t.shape, "if (x < 0.0) return NAN;\n  return log(x);");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.log1p = function (t) {
 
-         var e = new su(t.shape, "return log(1.0 + x);");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.sqrt = function (t) {
 
-         var e = new su(t.shape, "return sqrt(x);");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.rsqrt = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.rsqrt(t);
 
-         var e = new su(t.shape, "return inversesqrt(x);");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.reciprocal = function (t) {
 
-         var e = new su(t.shape, "return 1.0 / x;");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.relu = function (t) {
 
-         var e;
 
-         return e = a().getBool("WEBGL_PACK") ? new _u(t.shape, Nu) : new su(t.shape, fu), this.compileAndRun(e, [t]);
 
-       }, o.prototype.relu6 = function (t) {
 
-         var e;
 
-         return e = a().getBool("WEBGL_PACK") ? new _u(t.shape, Fu) : new su(t.shape, pu), this.compileAndRun(e, [t]);
 
-       }, o.prototype.prelu = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca(wa, t.shape, e.shape) : new ba(xa, t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.elu = function (t) {
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, Ou, t.dtype);
 
-         var e = new su(t.shape, du);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.eluDer = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("\n  vec4 bGTEZero = vec4(greaterThanEqual(b, vec4(0.)));\n  return (bGTEZero * a) + ((vec4(1.0) - bGTEZero) * (a * (b + vec4(1.0))));\n", t.shape, e.shape) : new ba("return (b >= 1.0) ? a : a * (b + 1.0);", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.selu = function (t) {
 
-         var e = new su(t.shape, vu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.int = function (t) {
 
-         var e = new su(t.shape, "return float(int(x));");
 
-         return this.compileAndRun(e, [t], "int32");
 
-       }, o.prototype.clip = function (t, e, n) {
 
-         var r,
 
-           o = (r = a().getBool("WEBGL_PACK_CLIP") ? new Ra(t.shape) : new Ea(t.shape)).getCustomSetupFunc(e, n);
 
-         return this.compileAndRun(r, [t], null, o);
 
-       }, o.prototype.abs = function (t) {
 
-         if (this.shouldExecuteOnCPU([t])) return this.cpuBackend.abs(t);
 
-         if (a().getBool("WEBGL_PACK_UNARY_OPERATIONS")) return this.packedUnaryOp(t, hu, t.dtype);
 
-         var e = new su(t.shape, hu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.complexAbs = function (t) {
 
-         var e = this.texData.get(t.dataId),
 
-           n = new Ia(t.shape),
 
-           r = [this.makeComplexComponentTensorInfo(t, e.complexTensors.real), this.makeComplexComponentTensorInfo(t, e.complexTensors.imag)];
 
-         return this.compileAndRun(n, r);
 
-       }, o.prototype.sigmoid = function (t) {
 
-         var e = new su(t.shape, "return 1.0 / (1.0 + exp(-1.0 * x));");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.softplus = function (t) {
 
-         var e = new su(t.shape, "\n  float epsilon = 1.1920928955078125e-7;\n  float threshold = log(epsilon) + 2.0;\n\n  bool too_large = x > -threshold;\n  bool too_small = x < threshold;\n\n  float result;\n  float exp_x = exp(x);\n\n  if (too_large){\n    result = x;\n  }\n  else if (too_small){\n    result = exp_x;\n  }\n  else{\n    result = log(exp_x + 1.0);\n  }\n  return result;\n");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.sin = function (t) {
 
-         var e = new su(t.shape, wu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.cos = function (t) {
 
-         var e = new su(t.shape, Cu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.tan = function (t) {
 
-         var e = new su(t.shape, "return tan(x);");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.asin = function (t) {
 
-         var e = new su(t.shape, Eu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.acos = function (t) {
 
-         var e = new su(t.shape, Ru);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.atan = function (t) {
 
-         var e = new su(t.shape, Iu);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.atan2 = function (t, e) {
 
-         var n = a().getBool("WEBGL_PACK_BINARY_OPERATIONS") ? new Ca("\n  vec4 result = atan(a, b);\n  vec4 isNaN = min(vec4(isnan(a)) + vec4(isnan(b)), vec4(1.0));\n  \n  result.r = isNaN.r > 0. ? NAN : result.r;\n  result.g = isNaN.g > 0. ? NAN : result.g;\n  result.b = isNaN.b > 0. ? NAN : result.b;\n  result.a = isNaN.a > 0. ? NAN : result.a;\n\n  return result;\n", t.shape, e.shape) : new ba("\n  if (isnan(a)) return a;\n  if (isnan(b)) return b;\n\n  return atan(a, b);\n", t.shape, e.shape);
 
-         return this.compileAndRun(n, [t, e]);
 
-       }, o.prototype.sinh = function (t) {
 
-         var e = new su(t.shape, "\n  float e2x = exp(x);\n  return (e2x - 1.0 / e2x) / 2.0;\n");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.cosh = function (t) {
 
-         var e = new su(t.shape, "\n  float e2x = exp(-x);\n  return (e2x + 1.0 / e2x) / 2.0;\n");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.tanh = function (t) {
 
-         var e = new su(t.shape, "\n  float e2x = exp(-2.0 * abs(x));\n  return sign(x) * (1.0 - e2x) / (1.0 + e2x);\n");
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.asinh = function (t) {
 
-         var e = new su(t.shape, ku);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.acosh = function (t) {
 
-         var e = new su(t.shape, Su);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.atanh = function (t) {
 
-         var e = new su(t.shape, Au);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.erf = function (t) {
 
-         var e = new su(t.shape, '\n  // Error function is calculated approximately with elementary function.\n  // See "Handbook of Mathematical Functions with Formulas,\n  // Graphs, and Mathematical Tables", Abramowitz and Stegun.\n  float p = 0.3275911;\n  float a1 = 0.254829592;\n  float a2 = -0.284496736;\n  float a3 = 1.421413741;\n  float a4 = -1.453152027;\n  float a5 = 1.061405429;\n\n  float sign = sign(x);\n  x = abs(x);\n  float t = 1.0 / (1.0 + p * x);\n  return sign * (1.0 - (((((a5*t + a4)*t) + a3)*t + a2)*t + a1)*t*exp(-x*x));\n');
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.step = function (t, e) {
 
-         var n = new su(t.shape, function (t) {
 
-           return void 0 === t && (t = 0), cu + "\n    return x > 0.0 ? 1.0 : float(" + t + ");\n  ";
 
-         }(e));
 
-         return this.compileAndRun(n, [t]);
 
-       }, o.prototype.conv2dByMatMul = function (t, e, n, r, o, i) {
 
-         var u = t.shape,
 
-           s = this.texData.get(t.dataId),
 
-           c = n.inChannels,
 
-           l = u[0] * u[1] * u[2],
 
-           h = n.outChannels,
 
-           f = "channelsLast" === n.dataFormat,
 
-           p = (1 === l || 1 === h) && c > 1e3,
 
-           d = u[2] % 2 != 0 && !!s.isPacked;
 
-         if (p || !a().getBool("WEBGL_LAZILY_UNPACK") || !a().getBool("WEBGL_PACK_BINARY_OPERATIONS") || !d) {
 
-           var v = f ? u[0] * u[1] * u[2] : u[0] * u[2] * u[3],
 
-             m = this.reshape(t, [1, v, n.inChannels]),
 
-             y = this.reshape(e, [1, n.inChannels, n.outChannels]);
 
-           return this.reshape(this.fusedBatchMatMul({
 
-             a: m,
 
-             b: y,
 
-             transposeA: !1,
 
-             transposeB: !1,
 
-             bias: r,
 
-             activation: o,
 
-             preluActivationWeights: i
 
-           }), n.outShape);
 
-         }
 
-         var x = f ? u[0] * u[1] * (u[2] + 1) : u[0] * u[2] * (u[3] + 1),
 
-           b = {
 
-             dataId: t.dataId,
 
-             shape: [1, x, n.inChannels],
 
-             dtype: t.dtype
 
-           },
 
-           w = s.shape;
 
-         s.shape = s.shape.slice(), s.shape[s.shape.length - 2]++, g(Se(s.shape, b.shape), function () {
 
-           return "packed reshape " + s.shape + " to " + b.shape + " isn't free";
 
-         });
 
-         var C = this.reshape(e, [1, n.inChannels, n.outChannels]),
 
-           E = this.fusedBatchMatMul({
 
-             a: b,
 
-             b: C,
 
-             transposeA: !1,
 
-             transposeB: !1,
 
-             bias: r,
 
-             activation: o,
 
-             preluActivationWeights: i
 
-           }),
 
-           R = this.texData.get(E.dataId);
 
-         return g(R.isPacked, function () {
 
-           return "batchMatMul result is expected to be packed";
 
-         }), s.shape = w, R.shape = n.outShape, Nt.makeTensorFromDataId(E.dataId, n.outShape, E.dtype);
 
-       }, o.prototype.conv2dWithIm2Row = function (t, e, n, r, o, a) {
 
-         var i = n.filterWidth,
 
-           u = n.filterHeight,
 
-           s = n.inChannels,
 
-           c = n.outWidth,
 
-           l = n.outHeight,
 
-           h = "channelsLast" === n.dataFormat,
 
-           f = i * u * s,
 
-           p = l * c,
 
-           d = [f, p],
 
-           v = t.squeeze([0]),
 
-           m = e.reshape([1, f, -1]),
 
-           g = new Ri(d, v.shape, n),
 
-           y = this.compileAndRun(g, [v]).reshape([1, d[0], d[1]]),
 
-           x = null != r,
 
-           b = null != a,
 
-           w = o ? Pu(o, !0) : null,
 
-           C = new Ti(y.shape, [1, p, n.outChannels], !0, !1, x, w, b),
 
-           E = [y, m];
 
-         r && E.push(r), b && E.push(a);
 
-         var R = this.compileAndRun(C, E);
 
-         return h ? R.reshape([1, l, c, n.outChannels]) : R.reshape([1, n.outChannels, l, c]);
 
-       }, o.prototype.fusedConv2d = function (t) {
 
-         var e = t.input,
 
-           n = t.filter,
 
-           r = t.convInfo,
 
-           o = t.bias,
 
-           i = t.activation,
 
-           u = t.preluActivationWeights;
 
-         if (1 === r.filterHeight && 1 === r.filterWidth && 1 === r.dilationHeight && 1 === r.dilationWidth && 1 === r.strideHeight && 1 === r.strideWidth && ("SAME" === r.padInfo.type || "VALID" === r.padInfo.type)) return this.conv2dByMatMul(e, n, r, o, i, u);
 
-         if (a().getBool("WEBGL_CONV_IM2COL") && 1 === e.shape[0]) return this.conv2dWithIm2Row(e, n, r, o, i, u);
 
-         var s = null != o,
 
-           c = null != u,
 
-           l = i ? Pu(i, !1) : null,
 
-           h = new Ma(r, s, l, c),
 
-           f = [e, n];
 
-         return o && f.push(o), u && f.push(u), this.compileAndRun(h, f);
 
-       }, o.prototype.conv2d = function (t, e, n) {
 
-         if (1 === n.filterHeight && 1 === n.filterWidth && 1 === n.dilationHeight && 1 === n.dilationWidth && 1 === n.strideHeight && 1 === n.strideWidth && ("SAME" === n.padInfo.type || "VALID" === n.padInfo.type)) return this.conv2dByMatMul(t, e, n);
 
-         if (a().getBool("WEBGL_CONV_IM2COL") && 1 === t.shape[0]) return this.conv2dWithIm2Row(t, e, n);
 
-         var r = new Ma(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.conv2dDerInput = function (t, e, n) {
 
-         var r = new Ta(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.conv2dDerFilter = function (t, e, n) {
 
-         var r = new Da(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.fusedDepthwiseConv2D = function (t) {
 
-         var e,
 
-           n = t.input,
 
-           r = t.filter,
 
-           o = t.convInfo,
 
-           i = t.bias,
 
-           u = t.activation,
 
-           s = t.preluActivationWeights,
 
-           c = a().getBool("WEBGL_PACK_DEPTHWISECONV") && o.strideWidth <= 2 && o.outChannels / o.inChannels == 1,
 
-           l = u ? Pu(u, c) : null,
 
-           h = [n, r],
 
-           f = null != i,
 
-           p = null != s;
 
-         return f && h.push(i), p && h.push(s), c ? (e = new La(o, f, l, p), this.compileAndRun(e, h)) : (e = new Pa(o, f, l, p), this.compileAndRun(e, h));
 
-       }, o.prototype.depthwiseConv2D = function (t, e, n) {
 
-         var r;
 
-         return a().getBool("WEBGL_PACK_DEPTHWISECONV") && n.strideWidth <= 2 && n.outChannels / n.inChannels == 1 ? (r = new La(n), this.compileAndRun(r, [t, e])) : (r = new Pa(n), this.compileAndRun(r, [t, e]));
 
-       }, o.prototype.depthwiseConv2DDerInput = function (t, e, n) {
 
-         var r = new _a(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.depthwiseConv2DDerFilter = function (t, e, n) {
 
-         var r = new Oa(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.conv3d = function (t, e, n) {
 
-         var r = new Ba(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.conv3dDerInput = function (t, e, n) {
 
-         var r = new Fa(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.conv3dDerFilter = function (t, e, n) {
 
-         var r = new Na(n);
 
-         return this.compileAndRun(r, [t, e]);
 
-       }, o.prototype.maxPool = function (t, e) {
 
-         var n = new Bi(e, "max", !1);
 
-         return this.compileAndRun(n, [t]);
 
-       }, o.prototype.avgPool = function (t, e) {
 
-         var n = new Bi(e, "avg", !1);
 
-         return this.compileAndRun(n, [t], "float32");
 
-       }, o.prototype.maxPoolBackprop = function (t, e, n, r) {
 
-         var o = new Bi(r, "max", !0),
 
-           a = this.compileAndRun(o, [e]),
 
-           i = new Ai(r),
 
-           u = this.compileAndRun(i, [t, a], e.dtype);
 
-         return a.dispose(), u;
 
-       }, o.prototype.avgPoolBackprop = function (t, e, n) {
 
-         var r = new ca(n);
 
-         return this.compileAndRun(r, [t], e.dtype);
 
-       }, o.prototype.cast = function (t, e) {
 
-         return So(t, e, this);
 
-       }, o.prototype.unstack = function (t, e) {
 
-         for (var n = t.shape[e], r = new Array(t.rank - 1), o = 0, a = 0; a < t.rank; a++) a !== e && (r[o++] = t.shape[a]);
 
-         var i = new Array(t.rank).fill(0),
 
-           u = t.shape.slice();
 
-         u[e] = 1;
 
-         var s = new Array(n);
 
-         for (a = 0; a < s.length; a++) i[e] = a, s[a] = this.slice(t, i, u).reshape(r);
 
-         return s;
 
-       }, o.prototype.avgPool3d = function (t, e) {
 
-         var n = new Pi(e, "avg", !1);
 
-         return this.compileAndRun(n, [t], "float32");
 
-       }, o.prototype.avgPool3dBackprop = function (t, e, n) {
 
-         var r = new la(n);
 
-         return this.compileAndRun(r, [t], e.dtype);
 
-       }, o.prototype.maxPool3d = function (t, e) {
 
-         var n = new Pi(e, "max", !1);
 
-         return this.compileAndRun(n, [t], "float32");
 
-       }, o.prototype.maxPool3dBackprop = function (t, e, n, r) {
 
-         var o = new Pi(r, "max", !0),
 
-           a = this.compileAndRun(o, [e]),
 
-           i = new Di(r),
 
-           u = this.compileAndRun(i, [t, a], e.dtype);
 
-         return a.dispose(), u;
 
-       }, o.prototype.reshape = function (t, e) {
 
-         var n = this.texData.get(t.dataId);
 
-         if (n.isPacked && !Se(t.shape, e) && (null === n.texture || !Se(n.shape, e))) {
 
-           var r = this.packedReshape(t, e);
 
-           return Nt.makeTensorFromDataId(r.dataId, r.shape, r.dtype);
 
-         }
 
-         return Ao(t, e);
 
-       }, o.prototype.resizeBilinear = function (t, e, n, r) {
 
-         var o = a().getBool("WEBGL_PACK_IMAGE_OPERATIONS") ? new zi(t.shape, e, n, r) : new Vi(t.shape, e, n, r);
 
-         return this.compileAndRun(o, [t]);
 
-       }, o.prototype.resizeBilinearBackprop = function (t, e, n) {
 
-         var r = new Ui(t, e, n);
 
-         return this.compileAndRun(r, [t]);
 
-       }, o.prototype.resizeNearestNeighbor = function (t, e, n, r) {
 
-         var o = new Hi(t.shape, e, n, r);
 
-         return this.compileAndRun(o, [t]);
 
-       }, o.prototype.resizeNearestNeighborBackprop = function (t, e, n) {
 
-         var r = new Gi(t, e, n);
 
-         return this.compileAndRun(r, [t]);
 
-       }, o.prototype.multinomial = function (t, e, n, r) {
 
-         var o = e ? t : io(t),
 
-           a = o.shape[0],
 
-           i = o.shape[1],
 
-           u = new Ni(a, i, n),
 
-           s = u.getCustomSetupFunc(r);
 
-         return this.compileAndRun(u, [o], "int32", s);
 
-       }, o.prototype.oneHot = function (t, e, n, r) {
 
-         var o = new Fi(t.size, e, n, r);
 
-         return this.compileAndRun(o, [t]);
 
-       }, o.prototype.diag = function (t) {
 
-         var e = new qa(t.size);
 
-         return this.compileAndRun(e, [t]);
 
-       }, o.prototype.nonMaxSuppression = function (t, e, n, r, o) {
 
-         return un("tf.nonMaxSuppression() in webgl locks the UI thread. Call tf.nonMaxSuppressionAsync() instead"), Mo(t.dataSync(), e.dataSync(), n, r, o);
 
-       }, o.prototype.cropAndResize = function (t, e, n, r, o, a) {
 
-         var i = new Wa(t.shape, e.shape, r, o, a);
 
-         return this.compileAndRun(i, [t, e, n]);
 
-       }, o.prototype.depthToSpace = function (t, e, n) {
 
-         g(e > 1, function () {
 
-           return "blockSize should be > 1 for depthToSpace, but was: " + e;
 
-         });
 
-         var r = t.shape[0],
 
-           o = "NHWC" === n ? t.shape[1] : t.shape[2],
 
-           a = "NHWC" === n ? t.shape[2] : t.shape[3],
 
-           i = "NHWC" === n ? t.shape[3] : t.shape[1],
 
-           u = o * e,
 
-           s = a * e,
 
-           c = i / (e * e),
 
-           l = new Ha("NHWC" === n ? [r, u, s, c] : [r, c, u, s], e, n);
 
-         return this.compileAndRun(l, [t]);
 
-       }, o.prototype.split = function (t, e, n) {
 
-         return Po(t, e, n);
 
-       }, o.prototype.scatterND = function (t, e, n) {
 
-         var r = Hr(0, t, n),
 
-           o = r.sliceRank,
 
-           a = r.numUpdates,
 
-           i = r.sliceSize,
 
-           u = r.strides,
 
-           s = r.outputSize,
 
-           c = [s / i, i],
 
-           l = t.reshape([a, o]),
 
-           h = e.reshape([a, i]);
 
-         if (0 === s) return Ao(kn([]), n);
 
-         var f = An(0),
 
-           p = new ji(a, o, l.rank, h.rank, u, c);
 
-         return this.compileAndRun(p, [h, l, f]).reshape(n);
 
-       }, o.prototype.sparseToDense = function (t, e, n, r) {
 
-         var o = Hr(0, t, n),
 
-           a = o.sliceRank,
 
-           i = o.numUpdates,
 
-           u = o.strides,
 
-           s = o.outputSize,
 
-           c = new ji(i, a, t.rank, e.rank, u, [s, 1], !1);
 
-         return this.compileAndRun(c, [e, t, r]).reshape(n);
 
-       }, o.prototype.fft = function (t) {
 
-         return this.fftImpl(t, !1);
 
-       }, o.prototype.ifft = function (t) {
 
-         return this.fftImpl(t, !0);
 
-       }, o.prototype.fftImpl = function (t, e) {
 
-         var n = this.texData.get(t.dataId),
 
-           r = new Ja(Ya, t.shape, e),
 
-           o = new Ja(Qa, t.shape, e),
 
-           a = [this.makeComplexComponentTensorInfo(t, n.complexTensors.real), this.makeComplexComponentTensorInfo(t, n.complexTensors.imag)],
 
-           i = this.compileAndRun(r, a),
 
-           u = this.compileAndRun(o, a),
 
-           s = this.complex(i, u).as2D(t.shape[0], t.shape[1]);
 
-         return i.dispose(), u.dispose(), s;
 
-       }, o.prototype.gatherND = function (t, e) {
 
-         var n = e.shape,
 
-           r = n[n.length - 1],
 
-           o = Ur(t, e),
 
-           a = o[0],
 
-           i = o[1],
 
-           u = o[2],
 
-           s = o[3],
 
-           c = e.reshape([i, r]),
 
-           l = t.reshape([t.size / u, u]),
 
-           h = new ri(r, s, [i, u]);
 
-         return this.compileAndRun(h, [l, c]).reshape(a);
 
-       }, o.prototype.fill = function (t, e, n) {
 
-         if ("string" === (n = n || z(e))) {
 
-           var r = F(n, w(t));
 
-           return r.fill(e), Nt.makeTensor(r, t, n, this);
 
-         }
 
-         var o = new Za(t, e),
 
-           a = o.getCustomSetupFunc(e);
 
-         return this.compileAndRun(o, [], n, a);
 
-       }, o.prototype.onesLike = function (t) {
 
-         if ("string" === t.dtype) throw new Error("onesLike is not supported under string dtype");
 
-         return this.fill(t.shape, 1, t.dtype);
 
-       }, o.prototype.zerosLike = function (t) {
 
-         return this.fill(t.shape, "string" === t.dtype ? "" : 0, t.dtype);
 
-       }, o.prototype.linspace = function (t, e, n) {
 
-         return Do(t, e, n);
 
-       }, o.prototype.makeTensorInfo = function (t, e) {
 
-         var n = this.write(null, t, e);
 
-         return this.texData.get(n).usage = null, {
 
-           dataId: n,
 
-           shape: t,
 
-           dtype: e
 
-         };
 
-       }, o.prototype.makeOutput = function (t, e) {
 
-         var n = this.makeTensorInfo(t, e).dataId;
 
-         return Nt.makeTensorFromDataId(n, t, e, this);
 
-       }, o.prototype.unpackTensor = function (t) {
 
-         var e = new Mu(t.shape);
 
-         return this.runWebGLProgram(e, [t], t.dtype);
 
-       }, o.prototype.packTensor = function (t) {
 
-         var e = new Oi(t.shape);
 
-         return this.runWebGLProgram(e, [t], t.dtype, null, !0);
 
-       }, o.prototype.packedReshape = function (t, e) {
 
-         var n = [Ce(t.shape)].concat(Ee(t.shape)),
 
-           r = {
 
-             dtype: t.dtype,
 
-             shape: n,
 
-             dataId: t.dataId
 
-           },
 
-           o = [Ce(e)].concat(Ee(e)),
 
-           a = new Wi(o, n),
 
-           i = this.runWebGLProgram(a, [r], t.dtype, null, !0);
 
-         return {
 
-           dataId: i.dataId,
 
-           shape: e,
 
-           dtype: i.dtype
 
-         };
 
-       }, o.prototype.decode = function (t) {
 
-         var e,
 
-           n = this.texData.get(t),
 
-           r = n.isPacked,
 
-           o = n.shape,
 
-           a = n.dtype,
 
-           i = Re(o);
 
-         e = r ? new Ga(i) : new za(i);
 
-         return {
 
-           dtype: a,
 
-           shape: o,
 
-           dataId: this.runWebGLProgram(e, [{
 
-             shape: i,
 
-             dtype: a,
 
-             dataId: t
 
-           }], a, null, !0).dataId
 
-         };
 
-       }, o.prototype.runWebGLProgram = function (t, e, n, r, o) {
 
-         var i = this;
 
-         void 0 === o && (o = !1);
 
-         var u = this.makeTensorInfo(t.outputShape, n),
 
-           s = this.texData.get(u.dataId);
 
-         if (t.packedOutput && (s.isPacked = !0), t.outPackingScheme === _t.DENSE) {
 
-           var c = Gt(t.outputShape);
 
-           s.texShape = c.map(function (t) {
 
-             return 2 * t;
 
-           });
 
-         }
 
-         if (null != t.outTexUsage && (s.usage = t.outTexUsage), 0 === w(u.shape)) return s.values = N(u.dtype, 0), u;
 
-         var l = [],
 
-           h = e.map(function (e) {
 
-             if ("complex64" === e.dtype) throw new Error("GPGPUProgram does not support complex64 input. For complex64 dtypes, please separate the program into real and imaginary parts.");
 
-             var n = i.texData.get(e.dataId);
 
-             if (null == n.texture) {
 
-               if (!t.packedInputs && w(e.shape) <= a().getNumber("WEBGL_SIZE_UPLOAD_UNIFORM")) return {
 
-                 shape: e.shape,
 
-                 texData: null,
 
-                 isUniform: !0,
 
-                 uniformValues: n.values
 
-               };
 
-               t.packedInputs && (n.isPacked = !0, n.shape = e.shape);
 
-             } else if (!!n.isPacked != !!t.packedInputs) e = n.isPacked ? i.unpackTensor(e) : i.packTensor(e), l.push(e), n = i.texData.get(e.dataId); else if (n.isPacked && !Se(n.shape, e.shape)) {
 
-               var r = e,
 
-                 o = e.shape;
 
-               e.shape = n.shape, e = i.packedReshape(e, o), l.push(e), n = i.texData.get(e.dataId), r.shape = o;
 
-             }
 
-             return i.uploadToGPU(e.dataId), {
 
-               shape: e.shape,
 
-               texData: n,
 
-               isUniform: !1
 
-             };
 
-           });
 
-         this.uploadToGPU(u.dataId);
 
-         var f,
 
-           p = {
 
-             shape: u.shape,
 
-             texData: s,
 
-             isUniform: !1
 
-           },
 
-           d = function (t, e, n) {
 
-             var r = "";
 
-             e.concat(n).forEach(function (t) {
 
-               var e = null != t.texData && null != t.texData.slice && t.texData.slice.flatOffset > 0,
 
-                 n = t.isUniform ? "uniform" : t.texData.texShape;
 
-               r += t.shape + "_" + n + "_" + e;
 
-             });
 
-             var o = t.userCode,
 
-               a = t.constructor.name;
 
-             return a += "_" + r + "_" + o;
 
-           }(t, h, p),
 
-           v = this.getAndSaveBinary(d, function () {
 
-             return function (t, e, n, r) {
 
-               var o = e.userCode,
 
-                 i = n.map(function (t, n) {
 
-                   var r = {
 
-                     logicalShape: t.shape,
 
-                     texShape: t.isUniform ? null : t.texData.texShape,
 
-                     isUniform: t.isUniform,
 
-                     isPacked: !t.isUniform && t.texData.isPacked,
 
-                     flatOffset: null
 
-                   };
 
-                   return null != t.texData && null != t.texData.slice && t.texData.slice.flatOffset > 0 && (r.flatOffset = t.texData.slice.flatOffset), {
 
-                     name: e.variableNames[n],
 
-                     shapeInfo: r
 
-                   };
 
-                 }),
 
-                 u = i.map(function (t) {
 
-                   return t.shapeInfo;
 
-                 }),
 
-                 s = {
 
-                   logicalShape: r.shape,
 
-                   texShape: r.texData.texShape,
 
-                   isUniform: !1,
 
-                   isPacked: r.texData.isPacked,
 
-                   flatOffset: null
 
-                 },
 
-                 c = Yo(i, s, o, e.packedInputs),
 
-                 l = t.createProgram(c),
 
-                 h = null,
 
-                 f = t.getUniformLocation(l, "NAN", !1);
 
-               1 === a().getNumber("WEBGL_VERSION") && (h = t.getUniformLocation(l, "INFINITY", !1));
 
-               for (var p = {}, d = 0; d < e.variableNames.length; d++) {
 
-                 var v = e.variableNames[d];
 
-                 p[v] = t.getUniformLocation(l, v, !1), p["offset" + v] = t.getUniformLocation(l, "offset" + v, !1);
 
-               }
 
-               return {
 
-                 program: e,
 
-                 source: c,
 
-                 webGLProgram: l,
 
-                 uniformLocations: p,
 
-                 inShapeInfos: u,
 
-                 outShapeInfo: s,
 
-                 infLoc: h,
 
-                 nanLoc: f
 
-               };
 
-             }(i.gpgpu, t, h, p);
 
-           }),
 
-           m = null != this.activeTimers;
 
-         if (m && (f = this.startTimer()), function (t, e, n, r, o) {
 
-           Ei(e.inShapeInfos, n), Ei([e.outShapeInfo], [r]);
 
-           var i = r.texData.texture,
 
-             u = r.texData.texShape;
 
-           r.texData.isPacked ? t.setOutputPackedMatrixTexture(i, u[0], u[1]) : t.setOutputMatrixTexture(i, u[0], u[1]), t.setProgram(e.webGLProgram), 1 === a().getNumber("WEBGL_VERSION") && null !== e.infLoc && t.gl.uniform1f(e.infLoc, 1 / 0), null !== e.nanLoc && t.gl.uniform1f(e.nanLoc, NaN), n.forEach(function (n, r) {
 
-             var o = e.program.variableNames[r],
 
-               a = e.uniformLocations[o],
 
-               i = e.uniformLocations["offset" + o];
 
-             if (null != a) if (n.isUniform) {
 
-               if (w(n.shape) < 2) t.gl.uniform1f(a, n.uniformValues[0]); else {
 
-                 var u = n.uniformValues;
 
-                 u instanceof Float32Array || (u = new Float32Array(u)), t.gl.uniform1fv(a, u);
 
-               }
 
-             } else null != n.texData.slice && null != i && t.gl.uniform1i(i, n.texData.slice.flatOffset), t.setInputMatrixTexture(n.texData.texture, a, r);
 
-           }), null != o && o(t, e.webGLProgram), t.executeProgram();
 
-         }(this.gpgpu, v, h, p, r), l.forEach(function (t) {
 
-           return i.disposeData(t.dataId);
 
-         }), m && (f = this.endTimer(f), this.activeTimers.push({
 
-           name: t.constructor.name,
 
-           query: this.getQueryTime(f)
 
-         })), !a().getBool("WEBGL_LAZILY_UNPACK") && s.isPacked && !1 === o) {
 
-           var g = this.unpackTensor(u);
 
-           return this.disposeData(u.dataId), g;
 
-         }
 
-         return u;
 
-       }, o.prototype.compileAndRun = function (t, e, n, r, o) {
 
-         void 0 === o && (o = !1), n = n || e[0].dtype;
 
-         var a = this.runWebGLProgram(t, e, n, r, o);
 
-         return Nt.makeTensorFromDataId(a.dataId, a.shape, a.dtype);
 
-       }, o.prototype.getAndSaveBinary = function (t, e) {
 
-         return t in this.binaryCache || (this.binaryCache[t] = e()), this.binaryCache[t];
 
-       }, o.prototype.getTextureManager = function () {
 
-         return this.textureManager;
 
-       }, o.prototype.dispose = function () {
 
-         this.disposed || (this.textureManager.dispose(), null != this.canvas && "undefined" != typeof HTMLCanvasElement && this.canvas instanceof HTMLCanvasElement ? this.canvas.remove() : this.canvas = null, null != this.fromPixels2DContext && this.fromPixels2DContext.canvas.remove && this.fromPixels2DContext.canvas.remove(), this.gpgpuCreatedLocally && (this.gpgpu.program = null, this.gpgpu.dispose()), this.disposed = !0);
 
-       }, o.prototype.floatPrecision = function () {
 
-         var t = this;
 
-         return null == this.floatPrecisionValue && (this.floatPrecisionValue = je(function () {
 
-           if (!a().get("WEBGL_RENDER_FLOAT32_ENABLED")) {
 
-             var e = a().getBool("DEBUG");
 
-             a().set("DEBUG", !1);
 
-             var n = t.abs(An(1e-8)).dataSync()[0];
 
-             if (a().set("DEBUG", e), n > 0) return 32;
 
-           }
 
-           return 16;
 
-         })), this.floatPrecisionValue;
 
-       }, o.prototype.epsilon = function () {
 
-         return 32 === this.floatPrecision() ? 1e-7 : 1e-4;
 
-       }, o.prototype.uploadToGPU = function (t) {
 
-         var e,
 
-           n = this.texData.get(t),
 
-           r = n.shape,
 
-           o = n.dtype,
 
-           a = n.values,
 
-           i = n.texture,
 
-           u = n.usage,
 
-           s = n.isPacked;
 
-         if (null == i) {
 
-           var c,
 
-             l = null != this.activeTimers;
 
-           l && (c = Y());
 
-           var h = n.texShape;
 
-           if (null == h && (h = Ie(r, s), n.texShape = h), null != a) {
 
-             var f = Re(r),
 
-               p = void 0,
 
-               d = h[1],
 
-               v = h[0],
 
-               m = a instanceof Uint8Array;
 
-             s ? (d = (e = Ht(h[0], h[1]))[0], v = e[1], p = new $a(f, [v, d], m)) : p = new Xa(f, [v, d], m);
 
-             var g = this.makeTensorInfo([v, d], o);
 
-             this.texData.get(g.dataId).usage = m ? Mt.PIXELS : Mt.UPLOAD, this.gpgpu.uploadDenseMatrixToTexture(this.getTexture(g.dataId), d, v, a);
 
-             var y = this.runWebGLProgram(p, [g], o, null, !0),
 
-               x = this.texData.get(y.dataId);
 
-             n.texture = x.texture, n.texShape = x.texShape, n.isPacked = x.isPacked, n.usage = x.usage, this.disposeData(g.dataId), this.texData.delete(y.dataId), n.values = null, l && (this.uploadWaitMs += Y() - c);
 
-           } else {
 
-             var b = this.acquireTexture(h, u, o, s);
 
-             n.texture = b;
 
-           }
 
-         }
 
-       }, o.prototype.convertAndCacheOnCPU = function (t, e) {
 
-         var n = this.texData.get(t),
 
-           r = n.dtype;
 
-         return this.releaseGPUData(t), null != e && (n.values = function (t, e) {
 
-           if ("float32" === e || "complex64" === e) return t;
 
-           if ("int32" === e || "bool" === e) {
 
-             for (var n = "int32" === e ? new Int32Array(t.length) : new Uint8Array(t.length), r = 0; r < n.length; ++r) n[r] = Math.round(t[r]);
 
-             return n;
 
-           }
 
-           throw new Error("Unknown dtype " + e);
 
-         }(e, r)), n.values;
 
-       }, o.prototype.acquireTexture = function (t, e, n, r) {
 
-         if (this.numBytesInGPU += this.computeBytes(t, n), !this.warnedAboutMemory && this.numBytesInGPU > 1024 * this.numMBBeforeWarning * 1024) {
 
-           var o = (this.numBytesInGPU / 1024 / 1024).toFixed(2);
 
-           this.warnedAboutMemory = !0, console.warn("High memory usage in GPU: " + o + " MB, most likely due to a memory leak");
 
-         }
 
-         return this.textureManager.acquireTexture(t, e, r);
 
-       }, o.prototype.computeBytes = function (t, e) {
 
-         return t[0] * t[1] * P(e);
 
-       }, o;
 
-     }(co);
 
-     Ft() && Nt.registerBackend("webgl", function () {
 
-       return new Wu();
 
-     }, 2);
 
-     var Uu = Cn({
 
-       square_: function (t) {
 
-         var e = ln(t, "x", "square"),
 
-           n = [e];
 
-         return Nt.runKernelFunc(function (t, n) {
 
-           return n([e]), t.square(e);
 
-         }, {
 
-           x: e
 
-         }, function (t, e) {
 
-           var n = e[0];
 
-           return {
 
-             x: function () {
 
-               return t.mul(n.toFloat().mul(2));
 
-             }
 
-           };
 
-         }, "Square", {}, n, []);
 
-       }
 
-     });
 
-     exports.square = Uu;
 
-     var Vu = Cn({
 
-       abs_: function (t) {
 
-         var e = ln(t, "x", "abs");
 
-         return "complex64" === e.dtype ? Nt.runKernelFunc(function (t) {
 
-           return t.complexAbs(e);
 
-         }, {
 
-           $x: e
 
-         }) : Nt.runKernelFunc(function (t, n) {
 
-           var r = t.abs(e);
 
-           return n([e]), r;
 
-         }, {
 
-           x: e
 
-         }, function (t, e) {
 
-           var n = e[0];
 
-           return {
 
-             x: function () {
 
-               return t.mul(n.toFloat().step(-1));
 
-             }
 
-           };
 
-         }, "Abs");
 
-       }
 
-     }),
 
-       zu = Cn({
 
-         acos_: function (t) {
 
-           var e = ln(t, "x", "acos");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.acos(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.divStrict(An(1).sub(n.toFloat().square()).sqrt()).neg();
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Gu = Cn({
 
-         acosh_: function (t) {
 
-           var e = ln(t, "x", "acosh");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.acosh(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.divStrict(n.toFloat().square().sub(1).sqrt());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Hu = Cn({
 
-         asin_: function (t) {
 
-           var e = ln(t, "x", "asin");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.asin(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.divStrict(An(1).sub(n.toFloat().square()).sqrt());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       qu = Cn({
 
-         asinh_: function (t) {
 
-           var e = ln(t, "x", "asinh");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.asinh(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.divStrict(An(1).add(n.toFloat().square()).sqrt());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Ku = Cn({
 
-         atan_: function (t) {
 
-           var e = ln(t, "x", "atan");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.atan(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.toFloat().square().add(1));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ju = Cn({
 
-         atanh_: function (t) {
 
-           var e = ln(t, "x", "atanh");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.atanh(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(An(1).sub(n.toFloat().square()));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Xu = Cn({
 
-         ceil_: function (t) {
 
-           var e = ln(t, "x", "ceil");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.ceil(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       $u = Cn({
 
-         clipByValue_: function (t, e, n) {
 
-           var r = ln(t, "x", "clipByValue");
 
-           return g(e <= n, function () {
 
-             return "Error in clip: min (" + e + ") must be less than or equal to max (" + n + ").";
 
-           }), Nt.runKernelFunc(function (t, o) {
 
-             var a = t.clip(r, e, n);
 
-             return o([r]), a;
 
-           }, {
 
-             $x: r
 
-           }, function (t, r) {
 
-             var o = r[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.where(o.greaterEqual(e).logicalAnd(o.lessEqual(n)), zn(t));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Yu = Cn({
 
-         cos_: function (t) {
 
-           var e = ln(t, "x", "cos");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.cos(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return n.toFloat().sin().neg().mul(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Qu = Cn({
 
-         cosh_: function (t) {
 
-           var e = ln(t, "x", "cosh");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.cosh(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return n.toFloat().sinh().mulStrict(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Ju = Cn({
 
-         erf_: function (t) {
 
-           var e = ln(t, "x", "erf");
 
-           return g("int32" === e.dtype || "float32" === e.dtype, function () {
 
-             return "Input dtype must be `int32` or `float32`.";
 
-           }), "int32" === e.dtype && (e = e.toFloat()), Nt.runKernelFunc(function (t, n) {
 
-             var r = t.erf(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.mul(n.square().neg().exp().mul(2 / Math.sqrt(Math.PI)));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Zu = Cn({
 
-         exp_: function (t) {
 
-           var e = ln(t, "x", "exp");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.exp(e);
 
-             return n([r]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             return {
 
-               $x: function () {
 
-                 return t.mulStrict(e[0]);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ts = Cn({
 
-         expm1_: function (t) {
 
-           var e = ln(t, "x", "expm1");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.expm1(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.mul(n.exp());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       es = Cn({
 
-         floor_: function (t) {
 
-           var e = ln(t, "x", "floor");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.floor(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ns = Cn({
 
-         log_: function (t) {
 
-           var e = ln(t, "x", "log");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.log(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.toFloat());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       rs = Cn({
 
-         log1p_: function (t) {
 
-           var e = ln(t, "x", "log1p");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.log1p(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.add(1));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       os = Cn({
 
-         logSigmoid_: function (t) {
 
-           var e = ln(t, "x", "logSigmoid");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.softplus(e.neg()).neg();
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.mul(n.neg().sigmoid());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       as = Cn({
 
-         neg_: function (t) {
 
-           var e = ln(t, "x", "neg");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.neg(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return t.neg();
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       is = Cn({
 
-         reciprocal_: function (t) {
 
-           var e = ln(t, "x", "reciprocal");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.reciprocal(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.square().neg());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       us = Cn({
 
-         round_: function (t) {
 
-           var e = ln(t, "x", "round");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.round(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ss = Cn({
 
-         rsqrt_: function (t) {
 
-           var e = ln(t, "x", "rsqrt");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.rsqrt(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.pow(1.5).mul(2)).neg();
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       cs = Cn({
 
-         sigmoid_: function (t) {
 
-           var e = ln(t, "x", "sigmoid");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.sigmoid(e);
 
-             return n([r]), r;
 
-           }, {
 
-             x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               x: function () {
 
-                 return t.mul(n.mul(An(1).sub(n)));
 
-               }
 
-             };
 
-           }, "Sigmoid");
 
-         }
 
-       }),
 
-       ls = Cn({
 
-         sign_: function (t) {
 
-           var e = ln(t, "x", "sign");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.sign(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       hs = Cn({
 
-         isNaN_: function (t) {
 
-           var e = ln(t, "x", "isNaN");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.isNaN(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       fs = Cn({
 
-         isInf_: function (t) {
 
-           var e = ln(t, "x", "isInf");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.isInf(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ps = Cn({
 
-         isFinite_: function (t) {
 
-           var e = ln(t, "x", "isFinite");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.isFinite(e);
 
-           }, {
 
-             $x: e
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ds = Cn({
 
-         sin_: function (t) {
 
-           var e = ln(t, "x", "sin");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.sin(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return n.toFloat().cos().mul(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       vs = Cn({
 
-         sinh_: function (t) {
 
-           var e = ln(t, "x", "sinh");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.sinh(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return n.toFloat().cosh().mulStrict(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ms = Cn({
 
-         softplus_: function (t) {
 
-           var e = ln(t, "x", "softplus");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.softplus(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.mul(n.sigmoid());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       gs = Cn({
 
-         sqrt_: function (t) {
 
-           var e = ln(t, "x", "sqrt");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.sqrt(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.toFloat().sqrt().mul(2));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ys = Cn({
 
-         step_: function (t, e) {
 
-           void 0 === e && (e = 0);
 
-           var n = ln(t, "x", "step");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.step(n, e);
 
-           }, {
 
-             $x: n
 
-           }, function (t) {
 
-             return {
 
-               $x: function () {
 
-                 return zn(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       xs = Cn({
 
-         tan_: function (t) {
 
-           var e = ln(t, "x", "tan");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.tan(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.div(n.cos().square());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       bs = Cn({
 
-         tanh_: function (t) {
 
-           var e = ln(t, "x", "tanh");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.tanh(e);
 
-             return n([r]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return An(1).sub(n.square()).mulStrict(t);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       });
 
-     exports.tanh = bs;
 
-     exports.tan = xs;
 
-     exports.step = ys;
 
-     exports.sqrt = gs;
 
-     exports.softplus = ms;
 
-     exports.sinh = vs;
 
-     exports.sin = ds;
 
-     exports.isFinite = ps;
 
-     exports.isInf = fs;
 
-     exports.isNaN = hs;
 
-     exports.sign = ls;
 
-     exports.sigmoid = cs;
 
-     exports.rsqrt = ss;
 
-     exports.round = us;
 
-     exports.reciprocal = is;
 
-     exports.neg = as;
 
-     exports.logSigmoid = os;
 
-     exports.log1p = rs;
 
-     exports.log = ns;
 
-     exports.floor = es;
 
-     exports.expm1 = ts;
 
-     exports.exp = Zu;
 
-     exports.erf = Ju;
 
-     exports.cosh = Qu;
 
-     exports.cos = Yu;
 
-     exports.clipByValue = $u;
 
-     exports.ceil = Xu;
 
-     exports.atanh = ju;
 
-     exports.atan = Ku;
 
-     exports.asinh = qu;
 
-     exports.asin = Hu;
 
-     exports.acosh = Gu;
 
-     exports.acos = zu;
 
-     exports.abs = Vu;
 
-     function ws(t, e, n, r, o, a) {
 
-       var i,
 
-         u,
 
-         s = ln(t, "x", "batchNorm"),
 
-         c = ln(e, "mean", "batchNorm"),
 
-         l = ln(n, "variance", "batchNorm");
 
-       return null != o && (i = ln(o, "scale", "batchNorm")), null != r && (u = ln(r, "offset", "batchNorm")), g(2 === s.rank, function () {
 
-         return "Error in batchNorm3D: x must be rank 3 but got rank " + s.rank + ".";
 
-       }), g(2 === c.rank || 1 === c.rank, function () {
 
-         return "Error in batchNorm2D: mean must be rank 2 or rank 1 but got rank " + c.rank + ".";
 
-       }), g(2 === l.rank || 1 === l.rank, function () {
 
-         return "Error in batchNorm2D: variance must be rank 2 or rank 1 but got rank " + l.rank + ".";
 
-       }), null != i && g(2 === i.rank || 1 === i.rank, function () {
 
-         return "Error in batchNorm2D: scale must be rank 2 or rank 1 but got rank " + i.rank + ".";
 
-       }), null != u && g(2 === u.rank || 1 === u.rank, function () {
 
-         return "Error in batchNorm2D: offset must be rank 2 or rank 1 but got rank " + u.rank + ".";
 
-       }), Rs(s, c, l, u, i, a);
 
-     }
 
-     function Cs(t, e, n, r, o, a) {
 
-       var i,
 
-         u,
 
-         s = ln(t, "x", "batchNorm"),
 
-         c = ln(e, "mean", "batchNorm"),
 
-         l = ln(n, "variance", "batchNorm");
 
-       return null != o && (i = ln(o, "scale", "batchNorm")), null != r && (u = ln(r, "offset", "batchNorm")), g(3 === s.rank, function () {
 
-         return "Error in batchNorm3D: x must be rank 3 but got rank " + s.rank + ".";
 
-       }), g(3 === c.rank || 1 === c.rank, function () {
 
-         return "Error in batchNorm3D: mean must be rank 3 or rank 1 but got rank " + c.rank + ".";
 
-       }), g(3 === l.rank || 1 === l.rank, function () {
 
-         return "Error in batchNorm3D: variance must be rank 3 or rank 1 but got rank " + l.rank + ".";
 
-       }), null != i && g(3 === i.rank || 1 === i.rank, function () {
 
-         return "Error in batchNorm3D: scale must be rank 3 or rank 1 but got rank " + i.rank + ".";
 
-       }), null != u && g(3 === u.rank || 1 === u.rank, function () {
 
-         return "Error in batchNorm3D: offset must be rank 3 or rank 1 but got rank " + u.rank + ".";
 
-       }), Rs(s, c, l, u, i, a);
 
-     }
 
-     function Es(t, e, n, r, o, a) {
 
-       var i,
 
-         u,
 
-         s = ln(t, "x", "batchNorm"),
 
-         c = ln(e, "mean", "batchNorm"),
 
-         l = ln(n, "variance", "batchNorm");
 
-       return null != o && (i = ln(o, "scale", "batchNorm")), null != r && (u = ln(r, "offset", "batchNorm")), g(4 === s.rank, function () {
 
-         return "Error in batchNorm4D: x must be rank 4 but got rank " + s.rank + ".";
 
-       }), g(4 === c.rank || 1 === c.rank, function () {
 
-         return "Error in batchNorm4D: mean must be rank 4 or rank 1 but got rank " + c.rank + ".";
 
-       }), g(4 === l.rank || 1 === l.rank, function () {
 
-         return "Error in batchNorm4D: variance must be rank 4 or rank 1 but got rank " + l.rank + ".";
 
-       }), null != i && g(4 === i.rank || 1 === i.rank, function () {
 
-         return "Error in batchNorm4D: scale must be rank 4 or rank 1 but got rank " + i.rank + ".";
 
-       }), null != u && g(4 === u.rank || 1 === u.rank, function () {
 
-         return "Error in batchNorm4D: offset must be rank 4 or rank 1 but got rank " + u.rank + ".";
 
-       }), Rs(s, c, l, u, i, a);
 
-     }
 
-     function Rs(t, e, n, r, o, a) {
 
-       null == a && (a = .001);
 
-       var i,
 
-         u,
 
-         s,
 
-         c = ln(t, "x", "batchNorm"),
 
-         l = ln(e, "mean", "batchNorm"),
 
-         h = ln(n, "variance", "batchNorm");
 
-       null != o && (i = ln(o, "scale", "batchNorm")), null != r && (u = ln(r, "offset", "batchNorm")), g(l.rank === h.rank, function () {
 
-         return "Batch normalization gradient requires mean and variance to have equal ranks.";
 
-       }), g(null == u || l.rank === u.rank, function () {
 
-         return "Batch normalization gradient requires mean and offset to have equal ranks.";
 
-       }), g(null == i || l.rank === i.rank, function () {
 
-         return "Batch normalization gradient requires mean and scale to have equal ranks.";
 
-       }), s = 0 === c.rank || 1 === c.rank ? c.as4D(1, 1, 1, c.size) : 2 === c.rank ? c.as4D(1, 1, c.shape[0], c.shape[1]) : 3 === c.rank ? c.as4D(1, c.shape[0], c.shape[1], c.shape[2]) : c;
 
-       var f = [c, l, h, i];
 
-       return Nt.runKernelFunc(function (t, e) {
 
-         var n = t.batchNormalization(s, Is(l), Is(h), a, Is(i), Is(u));
 
-         return e([c, l, h, i]), n;
 
-       }, {
 
-         x: c,
 
-         mean: l,
 
-         variance: h,
 
-         scale: i,
 
-         offset: u
 
-       }, function (t, e) {
 
-         var n = e,
 
-           r = n[0],
 
-           o = n[1],
 
-           i = n[2],
 
-           u = n[3],
 
-           c = null == u ? An(1) : u,
 
-           l = fo(o.shape, s.shape),
 
-           h = [];
 
-         if (1 === o.rank) {
 
-           for (var f = 0; f < s.shape.length - 1; ++f) h.push(s.shape[f]);
 
-           h.push(1);
 
-         }
 
-         var p = r.sub(o),
 
-           d = t.mul(c),
 
-           v = ss(i.add(An(a))),
 
-           m = v.mul(v).mul(v).mul(An(-.5));
 
-         return {
 
-           x: function () {
 
-             return 1 === o.rank ? t.mul(Nr(v.as4D(1, 1, 1, o.shape[0]), h)).mul(c).reshape(r.shape) : t.mul(v).mul(c).reshape(r.shape);
 
-           },
 
-           mean: function () {
 
-             var t = v.mul(An(-1)).mul(d);
 
-             return 1 === o.rank && (t = t.sum(l)), t.reshape(o.shape);
 
-           },
 
-           variance: function () {
 
-             var t = m.mul(p).mul(d);
 
-             return 1 === o.rank && (t = t.sum(l)), t.reshape(o.shape);
 
-           },
 
-           scale: function () {
 
-             var e = p.mul(v),
 
-               n = t.mul(e);
 
-             return 1 === o.rank && (n = n.sum(l)), n.reshape(o.shape);
 
-           },
 
-           offset: function () {
 
-             var e = t;
 
-             return 1 === o.rank && (e = e.sum(l)), e.reshape(o.shape);
 
-           }
 
-         };
 
-       }, "BatchNormalization", {
 
-         varianceEpsilon: a
 
-       }, f).reshape(c.shape);
 
-     }
 
-     function Is(t) {
 
-       return null == t ? null : 0 === t.rank ? t.as1D() : 1 === t.rank ? t : 2 === t.rank ? t.as4D(1, 1, t.shape[0], t.shape[1]) : 3 === t.rank ? t.as4D(1, t.shape[0], t.shape[1], t.shape[2]) : t;
 
-     }
 
-     function ks() {
 
-       ze("tf.batchNormalization() is going away. Use tf.batchNorm() instead, and note the positional argument change of scale, offset, and varianceEpsilon");
 
-     }
 
-     var Ss = Cn({
 
-       batchNormalization2d_: function (t, e, n, r, o, a) {
 
-         return void 0 === r && (r = .001), ks(), ws(t, e, n, a, o, r);
 
-       }
 
-     }),
 
-       As = Cn({
 
-         batchNormalization3d_: function (t, e, n, r, o, a) {
 
-           return void 0 === r && (r = .001), ks(), Cs(t, e, n, a, o, r);
 
-         }
 
-       }),
 
-       Ds = Cn({
 
-         batchNormalization4d_: function (t, e, n, r, o, a) {
 
-           return void 0 === r && (r = .001), ks(), Es(t, e, n, a, o, r);
 
-         }
 
-       }),
 
-       Ts = Cn({
 
-         batchNormalization_: function (t, e, n, r, o, a) {
 
-           return void 0 === r && (r = .001), ks(), Rs(t, e, n, a, o, r);
 
-         }
 
-       }),
 
-       Ns = Cn({
 
-         batchNorm_: Rs
 
-       }),
 
-       Fs = Cn({
 
-         batchNorm2d_: ws
 
-       }),
 
-       Os = Cn({
 
-         batchNorm3d_: Cs
 
-       }),
 
-       _s = Cn({
 
-         batchNorm4d_: Es
 
-       });
 
-     exports.batchNorm4d = _s;
 
-     exports.batchNorm3d = Os;
 
-     exports.batchNorm2d = Fs;
 
-     exports.batchNorm = Ns;
 
-     exports.batchNormalization = Ts;
 
-     exports.batchNormalization4d = Ds;
 
-     exports.batchNormalization3d = As;
 
-     exports.batchNormalization2d = Ss;
 
-     var Ms = Cn({
 
-       logicalAnd_: function (t, e) {
 
-         var n = ln(t, "a", "logicalAnd", "bool"),
 
-           r = ln(e, "b", "logicalAnd", "bool");
 
-         return po(n.shape, r.shape), Nt.runKernelFunc(function (t) {
 
-           return t.logicalAnd(n, r);
 
-         }, {
 
-           $a: n,
 
-           $b: r
 
-         });
 
-       }
 
-     }),
 
-       Bs = Cn({
 
-         logicalNot_: function (t) {
 
-           var e = ln(t, "x", "logicalNot", "bool");
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.logicalNot(e);
 
-           }, {
 
-             $x: e
 
-           });
 
-         }
 
-       }),
 
-       Ps = Cn({
 
-         logicalOr_: function (t, e) {
 
-           var n = ln(t, "a", "logicalOr", "bool"),
 
-             r = ln(e, "b", "logicalOr", "bool");
 
-           return po(n.shape, r.shape), Nt.runKernelFunc(function (t) {
 
-             return t.logicalOr(n, r);
 
-           }, {
 
-             $a: n,
 
-             $b: r
 
-           });
 
-         }
 
-       }),
 
-       Ls = Cn({
 
-         logicalXor_: function (t, e) {
 
-           var n = ln(t, "a", "logicalXor", "bool"),
 
-             r = ln(e, "b", "logicalXor", "bool");
 
-           return po(n.shape, r.shape), Ps(t, e).logicalAnd(Ms(t, e).logicalNot());
 
-         }
 
-       }),
 
-       Ws = Cn({
 
-         where_: function (t, e, n) {
 
-           var r = ln(e, "a", "where"),
 
-             o = ln(n, "b", "where"),
 
-             a = ln(t, "condition", "where", "bool");
 
-           return y(r.shape, o.shape, "Error in where: "), 1 === a.rank ? g(a.shape[0] === r.shape[0], function () {
 
-             return "The first dimension of `a` must match the size of `condition`.";
 
-           }) : y(a.shape, o.shape, "Error in where: "), Nt.runKernelFunc(function (t, e) {
 
-             var n = t.select(a, r, o);
 
-             return e([a]), n;
 
-           }, {
 
-             $condition: a,
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $condition: function () {
 
-                 return zn(n).toFloat();
 
-               },
 
-               $a: function () {
 
-                 return t.mul(n.cast(t.dtype));
 
-               },
 
-               $b: function () {
 
-                 return t.mul(n.logicalNot().cast(t.dtype));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Us = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return [4, (e = ln(t, "condition", "whereAsync", "bool")).data()];
 
-               case 1:
 
-                 return n = r.sent(), o = Uo(e.shape, n), t !== e && e.dispose(), [2, o];
 
-             }
 
-           });
 
-         });
 
-       };
 
-     exports.whereAsync = Us;
 
-     exports.where = Ws;
 
-     exports.logicalXor = Ls;
 
-     exports.logicalOr = Ps;
 
-     exports.logicalNot = Bs;
 
-     exports.logicalAnd = Ms;
 
-     var Vs = Cn({
 
-       add_: function (t, e) {
 
-         var n,
 
-           r = ln(t, "a", "add"),
 
-           o = ln(e, "b", "add");
 
-         n = Rt(r, o), r = n[0], o = n[1];
 
-         var a = po(r.shape, o.shape);
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.add(r, o);
 
-         }, {
 
-           a: r,
 
-           b: o
 
-         }, function (t) {
 
-           return {
 
-             a: function () {
 
-               var e = t,
 
-                 n = fo(r.shape, a);
 
-               return n.length > 0 && (e = e.sum(n)), e.reshape(r.shape);
 
-             },
 
-             b: function () {
 
-               var e = t,
 
-                 n = fo(o.shape, a);
 
-               return n.length > 0 && (e = e.sum(n)), e.reshape(o.shape);
 
-             }
 
-           };
 
-         }, "Add");
 
-       }
 
-     }),
 
-       zs = Cn({
 
-         addN_: function (t) {
 
-           g(Array.isArray(t), function () {
 
-             return "The argument passed to tf.addN() must be a list of tensors";
 
-           }), g(t.length >= 1, function () {
 
-             return "Must pass at least one tensor to tf.addN(), but got " + t.length;
 
-           });
 
-           var e = t.map(function (t, e) {
 
-             return ln(t, "tensors" + e, "addN");
 
-           }),
 
-             n = e[0];
 
-           e.forEach(function (t) {
 
-             if (t.dtype !== n.dtype) throw new Error("All tensors passed to tf.addN() must have the same dtype");
 
-           }), e.forEach(function (t) {
 
-             if (!C(t.shape, n.shape)) throw new Error("All tensors passed to tf.addN() must have the same shape");
 
-           });
 
-           var r = e;
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.addN(e);
 
-           }, r, function (t) {
 
-             var n = {};
 
-             return e.forEach(function (e, r) {
 
-               n[r] = function () {
 
-                 return t.clone();
 
-               };
 
-             }), n;
 
-           });
 
-         }
 
-       }),
 
-       Gs = Cn({
 
-         addStrict_: function (t, e) {
 
-           var n = ln(t, "a", "addStrict"),
 
-             r = ln(e, "b", "addStrict");
 
-           return y(n.shape, r.shape, "Error in addStrict: "), n.add(r);
 
-         }
 
-       }),
 
-       Hs = Cn({
 
-         atan2_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "atan2"),
 
-             o = ln(e, "b", "atan2");
 
-           n = Rt(r, o), r = n[0], o = n[1];
 
-           var a = po(r.shape, o.shape);
 
-           return Nt.runKernelFunc(function (t, e) {
 
-             var n = t.atan2(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               $a: function () {
 
-                 var e = Vs(n.square(), r.square()),
 
-                   o = t.mul(r.div(e)),
 
-                   i = fo(n.shape, a);
 
-                 return i.length > 0 && (o = o.sum(i)), o.reshape(n.shape);
 
-               },
 
-               $b: function () {
 
-                 var e = Vs(n.square(), r.square()),
 
-                   o = as(t.mul(n.div(e))),
 
-                   i = fo(r.shape, a);
 
-                 return i.length > 0 && (o = o.sum(i)), o.reshape(r.shape);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       qs = Cn({
 
-         div_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "div"),
 
-             o = ln(e, "b", "div");
 
-           if (n = Rt(r, o), r = n[0], o = n[1], "int32" === r.dtype && "int32" === o.dtype) return js(r, o);
 
-           var a = po(r.shape, o.shape);
 
-           return Nt.runKernelFunc(function (t, e) {
 
-             var n = t.realDivide(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             a: r,
 
-             b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               a: function () {
 
-                 var e = t.div(r.toFloat()),
 
-                   o = fo(n.shape, a);
 
-                 return o.length > 0 ? e.sum(o).reshape(n.shape) : e;
 
-               },
 
-               b: function () {
 
-                 var e = t.mul(n.toFloat()),
 
-                   o = fo(r.shape, a);
 
-                 o.length > 0 && (e = e.sum(o).reshape(r.shape));
 
-                 var i = r.square();
 
-                 return e.div(i.toFloat()).neg();
 
-               }
 
-             };
 
-           }, "Div");
 
-         }
 
-       }),
 
-       Ks = Cn({
 
-         divStrict_: function (t, e) {
 
-           var n = ln(t, "a", "div"),
 
-             r = ln(e, "b", "div");
 
-           return y(n.shape, r.shape, "Error in divideStrict: "), n.div(r);
 
-         }
 
-       }),
 
-       js = Cn({
 
-         floorDiv_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "floorDiv"),
 
-             o = ln(e, "b", "floorDiv");
 
-           n = Rt(r, o), r = n[0], o = n[1];
 
-           var a = po(r.shape, o.shape);
 
-           return Nt.runKernelFunc(function (t, e) {
 
-             var n = t.floorDiv(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               $a: function () {
 
-                 var e = t.div(r.toFloat()),
 
-                   o = fo(n.shape, a);
 
-                 return o.length > 0 ? e.sum(o).reshape(n.shape) : e;
 
-               },
 
-               $b: function () {
 
-                 var e = t.mul(n.toFloat()),
 
-                   o = fo(r.shape, a);
 
-                 o.length > 0 && (e = e.sum(o).reshape(r.shape));
 
-                 var i = r.square();
 
-                 return e.div(i.toFloat()).neg();
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Xs = Cn({
 
-         maximum_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "maximum"),
 
-             o = ln(e, "b", "maximum");
 
-           return n = Rt(r, o), r = n[0], o = n[1], "bool" === r.dtype && (r = r.toInt(), o = o.toInt()), po(r.shape, o.shape), Nt.runKernelFunc(function (t, e) {
 
-             var n = t.maximum(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               $a: function () {
 
-                 return t.mul(n.greaterEqual(r).toFloat());
 
-               },
 
-               $b: function () {
 
-                 return t.mul(n.less(r).toFloat());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       $s = Cn({
 
-         maximumStrict_: function (t, e) {
 
-           var n = ln(t, "a", "maximumStrict"),
 
-             r = ln(e, "b", "maximumStrict");
 
-           return y(n.shape, r.shape, "Error in maximumStrict: "), n.maximum(r);
 
-         }
 
-       }),
 
-       Ys = Cn({
 
-         minimum_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "minimum"),
 
-             o = ln(e, "b", "minimum");
 
-           return n = Rt(r, o), r = n[0], o = n[1], "bool" === r.dtype && (r = r.toInt(), o = o.toInt()), po(r.shape, o.shape), Nt.runKernelFunc(function (t, e) {
 
-             var n = t.minimum(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               $a: function () {
 
-                 return t.mul(n.lessEqual(r).toFloat());
 
-               },
 
-               $b: function () {
 
-                 return t.mul(n.greater(r).toFloat());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Qs = Cn({
 
-         minimumStrict_: function (t, e) {
 
-           var n = ln(t, "a", "minimumStrict"),
 
-             r = ln(e, "b", "minimumStrict");
 
-           return y(n.shape, r.shape, "Error in minimumStrict: "), n.minimum(r);
 
-         }
 
-       }),
 
-       Js = Cn({
 
-         mod_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "mod"),
 
-             o = ln(e, "b", "mod");
 
-           n = Rt(r, o), r = n[0], o = n[1];
 
-           var a = po(r.shape, o.shape);
 
-           return Nt.runKernelFunc(function (t, e) {
 
-             var n = t.mod(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               $a: function () {
 
-                 var e = fo(n.shape, a);
 
-                 return e.length > 0 ? t.sum(e).reshape(n.shape) : t;
 
-               },
 
-               $b: function () {
 
-                 var e = t.mul(n.div(r).floor().neg()),
 
-                   o = fo(r.shape, a);
 
-                 return o.length > 0 ? e.sum(o).reshape(r.shape) : e;
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Zs = Cn({
 
-         modStrict_: function (t, e) {
 
-           var n = ln(t, "a", "modStrict"),
 
-             r = ln(e, "b", "modStrict");
 
-           return y(n.shape, r.shape, "Error in modStrict: "), n.mod(r);
 
-         }
 
-       }),
 
-       tc = Cn({
 
-         mul_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "mul"),
 
-             o = ln(e, "b", "mul");
 
-           n = Rt(r, o), r = n[0], o = n[1];
 
-           var a = po(r.shape, o.shape);
 
-           return Nt.runKernelFunc(function (t, e) {
 
-             var n = t.multiply(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             a: r,
 
-             b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               a: function () {
 
-                 var e = t.mul(r.toFloat()),
 
-                   o = fo(n.shape, a);
 
-                 return o.length > 0 ? e.sum(o).reshape(n.shape) : e;
 
-               },
 
-               b: function () {
 
-                 var e = t.mul(n.toFloat()),
 
-                   o = fo(r.shape, a);
 
-                 return o.length > 0 ? e.sum(o).reshape(r.shape) : e;
 
-               }
 
-             };
 
-           }, "Mul");
 
-         }
 
-       }),
 
-       ec = Cn({
 
-         mulStrict_: function (t, e) {
 
-           var n = ln(t, "a", "mul"),
 
-             r = ln(e, "b", "mul");
 
-           return y(n.shape, r.shape, "Error in multiplyStrict: "), n.mul(r);
 
-         }
 
-       }),
 
-       nc = Cn({
 
-         pow_: function (t, e) {
 
-           var n = ln(t, "base", "pow"),
 
-             r = ln(e, "exp", "pow"),
 
-             o = po(n.shape, r.shape);
 
-           return t = n.cast(Ct(n.dtype, r.dtype)), e = r.cast(Ct(n.dtype, r.dtype)), Nt.runKernelFunc(function (t, e) {
 
-             var o = t.pow(n, r);
 
-             return e([n, r, o]), o;
 
-           }, {
 
-             $base: n,
 
-             $exp: r
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1],
 
-               a = e[2];
 
-             return {
 
-               $base: function () {
 
-                 var e = r.toFloat(),
 
-                   a = t.mul(e.mul(n.pow(e.sub(An(1))))),
 
-                   i = fo(n.shape, o);
 
-                 return i.length > 0 && (a = a.sum(i)), a.reshape(n.shape);
 
-               },
 
-               $exp: function () {
 
-                 var e = n.greater(0),
 
-                   i = n.log().where(e, zn(n)),
 
-                   u = t.mul(a.mul(i)),
 
-                   s = fo(r.shape, o);
 
-                 return s.length > 0 && (u = u.sum(s)), u.reshape(r.shape);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       rc = Cn({
 
-         powStrict_: function (t, e) {
 
-           return y(t.shape, e.shape, "Error in powStrict: "), t.pow(e);
 
-         }
 
-       }),
 
-       oc = Cn({
 
-         squaredDifference_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "squaredDifference"),
 
-             o = ln(e, "b", "squaredDifference");
 
-           return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t, e) {
 
-             var n = t.squaredDifference(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1],
 
-               o = An(2);
 
-             return {
 
-               $a: function () {
 
-                 return t.mul(n.sub(r).mul(o));
 
-               },
 
-               $b: function () {
 
-                 return t.mul(r.sub(n).mul(o));
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ac = Cn({
 
-         squaredDifferenceStrict_: function (t, e) {
 
-           var n = ln(t, "a", "squaredDifferenceStrict"),
 
-             r = ln(e, "b", "squaredDifferenceStrict");
 
-           return y(n.shape, r.shape, "Error in squaredDifferenceStrict: "), n.squaredDifference(r);
 
-         }
 
-       }),
 
-       ic = Cn({
 
-         sub_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "sub"),
 
-             o = ln(e, "b", "sub");
 
-           n = Rt(r, o), r = n[0], o = n[1];
 
-           var a = po(r.shape, o.shape);
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.subtract(r, o);
 
-           }, {
 
-             a: r,
 
-             b: o
 
-           }, function (t) {
 
-             return {
 
-               a: function () {
 
-                 var e = t,
 
-                   n = fo(r.shape, a);
 
-                 return n.length > 0 && (e = e.sum(n)), e.reshape(r.shape);
 
-               },
 
-               b: function () {
 
-                 var e = t,
 
-                   n = fo(o.shape, a);
 
-                 return n.length > 0 && (e = e.sum(n)), e.neg().reshape(o.shape);
 
-               }
 
-             };
 
-           }, "Sub");
 
-         }
 
-       }),
 
-       uc = Cn({
 
-         subStrict_: function (t, e) {
 
-           var n = ln(t, "a", "subStrict"),
 
-             r = ln(e, "b", "subStrict");
 
-           return y(n.shape, r.shape, "Error in subStrict: "), n.sub(r);
 
-         }
 
-       });
 
-     exports.subStrict = uc;
 
-     exports.sub = ic;
 
-     exports.squaredDifferenceStrict = ac;
 
-     exports.squaredDifference = oc;
 
-     exports.powStrict = rc;
 
-     exports.pow = nc;
 
-     exports.mulStrict = ec;
 
-     exports.mul = tc;
 
-     exports.modStrict = Zs;
 
-     exports.mod = Js;
 
-     exports.minimumStrict = Qs;
 
-     exports.minimum = Ys;
 
-     exports.maximumStrict = $s;
 
-     exports.maximum = Xs;
 
-     exports.floorDiv = js;
 
-     exports.divStrict = Ks;
 
-     exports.div = qs;
 
-     exports.atan2 = Hs;
 
-     exports.addStrict = Gs;
 
-     exports.addN = zs;
 
-     exports.add = Vs;
 
-     var sc = Cn({
 
-       equal_: function (t, e) {
 
-         var n,
 
-           r = ln(t, "a", "equal"),
 
-           o = ln(e, "b", "equal");
 
-         return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t) {
 
-           return t.equal(r, o);
 
-         }, {
 
-           $a: r,
 
-           $b: o
 
-         });
 
-       }
 
-     }),
 
-       cc = Cn({
 
-         equalStrict_: function (t, e) {
 
-           var n = ln(t, "a", "equalStrict"),
 
-             r = ln(e, "b", "equalStrict");
 
-           return y(n.shape, r.shape, "Error in equalStrict: "), n.equal(r);
 
-         }
 
-       }),
 
-       lc = Cn({
 
-         greater_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "greater"),
 
-             o = ln(e, "b", "greater");
 
-           return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t) {
 
-             return t.greater(r, o);
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           });
 
-         }
 
-       }),
 
-       hc = Cn({
 
-         greaterEqual_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "greaterEqual"),
 
-             o = ln(e, "b", "greaterEqual");
 
-           return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t, e) {
 
-             var n = t.greaterEqual(r, o);
 
-             return e([r, o]), n;
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1];
 
-             return {
 
-               $a: function () {
 
-                 return zn(n);
 
-               },
 
-               $b: function () {
 
-                 return zn(r);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       fc = Cn({
 
-         greaterEqualStrict_: function (t, e) {
 
-           var n = ln(t, "a", "greaterEqualStrict"),
 
-             r = ln(e, "b", "greaterEqualStrict");
 
-           return y(n.shape, r.shape, "Error in greaterEqualStrict: "), n.greaterEqual(r);
 
-         }
 
-       }),
 
-       pc = Cn({
 
-         greaterStrict_: function (t, e) {
 
-           var n = ln(t, "a", "greaterStrict"),
 
-             r = ln(e, "b", "greaterStrict");
 
-           return y(n.shape, r.shape, "Error in greaterStrict: "), n.greater(r);
 
-         }
 
-       }),
 
-       dc = Cn({
 
-         less_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "less"),
 
-             o = ln(e, "b", "less");
 
-           return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t) {
 
-             return t.less(r, o);
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           });
 
-         }
 
-       }),
 
-       vc = Cn({
 
-         lessEqual_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "lessEqual"),
 
-             o = ln(e, "b", "lessEqual");
 
-           return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t) {
 
-             return t.lessEqual(r, o);
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           });
 
-         }
 
-       }),
 
-       mc = Cn({
 
-         lessEqualStrict_: function (t, e) {
 
-           var n = ln(t, "a", "lessEqualStrict"),
 
-             r = ln(e, "b", "lessEqualStrict");
 
-           return y(n.shape, r.shape, "Error in lessEqualStrict: "), n.lessEqual(r);
 
-         }
 
-       }),
 
-       gc = Cn({
 
-         lessStrict_: function (t, e) {
 
-           var n = ln(t, "a", "lessStrict"),
 
-             r = ln(e, "b", "lessStrict");
 
-           return y(n.shape, r.shape, "Error in lessStrict: "), n.less(r);
 
-         }
 
-       }),
 
-       yc = Cn({
 
-         notEqual_: function (t, e) {
 
-           var n,
 
-             r = ln(t, "a", "notEqual"),
 
-             o = ln(e, "b", "notEqual");
 
-           return n = Rt(r, o), r = n[0], o = n[1], po(r.shape, o.shape), Nt.runKernelFunc(function (t) {
 
-             return t.notEqual(r, o);
 
-           }, {
 
-             $a: r,
 
-             $b: o
 
-           });
 
-         }
 
-       }),
 
-       xc = Cn({
 
-         notEqualStrict_: function (t, e) {
 
-           var n = ln(t, "a", "notEqualStrict"),
 
-             r = ln(e, "b", "notEqualStrict");
 
-           return y(n.shape, r.shape, "Error in notEqualStrict: "), n.notEqual(r);
 
-         }
 
-       });
 
-     exports.notEqualStrict = xc;
 
-     exports.notEqual = yc;
 
-     exports.lessStrict = gc;
 
-     exports.lessEqualStrict = mc;
 
-     exports.lessEqual = vc;
 
-     exports.less = dc;
 
-     exports.greaterStrict = pc;
 
-     exports.greaterEqualStrict = fc;
 
-     exports.greaterEqual = hc;
 
-     exports.greater = lc;
 
-     exports.equalStrict = cc;
 
-     exports.equal = sc;
 
-     function bc(t, e) {
 
-       for (var n = [], r = t; r < e; ++r) n.push(r);
 
-       return n;
 
-     }
 
-     function wc(t) {
 
-       for (var e = [], n = 0; n < t.length; ++n) for (var r = 0; r < t[n].length; ++r) e.push(t[n][r]);
 
-       return e;
 
-     }
 
-     var Cc = Cn({
 
-       gather_: function (t, e, n) {
 
-         void 0 === n && (n = 0);
 
-         var r = ln(t, "x", "gather"),
 
-           o = ln(e, "indices", "gather", "int32");
 
-         n = D(n, r.shape)[0];
 
-         var a = function (t, e, n) {
 
-           for (var r = t.shape[n], o = [], a = 1, i = 1, u = 0; u < n; u++) o.push(t.shape[u]), a *= t.shape[u];
 
-           for (u = 0; u < e.rank; u++) o.push(e.shape[u]);
 
-           for (u = n + 1; u < t.rank; u++) o.push(t.shape[u]), i *= t.shape[u];
 
-           return {
 
-             batchSize: a,
 
-             sliceSize: i,
 
-             dimSize: r,
 
-             outputShape: o
 
-           };
 
-         }(r, o, n);
 
-         return Nt.runKernelFunc(function (t, e) {
 
-           var a = t.gather(r, o.flatten(), n);
 
-           return e([o]), a;
 
-         }, {
 
-           $x: r
 
-         }, function (t, e) {
 
-           var o = e[0];
 
-           return {
 
-             $x: function () {
 
-               var e = r.shape,
 
-                 a = o.size,
 
-                 i = e.slice(0, n),
 
-                 u = i.length,
 
-                 s = e.slice(n, e.length).slice(1),
 
-                 c = s.length,
 
-                 l = bc(0, u),
 
-                 h = bc(u + 1, u + 1 + c),
 
-                 f = wc([i, [a], s]),
 
-                 p = t.reshape(f),
 
-                 d = o.reshape([a]),
 
-                 v = wc([[u], l, h]),
 
-                 m = p.transpose(v),
 
-                 g = Ec(m, d, r.shape[n]),
 
-                 y = yn(v);
 
-               return g = g.transpose(y);
 
-             }
 
-           };
 
-         }).reshape(a.outputShape);
 
-       }
 
-     }),
 
-       Ec = Cn({
 
-         unsortedSegmentSum_: function (t, e, n) {
 
-           var r = ln(t, "x", "unsortedSegmentSum"),
 
-             o = ln(e, "segmentIds", "unsortedSegmentSum", "int32");
 
-           return g(E(n), function () {
 
-             return "numSegments must be of dtype int";
 
-           }), Nt.runKernelFunc(function (t, e) {
 
-             var a = t.unsortedSegmentSum(r, o, n);
 
-             return e([o]), a;
 
-           }, {
 
-             $x: r
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return function (t, e) {
 
-                   for (var n = Xs(e, zn(e)), r = Cc(t, n), o = hc(e, An(0, "int32")), a = r.rank - o.rank, i = 0; i < a; ++i) o = dr(o, i + 1);
 
-                   o = Ms(o, Bn(r.shape, "bool"));
 
-                   var u = zn(r);
 
-                   return Ws(o, r, u);
 
-                 }(t, n);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       });
 
-     exports.unsortedSegmentSum = Ec;
 
-     exports.gather = Cc;
 
-     var Rc = function (t, e, o) {
 
-       return n(this, void 0, void 0, function () {
 
-         var n, a, i, u, s, c, l, h, f, p, d, v, m;
 
-         return r(this, function (r) {
 
-           switch (r.label) {
 
-             case 0:
 
-               for (n = ln(t, "tensor", "boolMask"), a = ln(e, "mask", "boolMask", "bool"), i = null == o ? 0 : o, u = a.rank, s = n.shape, g(u > 0, function () {
 
-                 return "mask cannot be scalar";
 
-               }), y(s.slice(i, i + u), a.shape, "mask's shape must match the first K dimensions of tensor's shape,"), c = 1, l = i; l < i + u; l++) c *= s[l];
 
-               return h = s.slice(0, i).concat([c], s.slice(i + u)), f = n.reshape(h), p = a.reshape([-1]), [4, Us(p)];
 
-             case 1:
 
-               return d = r.sent(), v = d.squeeze([1]), m = Cc(f, v, i), t !== n && n.dispose(), e !== a && a.dispose(), v.dispose(), f.dispose(), p.dispose(), d.dispose(), [2, m];
 
-           }
 
-         });
 
-       });
 
-     };
 
-     exports.booleanMaskAsync = Rc;
 
-     function Ic(t, e, n, r, o, a, i) {
 
-       void 0 === a && (a = "NHWC"), g(t.length === e.rank, function () {
 
-         return "Length of inShape (" + t.length + ") and rank of dy (" + e.rank + ") must match";
 
-       });
 
-       var u = t,
 
-         s = e,
 
-         c = !1;
 
-       3 === e.rank && (c = !0, s = e.as4D(1, e.shape[0], e.shape[1], e.shape[2]), u = [1, t[0], t[1], t[2]]), g(4 === u.length, function () {
 
-         return "Error in conv2dDerInput: inShape must be length 4, but got length " + u.length + ".";
 
-       }), g(4 === s.rank, function () {
 
-         return "Error in conv2dDerInput: dy must be rank 4, but got rank " + s.rank;
 
-       }), g(4 === n.rank, function () {
 
-         return "Error in conv2dDerInput: filter must be rank 4, but got rank " + n.rank;
 
-       });
 
-       var l = "NHWC" === a ? u[3] : u[1],
 
-         h = "NHWC" === a ? s.shape[3] : s.shape[1];
 
-       g(l === n.shape[2], function () {
 
-         return "Error in conv2dDerInput: depth of input (" + l + ") must match input depth for filter " + n.shape[2] + ".";
 
-       }), g(h === n.shape[3], function () {
 
-         return "Error in conv2dDerInput: depth of output (" + h + ") must match output depth for filter " + n.shape[3] + ".";
 
-       }), null != i && g(E(o), function () {
 
-         return "Error in conv2dDerInput: pad must be an integer when using, dimRoundingMode " + i + " but got pad " + o + ".";
 
-       });
 
-       var f = ko(a),
 
-         p = go(u, n.shape, r, 1, o, i, !1, f),
 
-         d = Nt.runKernelFunc(function (t, e) {
 
-           var r = t.conv2dDerInput(s, n, p);
 
-           return e([n, s]), r;
 
-         }, {
 
-           dy4D: s,
 
-           filter: n
 
-         }, function (t, e) {
 
-           var n = e[0],
 
-             u = e[1];
 
-           return {
 
-             dy4D: function () {
 
-               return Dc(t, n, r, o, a, 1, i);
 
-             },
 
-             filter: function () {
 
-               return Nc(t, u, n.shape, r, o, a, i);
 
-             }
 
-           };
 
-         });
 
-       return c ? d.as3D(d.shape[1], d.shape[2], d.shape[3]) : d;
 
-     }
 
-     function kc(t) {
 
-       var e = function (t) {
 
-         return "number" == typeof t ? [t, t, t] : 2 === t.length ? [t[0], t[1], 1] : t;
 
-       }(t),
 
-         n = e[0],
 
-         r = e[1],
 
-         o = e[2];
 
-       return 1 === n && 1 === r && 1 === o;
 
-     }
 
-     function Sc(t, e, n, r, o) {
 
-       g(t.length === e.rank, function () {
 
-         return "Length of inShape (" + t.length + ") and rank of dy (" + e.rank + ") must match";
 
-       });
 
-       var a = t,
 
-         i = e,
 
-         u = !1;
 
-       4 === e.rank && (u = !0, i = e.as5D(1, e.shape[0], e.shape[1], e.shape[2], e.shape[3]), a = [1, t[0], t[1], t[2], t[3]]);
 
-       var s = a[4],
 
-         c = i.shape[4];
 
-       g(5 === a.length, function () {
 
-         return "Error in conv3dDerInput: inShape must be length 5, but got length " + a.length + ".";
 
-       }), g(5 === i.rank, function () {
 
-         return "Error in conv3dDerInput: dy must be rank 5, but got rank " + i.rank;
 
-       }), g(5 === n.rank, function () {
 
-         return "Error in conv3dDerInput: filter must be rank 5, but got rank " + n.rank;
 
-       }), g(s === n.shape[3], function () {
 
-         return "Error in conv3dDerInput: depth of input (" + s + ") must match input depth for filter " + n.shape[3] + ".";
 
-       }), g(c === n.shape[4], function () {
 
-         return "Error in conv3dDerInput: depth of output (" + c + ") must match output depth for filter " + n.shape[4] + ".";
 
-       });
 
-       var l = yo(a, n.shape, r, 1, o),
 
-         h = Nt.runKernelFunc(function (t) {
 
-           return t.conv3dDerInput(i, n, l);
 
-         }, {
 
-           dy5D: i
 
-         });
 
-       return u ? h.as4D(h.shape[1], h.shape[2], h.shape[3], h.shape[4]) : h;
 
-     }
 
-     var Ac = Cn({
 
-       conv1d_: function (t, e, n, r, o, a, i) {
 
-         void 0 === o && (o = "NWC"), void 0 === a && (a = 1);
 
-         var u = ln(t, "x", "conv1d"),
 
-           s = ln(e, "filter", "conv1d"),
 
-           c = u,
 
-           l = !1;
 
-         2 === u.rank && (l = !0, c = u.as3D(1, u.shape[0], u.shape[1])), g(3 === c.rank, function () {
 
-           return "Error in conv1d: input must be rank 3, but got rank " + c.rank + ".";
 
-         }), g(3 === s.rank, function () {
 
-           return "Error in conv1d: filter must be rank 3, but got rank " + s.rank + ".";
 
-         }), null != i && g(E(r), function () {
 
-           return "Error in conv1d: pad must be an integer when using, dimRoundingMode " + i + " but got pad " + r + ".";
 
-         }), g(c.shape[2] === s.shape[1], function () {
 
-           return "Error in conv1d: depth of input (" + c.shape[2] + ") must match input depth for filter " + s.shape[1] + ".";
 
-         }), g(Io(n, a), function () {
 
-           return "Error in conv1D: Either stride or dilation must be 1. Got stride " + n + " and dilation '" + a + "'";
 
-         }), g("NWC" === o, function () {
 
-           return "Error in conv1d: got dataFormat of " + o + " but only NWC is currently supported.";
 
-         });
 
-         var h = s.as4D(1, s.shape[0], s.shape[1], s.shape[2]),
 
-           f = c.as4D(c.shape[0], 1, c.shape[1], c.shape[2]),
 
-           p = Dc(f, h, [1, n], r, "NHWC", [1, a], i);
 
-         return l ? p.as2D(p.shape[2], p.shape[3]) : p.as3D(p.shape[0], p.shape[2], p.shape[3]);
 
-       }
 
-     }),
 
-       Dc = Cn({
 
-         conv2d_: function (t, e, n, r, o, a, i) {
 
-           void 0 === o && (o = "NHWC"), void 0 === a && (a = [1, 1]);
 
-           var u = ln(t, "x", "conv2d"),
 
-             s = ln(e, "filter", "conv2d"),
 
-             c = u,
 
-             l = !1;
 
-           3 === u.rank && (l = !0, c = u.as4D(1, u.shape[0], u.shape[1], u.shape[2])), g(4 === c.rank, function () {
 
-             return "Error in conv2d: input must be rank 4, but got rank " + c.rank + ".";
 
-           }), g(4 === s.rank, function () {
 
-             return "Error in conv2d: filter must be rank 4, but got rank " + s.rank + ".";
 
-           }), null != i && g(E(r), function () {
 
-             return "Error in conv2d: pad must be an integer when using, dimRoundingMode " + i + " but got pad " + r + ".";
 
-           });
 
-           var h = "NHWC" === o ? c.shape[3] : c.shape[1];
 
-           g(h === s.shape[2], function () {
 
-             return "Error in conv2d: depth of input (" + h + ") must match input depth for filter " + s.shape[2] + ".";
 
-           }), g(Io(n, a), function () {
 
-             return "Error in conv2D: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + a + "'";
 
-           });
 
-           var f = ko(o),
 
-             p = go(c.shape, s.shape, n, a, r, i, !1, f),
 
-             d = Nt.runKernelFunc(function (t, e) {
 
-               var n = t.conv2d(c, s, p);
 
-               return e([s, c]), n;
 
-             }, {
 
-               x: c,
 
-               $filter: s
 
-             }, function (t, e) {
 
-               var i = e,
 
-                 u = i[0],
 
-                 s = i[1];
 
-               return g(Ro(a), function () {
 
-                 return "Error in gradient of conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '" + a + "'";
 
-               }), {
 
-                 x: function () {
 
-                   return Fc(s.shape, t, u, n, r, o);
 
-                 },
 
-                 $filter: function () {
 
-                   return Nc(s, t, u.shape, n, r, o);
 
-                 }
 
-               };
 
-             });
 
-           return l ? d.as3D(d.shape[1], d.shape[2], d.shape[3]) : d;
 
-         }
 
-       }),
 
-       Tc = Cn({
 
-         conv3d_: function (t, e, n, r, o, a) {
 
-           void 0 === o && (o = "NDHWC"), void 0 === a && (a = [1, 1, 1]);
 
-           var i = ln(t, "x", "conv3d"),
 
-             u = ln(e, "filter", "conv3d"),
 
-             s = i,
 
-             c = !1;
 
-           4 === i.rank && (c = !0, s = i.as5D(1, i.shape[0], i.shape[1], i.shape[2], i.shape[3])), g(5 === s.rank, function () {
 
-             return "Error in conv3d: input must be rank 5, but got rank " + s.rank + ".";
 
-           }), g(5 === u.rank, function () {
 
-             return "Error in conv3d: filter must be rank 5, but got rank " + u.rank + ".";
 
-           }), g(s.shape[4] === u.shape[3], function () {
 
-             return "Error in conv3d: depth of input (" + s.shape[4] + ") must match input depth for filter " + u.shape[3] + ".";
 
-           }), g(function (t, e) {
 
-             return kc(t) || kc(e);
 
-           }(n, a), function () {
 
-             return "Error in conv3D: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + a + "'";
 
-           }), g("NDHWC" === o, function () {
 
-             return "Error in conv3d: got dataFormat of " + o + " but only NDHWC is currently supported.";
 
-           });
 
-           var l = yo(s.shape, u.shape, n, a, r),
 
-             h = Nt.runKernelFunc(function (t, e) {
 
-               var n = t.conv3d(s, u, l);
 
-               return e([s, u]), n;
 
-             }, {
 
-               x: s,
 
-               $filter: u
 
-             }, function (t, e) {
 
-               g(kc(a), function () {
 
-                 return "Error in gradient of conv3D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '" + a + "'";
 
-               });
 
-               var o = e[0],
 
-                 i = e[1];
 
-               return {
 
-                 x: function () {
 
-                   return Sc(o.shape, t, i, n, r);
 
-                 },
 
-                 $filter: function () {
 
-                   return function (t, e, n, r, o) {
 
-                     var a = t;
 
-                     4 === t.rank && (a = t.as5D(1, t.shape[0], t.shape[1], t.shape[2], t.shape[3]));
 
-                     var i = e;
 
-                     4 === i.rank && (i = e.as5D(1, e.shape[0], e.shape[1], e.shape[2], e.shape[3])), g(5 === a.rank, function () {
 
-                       return "Error in conv3dDerFilter: input must be rank 5, but got shape " + a.shape + ".";
 
-                     }), g(5 === i.rank, function () {
 
-                       return "Error in conv3dDerFilter: dy must be rank 5, but got shape " + i.shape + ".";
 
-                     }), g(5 === n.length, function () {
 
-                       return "Error in conv3dDerFilter: filterShape must be length 5, but got " + n + ".";
 
-                     }), g(a.shape[4] === n[3], function () {
 
-                       return "Error in conv3dDerFilter: depth of input " + a.shape[4] + ") must match input depth in filter (" + n[3] + ".";
 
-                     }), g(i.shape[4] === n[4], function () {
 
-                       return "Error in conv3dDerFilter: depth of dy (" + i.shape[4] + ") must match output depth for filter (" + n[4] + ").";
 
-                     });
 
-                     var u = yo(a.shape, n, r, 1, o);
 
-                     return Nt.runKernelFunc(function (t) {
 
-                       return t.conv3dDerFilter(a, i, u);
 
-                     }, {
 
-                       x5D: a,
 
-                       dy5D: i
 
-                     });
 
-                   }(o, t, i.shape, n, r);
 
-                 }
 
-               };
 
-             });
 
-           return c ? h.as4D(h.shape[1], h.shape[2], h.shape[3], h.shape[4]) : h;
 
-         }
 
-       }),
 
-       Nc = Cn({
 
-         conv2dDerFilter_: function (t, e, n, r, o, a, i) {
 
-           void 0 === a && (a = "NHWC");
 
-           var u = t;
 
-           3 === t.rank && (u = t.as4D(1, t.shape[0], t.shape[1], t.shape[2]));
 
-           var s = e;
 
-           3 === s.rank && (s = e.as4D(1, e.shape[0], e.shape[1], e.shape[2])), g(4 === u.rank, function () {
 
-             return "Error in conv2dDerFilter: input must be rank 4, but got shape " + u.shape + ".";
 
-           }), g(4 === s.rank, function () {
 
-             return "Error in conv2dDerFilter: dy must be rank 4, but got shape " + s.shape + ".";
 
-           }), g(4 === n.length, function () {
 
-             return "Error in conv2dDerFilter: filterShape must be length 4, but got " + n + ".";
 
-           });
 
-           var c = "NHWC" === a ? u.shape[3] : u.shape[1],
 
-             l = "NHWC" === a ? s.shape[3] : s.shape[1];
 
-           g(c === n[2], function () {
 
-             return "Error in conv2dDerFilter: depth of input " + c + ") must match input depth in filter (" + n[2] + ".";
 
-           }), g(l === n[3], function () {
 
-             return "Error in conv2dDerFilter: depth of dy (" + l + ") must match output depth for filter (" + n[3] + ").";
 
-           }), null != i && g(E(o), function () {
 
-             return "Error in conv2dDerFilter: pad must be an integer when using, dimRoundingMode " + i + " but got pad " + o + ".";
 
-           });
 
-           var h = ko(a),
 
-             f = go(u.shape, n, r, 1, o, i, !1, h);
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.conv2dDerFilter(u, s, f);
 
-           }, {
 
-             x4D: u,
 
-             dy4D: s
 
-           });
 
-         }
 
-       }),
 
-       Fc = Cn({
 
-         conv2dDerInput_: Ic
 
-       }),
 
-       Oc = Cn({
 
-         depthwiseConv2d_: function (t, e, n, r, o, a, i) {
 
-           void 0 === o && (o = "NHWC"), void 0 === a && (a = [1, 1]);
 
-           var u = ln(t, "x", "depthwiseConv2d"),
 
-             s = ln(e, "filter", "depthwiseConv2d"),
 
-             c = u,
 
-             l = !1;
 
-           3 === u.rank && (l = !0, c = u.as4D(1, u.shape[0], u.shape[1], u.shape[2])), g(4 === c.rank, function () {
 
-             return "Error in depthwiseConv2d: input must be rank 4, but got rank " + c.rank + ".";
 
-           }), g(4 === s.rank, function () {
 
-             return "Error in depthwiseConv2d: filter must be rank 4, but got rank " + s.rank + ".";
 
-           }), g(c.shape[3] === s.shape[2], function () {
 
-             return "Error in depthwiseConv2d: number of input channels (" + c.shape[3] + ") must match the inChannels dimension in filter " + s.shape[2] + ".";
 
-           }), null == a && (a = [1, 1]), g(Io(n, a), function () {
 
-             return "Error in depthwiseConv2d: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + a + "'";
 
-           }), null != i && g(E(r), function () {
 
-             return "Error in depthwiseConv2d: pad must be an integer when using, dimRoundingMode " + i + " but got pad " + r + ".";
 
-           });
 
-           var h = go(c.shape, s.shape, n, a, r, i, !0),
 
-             f = Nt.runKernelFunc(function (t, e) {
 
-               var n = t.depthwiseConv2D(c, s, h);
 
-               return e([c, s]), n;
 
-             }, {
 
-               x: c,
 
-               $filter: s
 
-             }, function (t, e) {
 
-               g(Ro(a), function () {
 
-                 return "Error in gradient of depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '" + a + "'";
 
-               });
 
-               var n = e[0],
 
-                 r = e[1];
 
-               return {
 
-                 x: function () {
 
-                   return _c(n.shape, t, r, h);
 
-                 },
 
-                 $filter: function () {
 
-                   return Mc(n, t, r.shape, h);
 
-                 }
 
-               };
 
-             });
 
-           return l ? f.as3D(f.shape[1], f.shape[2], f.shape[3]) : f;
 
-         }
 
-       }),
 
-       _c = Cn({
 
-         depthwiseConv2dDerInput_: function (t, e, n, r) {
 
-           var o = e,
 
-             a = !1;
 
-           3 === e.rank && (a = !0, o = e.as4D(1, e.shape[0], e.shape[1], e.shape[2]));
 
-           var i = Nt.runKernelFunc(function (t) {
 
-             return t.depthwiseConv2DDerInput(o, n, r);
 
-           }, {
 
-             dy4D: o
 
-           });
 
-           return a ? i.as3D(i.shape[1], i.shape[2], i.shape[3]) : i;
 
-         }
 
-       }),
 
-       Mc = Cn({
 
-         depthwiseConv2dDerFilter_: function (t, e, n, r) {
 
-           var o = t;
 
-           3 === t.rank && (o = t.as4D(1, t.shape[0], t.shape[1], t.shape[2]));
 
-           var a = e;
 
-           return 3 === a.rank && (a = e.as4D(1, e.shape[0], e.shape[1], e.shape[2])), Nt.runKernelFunc(function (t) {
 
-             return t.depthwiseConv2DDerFilter(o, a, r);
 
-           }, {
 
-             x4D: o,
 
-             dy4D: a
 
-           });
 
-         }
 
-       }),
 
-       Bc = Cn({
 
-         separableConv2d_: function (t, e, n, r, o, a, i) {
 
-           void 0 === a && (a = [1, 1]), void 0 === i && (i = "NHWC");
 
-           var u = ln(t, "x", "separableConv2d"),
 
-             s = ln(e, "depthwiseFilter", "separableConv2d"),
 
-             c = ln(n, "pointwiseFilter", "separableConv2d"),
 
-             l = u,
 
-             h = !1;
 
-           if (3 === u.rank && (h = !0, l = u.as4D(1, u.shape[0], u.shape[1], u.shape[2])), "NCHW" === i) throw new Error("separableConv2d currently does not support dataFormat NCHW; only NHWC is supported");
 
-           g(4 === l.rank, function () {
 
-             return "Error in separableConv2d: input must be rank 4, but got rank " + l.rank + ".";
 
-           }), g(4 === s.rank, function () {
 
-             return "Error in separableConv2d: depthwise filter must be rank 4, but got rank " + s.rank + ".";
 
-           }), g(4 === c.rank, function () {
 
-             return "Error in separableConv2d: pointwise filter must be rank 4, but got rank " + s.rank + ".";
 
-           }), g(1 === c.shape[0], function () {
 
-             return "Error in separableConv2d: the first dimension of pointwise filter  must be 1, but got " + c.shape[0] + ".";
 
-           }), g(1 === c.shape[1], function () {
 
-             return "Error in separableConv2d: the second dimension of pointwise filter must be 1, but got " + c.shape[1] + ".";
 
-           });
 
-           var f = s.shape[2],
 
-             p = s.shape[3];
 
-           g(c.shape[2] === f * p, function () {
 
-             return "Error in separableConv2d: the third dimension of pointwise filter must be " + f * p + ", but got " + c.shape[2] + ".";
 
-           });
 
-           var d = Oc(l, s, r, o, i, a),
 
-             v = Dc(d, c, 1, "valid", i);
 
-           return h ? v.as3D(v.shape[1], v.shape[2], v.shape[3]) : v;
 
-         }
 
-       }),
 
-       Pc = Cn({
 
-         conv2dTranspose_: function (t, e, n, r, o, a) {
 
-           return Ic(n, ln(t, "x", "conv2dTranspose"), ln(e, "filter", "conv2dTranspose"), r, o, "NHWC", a);
 
-         }
 
-       }),
 
-       Lc = Cn({
 
-         conv3dTranspose_: function (t, e, n, r, o) {
 
-           return Sc(n, ln(t, "x", "conv3dTranspose"), ln(e, "filter", "conv3dTranspose"), r, o);
 
-         }
 
-       });
 
-     exports.conv3dTranspose = Lc;
 
-     exports.conv2dTranspose = Pc;
 
-     exports.separableConv2d = Bc;
 
-     exports.depthwiseConv2d = Oc;
 
-     exports.conv3d = Tc;
 
-     exports.conv2d = Dc;
 
-     exports.conv1d = Ac;
 
-     var Wc = Cn({
 
-       matMul_: function (t, e, n, r) {
 
-         var o;
 
-         void 0 === n && (n = !1), void 0 === r && (r = !1);
 
-         var a = ln(t, "a", "matMul"),
 
-           i = ln(e, "b", "matMul");
 
-         o = Rt(a, i), a = o[0], i = o[1];
 
-         var u = n ? a.shape[a.rank - 2] : a.shape[a.rank - 1],
 
-           s = r ? i.shape[i.rank - 1] : i.shape[i.rank - 2],
 
-           c = n ? a.shape[a.rank - 1] : a.shape[a.rank - 2],
 
-           l = r ? i.shape[i.rank - 2] : i.shape[i.rank - 1],
 
-           h = a.shape.slice(0, -2),
 
-           f = i.shape.slice(0, -2),
 
-           p = w(h),
 
-           d = w(f);
 
-         g(a.rank >= 2 && i.rank >= 2 && a.rank === i.rank, function () {
 
-           return "Error in matMul: inputs must have the same rank of at least 2, got ranks " + a.rank + " and " + i.rank + ".";
 
-         }), g(C(h, f), function () {
 
-           return "Error in matMul: outer dimensions (" + h + ") and (" + f + ") of Tensors with shapes " + a.shape + " and " + i.shape + " must match.";
 
-         }), g(u === s, function () {
 
-           return "Error in matMul: inner shapes (" + u + ") and (" + s + ") of Tensors with shapes " + a.shape + " and " + i.shape + " and transposeA=" + n + " and transposeB=" + r + " must match.";
 
-         });
 
-         var v = a.shape.slice(0, -2).concat([c, l]),
 
-           m = n ? a.as3D(p, u, c) : a.as3D(p, c, u),
 
-           y = r ? i.as3D(d, l, s) : i.as3D(d, s, l),
 
-           x = {
 
-             transposeA: n,
 
-             transposeB: r
 
-           };
 
-         return Nt.runKernelFunc(function (t, e) {
 
-           var o = t.batchMatMul(m, y, n, r);
 
-           return e([m, y]), o;
 
-         }, {
 
-           a: m,
 
-           b: y
 
-         }, function (t, e) {
 
-           var o = e,
 
-             a = o[0],
 
-             i = o[1];
 
-           return n || r ? !n && r ? {
 
-             a: function () {
 
-               return t.matMul(i, !1, !1);
 
-             },
 
-             b: function () {
 
-               return t.matMul(a, !0, !1);
 
-             }
 
-           } : n && !r ? {
 
-             a: function () {
 
-               return i.matMul(t, !1, !0);
 
-             },
 
-             b: function () {
 
-               return a.matMul(t, !1, !1);
 
-             }
 
-           } : {
 
-                 a: function () {
 
-                   return i.matMul(t, !0, !0);
 
-                 },
 
-                 b: function () {
 
-                   return t.matMul(a, !0, !0);
 
-                 }
 
-               } : {
 
-               a: function () {
 
-                 return t.matMul(i, !1, !0);
 
-               },
 
-               b: function () {
 
-                 return a.matMul(t, !0, !1);
 
-               }
 
-             };
 
-         }, "BatchMatMul", x).reshape(v);
 
-       }
 
-     }),
 
-       Uc = Cn({
 
-         dot_: function (t, e) {
 
-           var n = ln(t, "t1", "dot"),
 
-             r = ln(e, "t2", "dot");
 
-           g(!(1 !== n.rank && 2 !== n.rank || 1 !== r.rank && 2 !== r.rank), function () {
 
-             return "Error in dot: inputs must all be rank 1 or 2, but got ranks " + n.rank + " and " + r.rank + ".";
 
-           });
 
-           var o = 1 === n.rank ? n.size : n.shape[1],
 
-             a = 1 === r.rank ? r.size : r.shape[0];
 
-           return g(o === a, function () {
 
-             return "Error in dot: inner dimensions of inputs must match, but got " + o + " and " + a + ".";
 
-           }), 1 === n.rank && 1 === r.rank ? n.as2D(1, -1).matMul(r.as2D(-1, 1)).asScalar() : 1 === n.rank && 2 === r.rank ? n.as2D(1, -1).matMul(r.as2D(r.shape[0], r.shape[1])).as1D() : 2 === n.rank && 1 === r.rank ? n.matMul(r.as2D(-1, 1)).as1D() : n.matMul(r.as2D(r.shape[0], r.shape[1]));
 
-         }
 
-       }),
 
-       Vc = Cn({
 
-         outerProduct_: function (t, e) {
 
-           var n = ln(t, "v1", "outerProduct"),
 
-             r = ln(e, "v2", "outerProduct");
 
-           return g(1 === n.rank && 1 === r.rank, function () {
 
-             return "Error in outerProduct: inputs must be rank 1, but got ranks " + n.rank + " and " + r.rank + ".";
 
-           }), n.as2D(-1, 1).matMul(r.as2D(1, -1));
 
-         }
 
-       });
 
-     exports.outerProduct = Vc;
 
-     exports.dot = Uc;
 
-     exports.matMul = Wc;
 
-     var zc = Cn({
 
-       reverse_: function (t, e) {
 
-         var n = ln(t, "x", "reverse");
 
-         if (0 === n.rank) return n.clone();
 
-         var r = D(e, n.shape);
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.reverse(n, r);
 
-         }, {
 
-           $x: n
 
-         }, function (t) {
 
-           return {
 
-             $x: function () {
 
-               return t.reverse(r);
 
-             }
 
-           };
 
-         }).reshapeAs(n);
 
-       }
 
-     }),
 
-       Gc = Cn({
 
-         reverse1d_: function (t) {
 
-           var e = ln(t, "x", "reverse");
 
-           return g(1 === e.rank, function () {
 
-             return "Error in reverse1D: x must be rank 1 but got rank " + e.rank + ".";
 
-           }), zc(e, 0);
 
-         }
 
-       }),
 
-       Hc = Cn({
 
-         reverse2d_: function (t, e) {
 
-           var n = ln(t, "x", "reverse");
 
-           return g(2 === n.rank, function () {
 
-             return "Error in reverse2D: x must be rank 2 but got rank " + n.rank + ".";
 
-           }), zc(n, e);
 
-         }
 
-       }),
 
-       qc = Cn({
 
-         reverse3d_: function (t, e) {
 
-           var n = ln(t, "x", "reverse");
 
-           return g(3 === n.rank, function () {
 
-             return "Error in reverse3D: x must be rank 3 but got rank " + n.rank + ".";
 
-           }), zc(n, e);
 
-         }
 
-       }),
 
-       Kc = Cn({
 
-         reverse4d_: function (t, e) {
 
-           var n = ln(t, "x", "reverse");
 
-           return g(4 === n.rank, function () {
 
-             return "Error in reverse4D: x must be rank 4 but got rank " + n.rank + ".";
 
-           }), zc(n, e);
 
-         }
 
-       });
 
-     exports.reverse4d = Kc;
 
-     exports.reverse3d = qc;
 
-     exports.reverse2d = Hc;
 
-     exports.reverse1d = Gc;
 
-     exports.reverse = zc;
 
-     function jc(t, e, n, r, o, a) {
 
-       var i = ln(t, "x", "maxPool"),
 
-         u = i,
 
-         s = !1;
 
-       3 === i.rank && (s = !0, u = i.as4D(1, i.shape[0], i.shape[1], i.shape[2])), null == r && (r = [1, 1]), g(4 === u.rank, function () {
 
-         return "Error in maxPool: input must be rank 4 but got rank " + u.rank + ".";
 
-       }), g(Io(n, r), function () {
 
-         return "Error in maxPool: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + r + "'";
 
-       }), null != a && g(E(o), function () {
 
-         return "Error in maxPool: pad must be an integer when using, dimRoundingMode " + a + " but got pad " + o + ".";
 
-       });
 
-       var c = vo(u.shape, e, n, r, o, a),
 
-         l = Nt.runKernelFunc(function (t, e) {
 
-           var n = t.maxPool(u, c);
 
-           return e([u, n]), n;
 
-         }, {
 
-           x: u
 
-         }, function (t, a) {
 
-           var i = a[0],
 
-             u = a[1];
 
-           return {
 
-             x: function () {
 
-               return function (t, e, n, r, o, a, i, u) {
 
-                 var s = ln(t, "dy", "maxPoolBackprop"),
 
-                   c = ln(e, "input", "maxPoolBackprop"),
 
-                   l = ln(n, "output", "maxPoolBackprop");
 
-                 g(c.rank === s.rank, function () {
 
-                   return "Rank of input (" + c.rank + ") does not match rank of dy (" + s.rank + ")";
 
-                 }), null == a && (a = [1, 1]), g(Io(o, a), function () {
 
-                   return "Error in maxPoolBackProp: Either strides or dilations must be 1. Got strides " + o + " and dilations '" + a + "'";
 
-                 }), g(4 === s.rank, function () {
 
-                   return "Error in maxPoolBackprop: dy must be rank 4 but got rank " + s.rank + ".";
 
-                 }), g(4 === c.rank, function () {
 
-                   return "Error in maxPoolBackprop: input must be rank 4 but got rank " + c.rank + ".";
 
-                 }), null != u && g(E(i), function () {
 
-                   return "Error in maxPoolBackprop: pad must be an integer when using, dimRoundingMode " + u + " but got pad " + i + ".";
 
-                 });
 
-                 var h = vo(c.shape, r, o, a, i, u);
 
-                 return Nt.runKernelFunc(function (t) {
 
-                   return t.maxPoolBackprop(s, c, l, h);
 
-                 }, {
 
-                   $dy: s,
 
-                   $input: c
 
-                 });
 
-               }(t, i, u, e, n, r, o);
 
-             }
 
-           };
 
-         });
 
-       return s ? l.as3D(l.shape[1], l.shape[2], l.shape[3]) : l;
 
-     }
 
-     function Xc(t, e, n, r, o, a) {
 
-       var i = ln(t, "x", "avgPool", "float32");
 
-       null == r && (r = [1, 1]), g(Io(n, r), function () {
 
-         return "Error in avgPool: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + r + "'";
 
-       });
 
-       var u = i,
 
-         s = !1;
 
-       3 === i.rank && (s = !0, u = i.as4D(1, i.shape[0], i.shape[1], i.shape[2])), g(4 === u.rank, function () {
 
-         return "Error in avgPool: x must be rank 4 but got rank " + u.rank + ".";
 
-       }), null != a && g(E(o), function () {
 
-         return "Error in avgPool: pad must be an integer when using, dimRoundingMode " + a + " but got pad " + o + ".";
 
-       });
 
-       var c = vo(u.shape, e, n, r, o, a),
 
-         l = Nt.runKernelFunc(function (t) {
 
-           return t.avgPool(u, c);
 
-         }, {
 
-           x: u
 
-         }, function (t) {
 
-           return {
 
-             x: function () {
 
-               return function (t, e, n, r, o, a) {
 
-                 var i = ln(t, "dy", "avgPoolBackprop"),
 
-                   u = ln(e, "input", "avgPoolBackprop");
 
-                 g(u.rank === i.rank, function () {
 
-                   return "Rank of input (" + u.rank + ") does not match rank of dy (" + i.rank + ")";
 
-                 }), null == o && (o = [1, 1]), g(Io(r, o), function () {
 
-                   return "Error in avgPoolBackprop: Either strides or dilations must be 1. Got strides " + r + " and dilations '" + o + "'";
 
-                 });
 
-                 var s = u,
 
-                   c = i,
 
-                   l = !1;
 
-                 3 === u.rank && (l = !0, s = u.as4D(1, u.shape[0], u.shape[1], u.shape[2]), c = i.as4D(1, i.shape[0], i.shape[1], i.shape[2])), g(4 === c.rank, function () {
 
-                   return "Error in avgPoolBackprop: dy must be rank 4 but got rank " + c.rank + ".";
 
-                 }), g(4 === s.rank, function () {
 
-                   return "Error in avgPoolBackprop: input must be rank 4 but got rank " + s.rank + ".";
 
-                 });
 
-                 var h = vo(s.shape, n, r, o, a),
 
-                   f = Nt.runKernelFunc(function (t) {
 
-                     return t.avgPoolBackprop(c, s, h);
 
-                   }, {
 
-                     dy4D: c,
 
-                     input4D: s
 
-                   });
 
-                 return l ? f.as3D(f.shape[1], f.shape[2], f.shape[3]) : f;
 
-               }(t, u, e, n, r, o);
 
-             }
 
-           };
 
-         });
 
-       return l = l.cast(i.dtype), s ? l.as3D(l.shape[1], l.shape[2], l.shape[3]) : l;
 
-     }
 
-     var $c = Cn({
 
-       maxPool_: function (t, e, n, r, o) {
 
-         return jc(t, e, n, 1, r, o);
 
-       }
 
-     }),
 
-       Yc = Cn({
 
-         avgPool_: function (t, e, n, r, o) {
 
-           return Xc(t, e, n, 1, r, o);
 
-         }
 
-       }),
 
-       Qc = Cn({
 
-         pool_: function (t, e, n, r, o, a) {
 
-           null == o && (o = [1, 1]), null == a && (a = 1), 0 === r && (r = "valid");
 
-           var i = ln(t, "x", "maxPool"),
 
-             u = i,
 
-             s = !1;
 
-           3 === i.rank && (s = !0, u = i.as4D(1, i.shape[0], i.shape[1], i.shape[2])), g(Io(a, o), function () {
 
-             return "Error in pool: Either strides or dilations must be 1. Got strides " + a + " and dilations '" + o + "'";
 
-           });
 
-           var c,
 
-             l = vo(u.shape, e, a, o, r),
 
-             h = [l.dilationHeight, l.dilationWidth];
 
-           c = "same" === r ? function (t, e) {
 
-             var n = t.map(function (t, n) {
 
-               return t + (t - 1) * (e[n] - 1);
 
-             }).map(function (t) {
 
-               return t - 1;
 
-             }),
 
-               r = n.map(function (t) {
 
-                 return Math.floor(t / 2);
 
-               }),
 
-               o = n.map(function (t, e) {
 
-                 return t - r[e];
 
-               });
 
-             return n.map(function (t, e) {
 
-               return [r[e], o[e]];
 
-             });
 
-           }([l.filterHeight, l.filterWidth], h) : [[0, 0], [0, 0]];
 
-           var f = 1 === h[0] && 1 === h[1],
 
-             p = function (t, e, n) {
 
-               var r = n.map(function (t) {
 
-                 return t[0];
 
-               }),
 
-                 o = n.map(function (t) {
 
-                   return t[1];
 
-                 }),
 
-                 a = t.concat(r, o),
 
-                 i = e.map(function (t, e) {
 
-                   return (t - a[e] % t) % t;
 
-                 }),
 
-                 u = o.map(function (t, e) {
 
-                   return t + i[e];
 
-                 }),
 
-                 s = e.map(function (t, e) {
 
-                   return [r[e], u[e]];
 
-                 }),
 
-                 c = e.map(function (t, e) {
 
-                   return [0, i[e]];
 
-                 });
 
-               return [s, c];
 
-             }([l.inHeight, l.inWidth], h, c),
 
-             d = p[0],
 
-             v = p[1],
 
-             m = f ? r : "valid",
 
-             y = f ? u : Ar(u, h, d),
 
-             x = ("avg" === n ? function () {
 
-               return Xc(y, e, a, 1, m);
 
-             } : function () {
 
-               return jc(y, e, a, 1, m);
 
-             })(),
 
-             b = f ? x : cr(x, h, v);
 
-           return s ? b.as3D(b.shape[1], b.shape[2], b.shape[3]) : b;
 
-         }
 
-       }),
 
-       Jc = Cn({
 
-         maxPool3d_: function (t, e, n, r, o, a, i) {
 
-           void 0 === a && (a = "NDHWC");
 
-           var u = ln(t, "x", "maxPool3d"),
 
-             s = u,
 
-             c = !1;
 
-           4 === u.rank && (c = !0, s = u.as5D(1, u.shape[0], u.shape[1], u.shape[2], u.shape[3])), null == i && (i = [1, 1, 1]), g(5 === s.rank, function () {
 
-             return "Error in maxPool3d: x must be rank 5 but got rank " + s.rank + ".";
 
-           }), g("NDHWC" === a, function () {
 
-             return "Error in maxPool3d: Only NDHWC is currently supported, but got dataFormat of " + a;
 
-           }), g(Io(n, i), function () {
 
-             return "Error in maxPool3d: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + i + "'";
 
-           }), null != o && g(E(r), function () {
 
-             return "Error in maxPool3d: pad must be an integer when using, dimRoundingMode " + o + " but got pad " + r + ".";
 
-           });
 
-           var l = mo(s.shape, e, n, i, r, o, a),
 
-             h = Nt.runKernelFunc(function (t, e) {
 
-               var n = t.maxPool3d(s, l);
 
-               return e([s, n]), n;
 
-             }, {
 
-               x: s
 
-             }, function (t, a) {
 
-               var u = a[0],
 
-                 s = a[1];
 
-               return {
 
-                 x: function () {
 
-                   return function (t, e, n, r, o, a, i, u) {
 
-                     var s = ln(t, "dy", "maxPool3dBackprop"),
 
-                       c = ln(e, "input", "maxPool3dBackprop"),
 
-                       l = ln(n, "output", "maxPool3dBackprop"),
 
-                       h = s,
 
-                       f = c,
 
-                       p = l,
 
-                       d = !1;
 
-                     4 === c.rank && (d = !0, h = s.as5D(1, s.shape[0], s.shape[1], s.shape[2], s.shape[3]), f = c.as5D(1, c.shape[0], c.shape[1], c.shape[2], c.shape[3]), p = l.as5D(1, l.shape[0], l.shape[1], l.shape[2], l.shape[3])), g(5 === h.rank, function () {
 
-                       return "Error in maxPool3dBackprop: dy must be rank 5 but got rank " + h.rank + ".";
 
-                     }), g(5 === f.rank, function () {
 
-                       return "Error in maxPool3dBackprop: input must be rank 5 but got rank " + f.rank + ".";
 
-                     }), g(5 === p.rank, function () {
 
-                       return "Error in maxPool3dBackprop: output must be rank 5 but got rank " + p.rank + ".";
 
-                     }), null == a && (a = [1, 1, 1]), g(Io(o, a), function () {
 
-                       return "Error in maxPool3dBackprop: Either strides or dilations must be 1. Got strides " + o + " and dilations '" + a + "'";
 
-                     }), null != u && g(E(i), function () {
 
-                       return "Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode " + u + " but got pad " + i + ".";
 
-                     });
 
-                     var v = mo(f.shape, r, o, a, i, u),
 
-                       m = Nt.runKernelFunc(function (t) {
 
-                         return t.maxPool3dBackprop(h, f, p, v);
 
-                       }, {
 
-                         dy5D: h,
 
-                         input5D: f
 
-                       });
 
-                     return d ? m.as4D(m.shape[1], m.shape[2], m.shape[3], m.shape[4]) : m;
 
-                   }(t, u, s, e, n, i, r, o);
 
-                 }
 
-               };
 
-             });
 
-           return c ? h.as4D(h.shape[1], h.shape[2], h.shape[3], h.shape[4]) : h;
 
-         }
 
-       }),
 
-       Zc = Cn({
 
-         avgPool3d_: function (t, e, n, r, o, a, i) {
 
-           void 0 === a && (a = "NDHWC");
 
-           var u = ln(t, "x", "avgPool3d", "float32"),
 
-             s = u,
 
-             c = !1;
 
-           4 === u.rank && (c = !0, s = u.as5D(1, u.shape[0], u.shape[1], u.shape[2], u.shape[3])), null == i && (i = [1, 1, 1]), g(5 === s.rank, function () {
 
-             return "Error in avgPool3d: x must be rank 5 but got rank " + s.rank + ".";
 
-           }), g("NDHWC" === a, function () {
 
-             return "Error in avgPool3d: Only NDHWC is currently supported, but got dataFormat of " + a;
 
-           }), g(Io(n, i), function () {
 
-             return "Error in avgPool3d: Either strides or dilations must be 1. Got strides " + n + " and dilations '" + i + "'";
 
-           }), null != o && g(E(r), function () {
 
-             return "Error in avgPool3d: pad must be an integer when using, dimRoundingMode " + o + " but got pad " + r + ".";
 
-           });
 
-           var l = mo(s.shape, e, n, i, r, o, a),
 
-             h = Nt.runKernelFunc(function (t) {
 
-               return t.avgPool3d(s, l);
 
-             }, {
 
-               x: s
 
-             }, function (t) {
 
-               return {
 
-                 x: function () {
 
-                   return function (t, e, n, r, o, a, i) {
 
-                     var u = ln(t, "dy", "avgPool3dBackprop"),
 
-                       s = ln(e, "input", "avgPool3dBackprop"),
 
-                       c = u,
 
-                       l = s,
 
-                       h = !1;
 
-                     4 === s.rank && (h = !0, c = u.as5D(1, u.shape[0], u.shape[1], u.shape[2], u.shape[3]), l = s.as5D(1, s.shape[0], s.shape[1], s.shape[2], s.shape[3])), g(5 === c.rank, function () {
 
-                       return "Error in avgPool3dBackprop: dy must be rank 5 but got rank " + c.rank + ".";
 
-                     }), g(5 === l.rank, function () {
 
-                       return "Error in avgPool3dBackprop: input must be rank 5 but got rank " + l.rank + ".";
 
-                     }), null == o && (o = [1, 1, 1]), g(Io(r, o), function () {
 
-                       return "Error in avgPool3dBackprop: Either strides or dilations must be 1. Got strides " + r + " and dilations '" + o + "'";
 
-                     }), null != i && g(E(a), function () {
 
-                       return "Error in maxPool3dBackprop: pad must be an integer when using, dimRoundingMode " + i + " but got pad " + a + ".";
 
-                     });
 
-                     var f = mo(l.shape, n, r, o, a, i),
 
-                       p = Nt.runKernelFunc(function (t) {
 
-                         return t.avgPool3dBackprop(c, l, f);
 
-                       }, {
 
-                         dy5D: c,
 
-                         input5D: l
 
-                       });
 
-                     return h ? p.as4D(p.shape[1], p.shape[2], p.shape[3], p.shape[4]) : p;
 
-                   }(t, s, e, n, i, r, o);
 
-                 }
 
-               };
 
-             });
 
-           return h = h.cast(s.dtype), c ? h.as4D(h.shape[1], h.shape[2], h.shape[3], h.shape[4]) : h;
 
-         }
 
-       });
 
-     exports.avgPool3d = Zc;
 
-     exports.maxPool3d = Jc;
 
-     exports.pool = Qc;
 
-     exports.avgPool = Yc;
 
-     exports.maxPool = $c;
 
-     var tl = Cn({
 
-       slice_: function (t, e, n) {
 
-         var r,
 
-           o,
 
-           a = ln(t, "x", "slice");
 
-         if (0 === a.rank) throw new Error("Slicing scalar is not possible");
 
-         (r = "number" == typeof e ? [e].concat(new Array(a.rank - 1).fill(0)) : e.length < a.rank ? e.concat(new Array(a.rank - e.length).fill(0)) : e.slice()).forEach(function (t) {
 
-           g(-1 !== t, function () {
 
-             return "slice() does not support negative begin indexing.";
 
-           });
 
-         }), o = (o = null == n ? new Array(a.rank).fill(-1) : "number" == typeof n ? [n].concat(new Array(a.rank - 1).fill(-1)) : n.length < a.rank ? n.concat(new Array(a.rank - n.length).fill(-1)) : n).map(function (t, e) {
 
-           return t >= 0 ? t : (g(-1 === t, function () {
 
-             return "Negative size values should be exactly -1 but got " + t + " for the slice() size at index " + e + ".";
 
-           }), a.shape[e] - r[e]);
 
-         }), qr(a, r, o);
 
-         var i = a.shape,
 
-           u = {
 
-             begin: r,
 
-             size: o
 
-           };
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.slice(a, r, o);
 
-         }, {
 
-           x: a
 
-         }, function (t) {
 
-           for (var e = [], n = 0; n < t.rank; n++) e.push([r[n], i[n] - r[n] - o[n]]);
 
-           return {
 
-             x: function () {
 
-               return t.pad(e);
 
-             }
 
-           };
 
-         }, "Slice", u);
 
-       }
 
-     }),
 
-       el = Cn({
 
-         slice1d_: function (t, e, n) {
 
-           var r = ln(t, "x", "slice1d");
 
-           return g(1 === r.rank, function () {
 
-             return "slice1d expects a rank-1 tensor, but got a rank-" + r.rank + " tensor";
 
-           }), tl(r, [e], [n]);
 
-         }
 
-       }),
 
-       nl = Cn({
 
-         slice2d_: function (t, e, n) {
 
-           var r = ln(t, "x", "slice2d");
 
-           return g(2 === r.rank, function () {
 
-             return "slice2d expects a rank-2 tensor, but got a rank-" + r.rank + " tensor";
 
-           }), tl(r, e, n);
 
-         }
 
-       }),
 
-       rl = Cn({
 
-         slice3d_: function (t, e, n) {
 
-           var r = ln(t, "x", "slice3d");
 
-           return g(3 === r.rank, function () {
 
-             return "slice3d expects a rank-3 tensor, but got a rank-" + r.rank + " tensor";
 
-           }), tl(r, e, n);
 
-         }
 
-       }),
 
-       ol = Cn({
 
-         slice4d_: function (t, e, n) {
 
-           var r = ln(t, "x", "slice4d");
 
-           return g(4 === r.rank, function () {
 
-             return "slice4d expects a rank-4 tensor, but got a rank-" + r.rank + " tensor";
 
-           }), tl(r, e, n);
 
-         }
 
-       });
 
-     exports.slice4d = ol;
 
-     exports.slice3d = rl;
 
-     exports.slice2d = nl;
 
-     exports.slice1d = el;
 
-     exports.slice = tl;
 
-     function al(t, e, n, r, o) {
 
-       return e.rank < n.rank && (e = e.reshape(vn(e.shape, r))), t.rank < n.rank && (t = t.reshape(vn(t.shape, r))), {
 
-         $x: function () {
 
-           var r = t.mul(n.equal(e).cast(t.dtype));
 
-           return null == o ? r : r.transpose(o);
 
-         }
 
-       };
 
-     }
 
-     var il = Cn({
 
-       all_: function (t, e, n) {
 
-         void 0 === e && (e = null), void 0 === n && (n = !1);
 
-         var r = ln(t, "x", "all", "bool"),
 
-           o = D(e, r.shape),
 
-           a = o,
 
-           i = gn(a, r.rank);
 
-         null != i && (r = r.transpose(i), a = xn(a.length, r.rank));
 
-         var u = Nt.runKernelFunc(function (t) {
 
-           return t.all(r, a);
 
-         }, {
 
-           $x: r
 
-         });
 
-         if (n) {
 
-           var s = vn(u.shape, o);
 
-           return u.reshape(s);
 
-         }
 
-         return u;
 
-       }
 
-     }),
 
-       ul = Cn({
 
-         any_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "any", "bool"),
 
-             o = D(e, r.shape),
 
-             a = o,
 
-             i = gn(a, r.rank);
 
-           null != i && (r = r.transpose(i), a = xn(a.length, r.rank));
 
-           var u = Nt.runKernelFunc(function (t) {
 
-             return t.any(r, a);
 
-           }, {
 
-             $x: r
 
-           });
 
-           if (n) {
 
-             var s = vn(u.shape, o);
 
-             return u.reshape(s);
 
-           }
 
-           return u;
 
-         }
 
-       }),
 
-       sl = Cn({
 
-         argMax_: function (t, e) {
 
-           void 0 === e && (e = 0);
 
-           var n = ln(t, "x", "argMax");
 
-           null == e && (e = 0);
 
-           var r = D(e, n.shape),
 
-             o = gn(r, n.rank);
 
-           return null != o && (n = n.transpose(o), r = xn(r.length, n.rank)), Nt.runKernelFunc(function (t, e) {
 
-             var o = t.argMax(n, r[0]);
 
-             return e([n]), o;
 
-           }, {
 
-             $x: n
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return zn(n);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       cl = Cn({
 
-         argMin_: function (t, e) {
 
-           void 0 === e && (e = 0);
 
-           var n = ln(t, "x", "argMin");
 
-           null == e && (e = 0);
 
-           var r = D(e, n.shape),
 
-             o = gn(r, n.rank);
 
-           return null != o && (n = n.transpose(o), r = xn(r.length, n.rank)), Nt.runKernelFunc(function (t, e) {
 
-             var o = t.argMin(n, r[0]);
 
-             return e([n]), o;
 
-           }, {
 
-             $x: n
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return zn(n);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       ll = Cn({
 
-         logSumExp_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "logSumExp"),
 
-             o = D(e, r.shape),
 
-             a = r.max(o, !0),
 
-             i = r.sub(a).exp().sum(o).log(),
 
-             u = a.reshape(i.shape).add(i);
 
-           if (n) {
 
-             var s = vn(u.shape, o);
 
-             return u.reshape(s);
 
-           }
 
-           return u;
 
-         }
 
-       }),
 
-       hl = Cn({
 
-         max_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "max"),
 
-             o = r,
 
-             a = D(e, r.shape),
 
-             i = a,
 
-             u = gn(i, r.rank);
 
-           null != u && (r = r.transpose(u), i = xn(i.length, r.rank));
 
-           var s = Nt.runKernelFunc(function (t, e) {
 
-             var n = t.max(r, i);
 
-             return e([o, n]), n;
 
-           }, {
 
-             $x: r
 
-           }, function (t, e) {
 
-             return al(t, e[1], e[0], a, u);
 
-           });
 
-           if (n) {
 
-             var c = vn(s.shape, a);
 
-             s = s.reshape(c);
 
-           }
 
-           return s;
 
-         }
 
-       }),
 
-       fl = Cn({
 
-         mean_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "mean"),
 
-             o = D(e, r.shape),
 
-             a = w(dn(r.shape, o)[1]);
 
-           return oo(function (t) {
 
-             var r = An(a);
 
-             return {
 
-               value: (r.dtype === t.dtype ? t : t.cast(r.dtype)).div(r).sum(e, n),
 
-               gradFunc: function (e) {
 
-                 var n = t.shape.slice();
 
-                 return o.forEach(function (t) {
 
-                   n[t] = 1;
 
-                 }), e.reshape(n).mul(Bn(t.shape, "float32")).div(a);
 
-               }
 
-             };
 
-           })(r);
 
-         }
 
-       }),
 
-       pl = Cn({
 
-         min_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "min"),
 
-             o = r,
 
-             a = D(e, r.shape),
 
-             i = a,
 
-             u = gn(i, r.rank);
 
-           null != u && (r = r.transpose(u), i = xn(i.length, r.rank));
 
-           var s = Nt.runKernelFunc(function (t, e) {
 
-             var n = t.min(r, i);
 
-             return e([o, n]), n;
 
-           }, {
 
-             $x: r
 
-           }, function (t, e) {
 
-             return al(t, e[1], e[0], a, u);
 
-           });
 
-           if (n) {
 
-             var c = vn(s.shape, a);
 
-             s = s.reshape(c);
 
-           }
 
-           return s;
 
-         }
 
-       }),
 
-       dl = Cn({
 
-         moments_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = D(e, (t = ln(t, "x", "moments")).shape),
 
-             o = t.mean(r, n),
 
-             a = o.shape;
 
-           n || (a = vn(o.shape, r));
 
-           var i = t.toFloat().sub(o.reshape(a)).square();
 
-           return {
 
-             mean: o,
 
-             variance: i.mean(r, n)
 
-           };
 
-         }
 
-       }),
 
-       vl = Cn({
 
-         sum_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "sum");
 
-           "bool" === r.dtype && (r = r.toInt());
 
-           var o = D(e, r.shape);
 
-           return oo(function (t) {
 
-             var e = gn(o, t.rank),
 
-               r = o,
 
-               a = t;
 
-             null != e && (a = t.transpose(e), r = xn(r.length, t.rank));
 
-             var i = Nt.runKernelFunc(function (t) {
 
-               return t.sum(a, r);
 
-             }, {
 
-               permutedX: a
 
-             });
 
-             if (n) {
 
-               var u = vn(i.shape, o);
 
-               i = i.reshape(u);
 
-             }
 
-             return {
 
-               value: i,
 
-               gradFunc: function (e) {
 
-                 var n = t.shape.slice();
 
-                 return o.forEach(function (t) {
 
-                   n[t] = 1;
 
-                 }), e.reshape(n).mul(Bn(t.shape, "float32"));
 
-               }
 
-             };
 
-           })(r);
 
-         }
 
-       }),
 
-       ml = Cn({
 
-         prod_: function (t, e, n) {
 
-           void 0 === e && (e = null), void 0 === n && (n = !1);
 
-           var r = ln(t, "x", "prod");
 
-           "bool" === r.dtype && (r = r.toInt());
 
-           var o = D(e, r.shape),
 
-             a = gn(o, r.rank),
 
-             i = o,
 
-             u = r;
 
-           null != a && (u = r.transpose(a), i = xn(i.length, r.rank));
 
-           var s = Nt.runKernelFunc(function (t) {
 
-             return t.prod(u, i);
 
-           }, {
 
-             permutedX: u
 
-           });
 
-           if (n) {
 
-             var c = vn(s.shape, o);
 
-             s = s.reshape(c);
 
-           }
 
-           return s;
 
-         }
 
-       });
 
-     exports.prod = ml;
 
-     exports.sum = vl;
 
-     exports.moments = dl;
 
-     exports.min = pl;
 
-     exports.mean = fl;
 
-     exports.max = hl;
 
-     exports.logSumExp = ll;
 
-     exports.argMin = cl;
 
-     exports.argMax = sl;
 
-     exports.any = ul;
 
-     exports.all = il;
 
-     var gl = Cn({
 
-       elu_: function (t) {
 
-         var e = ln(t, "x", "elu");
 
-         return Nt.runKernelFunc(function (t, n) {
 
-           var r = t.elu(e);
 
-           return n([r]), r;
 
-         }, {
 
-           $x: e
 
-         }, function (t, e) {
 
-           var n = e[0];
 
-           return {
 
-             $x: function () {
 
-               return Nt.runKernelFunc(function (e) {
 
-                 return e.eluDer(t, n);
 
-               }, {
 
-                 dy: t,
 
-                 y: n
 
-               });
 
-             }
 
-           };
 
-         });
 
-       }
 
-     }),
 
-       yl = Cn({
 
-         leakyRelu_: function (t, e) {
 
-           void 0 === e && (e = .2);
 
-           var n = ln(t, "x", "leakyRelu");
 
-           return Xs(An(e).mul(n), n);
 
-         }
 
-       }),
 
-       xl = Cn({
 
-         prelu_: function (t, e) {
 
-           var n = ln(t, "x", "prelu"),
 
-             r = ln(e, "alpha", "prelu");
 
-           return Nt.runKernelFunc(function (t, e) {
 
-             var o = t.prelu(n, r);
 
-             return e([n, r]), o;
 
-           }, {
 
-             x: n,
 
-             alpha: r
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = e[1],
 
-               o = n.greater(0);
 
-             return {
 
-               x: function () {
 
-                 return Ws(o, t, t.mul(r));
 
-               },
 
-               alpha: function () {
 
-                 var e = Ws(o, zn(t), t.mul(n)),
 
-                   a = fo(r.shape, t.shape);
 
-                 return a.length > 0 && (e = e.sum(a)), e.reshape(r.shape);
 
-               }
 
-             };
 
-           }, "Prelu");
 
-         }
 
-       }),
 
-       bl = Cn({
 
-         relu_: function (t) {
 
-           var e = ln(t, "x", "relu");
 
-           return "bool" === e.dtype ? e.toInt() : Nt.runKernelFunc(function (t, n) {
 
-             var r = t.relu(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 return t.mulStrict(n.step().toFloat());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       wl = Cn({
 
-         relu6_: function (t) {
 
-           var e = ln(t, "x", "relu6");
 
-           return "bool" === e.dtype ? e.toInt() : Nt.runKernelFunc(function (t, n) {
 
-             var r = t.relu6(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0],
 
-               r = n.lessEqual(6).mul(n.step());
 
-             return {
 
-               $x: function () {
 
-                 return t.mulStrict(r.toFloat());
 
-               }
 
-             };
 
-           });
 
-         }
 
-       }),
 
-       Cl = Cn({
 
-         selu_: function (t) {
 
-           var e = ln(t, "x", "selu");
 
-           return Nt.runKernelFunc(function (t, n) {
 
-             var r = t.selu(e);
 
-             return n([e]), r;
 
-           }, {
 
-             $x: e
 
-           }, function (t, e) {
 
-             var n = e[0];
 
-             return {
 
-               $x: function () {
 
-                 var e = n.greater(An(0)),
 
-                   r = An(iu),
 
-                   o = An(uu),
 
-                   a = t.mul(o),
 
-                   i = t.mul(r).mul(n.toFloat().exp());
 
-                 return Ws(e, a, i);
 
-               }
 
-             };
 
-           });
 
-         }
 
-       });
 
-     exports.selu = Cl;
 
-     exports.relu6 = wl;
 
-     exports.relu = bl;
 
-     exports.prelu = xl;
 
-     exports.leakyRelu = yl;
 
-     exports.elu = gl;
 
-     var El = Cn({
 
-       transpose_: function (t, e) {
 
-         var n = ln(t, "x", "transpose");
 
-         return null == e && (e = n.shape.map(function (t, e) {
 
-           return e;
 
-         }).reverse()), g(n.rank === e.length, function () {
 
-           return "Error in transpose: rank of input " + n.rank + " must match length of perm " + e + ".";
 
-         }), e.forEach(function (t) {
 
-           g(t >= 0 && t < n.rank, function () {
 
-             return "All entries in 'perm' must be between 0 and " + (n.rank - 1) + " but got " + e;
 
-           });
 
-         }), n.rank <= 1 ? n.clone() : Nt.runKernelFunc(function (t) {
 
-           return t.transpose(n, e);
 
-         }, {
 
-           $x: n
 
-         }, function (t) {
 
-           var n = yn(e);
 
-           return {
 
-             $x: function () {
 
-               return t.transpose(n);
 
-             }
 
-           };
 
-         });
 
-       }
 
-     });
 
-     exports.transpose = El;
 
-     var Rl = Cn({
 
-       localResponseNormalization_: function (t, e, n, r, o) {
 
-         void 0 === e && (e = 5), void 0 === n && (n = 1), void 0 === r && (r = 1), void 0 === o && (o = .5);
 
-         var a = ln(t, "x", "localResponseNormalization");
 
-         g(4 === a.rank || 3 === a.rank, function () {
 
-           return "Error in localResponseNormalization: x must be rank 3 or 4 but got\n               rank " + a.rank + ".";
 
-         }), g(E(e), function () {
 
-           return "Error in localResponseNormalization: depthRadius must be an integer but got depthRadius " + e + ".";
 
-         });
 
-         var i = a,
 
-           u = !1;
 
-         3 === a.rank && (u = !0, i = a.as4D(1, a.shape[0], a.shape[1], a.shape[2]));
 
-         var s = Nt.runKernelFunc(function (t, a) {
 
-           var u = t.localResponseNormalization4D(i, e, n, r, o);
 
-           return a([i, u]), u;
 
-         }, {
 
-           x4D: i
 
-         }, function (t, a) {
 
-           var i = a[0],
 
-             u = a[1];
 
-           return {
 
-             x4D: function () {
 
-               return Nt.runKernelFunc(function (a) {
 
-                 return a.LRNGrad(t, i, u, e, n, r, o);
 
-               }, {});
 
-             }
 
-           };
 
-         });
 
-         return u ? s.as3D(s.shape[1], s.shape[2], s.shape[3]) : s;
 
-       }
 
-     });
 
-     exports.localResponseNormalization = Rl;
 
-     var Il = Cn({
 
-       norm_: function (t, e, n, r) {
 
-         void 0 === e && (e = "euclidean"), void 0 === n && (n = null), void 0 === r && (r = !1);
 
-         var o = function t(e, n, r) {
 
-           if (void 0 === r && (r = null), 0 === e.rank) return e.abs();
 
-           if (1 !== e.rank && null === r) return t(e.reshape([-1]), n, r);
 
-           if (1 === e.rank || "number" == typeof r || Array.isArray(r) && 1 === r.length) {
 
-             if (1 === n) return e.abs().sum(r);
 
-             if (n === 1 / 0) return e.abs().max(r);
 
-             if (n === -1 / 0) return e.abs().min(r);
 
-             if ("euclidean" === n || 2 === n) return e.abs().pow(An(2, "int32")).sum(r).sqrt();
 
-             throw new Error("Error in norm: invalid ord value: " + n);
 
-           }
 
-           if (Array.isArray(r) && 2 === r.length) {
 
-             if (1 === n) return e.abs().sum(r[0]).max(r[1] - 1);
 
-             if (n === 1 / 0) return e.abs().sum(r[1]).max(r[0]);
 
-             if (n === -1 / 0) return e.abs().sum(r[1]).min(r[0]);
 
-             if ("fro" === n || "euclidean" === n) return e.square().sum(r).sqrt();
 
-             throw new Error("Error in norm: invalid ord value: " + n);
 
-           }
 
-           throw new Error("Error in norm: invalid axis: " + r);
 
-         }(t = ln(t, "x", "norm"), e, n),
 
-           a = o.shape;
 
-         if (r) {
 
-           var i = D(n, t.shape);
 
-           a = vn(o.shape, i);
 
-         }
 
-         return o.reshape(a);
 
-       }
 
-     });
 
-     exports.norm = Il;
 
-     var kl = Cn({
 
-       basicLSTMCell_: function (t, e, n, r, o, a) {
 
-         var i = ln(t, "forgetBias", "basicLSTMCell"),
 
-           u = ln(e, "lstmKernel", "basicLSTMCell"),
 
-           s = ln(n, "lstmBias", "basicLSTMCell"),
 
-           c = ln(r, "data", "basicLSTMCell"),
 
-           l = ln(o, "c", "basicLSTMCell"),
 
-           h = ln(a, "h", "basicLSTMCell"),
 
-           f = c.concat(h, 1).matMul(u).add(s),
 
-           p = f.shape[0],
 
-           d = f.shape[1] / 4,
 
-           v = [p, d],
 
-           m = f.slice([0, 0], v),
 
-           g = f.slice([0, d], v),
 
-           y = f.slice([0, 2 * d], v),
 
-           x = f.slice([0, 3 * d], v),
 
-           b = m.sigmoid().mulStrict(g.tanh()).addStrict(l.mulStrict(i.add(y).sigmoid())),
 
-           w = b.tanh().mulStrict(x.sigmoid());
 
-         return [b, w];
 
-       }
 
-     }),
 
-       Sl = Cn({
 
-         multiRNNCell_: function (t, e, n, r) {
 
-           for (var o = ln(e, "data", "multiRNNCell"), a = hn(n, "c", "multiRNNCell"), i = hn(r, "h", "multiRNNCell"), u = o, s = [], c = 0; c < t.length; c++) {
 
-             var l = t[c](u, a[c], i[c]);
 
-             s.push(l[0]), s.push(l[1]), u = l[1];
 
-           }
 
-           var h = [],
 
-             f = [];
 
-           for (c = 0; c < s.length; c += 2) h.push(s[c]), f.push(s[c + 1]);
 
-           return [h, f];
 
-         }
 
-       });
 
-     exports.multiRNNCell = Sl;
 
-     exports.basicLSTMCell = kl;
 
-     var Al = Cn({
 
-       movingAverage_: function (t, e, n, r, o) {
 
-         void 0 === o && (o = !0);
 
-         var a = ln(t, "v", "movingAverage"),
 
-           i = ln(e, "x", "movingAverage"),
 
-           u = ln(n, "decay", "movingAverage");
 
-         It(a, i), g(C(a.shape, i.shape), function () {
 
-           return "Shape mismatch in v and x";
 
-         });
 
-         var s = An(1),
 
-           c = s.sub(u),
 
-           l = i.sub(a).mul(c);
 
-         if (o) {
 
-           g(null != r, function () {
 
-             return "When using zeroDebias: true, step is required.";
 
-           });
 
-           var h = ln(r, "step", "movingAverage");
 
-           l = l.div(s.sub(nc(u, h)));
 
-         }
 
-         return a.add(l);
 
-       }
 
-     });
 
-     exports.movingAverage = Al;
 
-     var Dl = Cn({
 
-       stridedSlice_: function (t, e, n, r, o, a, i, u, s) {
 
-         if (void 0 === o && (o = 0), void 0 === a && (a = 0), void 0 === i && (i = 0), void 0 === u && (u = 0), void 0 === s && (s = 0), null == r && (r = new Array(e.length)), 0 !== i) throw new Error("ellipsis mask is not yet supported");
 
-         var c = ln(t, "x", "stridedSlice"),
 
-           l = Kr(u),
 
-           h = c.shape.slice();
 
-         l.forEach(function (t) {
 
-           e[t] = 0, n[t] = 1, h.splice(t, 0, 1);
 
-         }), c = c.reshape(h);
 
-         for (var f = 0; f < c.rank; f++) e[f] = Xr(o, e, r, c.shape, f), n[f] = $r(a, n, r, c.shape, f), r[f] = r[f] || 1;
 
-         var p = Kr(s);
 
-         p.forEach(function (t) {
 
-           n[t] = e[t] + 1, r[t] = 1;
 
-         });
 
-         var d = jr(e, n, r),
 
-           v = d.filter(function (t, e) {
 
-             return -1 === p.indexOf(e);
 
-           });
 
-         return r.every(function (t) {
 
-           return 1 === t;
 
-         }) ? tl(c, e, d).reshape(v) : Nt.runKernelFunc(function (t) {
 
-           return t.stridedSlice(c, e, n, r);
 
-         }, {
 
-           $x: c
 
-         }).reshape(v);
 
-       }
 
-     });
 
-     exports.stridedSlice = Dl;
 
-     var Tl = Cn({
 
-       topk_: function (t, e, n) {
 
-         void 0 === e && (e = 1), void 0 === n && (n = !0);
 
-         var r = ln(t, "x", "topk");
 
-         if (0 === r.rank) throw new Error("topk() expects the input to be of rank 1 or higher");
 
-         var o = r.shape[r.shape.length - 1];
 
-         if (e > o) throw new Error("'k' passed to topk() must be <= the last dimension (" + o + ") but got " + e);
 
-         var a = Nt.runKernelFunc(function (t) {
 
-           return t.topk(r, e, n);
 
-         }, {
 
-           $x: r
 
-         });
 
-         return {
 
-           values: a[0],
 
-           indices: a[1]
 
-         };
 
-       }
 
-     });
 
-     exports.topk = Tl;
 
-     var Nl = Cn({
 
-       scatterND_: function (t, e, n) {
 
-         var r = ln(t, "indices", "scatterND", "int32"),
 
-           o = ln(e, "updates", "scatterND");
 
-         return Gr(o, r, n), Nt.runKernelFunc(function (t) {
 
-           return t.scatterND(r, o, n);
 
-         }, {
 
-           $indices: r,
 
-           $updates: o
 
-         });
 
-       }
 
-     });
 
-     exports.scatterND = Nl;
 
-     var Fl = Cn({
 
-       fft_: function (t) {
 
-         g("complex64" === t.dtype, function () {
 
-           return "The dtype for tf.spectral.fft() must be complex64 but got " + t.dtype + ".";
 
-         });
 
-         var e = t.shape[t.shape.length - 1],
 
-           n = t.size / e,
 
-           r = t.as2D(n, e);
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.fft(r);
 
-         }, {
 
-           input: t
 
-         }).reshape(t.shape);
 
-       }
 
-     }),
 
-       Ol = Cn({
 
-         ifft_: function (t) {
 
-           g("complex64" === t.dtype, function () {
 
-             return "The dtype for tf.spectral.ifft() must be complex64 but got " + t.dtype + ".";
 
-           });
 
-           var e = t.shape[t.shape.length - 1],
 
-             n = t.size / e,
 
-             r = t.as2D(n, e);
 
-           return Nt.runKernelFunc(function (t) {
 
-             return t.ifft(r);
 
-           }, {
 
-             input: t
 
-           }).reshape(t.shape);
 
-         }
 
-       }),
 
-       _l = Cn({
 
-         rfft_: function (t, e) {
 
-           g("float32" === t.dtype, function () {
 
-             return "The dtype for rfft() must be real value but got " + t.dtype;
 
-           });
 
-           var n,
 
-             r = t.shape[t.shape.length - 1],
 
-             o = t.size / r;
 
-           if (null != e && e < r) {
 
-             var a = t.shape.map(function (t) {
 
-               return 0;
 
-             }),
 
-               i = t.shape.map(function (t) {
 
-                 return t;
 
-               });
 
-             i[t.shape.length - 1] = e, n = t.slice(a, i), r = e;
 
-           } else if (null != e && e > r) {
 
-             var u = t.shape.map(function (t) {
 
-               return t;
 
-             });
 
-             u[t.shape.length - 1] = e - r, n = t.concat(Pn(u), t.shape.length - 1), r = e;
 
-           } else n = t;
 
-           var s = n.zerosLike(),
 
-             c = En(n, s).as2D(o, r),
 
-             l = Fl(c),
 
-             h = Math.floor(r / 2) + 1,
 
-             f = Rn(l),
 
-             p = In(l),
 
-             d = f.split([h, r - h], f.shape.length - 1),
 
-             v = p.split([h, r - h], p.shape.length - 1),
 
-             m = n.shape.slice();
 
-           return m[n.shape.length - 1] = h, En(d[0], v[0]).reshape(m);
 
-         }
 
-       }),
 
-       Ml = Cn({
 
-         irfft_: function (t) {
 
-           var e = t.shape[t.shape.length - 1],
 
-             n = t.size / e;
 
-           if (e <= 2) {
 
-             var r = t.as2D(n, e),
 
-               o = Ol(r);
 
-             return Rn(o);
 
-           }
 
-           var a = [n, 2 * (e - 1)],
 
-             i = Rn(t).as2D(n, e),
 
-             u = In(t).as2D(n, e),
 
-             s = i.slice([0, 1], [n, e - 2]).reverse(1),
 
-             c = u.slice([0, 1], [n, e - 2]).reverse(1).mul(An(-1)),
 
-             l = i.concat(s, 1),
 
-             h = u.concat(c, 1);
 
-           return r = En(l, h).as2D(a[0], a[1]), o = Ol(r), Rn(o);
 
-         }
 
-       }),
 
-       Bl = Object.freeze({
 
-         fft: Fl,
 
-         ifft: Ol,
 
-         rfft: _l,
 
-         irfft: Ml
 
-       });
 
-     exports.spectral = Bl;
 
-     exports.irfft = Ml;
 
-     exports.rfft = _l;
 
-     exports.ifft = Ol;
 
-     exports.fft = Fl;
 
-     var Pl = Cn({
 
-       sparseToDense_: function (t, e, n, r) {
 
-         void 0 === r && (r = 0);
 
-         var o = ln(t, "sparseIndices", "sparseToDense", "int32"),
 
-           a = ln(e, "sparseValues", "sparseToDense"),
 
-           i = ln(r, "defaultValue", "sparseToDense", a.dtype);
 
-         return function (t, e, n, r) {
 
-           if ("int32" !== t.dtype) throw new Error("tf.sparseToDense() expects the indices to be int32 type, but the dtype was " + t.dtype + ".");
 
-           if (t.rank > 2) throw new Error("sparseIndices should be a scalar, vector, or matrix, but got shape " + t.shape + ".");
 
-           var o = t.rank > 0 ? t.shape[0] : 1,
 
-             a = t.rank > 1 ? t.shape[1] : 1;
 
-           if (n.length !== a) throw new Error("outputShape has incorrect number of elements:, " + n.length + ", should be: " + a + ".");
 
-           var i = e.size;
 
-           if (0 !== e.rank && (1 !== e.rank || i !== o)) throw new Error("sparseValues has incorrect shape " + e.shape + ", should be [] or [" + o + "]");
 
-           if (e.dtype !== r.dtype) throw new Error("sparseValues.dtype must match defaultValues.dtype");
 
-         }(o, a, n, i), Nt.runKernelFunc(function (t) {
 
-           return t.sparseToDense(o, a, n, i);
 
-         }, {
 
-           $sparseIndices: o,
 
-           $sparseValues: a,
 
-           $defaultValue: i
 
-         });
 
-       }
 
-     });
 
-     exports.sparseToDense = Pl;
 
-     var Ll = Cn({
 
-       gatherND_: function (t, e) {
 
-         var n = ln(e, "indices", "gatherND", "int32"),
 
-           r = ln(t, "x", "gatherND");
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.gatherND(r, n);
 
-         }, {
 
-           $x: r,
 
-           $indices: n
 
-         });
 
-       }
 
-     });
 
-     exports.gatherND = Ll;
 
-     var Wl = Cn({
 
-       diag_: function (t) {
 
-         var e = ln(t, "x", "diag").flatten(),
 
-           n = t.shape.concat(t.shape);
 
-         return Nt.runKernelFunc(function (t) {
 
-           return t.diag(e);
 
-         }, {
 
-           $x: e
 
-         }).reshape(n);
 
-       }
 
-     });
 
-     exports.diag = Wl;
 
-     var Ul = Cn({
 
-       dropout_: function (t, e, n, r) {
 
-         var o = ln(t, "x", "dropout");
 
-         if (g("float32" === o.dtype, function () {
 
-           return "x has to be a floating point tensor since it's going to be scaled, but got a " + o.dtype + " tensor instead.";
 
-         }), g(e >= 0 && e < 1, function () {
 
-           return "rate must be a float in the range [0, 1), but got " + e + ".";
 
-         }), 0 === e) return t instanceof dt ? o.clone() : o;
 
-         var a = function (t, e) {
 
-           if (null == e) return t.shape.slice();
 
-           if (C(t.shape, e)) return e;
 
-           if (t.shape.length === e.length) {
 
-             for (var n = [], r = 0; r < t.shape.length; r++) null == e[r] && null != t.shape[r] ? n.push(t.shape[r]) : n.push(e[r]);
 
-             return n;
 
-           }
 
-           return e;
 
-         }(o, n),
 
-           i = 1 - e,
 
-           u = kr(a, 0, 1, "float32", r).add(i).floor().div(i);
 
-         return o.mul(u);
 
-       }
 
-     });
 
-     exports.dropout = Ul;
 
-     function Vl(t, e, n) {
 
-       for (var r = 1 - t % 2, o = new Float32Array(t), a = 0; a < t; ++a) {
 
-         var i = 2 * Math.PI * a / (t + r - 1);
 
-         o[a] = e - n * Math.cos(i);
 
-       }
 
-       return Dn(o, "float32");
 
-     }
 
-     var zl = Cn({
 
-       hannWindow_: function (t) {
 
-         return Vl(t, .5, .5);
 
-       }
 
-     }),
 
-       Gl = Cn({
 
-         hammingWindow_: function (t) {
 
-           return Vl(t, .54, .46);
 
-         }
 
-       }),
 
-       Hl = Cn({
 
-         frame_: function (t, e, n, r, o) {
 
-           void 0 === r && (r = !1), void 0 === o && (o = 0);
 
-           for (var a = 0, i = []; a + e <= t.size;) i.push(tl(t, a, e)), a += n;
 
-           if (r) for (; a < t.size;) {
 
-             var u = a + e - t.size,
 
-               s = Gn([tl(t, a, e - u), Ln([u], o)]);
 
-             i.push(s), a += n;
 
-           }
 
-           return 0 === i.length ? Tn([], [0, e]) : Gn(i).as2D(i.length, e);
 
-         }
 
-       }),
 
-       ql = Cn({
 
-         stft_: function (t, e, n, r, o) {
 
-           var a;
 
-           void 0 === o && (o = zl), null == r && (a = e, r = Math.floor(Math.pow(2, Math.ceil(Math.log(a) / Math.log(2)))));
 
-           for (var i = Hl(t, e, n), u = tc(i, o(e)), s = [], c = 0; c < i.shape[0]; c++) s.push(_l(u.slice([c, 0], [1, e]), r));
 
-           return Gn(s);
 
-         }
 
-       }),
 
-       Kl = Object.freeze({
 
-         hannWindow: zl,
 
-         hammingWindow: Gl,
 
-         frame: Hl,
 
-         stft: ql
 
-       });
 
-     exports.signal = Kl;
 
-     exports.stft = ql;
 
-     exports.frame = Hl;
 
-     exports.hammingWindow = Gl;
 
-     exports.hannWindow = zl;
 
-     var jl,
 
-       Xl = function (t, e, o) {
 
-         return void 0 === o && (o = 1), n(this, void 0, void 0, function () {
 
-           var n, a, i, u, s, c, l, h, f, p, d, v, m, x;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return n = ln(t, "predictions", "inTopK"), a = ln(e, "targets", "inTopK"), g(n.rank > 1, function () {
 
-                   return "inTopK() expects the predictions to be of rank 2 or higher, but got " + n.rank;
 
-                 }), g(n.rank - 1 === a.rank, function () {
 
-                   return "predictions rank should be 1 larger than targets rank, but got predictions rank " + n.rank + " and targets rank " + a.rank;
 
-                 }), y(n.shape.slice(0, n.shape.length - 1), a.shape, "predictions's shape should be align with the targets' shape, except the last dimension."), i = n.shape[n.shape.length - 1], g(o > 0 && o <= i, function () {
 
-                   return "'k' passed to inTopK() must be > 0 && <= the predictions last dimension (" + i + "), but got " + o;
 
-                 }), [4, n.data()];
 
-               case 1:
 
-                 return u = r.sent(), [4, a.data()];
 
-               case 2:
 
-                 for (s = r.sent(), c = [u.length / i, i], h = c[1], f = N("bool", l = c[0]), p = 0; p < l; p++) {
 
-                   for (d = p * h, v = u.subarray(d, d + h), m = [], x = 0; x < v.length; x++) m.push({
 
-                     value: v[x],
 
-                     index: x
 
-                   });
 
-                   for (m.sort(function (t, e) {
 
-                     return e.value - t.value;
 
-                   }), f[p] = 0, x = 0; x < o; x++) if (m[x].index === s[p]) {
 
-                     f[p] = 1;
 
-                     break;
 
-                   }
 
-                 }
 
-                 return t !== n && n.dispose(), e !== a && a.dispose(), [2, kn(f, a.shape, "bool")];
 
-             }
 
-           });
 
-         });
 
-       };
 
-     exports.inTopKAsync = Xl;
 
-     exports.Reduction = jl;
 
-     !function (t) {
 
-       t[t.NONE = 0] = "NONE", t[t.MEAN = 1] = "MEAN", t[t.SUM = 2] = "SUM", t[t.SUM_BY_NONZERO_WEIGHTS = 3] = "SUM_BY_NONZERO_WEIGHTS";
 
-     }(jl || (exports.Reduction = jl = {}));
 
-     var $l = Cn({
 
-       absoluteDifference_: function (t, e, n, r) {
 
-         void 0 === r && (r = jl.SUM_BY_NONZERO_WEIGHTS);
 
-         var o = ln(t, "labels", "absoluteDifference"),
 
-           a = ln(e, "predictions", "absoluteDifference"),
 
-           i = null;
 
-         null != n && (i = ln(n, "weights", "absoluteDifference")), y(o.shape, a.shape, "Error in absoluteDifference: ");
 
-         var u = o.sub(a).abs();
 
-         return Yl(u, i, r);
 
-       }
 
-     }),
 
-       Yl = Cn({
 
-         computeWeightedLoss_: function (t, e, n) {
 
-           void 0 === n && (n = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var r = ln(t, "losses", "computeWeightedLoss"),
 
-             o = null;
 
-           null != e && (o = ln(e, "weights", "computeWeightedLoss"));
 
-           var a = null == o ? r : r.mul(o);
 
-           if (n === jl.NONE) return a;
 
-           if (n === jl.SUM) return a.sum();
 
-           if (n === jl.MEAN) {
 
-             if (null == o) return a.mean();
 
-             var i = r.size / o.size,
 
-               u = a.sum().div(o.sum());
 
-             return i > 1 ? u.div(An(i)) : u;
 
-           }
 
-           if (n === jl.SUM_BY_NONZERO_WEIGHTS) {
 
-             if (null == o) return a.sum().div(An(r.size));
 
-             var s = o.mul(Bn(r.shape)).notEqual(An(0)).sum().toFloat();
 
-             return a.sum().div(s);
 
-           }
 
-           throw Error("Unknown reduction: " + n);
 
-         }
 
-       }),
 
-       Ql = Cn({
 
-         cosineDistance_: function (t, e, n, r, o) {
 
-           void 0 === o && (o = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var a = ln(t, "labels", "cosineDistance"),
 
-             i = ln(e, "predictions", "cosineDistance"),
 
-             u = null;
 
-           null != r && (u = ln(r, "weights", "cosineDistance")), y(a.shape, i.shape, "Error in cosineDistance: ");
 
-           var s = An(1).sub(a.mul(i).sum(n, !0));
 
-           return Yl(s, u, o);
 
-         }
 
-       }),
 
-       Jl = Cn({
 
-         hingeLoss_: function (t, e, n, r) {
 
-           void 0 === r && (r = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var o = ln(t, "labels", "hingeLoss"),
 
-             a = ln(e, "predictions", "hingeLoss"),
 
-             i = null;
 
-           null != n && (i = ln(n, "weights", "hingeLoss")), y(o.shape, a.shape, "Error in hingeLoss: ");
 
-           var u = An(1);
 
-           o = An(2).mul(o).sub(u);
 
-           var s = u.sub(o.mul(a)).relu();
 
-           return Yl(s, i, r);
 
-         }
 
-       }),
 
-       Zl = Cn({
 
-         huberLoss_: function (t, e, n, r, o) {
 
-           void 0 === r && (r = 1), void 0 === o && (o = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var a = ln(t, "labels", "huberLoss"),
 
-             i = ln(e, "predictions", "huberLoss"),
 
-             u = null;
 
-           null != n && (u = ln(n, "weights", "huberLoss")), y(a.shape, i.shape, "Error in huberLoss: ");
 
-           var s = An(r),
 
-             c = i.sub(a).abs(),
 
-             l = Ys(c, s),
 
-             h = c.sub(l),
 
-             f = An(.5).mul(l.square()).add(s.mul(h));
 
-           return Yl(f, u, o);
 
-         }
 
-       }),
 
-       th = Cn({
 
-         logLoss_: function (t, e, n, r, o) {
 
-           void 0 === r && (r = 1e-7), void 0 === o && (o = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var a = ln(t, "labels", "logLoss"),
 
-             i = ln(e, "predictions", "logLoss"),
 
-             u = null;
 
-           null != n && (u = ln(n, "weights", "logLoss")), y(a.shape, i.shape, "Error in logLoss: ");
 
-           var s = An(1),
 
-             c = An(r),
 
-             l = a.mul(i.add(c).log()).neg().sub(s.sub(a).mul(s.sub(i).add(c).log()));
 
-           return Yl(l, u, o);
 
-         }
 
-       }),
 
-       eh = Cn({
 
-         meanSquaredError_: function (t, e, n, r) {
 
-           void 0 === r && (r = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var o = ln(t, "labels", "meanSquaredError"),
 
-             a = ln(e, "predictions", "meanSquaredError"),
 
-             i = null;
 
-           null != n && (i = ln(n, "weights", "meanSquaredError")), y(o.shape, a.shape, "Error in meanSquaredError: ");
 
-           var u = o.squaredDifference(a);
 
-           return Yl(u, i, r);
 
-         }
 
-       }),
 
-       nh = Cn({
 
-         sigmoidCrossEntropy_: function (t, e, n, r, o) {
 
-           void 0 === r && (r = 0), void 0 === o && (o = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var a = ln(t, "multiClassLabels", "sigmoidCrossEntropy"),
 
-             i = ln(e, "logits", "sigmoidCrossEntropy"),
 
-             u = null;
 
-           if (null != n && (u = ln(n, "weights", "sigmoidCrossEntropy")), y(a.shape, i.shape, "Error in sigmoidCrossEntropy: "), r > 0) {
 
-             var s = An(r),
 
-               c = An(1),
 
-               l = An(.5);
 
-             a = a.mul(c.sub(s)).add(l.mul(s));
 
-           }
 
-           var h = function (t, e) {
 
-             var n = ln(t, "labels", "sigmoidCrossEntropyWithLogits"),
 
-               r = ln(e, "logits", "sigmoidCrossEntropyWithLogits");
 
-             y(n.shape, r.shape, "Error in sigmoidCrossEntropyWithLogits: ");
 
-             var o = r.relu(),
 
-               a = r.mul(n),
 
-               i = r.abs().neg().exp().log1p();
 
-             return o.sub(a).add(i);
 
-           }(a, i);
 
-           return Yl(h, u, o);
 
-         }
 
-       }),
 
-       rh = Cn({
 
-         softmaxCrossEntropy_: function (t, e, n, r, o) {
 
-           void 0 === r && (r = 0), void 0 === o && (o = jl.SUM_BY_NONZERO_WEIGHTS);
 
-           var a = ln(t, "onehotLabels", "softmaxCrossEntropy"),
 
-             i = ln(e, "logits", "softmaxCrossEntropy"),
 
-             u = null;
 
-           if (null != n && (u = ln(n, "weights", "softmaxCrossEntropy")), y(a.shape, i.shape, "Error in softmaxCrossEntropy: "), r > 0) {
 
-             var s = An(r),
 
-               c = An(1),
 
-               l = An(a.shape[1]);
 
-             a = a.mul(c.sub(s)).add(s.div(l));
 
-           }
 
-           var h = function (t, e, n) {
 
-             if (void 0 === n && (n = -1), -1 === n && (n = e.rank - 1), n !== e.rank - 1) throw Error("Softmax cross entropy along a non-last dimension is not yet supported. Labels / logits was rank " + e.rank + " and dim was " + n);
 
-             return oo(function (t, e, r) {
 
-               var o = e.logSumExp([n], !0),
 
-                 a = e.toFloat().sub(o);
 
-               return r([t, a]), {
 
-                 value: a.mul(t).neg().sum([n]),
 
-                 gradFunc: function (t, e) {
 
-                   var r = e[0],
 
-                     o = e[1],
 
-                     a = vn(t.shape, [n]);
 
-                   return [t.reshape(a).mul(r.toFloat().sub(o.exp())), t.reshape(a).mul(o.exp().sub(r.toFloat()))];
 
-                 }
 
-               };
 
-             })(t, e);
 
-           }(a, i);
 
-           return Yl(h, u, o);
 
-         }
 
-       }),
 
-       oh = Object.freeze({
 
-         get Reduction() {
 
-           return jl;
 
-         },
 
-         absoluteDifference: $l,
 
-         computeWeightedLoss: Yl,
 
-         cosineDistance: Ql,
 
-         hingeLoss: Jl,
 
-         huberLoss: Zl,
 
-         logLoss: th,
 
-         meanSquaredError: eh,
 
-         sigmoidCrossEntropy: nh,
 
-         softmaxCrossEntropy: rh
 
-       });
 
-     exports.losses = oh;
 
-     function ah(t, e) {
 
-       return void 0 === e && (e = !1), Nt.tidy(function () {
 
-         if (2 !== t.shape.length) throw new Error("qr2d() requires a 2D Tensor, but got a " + t.shape.length + "D Tensor.");
 
-         for (var n = t.shape[0], r = t.shape[1], o = vr(n), a = t.clone(), i = Tn([[1]], [1, 1]), u = i.clone(), s = n >= r ? r : n, c = function (t) {
 
-           var e,
 
-             s = a,
 
-             c = u,
 
-             l = o;
 
-           e = Nt.tidy(function () {
 
-             var e = a.slice([t, t], [n - t, 1]),
 
-               s = e.norm(),
 
-               c = a.slice([t, t], [1, 1]),
 
-               l = Tn([[-1]]).where(c.greater(0), Tn([[1]])),
 
-               h = c.sub(l.mul(s)),
 
-               f = e.div(h);
 
-             u = 1 === f.shape[0] ? i.clone() : i.concat(f.slice([1, 0], [f.shape[0] - 1, f.shape[1]]), 0);
 
-             var p = l.matMul(h).div(s).neg(),
 
-               d = a.slice([t, 0], [n - t, r]),
 
-               v = p.mul(u);
 
-             if (0 === t) a = d.sub(v.matMul(u.transpose().matMul(d))); else {
 
-               var m = d.sub(v.matMul(u.transpose().matMul(d)));
 
-               a = a.slice([0, 0], [t, r]).concat(m, 0);
 
-             }
 
-             var g = o.slice([0, t], [n, o.shape[1] - t]);
 
-             if (0 === t) o = g.sub(g.matMul(u).matMul(v.transpose())); else {
 
-               var y = g.sub(g.matMul(u).matMul(v.transpose()));
 
-               o = o.slice([0, 0], [n, t]).concat(y, 1);
 
-             }
 
-             return [u, a, o];
 
-           }), u = e[0], a = e[1], o = e[2], Xe([s, c, l]);
 
-         }, l = 0; l < s; ++l) c(l);
 
-         return !e && n > r && (o = o.slice([0, 0], [n, r]), a = a.slice([0, 0], [r, r])), [o, a];
 
-       });
 
-     }
 
-     var ih = Cn({
 
-       gramSchmidt_: function (t) {
 
-         var e;
 
-         if (Array.isArray(t)) {
 
-           e = !1, g(null != t && t.length > 0, function () {
 
-             return "Gram-Schmidt process: input must not be null, undefined, or empty";
 
-           });
 
-           for (var n = t[0].shape[0], r = function (e) {
 
-             g(t[e].shape[0] === n, function () {
 
-               return "Gram-Schmidt: Non-unique lengths found in the input vectors: (" + t[e].shape[0] + " vs. " + n + ")";
 
-             });
 
-           }, o = 1; o < t.length; ++o) r(o);
 
-         } else e = !0, t = Xn(t, t.shape[0], 0).map(function (t) {
 
-           return Dr(t, [0]);
 
-         });
 
-         g(t.length <= t[0].shape[0], function () {
 
-           return "Gram-Schmidt: Number of vectors (" + t.length + ") exceeds number of dimensions (" + t[0].shape[0] + ").";
 
-         });
 
-         var a = [],
 
-           i = t,
 
-           u = function (t) {
 
-             a.push(Nt.tidy(function () {
 
-               var e = i[t];
 
-               if (t > 0) for (var n = 0; n < t; ++n) {
 
-                 var r = vl(a[n].mulStrict(e)).mul(a[n]);
 
-                 e = e.sub(r);
 
-               }
 
-               return e.div(Il(e, "euclidean"));
 
-             }));
 
-           };
 
-         for (o = 0; o < t.length; ++o) u(o);
 
-         return e ? Tr(a, 0) : a;
 
-       }
 
-     }),
 
-       uh = Cn({
 
-         qr_: function (t, e) {
 
-           if (void 0 === e && (e = !1), t.rank < 2) throw new Error("qr() requires input tensor to have a rank >= 2, but got rank " + t.rank);
 
-           if (2 === t.rank) return ah(t, e);
 
-           var n = t.shape.slice(0, t.shape.length - 2).reduce(function (t, e) {
 
-             return t * e;
 
-           }),
 
-             r = Or(t.reshape([n, t.shape[t.shape.length - 2], t.shape[t.shape.length - 1]]), 0),
 
-             o = [],
 
-             a = [];
 
-           return r.forEach(function (t) {
 
-             var n = ah(t, e),
 
-               r = n[0],
 
-               i = n[1];
 
-             o.push(r), a.push(i);
 
-           }), [Tr(o, 0).reshape(t.shape), Tr(a, 0).reshape(t.shape)];
 
-         }
 
-       }),
 
-       sh = Object.freeze({
 
-         gramSchmidt: ih,
 
-         qr: uh
 
-       });
 
-     exports.linalg = sh;
 
-     function ch(t, e, n, r, o) {
 
-       null == r && (r = .5), null == o && (o = Number.NEGATIVE_INFINITY);
 
-       var a = t.shape[0];
 
-       return n = Math.min(n, a), g(0 <= r && r <= 1, function () {
 
-         return "iouThreshold must be in [0, 1], but was '" + r + "'";
 
-       }), g(2 === t.rank, function () {
 
-         return "boxes must be a 2D tensor, but was of rank '" + t.rank + "'";
 
-       }), g(4 === t.shape[1], function () {
 
-         return "boxes must have 4 columns, but 2nd dimension was " + t.shape[1];
 
-       }), g(1 === e.rank, function () {
 
-         return "scores must be a 1D tensor";
 
-       }), g(e.shape[0] === a, function () {
 
-         return "scores has incompatible shape with boxes. Expected " + a + ", but was " + e.shape[0];
 
-       }), {
 
-         maxOutputSize: n,
 
-         iouThreshold: r,
 
-         scoreThreshold: o
 
-       };
 
-     }
 
-     var lh = Cn({
 
-       resizeBilinear_: function (t, e, n) {
 
-         void 0 === n && (n = !1);
 
-         var r = ln(t, "images", "resizeBilinear");
 
-         g(3 === r.rank || 4 === r.rank, function () {
 
-           return "Error in resizeBilinear: x must be rank 3 or 4, but got rank " + r.rank + ".";
 
-         }), g(2 === e.length, function () {
 
-           return "Error in resizeBilinear: new shape must 2D, but got shape " + e + ".";
 
-         });
 
-         var o = r,
 
-           a = !1;
 
-         3 === r.rank && (a = !0, o = r.as4D(1, r.shape[0], r.shape[1], r.shape[2]));
 
-         var i = e[0],
 
-           u = e[1],
 
-           s = Nt.runKernelFunc(function (t, e) {
 
-             return e([o]), t.resizeBilinear(o, i, u, n);
 
-           }, {
 
-             batchImages: o
 
-           }, function (t, e) {
 
-             return {
 
-               batchImages: function () {
 
-                 return Nt.runKernelFunc(function (r) {
 
-                   return r.resizeBilinearBackprop(t, e[0], n);
 
-                 }, {});
 
-               }
 
-             };
 
-           });
 
-         return a ? s.as3D(s.shape[1], s.shape[2], s.shape[3]) : s;
 
-       }
 
-     }),
 
-       hh = Cn({
 
-         resizeNearestNeighbor_: function (t, e, n) {
 
-           void 0 === n && (n = !1);
 
-           var r = ln(t, "images", "resizeNearestNeighbor");
 
-           g(3 === r.rank || 4 === r.rank, function () {
 
-             return "Error in resizeNearestNeighbor: x must be rank 3 or 4, but got rank " + r.rank + ".";
 
-           }), g(2 === e.length, function () {
 
-             return "Error in resizeNearestNeighbor: new shape must 2D, but got shape " + e + ".";
 
-           }), g("float32" === r.dtype || "int32" === r.dtype, function () {
 
-             return "`images` must have `int32` or `float32` as dtype";
 
-           });
 
-           var o = r,
 
-             a = !1;
 
-           3 === r.rank && (a = !0, o = r.as4D(1, r.shape[0], r.shape[1], r.shape[2]));
 
-           var i = e[0],
 
-             u = e[1],
 
-             s = Nt.runKernelFunc(function (t, e) {
 
-               return e([o]), t.resizeNearestNeighbor(o, i, u, n);
 
-             }, {
 
-               batchImages: o
 
-             }, function (t, e) {
 
-               return {
 
-                 batchImages: function () {
 
-                   return Nt.runKernelFunc(function (r) {
 
-                     return r.resizeNearestNeighborBackprop(t, e[0], n);
 
-                   }, {});
 
-                 }
 
-               };
 
-             });
 
-           return a ? s.as3D(s.shape[1], s.shape[2], s.shape[3]) : s;
 
-         }
 
-       }),
 
-       fh = Cn({
 
-         nonMaxSuppression_: function (t, e, n, r, o) {
 
-           void 0 === r && (r = .5), void 0 === o && (o = Number.NEGATIVE_INFINITY);
 
-           var a = ln(t, "boxes", "nonMaxSuppression"),
 
-             i = ln(e, "scores", "nonMaxSuppression"),
 
-             u = ch(a, i, n, r, o);
 
-           return n = u.maxOutputSize, r = u.iouThreshold, o = u.scoreThreshold, Nt.runKernelFunc(function (t) {
 
-             return t.nonMaxSuppression(a, i, n, r, o);
 
-           }, {
 
-             $boxes: a
 
-           });
 
-         }
 
-       }),
 
-       ph = function (t, e, o, a, i) {
 
-         return void 0 === a && (a = .5), void 0 === i && (i = Number.NEGATIVE_INFINITY), n(this, void 0, void 0, function () {
 
-           var n, u, s, c, l, h, f;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return n = ln(t, "boxes", "nonMaxSuppressionAsync"), u = ln(e, "scores", "nonMaxSuppressionAsync"), s = ch(n, u, o, a, i), o = s.maxOutputSize, a = s.iouThreshold, i = s.scoreThreshold, [4, Promise.all([n.data(), u.data()])];
 
-               case 1:
 
-                 return c = r.sent(), l = c[0], h = c[1], f = Mo(l, h, o, a, i), n !== t && n.dispose(), u !== e && u.dispose(), [2, f];
 
-             }
 
-           });
 
-         });
 
-       },
 
-       dh = Cn({
 
-         cropAndResize_: function (t, e, n, r, o, a) {
 
-           var i = ln(t, "image", "cropAndResize", "float32"),
 
-             u = ln(e, "boxes", "cropAndResize", "float32"),
 
-             s = ln(n, "boxInd", "cropAndResize", "int32");
 
-           o = o || "bilinear", a = a || 0;
 
-           var c = u.shape[0];
 
-           return g(4 === i.rank, function () {
 
-             return "Error in cropAndResize: image must be rank 4,but got rank " + i.rank + ".";
 
-           }), g(2 === u.rank && 4 === u.shape[1], function () {
 
-             return "Error in cropAndResize: boxes must be have size [" + c + ",4] but had shape " + u.shape + ".";
 
-           }), g(1 === s.rank && s.shape[0] === c, function () {
 
-             return "Error in cropAndResize: boxInd must be have size [" + c + "] but had shape " + u.shape + ".";
 
-           }), g(2 === r.length, function () {
 
-             return "Error in cropAndResize: cropSize must be of length 2, but got length " + r.length + ".";
 
-           }), g(r[0] >= 1 && r[1] >= 1, function () {
 
-             return "cropSize must be atleast [1,1], but was " + r;
 
-           }), g("bilinear" === o || "nearest" === o, function () {
 
-             return "method must be bilinear or nearest, but was " + o;
 
-           }), Nt.runKernelFunc(function (t, e) {
 
-             return t.cropAndResize(i, u, s, r, o, a);
 
-           }, {
 
-             $image: i,
 
-             $boxes: u
 
-           });
 
-         }
 
-       }),
 
-       vh = Object.freeze({
 
-         resizeBilinear: lh,
 
-         resizeNearestNeighbor: hh,
 
-         nonMaxSuppression: fh,
 
-         nonMaxSuppressionAsync: ph,
 
-         cropAndResize: dh
 
-       }),
 
-       mh = function (t, e) {
 
-         return !(t > 0) && ("linear" === e || "relu" === e);
 
-       },
 
-       gh = function (t, e, n) {
 
-         if (null == n || "linear" === n) return t;
 
-         if ("relu" === n) return t.mul(e.step());
 
-         throw new Error("Gradient for activation " + n + " has not been implemented yet.");
 
-       },
 
-       yh = function (t, e) {
 
-         var n = e,
 
-           r = fo(t.shape, e.shape);
 
-         return r.length > 0 && (n = n.sum(r)), n.reshape(t.shape);
 
-       },
 
-       xh = function (t, e, n) {
 
-         if ("linear" === e) return t;
 
-         if ("relu" === e) return bl(t);
 
-         if ("elu" === e) return gl(t);
 
-         if ("relu6" === e) return wl(t);
 
-         if ("prelu" === e) return xl(t, n);
 
-         throw new Error("Unknown fused activation " + e + ".");
 
-       };
 
-     exports.image = vh;
 
-     var bh = Cn({
 
-       matMul_: function (t) {
 
-         var e,
 
-           n = t.a,
 
-           r = t.b,
 
-           o = t.transposeA,
 
-           a = void 0 !== o && o,
 
-           i = t.transposeB,
 
-           u = void 0 !== i && i,
 
-           s = t.bias,
 
-           c = t.activation,
 
-           l = void 0 === c ? "linear" : c,
 
-           h = t.preluActivationWeights;
 
-         if (!1 === mh(Nt.state.gradientDepth, l)) {
 
-           var f = Wc(n, r, a, u);
 
-           return null != s && (f = Vs(f, s)), xh(f, l, h);
 
-         }
 
-         var p = ln(n, "a", "fused matMul"),
 
-           d = ln(r, "b", "fused matMul");
 
-         e = Rt(p, d), p = e[0], d = e[1];
 
-         var v = a ? p.shape[p.rank - 2] : p.shape[p.rank - 1],
 
-           m = u ? d.shape[d.rank - 1] : d.shape[d.rank - 2],
 
-           y = a ? p.shape[p.rank - 1] : p.shape[p.rank - 2],
 
-           x = u ? d.shape[d.rank - 2] : d.shape[d.rank - 1],
 
-           b = p.shape.slice(0, -2),
 
-           E = d.shape.slice(0, -2),
 
-           R = w(b),
 
-           I = w(E);
 
-         g(p.rank >= 2 && d.rank >= 2 && p.rank === d.rank, function () {
 
-           return "Error in fused matMul: inputs must have the same rank of at least 2, got ranks " + p.rank + " and " + d.rank + ".";
 
-         }), g(C(b, E), function () {
 
-           return "Error in fused matMul: outer dimensions (" + b + ") and (" + E + ") of Tensors with shapes " + p.shape + " and " + d.shape + " must match.";
 
-         }), g(v === m, function () {
 
-           return "Error in fused matMul: inner shapes (" + v + ") and (" + m + ") of Tensors with shapes " + p.shape + " and " + d.shape + " and transposeA=" + a + " and transposeB=" + u + " must match.";
 
-         });
 
-         var k,
 
-           S,
 
-           A = p.shape.slice(0, -2).concat([y, x]),
 
-           D = a ? p.as3D(R, v, y) : p.as3D(R, y, v),
 
-           T = u ? d.as3D(I, x, m) : d.as3D(I, m, x);
 
-         null != s && po(A, (k = Rt(k = ln(s, "bias", "fused matMul"), p)[0]).shape), null != h && (S = ln(h, "prelu weights", "fused matMul"));
 
-         var N = {
 
-           $a: D,
 
-           $b: T
 
-         };
 
-         return null != s && (N.$bias = k), null != h && (N.$preluActivationWeights = S), Nt.runKernelFunc(function (t, e) {
 
-           var n = t.fusedBatchMatMul({
 
-             a: D,
 
-             b: T,
 
-             transposeA: a,
 
-             transposeB: u,
 
-             bias: k,
 
-             activation: l,
 
-             preluActivationWeights: S
 
-           });
 
-           return e([D, T, n]), n;
 
-         }, N, function (t, e) {
 
-           var n = e[0],
 
-             r = e[1],
 
-             o = e[2],
 
-             i = gh(t, o, l),
 
-             c = {};
 
-           return null != s && (c = {
 
-             $bias: function () {
 
-               return yh(k, i);
 
-             }
 
-           }), a || u ? !a && u ? Object.assign({
 
-             $a: function () {
 
-               return i.matMul(r, !1, !1);
 
-             },
 
-             $b: function () {
 
-               return i.matMul(n, !0, !1);
 
-             }
 
-           }, c) : a && !u ? Object.assign({
 
-             $a: function () {
 
-               return r.matMul(i, !1, !0);
 
-             },
 
-             $b: function () {
 
-               return n.matMul(i, !1, !1);
 
-             }
 
-           }, c) : Object.assign({
 
-             $a: function () {
 
-               return r.matMul(i, !0, !0);
 
-             },
 
-             $b: function () {
 
-               return i.matMul(n, !0, !0);
 
-             }
 
-           }, c) : Object.assign({
 
-             $a: function () {
 
-               return i.matMul(r, !1, !0);
 
-             },
 
-             $b: function () {
 
-               return n.matMul(i, !0, !1);
 
-             }
 
-           }, c);
 
-         }).reshape(A);
 
-       }
 
-     }),
 
-       wh = Cn({
 
-         conv2d_: function (t) {
 
-           var e = t.x,
 
-             n = t.filter,
 
-             r = t.strides,
 
-             o = t.pad,
 
-             a = t.dataFormat,
 
-             i = void 0 === a ? "NHWC" : a,
 
-             u = t.dilations,
 
-             s = void 0 === u ? [1, 1] : u,
 
-             c = t.dimRoundingMode,
 
-             l = t.bias,
 
-             h = t.activation,
 
-             f = void 0 === h ? "linear" : h,
 
-             p = t.preluActivationWeights;
 
-           if (f = f || "linear", !1 === mh(Nt.state.gradientDepth, f)) {
 
-             var d = Dc(e, n, r, o, i, s, c);
 
-             return null != l && (d = Vs(d, l)), xh(d, f, p);
 
-           }
 
-           var v = ln(e, "x", "conv2d"),
 
-             m = ln(n, "filter", "conv2d"),
 
-             y = v,
 
-             x = !1;
 
-           3 === v.rank && (x = !0, y = v.as4D(1, v.shape[0], v.shape[1], v.shape[2])), g(4 === y.rank, function () {
 
-             return "Error in fused conv2d: input must be rank 4, but got rank " + y.rank + ".";
 
-           }), g(4 === m.rank, function () {
 
-             return "Error in fused conv2d: filter must be rank 4, but got rank " + m.rank + ".";
 
-           }), null != c && g(E(o), function () {
 
-             return "Error in fused conv2d: pad must be an integer when using, dimRoundingMode " + c + " but got pad " + o + ".";
 
-           }), g(y.shape[3] === m.shape[2], function () {
 
-             return "Error in conv2d: depth of input (" + y.shape[3] + ") must match input depth for filter " + m.shape[2] + ".";
 
-           }), g(Io(r, s), function () {
 
-             return "Error in conv2D: Either strides or dilations must be 1. Got strides " + r + " and dilations '" + s + "'";
 
-           }), g("NHWC" === i, function () {
 
-             return "Error in conv2d: got dataFormat of " + i + " but only NHWC is currently supported.";
 
-           });
 
-           var b,
 
-             w,
 
-             C = go(y.shape, m.shape, r, s, o, c);
 
-           null != l && (b = Rt(b = ln(l, "bias", "fused conv2d"), v)[0], po(C.outShape, b.shape)), null != p && (w = ln(p, "prelu weights", "fused conv2d"));
 
-           var R = {
 
-             x: y,
 
-             $filter: m
 
-           };
 
-           null != l && (R.$bias = b), null != p && (R.$preluActivationWeights = w);
 
-           var I = Nt.runKernelFunc(function (t, e) {
 
-             var n = t.fusedConv2d({
 
-               input: y,
 
-               filter: m,
 
-               convInfo: C,
 
-               bias: b,
 
-               activation: f,
 
-               preluActivationWeights: w
 
-             });
 
-             return e([m, y, n]), n;
 
-           }, R, function (t, e) {
 
-             var n = e,
 
-               a = n[0],
 
-               i = n[1],
 
-               u = n[2],
 
-               c = gh(t, u, f);
 
-             g(Ro(s), function () {
 
-               return "Error in gradient of fused conv2D: dilation rates greater than 1 are not yet supported in gradients. Got dilations '" + s + "'";
 
-             });
 
-             var h = {};
 
-             return null != l && (h = {
 
-               $bias: function () {
 
-                 return yh(b, c);
 
-               }
 
-             }), Object.assign({
 
-               x: function () {
 
-                 return Fc(i.shape, c, a, r, o);
 
-               },
 
-               $filter: function () {
 
-                 return Nc(i, c, a.shape, r, o);
 
-               }
 
-             }, h);
 
-           });
 
-           return x ? I.as3D(I.shape[1], I.shape[2], I.shape[3]) : I;
 
-         }
 
-       }),
 
-       Ch = Cn({
 
-         depthwiseConv2d_: function (t) {
 
-           var e = t.x,
 
-             n = t.filter,
 
-             r = t.strides,
 
-             o = t.pad,
 
-             a = t.dataFormat,
 
-             i = void 0 === a ? "NHWC" : a,
 
-             u = t.dilations,
 
-             s = void 0 === u ? [1, 1] : u,
 
-             c = t.dimRoundingMode,
 
-             l = t.bias,
 
-             h = t.activation,
 
-             f = void 0 === h ? "linear" : h,
 
-             p = t.preluActivationWeights;
 
-           if (!1 === mh(Nt.state.gradientDepth, f)) {
 
-             var d = Oc(e, n, r, o, i, s, c);
 
-             return null != l && (d = Vs(d, l)), xh(d, f, p);
 
-           }
 
-           var v = ln(e, "x", "depthwiseConv2d"),
 
-             m = ln(n, "filter", "depthwiseConv2d"),
 
-             y = v,
 
-             x = !1;
 
-           3 === v.rank && (x = !0, y = v.as4D(1, v.shape[0], v.shape[1], v.shape[2])), g(4 === y.rank, function () {
 
-             return "Error in fused depthwiseConv2d: input must be rank 4, but got rank " + y.rank + ".";
 
-           }), g(4 === m.rank, function () {
 
-             return "Error in fused depthwiseConv2d: filter must be rank 4, but got rank " + m.rank + ".";
 
-           }), g(y.shape[3] === m.shape[2], function () {
 
-             return "Error in fused depthwiseConv2d: number of input channels (" + y.shape[3] + ") must match the inChannels dimension in filter " + m.shape[2] + ".";
 
-           }), null == s && (s = [1, 1]), g(Io(r, s), function () {
 
-             return "Error in fused depthwiseConv2d: Either strides or dilations must be 1. Got strides " + r + " and dilations '" + s + "'";
 
-           }), null != c && g(E(o), function () {
 
-             return "Error in fused depthwiseConv2d: pad must be an integer when using dimRoundingMode " + c + " but got pad " + o + ".";
 
-           });
 
-           var b,
 
-             w,
 
-             C = go(y.shape, m.shape, r, s, o, c, !0);
 
-           null != l && (b = Rt(b = ln(l, "bias", "fused conv2d"), v)[0], po(C.outShape, b.shape)), null != p && (w = ln(p, "prelu weights", "fused depthwiseConv2d"));
 
-           var R = {
 
-             x: y,
 
-             $filter: m
 
-           };
 
-           null != l && (R.$bias = b), null != p && (R.$preluActivationWeights = w);
 
-           var I = Nt.runKernelFunc(function (t, e) {
 
-             var n = t.fusedDepthwiseConv2D({
 
-               input: y,
 
-               filter: m,
 
-               convInfo: C,
 
-               bias: b,
 
-               activation: f,
 
-               preluActivationWeights: w
 
-             });
 
-             return e([y, m, n]), n;
 
-           }, R, function (t, e) {
 
-             g(Ro(s), function () {
 
-               return "Error in gradient of fused depthwiseConv2d: dilation rates greater than 1 are not yet supported. Got dilations '" + s + "'";
 
-             });
 
-             var n = e[0],
 
-               r = e[1],
 
-               o = e[2],
 
-               a = gh(t, o, f),
 
-               i = {};
 
-             return null != l && (i = {
 
-               $bias: function () {
 
-                 return yh(b, a);
 
-               }
 
-             }), Object.assign({
 
-               x: function () {
 
-                 return _c(n.shape, a, r, C);
 
-               },
 
-               $filter: function () {
 
-                 return Mc(n, a, r.shape, C);
 
-               }
 
-             }, i);
 
-           });
 
-           return x ? I.as3D(I.shape[1], I.shape[2], I.shape[3]) : I;
 
-         }
 
-       }),
 
-       Eh = Object.freeze({
 
-         matMul: bh,
 
-         conv2d: wh,
 
-         depthwiseConv2d: Ch
 
-       }),
 
-       Rh = Object.freeze({
 
-         image: vh,
 
-         linalg: sh,
 
-         losses: oh,
 
-         spectral: Bl,
 
-         fused: Eh,
 
-         signal: Kl,
 
-         square: Uu,
 
-         conv1d: Ac,
 
-         conv2d: Dc,
 
-         conv3d: Tc,
 
-         depthwiseConv2d: Oc,
 
-         separableConv2d: Bc,
 
-         conv2dTranspose: Pc,
 
-         conv3dTranspose: Lc,
 
-         op: Cn,
 
-         batchNormalization2d: Ss,
 
-         batchNormalization3d: As,
 
-         batchNormalization4d: Ds,
 
-         batchNormalization: Ts,
 
-         batchNorm: Ns,
 
-         batchNorm2d: Fs,
 
-         batchNorm3d: Os,
 
-         batchNorm4d: _s,
 
-         booleanMaskAsync: Rc,
 
-         complex: En,
 
-         real: Rn,
 
-         imag: In,
 
-         concat: Gn,
 
-         concat1d: Hn,
 
-         concat2d: qn,
 
-         concat3d: Kn,
 
-         concat4d: jn,
 
-         split: Xn,
 
-         matMul: Wc,
 
-         dot: Uc,
 
-         outerProduct: Vc,
 
-         reverse: zc,
 
-         reverse1d: Gc,
 
-         reverse2d: Hc,
 
-         reverse3d: qc,
 
-         reverse4d: Kc,
 
-         maxPool: $c,
 
-         avgPool: Yc,
 
-         pool: Qc,
 
-         maxPool3d: Jc,
 
-         avgPool3d: Zc,
 
-         slice: tl,
 
-         slice1d: el,
 
-         slice2d: nl,
 
-         slice3d: rl,
 
-         slice4d: ol,
 
-         abs: Vu,
 
-         acos: zu,
 
-         acosh: Gu,
 
-         asin: Hu,
 
-         asinh: qu,
 
-         atan: Ku,
 
-         atanh: ju,
 
-         ceil: Xu,
 
-         clipByValue: $u,
 
-         cos: Yu,
 
-         cosh: Qu,
 
-         erf: Ju,
 
-         exp: Zu,
 
-         expm1: ts,
 
-         floor: es,
 
-         log: ns,
 
-         log1p: rs,
 
-         logSigmoid: os,
 
-         neg: as,
 
-         reciprocal: is,
 
-         round: us,
 
-         rsqrt: ss,
 
-         sigmoid: cs,
 
-         sign: ls,
 
-         isNaN: hs,
 
-         isInf: fs,
 
-         isFinite: ps,
 
-         sin: ds,
 
-         sinh: vs,
 
-         softplus: ms,
 
-         sqrt: gs,
 
-         step: ys,
 
-         tan: xs,
 
-         tanh: bs,
 
-         all: il,
 
-         any: ul,
 
-         argMax: sl,
 
-         argMin: cl,
 
-         logSumExp: ll,
 
-         max: hl,
 
-         mean: fl,
 
-         min: pl,
 
-         moments: dl,
 
-         sum: vl,
 
-         prod: ml,
 
-         equal: sc,
 
-         equalStrict: cc,
 
-         greater: lc,
 
-         greaterEqual: hc,
 
-         greaterEqualStrict: fc,
 
-         greaterStrict: pc,
 
-         less: dc,
 
-         lessEqual: vc,
 
-         lessEqualStrict: mc,
 
-         lessStrict: gc,
 
-         notEqual: yc,
 
-         notEqualStrict: xc,
 
-         add: Vs,
 
-         addN: zs,
 
-         addStrict: Gs,
 
-         atan2: Hs,
 
-         div: qs,
 
-         divStrict: Ks,
 
-         floorDiv: js,
 
-         maximum: Xs,
 
-         maximumStrict: $s,
 
-         minimum: Ys,
 
-         minimumStrict: Qs,
 
-         mod: Js,
 
-         modStrict: Zs,
 
-         mul: tc,
 
-         mulStrict: ec,
 
-         pow: nc,
 
-         powStrict: rc,
 
-         squaredDifference: oc,
 
-         squaredDifferenceStrict: ac,
 
-         sub: ic,
 
-         subStrict: uc,
 
-         elu: gl,
 
-         leakyRelu: yl,
 
-         prelu: xl,
 
-         relu: bl,
 
-         relu6: wl,
 
-         selu: Cl,
 
-         logicalAnd: Ms,
 
-         logicalNot: Bs,
 
-         logicalOr: Ps,
 
-         logicalXor: Ls,
 
-         where: Ws,
 
-         whereAsync: Us,
 
-         buffer: ur,
 
-         print: sr,
 
-         batchToSpaceND: cr,
 
-         cast: lr,
 
-         clone: hr,
 
-         cumsum: fr,
 
-         depthToSpace: pr,
 
-         expandDims: dr,
 
-         eye: vr,
 
-         multinomial: mr,
 
-         oneHot: gr,
 
-         pad: yr,
 
-         pad1d: xr,
 
-         pad2d: br,
 
-         pad3d: wr,
 
-         pad4d: Cr,
 
-         rand: Er,
 
-         randomNormal: Rr,
 
-         randomGamma: Ir,
 
-         randomUniform: kr,
 
-         reshape: Sr,
 
-         spaceToBatchND: Ar,
 
-         squeeze: Dr,
 
-         stack: Tr,
 
-         tile: Nr,
 
-         truncatedNormal: Fr,
 
-         unstack: Or,
 
-         setdiff1dAsync: _r,
 
-         fill: Ln,
 
-         linspace: Wn,
 
-         ones: Bn,
 
-         range: Un,
 
-         scalar: An,
 
-         tensor: kn,
 
-         tensor1d: Dn,
 
-         tensor2d: Tn,
 
-         tensor3d: Nn,
 
-         tensor4d: Fn,
 
-         tensor5d: On,
 
-         tensor6d: _n,
 
-         variable: Mn,
 
-         zeros: Pn,
 
-         onesLike: Vn,
 
-         zerosLike: zn,
 
-         transpose: El,
 
-         softmax: io,
 
-         logSoftmax: uo,
 
-         localResponseNormalization: Rl,
 
-         norm: Il,
 
-         gather: Cc,
 
-         unsortedSegmentSum: Ec,
 
-         basicLSTMCell: kl,
 
-         multiRNNCell: Sl,
 
-         movingAverage: Al,
 
-         stridedSlice: Dl,
 
-         topk: Tl,
 
-         scatterND: Nl,
 
-         fft: Fl,
 
-         ifft: Ol,
 
-         rfft: _l,
 
-         irfft: Ml,
 
-         sparseToDense: Pl,
 
-         gatherND: Ll,
 
-         diag: Wl,
 
-         dropout: Ul,
 
-         hannWindow: zl,
 
-         hammingWindow: Gl,
 
-         frame: Hl,
 
-         stft: ql,
 
-         inTopKAsync: Xl
 
-       });
 
-     exports.fused = Eh;
 
-     function Ih(t, e) {
 
-       Array.isArray(t) || (t = [t]), t.forEach(function (t) {
 
-         null != t && g("complex64" !== t.dtype, function () {
 
-           return e + " does not support complex64 tensors.";
 
-         });
 
-       });
 
-     }
 
-     function kh(t, e, n, r) {
 
-       if ("linear" === n) return t.linear(e);
 
-       if ("relu" === n) return t.relu(e);
 
-       if ("elu" === n) return t.elu(e);
 
-       if ("relu6" === n) return t.relu6(e);
 
-       if ("prelu" === n) return t.prelu(e, r);
 
-       throw new Error("Activation " + n + " has not been implemented for the CPU backend.");
 
-     }
 
-     var Sh = function (t) {
 
-       function o() {
 
-         var e = t.call(this) || this;
 
-         if (e.blockSize = 48, e.firstUse = !0, a().get("IS_BROWSER")) {
 
-           var n = "undefined" != typeof OffscreenCanvas ? new OffscreenCanvas(300, 150) : "undefined" != typeof document ? document.createElement("canvas") : null;
 
-           null !== n && (e.fromPixels2DContext = n.getContext("2d"));
 
-         }
 
-         return e.data = new so(e, Nt), e;
 
-       }
 
-       return e(o, t), o.prototype.write = function (t, e, n) {
 
-         this.firstUse && (this.firstUse = !1, a().get("IS_NODE") && un("\n============================\nHi there 👋. Looks like you are running TensorFlow.js in Node.js. To speed things up dramatically, install our node backend, which binds to TensorFlow C++, by running npm i @tensorflow/tfjs-node, or npm i @tensorflow/tfjs-node-gpu if you have CUDA. Then call require('@tensorflow/tfjs-node'); (-gpu suffix for CUDA) at the start of your program. Visit https://github.com/tensorflow/tfjs-node for more details.\n============================\n"));
 
-         var r = {};
 
-         return this.data.set(r, {
 
-           values: t,
 
-           dtype: n
 
-         }), r;
 
-       }, o.prototype.move = function (t, e, n, r) {
 
-         this.data.set(t, {
 
-           values: e,
 
-           dtype: r
 
-         });
 
-       }, o.prototype.numDataIds = function () {
 
-         return this.data.numDataIds();
 
-       }, o.prototype.fromPixels = function (t, e) {
 
-         if (null == t) throw new Error("pixels passed to tf.browser.fromPixels() can not be null");
 
-         var n,
 
-           r,
 
-           o = t.data instanceof Uint8Array,
 
-           i = "undefined" != typeof ImageData && t instanceof ImageData,
 
-           u = "undefined" != typeof HTMLVideoElement && t instanceof HTMLVideoElement,
 
-           s = "undefined" != typeof HTMLImageElement && t instanceof HTMLImageElement,
 
-           c = u ? [t.videoWidth, t.videoHeight] : [t.width, t.height],
 
-           l = c[0],
 
-           h = c[1];
 
-         if (a().get("IS_NODE") && null == t.getContext) throw new Error("When running in node, pixels must be an HTMLCanvasElement like the one returned by the `canvas` npm package");
 
-         if (null != t.getContext) n = t.getContext("2d").getImageData(0, 0, l, h).data; else if (i || o) n = t.data; else {
 
-           if (!s && !u) throw new Error("pixels passed to tf.browser.fromPixels() must be either an HTMLVideoElement, HTMLImageElement, HTMLCanvasElement, ImageData or {data: Uint32Array, width: number, height: number}, but was " + t.constructor.name);
 
-           if (null == this.fromPixels2DContext) throw new Error("Can't read pixels from HTMLImageElement outside the browser.");
 
-           this.fromPixels2DContext.canvas.width = l, this.fromPixels2DContext.canvas.height = h, this.fromPixels2DContext.drawImage(t, 0, 0, l, h), n = this.fromPixels2DContext.getImageData(0, 0, l, h).data;
 
-         }
 
-         if (4 === e) r = new Int32Array(n); else {
 
-           var f = l * h;
 
-           r = new Int32Array(f * e);
 
-           for (var p = 0; p < f; p++) for (var d = 0; d < e; ++d) r[p * e + d] = n[4 * p + d];
 
-         }
 
-         return Nn(r, [h, l, e], "int32");
 
-       }, o.prototype.read = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (e) {
 
-             return [2, this.readSync(t)];
 
-           });
 
-         });
 
-       }, o.prototype.readSync = function (t) {
 
-         var e = this.data.get(t),
 
-           n = e.dtype,
 
-           r = e.complexTensors;
 
-         return "complex64" === n ? No(this.readSync(r.real.dataId), this.readSync(r.imag.dataId)) : this.data.get(t).values;
 
-       }, o.prototype.bufferSync = function (t) {
 
-         var e = this.readSync(t.dataId),
 
-           n = e;
 
-         if ("string" === t.dtype) try {
 
-           n = e.map(function (t) {
 
-             return Z(t);
 
-           });
 
-         } catch (t) {
 
-           throw new Error("Failed to decode encoded string bytes into utf-8");
 
-         }
 
-         return ur(t.shape, t.dtype, n);
 
-       }, o.prototype.makeOutput = function (t, e, n) {
 
-         var r = this.write(t, e, n);
 
-         return Nt.makeTensorFromDataId(r, e, n, this);
 
-       }, o.prototype.disposeData = function (t) {
 
-         if (this.data.has(t)) {
 
-           var e = this.data.get(t).complexTensors;
 
-           null != e && (e.real.dispose(), e.imag.dispose()), this.data.delete(t);
 
-         }
 
-       }, o.prototype.time = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e;
 
-           return r(this, function (n) {
 
-             return e = Y(), t(), [2, {
 
-               kernelMs: Y() - e
 
-             }];
 
-           });
 
-         });
 
-       }, o.prototype.memory = function () {
 
-         return {
 
-           unreliable: !0,
 
-           reasons: ["The reported memory is an upper bound. Due to automatic garbage collection, the true allocated memory may be less."]
 
-         };
 
-       }, o.prototype.complex = function (t, e) {
 
-         var n = this.makeOutput(null, t.shape, "complex64");
 
-         return this.data.get(n.dataId).complexTensors = {
 
-           real: Nt.keep(t.clone()),
 
-           imag: Nt.keep(e.clone())
 
-         }, n;
 
-       }, o.prototype.real = function (t) {
 
-         return this.data.get(t.dataId).complexTensors.real.clone();
 
-       }, o.prototype.imag = function (t) {
 
-         return this.data.get(t.dataId).complexTensors.imag.clone();
 
-       }, o.prototype.slice = function (t, e, n) {
 
-         if (Ih(t, "slice"), Yr(t.shape, e, n)) {
 
-           var r = Qr(e, t.strides),
 
-             o = w(n);
 
-           return kn(this.readSync(t.dataId).subarray(r, r + o), n, t.dtype);
 
-         }
 
-         for (var a = ur(n, t.dtype), i = this.bufferSync(t), u = 0; u < a.size; ++u) {
 
-           var s = a.indexToLoc(u).map(function (t, n) {
 
-             return t + e[n];
 
-           });
 
-           a.values[u] = i.get.apply(i, s);
 
-         }
 
-         return a.toTensor();
 
-       }, o.prototype.stridedSlice = function (t, e, n, r) {
 
-         Ih(t, "stridedSlice");
 
-         var o = jr(e, n, r);
 
-         if (o.some(function (t) {
 
-           return 0 === t;
 
-         })) return kn([], o);
 
-         for (var a = ur(o, t.dtype), i = this.bufferSync(t), u = 0; u < a.size; u++) {
 
-           for (var s = a.indexToLoc(u), c = new Array(s.length), l = 0; l < c.length; l++) c[l] = s[l] * r[l] + e[l];
 
-           a.set.apply(a, [i.get.apply(i, c)].concat(s));
 
-         }
 
-         return a.toTensor();
 
-       }, o.prototype.diag = function (t) {
 
-         for (var e = this.readSync(t.dataId), n = ur([t.size, t.size], t.dtype), r = n.values, o = 0; o < e.length; o++) r[o * t.size + o] = e[o];
 
-         return n.toTensor();
 
-       }, o.prototype.unstack = function (t, e) {
 
-         for (var n = t.shape[e], r = new Array(t.rank - 1), o = 0, a = 0; a < t.rank; a++) a !== e && (r[o++] = t.shape[a]);
 
-         var i = new Array(t.rank).fill(0),
 
-           u = t.shape.slice();
 
-         u[e] = 1;
 
-         var s = new Array(n);
 
-         for (a = 0; a < s.length; a++) i[e] = a, s[a] = this.slice(t, i, u).reshape(r);
 
-         return s;
 
-       }, o.prototype.reverse = function (t, e) {
 
-         Ih(t, "reverse");
 
-         for (var n = ur(t.shape, t.dtype), r = this.bufferSync(t), o = function (o) {
 
-           var a = n.indexToLoc(o),
 
-             i = a.slice();
 
-           e.forEach(function (e) {
 
-             return i[e] = t.shape[e] - 1 - i[e];
 
-           }), n.set.apply(n, [r.get.apply(r, i)].concat(a));
 
-         }, a = 0; a < n.size; a++) o(a);
 
-         return n.toTensor();
 
-       }, o.prototype.concat = function (t, e) {
 
-         var n = this;
 
-         if ("complex64" === t[0].dtype) {
 
-           var r = t.map(function (t) {
 
-             return Rn(t);
 
-           }),
 
-             o = t.map(function (t) {
 
-               return In(t);
 
-             });
 
-           return En(this.concat(r, e), this.concat(o, e));
 
-         }
 
-         var a = t.map(function (t) {
 
-           var n = w(t.shape.slice(e));
 
-           return t.as2D(-1, n);
 
-         }),
 
-           i = wn(a.map(function (t) {
 
-             return t.shape;
 
-           }), 1),
 
-           u = ur(i, t[0].dtype).values;
 
-         if (1 === a[0].shape[0]) {
 
-           var s = 0;
 
-           a.forEach(function (t) {
 
-             u.set(n.readSync(t.dataId), s), s += t.size;
 
-           });
 
-         } else {
 
-           var c = 0;
 
-           a.forEach(function (t) {
 
-             for (var e = n.readSync(t.dataId), r = 0, o = 0; o < t.shape[0]; ++o) for (var a = o * i[1] + c, s = 0; s < t.shape[1]; ++s) u[a + s] = e[r++];
 
-             c += t.shape[1];
 
-           });
 
-         }
 
-         var l = wn(t.map(function (t) {
 
-           return t.shape;
 
-         }), e);
 
-         return kn(u, l, t[0].dtype);
 
-       }, o.prototype.neg = function (t) {
 
-         return Ih(t, "neg"), this.multiply(An(-1), t);
 
-       }, o.prototype.add = function (t, e) {
 
-         return "complex64" === t.dtype || "complex64" === e.dtype ? this.broadcastedBinaryComplexOp(t.cast("complex64"), e.cast("complex64"), function (t, e, n, r) {
 
-           return {
 
-             real: t + n,
 
-             imag: e + r
 
-           };
 
-         }) : this.broadcastedBinaryOp(t, e, Ct(t.dtype, e.dtype), function (t, e) {
 
-           return t + e;
 
-         });
 
-       }, o.prototype.addN = function (t) {
 
-         var e = this;
 
-         Ih(t, "addN");
 
-         for (var n = t.map(function (t) {
 
-           return e.readSync(t.dataId);
 
-         }), r = ur(t[0].shape, t[0].dtype), o = r.values, a = 0; a < t.length; a++) for (var i = n[a], u = 0; u < o.length; u++) o[u] += i[u];
 
-         return r.toTensor();
 
-       }, o.prototype.subtract = function (t, e) {
 
-         return "complex64" === t.dtype || "complex64" === e.dtype ? this.broadcastedBinaryComplexOp(t.cast("complex64"), e.cast("complex64"), function (t, e, n, r) {
 
-           return {
 
-             real: t - n,
 
-             imag: e - r
 
-           };
 
-         }) : this.broadcastedBinaryOp(t, e, Ct(t.dtype, e.dtype), function (t, e) {
 
-           return t - e;
 
-         });
 
-       }, o.prototype.pow = function (t, e) {
 
-         return Ih([t, e], "pow"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           return Math.pow(t, e);
 
-         });
 
-       }, o.prototype.batchMatMul = function (t, e, n, r) {
 
-         Ih([t, e], "matMul");
 
-         for (var o = n ? t.shape[1] : t.shape[2], a = n ? t.shape[2] : t.shape[1], i = r ? e.shape[1] : e.shape[2], u = t.shape[0], s = this.readSync(t.dataId), c = this.readSync(e.dataId), l = n ? [t.strides[0], 1, t.strides[1]] : [t.strides[0], t.strides[1], 1], h = l[0], f = l[1], p = l[2], d = r ? [1, e.strides[1], e.strides[0]] : [e.strides[1], 1, e.strides[0]], v = d[0], m = d[1], g = d[2], y = a * i, x = ur([u, a, i], t.dtype), b = x.values, w = this.blockSize, C = 0; C < u; C++) for (var E = 0; E < a; E += w) for (var R = 0; R < i; R += w) for (var I = 0; I < o; I += w) for (var k = Math.min(E + w, a), S = Math.min(R + w, i), A = Math.min(I + w, o), D = E; D < k; D++) for (var T = R; T < S; T++) {
 
-           for (var N = 0, F = I; F < A; F++) N += s[C * h + D * f + F * p] * c[F * v + T * m + C * g];
 
-           b[C * y + (D * i + T)] += N;
 
-         }
 
-         return x.toTensor();
 
-       }, o.prototype.fusedBatchMatMul = function (t) {
 
-         var e = t.a,
 
-           n = t.b,
 
-           r = t.transposeA,
 
-           o = t.transposeB,
 
-           a = t.bias,
 
-           i = t.activation,
 
-           u = t.preluActivationWeights,
 
-           s = this.batchMatMul(e, n, r, o);
 
-         return a && (s = this.add(s, a)), i && (s = kh(this, s, i, u)), s;
 
-       }, o.prototype.multiply = function (t, e) {
 
-         return "complex64" === t.dtype || "complex64" === e.dtype ? this.broadcastedBinaryComplexOp(t.cast("complex64"), e.cast("complex64"), function (t, e, n, r) {
 
-           return {
 
-             real: t * n - e * r,
 
-             imag: t * r + e * n
 
-           };
 
-         }) : this.broadcastedBinaryOp(t, e, Ct(t.dtype, e.dtype), function (t, e) {
 
-           return t * e;
 
-         });
 
-       }, o.prototype.realDivide = function (t, e) {
 
-         Ih([t, e], "realDivide");
 
-         return this.broadcastedBinaryOp(t, e, "float32", function (t, e) {
 
-           return t / e;
 
-         });
 
-       }, o.prototype.floorDiv = function (t, e) {
 
-         Ih([t, e], "floorDiv");
 
-         return this.broadcastedBinaryOp(t, e, "int32", function (t, e) {
 
-           return Math.floor(t / e);
 
-         });
 
-       }, o.prototype.sum = function (t, e) {
 
-         Ih(t, "sum"), mn("sum", e, t.rank);
 
-         for (var n = dn(t.shape, e), r = n[0], o = n[1], a = Pn(r, Ct(t.dtype, "int32")), i = w(o), u = this.readSync(a.dataId), s = this.readSync(t.dataId), c = 0; c < u.length; ++c) {
 
-           for (var l = c * i, h = 0, f = 0; f < i; ++f) h += s[l + f];
 
-           u[c] = h;
 
-         }
 
-         return a;
 
-       }, o.prototype.prod = function (t, e) {
 
-         Ih(t, "sum");
 
-         for (var n = dn(t.shape, e), r = n[0], o = n[1], a = Pn(r, Ct(t.dtype, "int32")), i = w(o), u = this.readSync(a.dataId), s = this.readSync(t.dataId), c = 0; c < u.length; ++c) {
 
-           for (var l = c * i, h = 1, f = 0; f < i; ++f) h *= s[l + f];
 
-           u[c] = h;
 
-         }
 
-         return a;
 
-       }, o.prototype.unsortedSegmentSum = function (t, e, n) {
 
-         Ih(t, "unsortedSegmentSum");
 
-         for (var r = [], o = t.rank - e.rank, a = 0; a < o; ++a) e = e.expandDims(a + 1);
 
-         for (a = 0; a < n; ++a) {
 
-           var i = An(a, "int32"),
 
-             u = sc(i, e).asType("float32").mul(t).sum(0);
 
-           r.push(u);
 
-         }
 
-         return Tr(r);
 
-       }, o.prototype.argMin = function (t, e) {
 
-         Ih(t, "argMin");
 
-         var n = [e];
 
-         mn("argMin", n, t.rank);
 
-         for (var r = dn(t.shape, n), o = r[0], a = r[1], i = Pn(o, "int32"), u = w(a), s = this.readSync(i.dataId), c = this.readSync(t.dataId), l = 0; l < s.length; ++l) {
 
-           for (var h = l * u, f = c[h], p = 0, d = 0; d < u; ++d) {
 
-             var v = c[h + d];
 
-             v < f && (f = v, p = d);
 
-           }
 
-           s[l] = p;
 
-         }
 
-         return i;
 
-       }, o.prototype.argMax = function (t, e) {
 
-         Ih(t, "argMax");
 
-         var n = [e];
 
-         mn("argMax", n, t.rank);
 
-         for (var r = dn(t.shape, n), o = r[0], a = r[1], i = Pn(o, "int32"), u = w(a), s = this.readSync(i.dataId), c = this.readSync(t.dataId), l = 0; l < s.length; ++l) {
 
-           for (var h = l * u, f = c[h], p = 0, d = 0; d < u; ++d) {
 
-             var v = c[h + d];
 
-             v > f && (f = v, p = d);
 
-           }
 
-           s[l] = p;
 
-         }
 
-         return i;
 
-       }, o.prototype.cumsum = function (t, e, n, r) {
 
-         if (Ih(t, "cumsum"), e !== t.rank - 1) throw new Error("backend.cumsum in CPU expects an inner-most axis=" + (t.rank - 1) + " but got axis=" + e);
 
-         for (var o = Ct(t.dtype, "int32"), a = Pn(t.shape, o), i = this.readSync(a.dataId), u = this.readSync(t.dataId), s = t.shape[t.rank - 1], c = r ? function (t, e) {
 
-           return t + s - e - 1;
 
-         } : function (t, e) {
 
-           return t + e;
 
-         }, l = 0; l < u.length; l += s) for (var h = 0; h < s; h++) {
 
-           var f = c(l, h);
 
-           if (0 === h) i[f] = n ? 0 : u[f]; else {
 
-             var p = c(l, h - 1);
 
-             i[f] = n ? u[p] + i[p] : u[f] + i[p];
 
-           }
 
-         }
 
-         return a;
 
-       }, o.prototype.equal = function (t, e) {
 
-         return Ih([t, e], "equal"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t === e ? 1 : 0;
 
-         });
 
-       }, o.prototype.notEqual = function (t, e) {
 
-         return Ih([t, e], "notEqual"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t !== e ? 1 : 0;
 
-         });
 
-       }, o.prototype.less = function (t, e) {
 
-         return Ih([t, e], "less"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t < e ? 1 : 0;
 
-         });
 
-       }, o.prototype.lessEqual = function (t, e) {
 
-         return Ih([t, e], "lessEqual"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t <= e ? 1 : 0;
 
-         });
 
-       }, o.prototype.greater = function (t, e) {
 
-         return Ih([t, e], "greater"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t > e ? 1 : 0;
 
-         });
 
-       }, o.prototype.greaterEqual = function (t, e) {
 
-         return Ih([t, e], "greaterEqual"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t >= e ? 1 : 0;
 
-         });
 
-       }, o.prototype.logicalNot = function (t) {
 
-         Ih(t, "logicalNot");
 
-         for (var e = this.readSync(t.dataId), n = new Uint8Array(e.length), r = 0; r < e.length; ++r) n[r] = e[r] ? 0 : 1;
 
-         return this.makeOutput(n, t.shape, "bool");
 
-       }, o.prototype.logicalAnd = function (t, e) {
 
-         return Ih([t, e], "logicalAnd"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t && e;
 
-         });
 
-       }, o.prototype.logicalOr = function (t, e) {
 
-         return Ih([t, e], "logicalOr"), this.broadcastedBinaryOp(t, e, "bool", function (t, e) {
 
-           return t || e;
 
-         });
 
-       }, o.prototype.select = function (t, e, n) {
 
-         Ih([t, e, n], "select");
 
-         for (var r = this.readSync(t.dataId), o = this.readSync(e.dataId), a = this.readSync(n.dataId), i = Pn(e.shape, Ct(e.dtype, n.dtype)), u = this.readSync(i.dataId), s = 0, c = 0 === t.rank || t.rank > 1 || 1 === e.rank ? 1 : w(e.shape.slice(1)), l = 0; l < r.length; l++) for (var h = 0; h < c; h++) 1 === r[l] ? u[s++] = o[l] : u[s++] = a[l];
 
-         return i;
 
-       }, o.prototype.where = function (t) {
 
-         Ih([t], "where");
 
-         var e = this.readSync(t.dataId);
 
-         return Uo(t.shape, e);
 
-       }, o.prototype.topk = function (t, e, n) {
 
-         return Ih(t, "topk"), Wo(this.readSync(t.dataId), t.shape, t.dtype, e);
 
-       }, o.prototype.min = function (t, e) {
 
-         Ih(t, "min"), mn("min", e, t.rank);
 
-         for (var n = dn(t.shape, e), r = n[0], o = n[1], a = Pn(r, t.dtype), i = w(o), u = this.readSync(a.dataId), s = this.readSync(t.dataId), c = 0; c < u.length; ++c) {
 
-           for (var l = c * i, h = s[l], f = 0; f < i; ++f) {
 
-             var p = s[l + f];
 
-             p < h && (h = p);
 
-           }
 
-           u[c] = h;
 
-         }
 
-         return a;
 
-       }, o.prototype.minimum = function (t, e) {
 
-         return Ih([t, e], "minimum"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           return Math.min(t, e);
 
-         });
 
-       }, o.prototype.mod = function (t, e) {
 
-         return Ih([t, e], "mod"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           var n = t % e;
 
-           return t < 0 && e < 0 || t >= 0 && e >= 0 ? n : (n + e) % e;
 
-         });
 
-       }, o.prototype.max = function (t, e) {
 
-         Ih(t, "max"), mn("max", e, t.rank);
 
-         for (var n = dn(t.shape, e), r = n[0], o = n[1], a = Pn(r, t.dtype), i = w(o), u = this.readSync(a.dataId), s = this.readSync(t.dataId), c = 0; c < u.length; ++c) {
 
-           for (var l = c * i, h = s[l], f = 0; f < i; ++f) {
 
-             var p = s[l + f];
 
-             p > h && (h = p);
 
-           }
 
-           u[c] = h;
 
-         }
 
-         return a;
 
-       }, o.prototype.maximum = function (t, e) {
 
-         return Ih([t, e], "maximum"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           return Math.max(t, e);
 
-         });
 
-       }, o.prototype.all = function (t, e) {
 
-         Ih(t, "all"), mn("all", e, t.rank);
 
-         for (var n = dn(t.shape, e), r = n[0], o = n[1], a = Pn(r, t.dtype), i = w(o), u = this.readSync(a.dataId), s = this.readSync(t.dataId), c = 0; c < u.length; ++c) {
 
-           for (var l = c * i, h = s[l], f = 0; f < i; ++f) {
 
-             var p = s[l + f];
 
-             h = h && p;
 
-           }
 
-           u[c] = h;
 
-         }
 
-         return a;
 
-       }, o.prototype.any = function (t, e) {
 
-         Ih(t, "any"), mn("any", e, t.rank);
 
-         for (var n = dn(t.shape, e), r = n[0], o = n[1], a = Pn(r, t.dtype), i = w(o), u = this.readSync(a.dataId), s = this.readSync(t.dataId), c = 0; c < u.length; ++c) {
 
-           for (var l = c * i, h = s[l], f = 0; f < i; ++f) {
 
-             var p = s[l + f];
 
-             h = h || p;
 
-           }
 
-           u[c] = h;
 
-         }
 
-         return a;
 
-       }, o.prototype.squaredDifference = function (t, e) {
 
-         return Ih([t, e], "squaredDifference"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           var n = t - e;
 
-           return n * n;
 
-         });
 
-       }, o.prototype.ceil = function (t) {
 
-         Ih(t, "ceil");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) n[r] = Math.ceil(e[r]);
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.floor = function (t) {
 
-         Ih(t, "floor");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) n[r] = Math.floor(e[r]);
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.sign = function (t) {
 
-         Ih(t, "x");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) e[r] < 0 ? n[r] = -1 : e[r] > 0 ? n[r] = 1 : n[r] = 0;
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.isNaN = function (t) {
 
-         Ih(t, "x");
 
-         for (var e = this.readSync(t.dataId), n = new Uint8Array(e.length), r = 0; r < e.length; ++r) Number.isNaN(e[r]) && (n[r] = 1);
 
-         return this.makeOutput(n, t.shape, "bool");
 
-       }, o.prototype.isInf = function (t) {
 
-         Ih(t, "x");
 
-         for (var e = this.readSync(t.dataId), n = new Uint8Array(e.length), r = 0; r < e.length; ++r) Math.abs(e[r]) === 1 / 0 && (n[r] = 1);
 
-         return this.makeOutput(n, t.shape, "bool");
 
-       }, o.prototype.isFinite = function (t) {
 
-         Ih(t, "x");
 
-         for (var e = this.readSync(t.dataId), n = new Uint8Array(e.length), r = 0; r < e.length; ++r) Number.isFinite(e[r]) && (n[r] = 1);
 
-         return this.makeOutput(n, t.shape, "bool");
 
-       }, o.prototype.round = function (t) {
 
-         Ih(t, "round");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) {
 
-           var o = Math.floor(e[r]);
 
-           e[r] - o < .5 ? n[r] = Math.floor(e[r]) : e[r] - o > .5 ? n[r] = Math.ceil(e[r]) : n[r] = o % 2 == 0 ? o : o + 1;
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.exp = function (t) {
 
-         Ih(t, "exp");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) n[r] = Math.exp(e[r]);
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.expm1 = function (t) {
 
-         Ih(t, "expm1");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) n[r] = Math.expm1(e[r]);
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.log = function (t) {
 
-         Ih(t, "log");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) {
 
-           var o = e[r];
 
-           n[r] = Math.log(o);
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.log1p = function (t) {
 
-         Ih(t, "log1p");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) {
 
-           var o = e[r];
 
-           n[r] = Math.log1p(o);
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.sqrt = function (t) {
 
-         Ih(t, "sqrt");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) {
 
-           var o = e[r];
 
-           n[r] = Math.sqrt(o);
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.rsqrt = function (t) {
 
-         Ih(t, "rsqrt");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) {
 
-           var o = e[r];
 
-           n[r] = 1 / Math.sqrt(o);
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.reciprocal = function (t) {
 
-         Ih(t, "reciprocal");
 
-         for (var e = this.readSync(t.dataId), n = new Float32Array(e.length), r = 0; r < e.length; ++r) n[r] = 1 / e[r];
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.linear = function (t) {
 
-         return t;
 
-       }, o.prototype.relu = function (t) {
 
-         Ih(t, "relu");
 
-         for (var e = Pn(t.shape, t.dtype), n = this.readSync(e.dataId), r = this.readSync(t.dataId), o = 0; o < r.length; ++o) n[o] = Math.max(0, r[o]);
 
-         return e;
 
-       }, o.prototype.relu6 = function (t) {
 
-         Ih(t, "relu");
 
-         for (var e = Pn(t.shape, t.dtype), n = this.readSync(e.dataId), r = this.readSync(t.dataId), o = 0; o < r.length; ++o) n[o] = Math.min(Math.max(0, r[o]), 6);
 
-         return e;
 
-       }, o.prototype.prelu = function (t, e) {
 
-         return Ih([t, e], "prelu"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           return t < 0 ? e * t : t;
 
-         });
 
-       }, o.prototype.elu = function (t) {
 
-         Ih(t, "elu");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) {
 
-           var o = n[r];
 
-           e[r] = o >= 0 ? o : Math.exp(o) - 1;
 
-         }
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.eluDer = function (t, e) {
 
-         Ih([t, e], "eluDer");
 
-         for (var n = new Float32Array(e.size), r = this.readSync(e.dataId), o = this.readSync(t.dataId), a = 0; a < r.length; ++a) {
 
-           var i = r[a];
 
-           n[a] = i >= 1 ? o[a] : o[a] * (i + 1);
 
-         }
 
-         return this.makeOutput(n, e.shape, "float32");
 
-       }, o.prototype.selu = function (t) {
 
-         Ih(t, "selu");
 
-         for (var e = iu, n = uu, r = new Float32Array(t.size), o = this.readSync(t.dataId), a = 0; a < o.length; ++a) {
 
-           var i = o[a];
 
-           r[a] = i >= 0 ? n * i : e * (Math.exp(i) - 1);
 
-         }
 
-         return this.makeOutput(r, t.shape, "float32");
 
-       }, o.prototype.clip = function (t, e, n) {
 
-         Ih(t, "clip");
 
-         for (var r = new Float32Array(t.size), o = this.readSync(t.dataId), a = 0; a < o.length; ++a) {
 
-           var i = o[a];
 
-           r[a] = i > n ? n : i < e ? e : i;
 
-         }
 
-         return this.makeOutput(r, t.shape, "float32");
 
-       }, o.prototype.abs = function (t) {
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.abs(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.complexAbs = function (t) {
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < t.size; ++r) {
 
-           var o = n[2 * r],
 
-             a = n[2 * r + 1];
 
-           e[r] = Math.hypot(o, a);
 
-         }
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.int = function (t) {
 
-         Ih(t, "int");
 
-         for (var e = new Int32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = n[r];
 
-         return this.makeOutput(e, t.shape, "int32");
 
-       }, o.prototype.sigmoid = function (t) {
 
-         Ih(t, "sigmoid");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = 1 / (1 + Math.exp(-n[r]));
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.softplus = function (t) {
 
-         Ih(t, "softplus");
 
-         for (var e = Math.log(1.1920928955078125e-7) + 2, n = new Float32Array(t.size), r = this.readSync(t.dataId), o = 0; o < r.length; ++o) {
 
-           var a = r[o] > -e,
 
-             i = r[o] < e,
 
-             u = Math.exp(r[o]),
 
-             s = void 0;
 
-           s = i ? u : a ? r[o] : Math.log(1 + u), n[o] = s;
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.sin = function (t) {
 
-         Ih(t, "sin");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.sin(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.cos = function (t) {
 
-         Ih(t, "cos");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.cos(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.tan = function (t) {
 
-         Ih(t, "tan");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.tan(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.asin = function (t) {
 
-         Ih(t, "asin");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.asin(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.acos = function (t) {
 
-         Ih(t, "acos");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.acos(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.atan = function (t) {
 
-         Ih(t, "atan");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.atan(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.atan2 = function (t, e) {
 
-         return Ih([t, e], "atan2"), this.broadcastedBinaryOp(t, e, t.dtype, function (t, e) {
 
-           return Math.atan2(t, e);
 
-         });
 
-       }, o.prototype.sinh = function (t) {
 
-         Ih(t, "sinh");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.sinh(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.cosh = function (t) {
 
-         Ih(t, "cosh");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.cosh(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.tanh = function (t) {
 
-         Ih(t, "tanh");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = R(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.asinh = function (t) {
 
-         Ih(t, "asinh");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.asinh(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.acosh = function (t) {
 
-         Ih(t, "acosh");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.acosh(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.atanh = function (t) {
 
-         Ih(t, "atanh");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) e[r] = Math.atanh(n[r]);
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.erf = function (t) {
 
-         Ih(t, "erf");
 
-         for (var e = new Float32Array(t.size), n = this.readSync(t.dataId), r = 0; r < n.length; ++r) {
 
-           var o = Math.sign(n[r]),
 
-             a = Math.abs(n[r]),
 
-             i = 1 / (1 + .3275911 * a);
 
-           e[r] = o * (1 - ((((1.061405429 * i - 1.453152027) * i + 1.421413741) * i - .284496736) * i + .254829592) * i * Math.exp(-a * a));
 
-         }
 
-         return this.makeOutput(e, t.shape, "float32");
 
-       }, o.prototype.step = function (t, e) {
 
-         void 0 === e && (e = 0), Ih(t, "step");
 
-         for (var n = new Float32Array(t.size), r = this.readSync(t.dataId), o = 0; o < r.length; ++o) {
 
-           var a = r[o];
 
-           isNaN(a) ? n[o] = NaN : n[o] = a > 0 ? 1 : e;
 
-         }
 
-         return this.makeOutput(n, t.shape, "float32");
 
-       }, o.prototype.fusedConv2d = function (t) {
 
-         var e = t.input,
 
-           n = t.filter,
 
-           r = t.convInfo,
 
-           o = t.bias,
 
-           a = t.activation,
 
-           i = t.preluActivationWeights,
 
-           u = this.conv2d(e, n, r);
 
-         return o && (u = this.add(u, o)), a && (u = kh(this, u, a, i)), u;
 
-       }, o.prototype.conv2d = function (t, e, n) {
 
-         Ih([t, e], "conv2d");
 
-         for (var r = n.filterHeight, o = n.filterWidth, a = n.dilationHeight, i = n.dilationWidth, u = n.padInfo.left, s = n.padInfo.top, c = "channelsLast" === n.dataFormat, l = ur(n.outShape, t.dtype), h = t.strides[0], f = c ? t.strides[1] : t.strides[2], p = c ? t.strides[2] : 1, d = c ? 1 : t.strides[1], v = l.strides[0], m = c ? l.strides[1] : l.strides[2], g = c ? l.strides[2] : 1, y = c ? 1 : l.strides[1], x = this.readSync(t.dataId), b = this.readSync(e.dataId), w = l.values, C = 0; C < n.batchSize; ++C) for (var E = C * h, R = C * v, I = 0; I < n.outHeight; ++I) for (var k = R + I * m, S = I * n.strideHeight - s, A = 0; A < r; A++) {
 
-           var D = S + A * a;
 
-           if (!(D < 0 || D >= n.inHeight)) for (var T = A * e.strides[0], N = E + D * f, F = 0; F < n.outWidth; ++F) for (var O = k + F * g, _ = F * n.strideWidth - u, M = 0; M < o; M++) {
 
-             var B = _ + M * i;
 
-             if (!(B < 0 || B >= n.inWidth)) for (var P = N + B * p, L = T + M * e.strides[1], W = 0; W < n.inChannels; ++W) {
 
-               for (var U = x[P + W * d], V = 0; V < n.outChannels; ++V) w[O + V * y] += U * b[L + V];
 
-               L += n.outChannels;
 
-             }
 
-           }
 
-         }
 
-         return l.toTensor();
 
-       }, o.prototype.conv3d = function (t, e, n) {
 
-         for (var r = n.filterDepth, o = n.filterHeight, a = n.filterWidth, i = n.dilationDepth, u = n.dilationHeight, s = n.dilationWidth, c = n.padInfo.front, l = n.padInfo.left, h = n.padInfo.top, f = ur(n.outShape, t.dtype), p = this.readSync(t.dataId), d = this.readSync(e.dataId), v = f.values, m = 0; m < n.batchSize; ++m) for (var g = m * t.strides[0], y = m * f.strides[0], x = 0; x < n.outDepth; ++x) for (var b = y + x * f.strides[1], w = x * n.strideDepth - c, C = 0; C < r; C++) {
 
-           var E = w + C * i;
 
-           if (!(E < 0 || E >= n.inDepth)) for (var R = C * e.strides[0], I = g + E * t.strides[1], k = 0; k < n.outHeight; ++k) for (var S = b + k * f.strides[2], A = k * n.strideHeight - h, D = 0; D < o; D++) {
 
-             var T = A + D * u;
 
-             if (!(T < 0 || T >= n.inHeight)) for (var N = R + D * e.strides[1], F = I + T * t.strides[2], O = 0; O < n.outWidth; ++O) for (var _ = S + O * n.outChannels, M = O * n.strideWidth - l, B = 0; B < a; B++) {
 
-               var P = M + B * s;
 
-               if (!(P < 0 || P >= n.inWidth)) for (var L = N + B * e.strides[2], W = F + P * n.inChannels, U = L, V = 0; V < n.inChannels; ++V) {
 
-                 for (var z = p[W + V], G = 0; G < n.outChannels; ++G) v[_ + G] += z * d[U + G];
 
-                 U += n.outChannels;
 
-               }
 
-             }
 
-           }
 
-         }
 
-         return f.toTensor();
 
-       }, o.prototype.conv2dDerInput = function (t, e, n) {
 
-         Ih([t, e], "conv2dDerInput");
 
-         for (var r = ur(n.inShape, "float32"), o = r.values, a = this.readSync(t.dataId), i = this.readSync(e.dataId), u = e.strides, s = u[0], c = u[1], l = u[2], h = n.batchSize, f = n.filterHeight, p = n.filterWidth, d = n.inChannels, v = n.inHeight, m = n.inWidth, g = n.outChannels, y = n.outHeight, x = n.outWidth, b = n.strideHeight, w = n.strideWidth, C = n.dataFormat, E = f - 1 - n.padInfo.top, R = p - 1 - n.padInfo.left, I = "channelsLast" === C, k = r.strides[0], S = I ? r.strides[1] : r.strides[2], A = I ? r.strides[2] : 1, D = I ? 1 : r.strides[1], T = t.strides[0], N = I ? t.strides[1] : t.strides[2], F = I ? t.strides[2] : 1, O = I ? 1 : t.strides[1], _ = 0; _ < h; ++_) for (var M = 0; M < d; ++M) for (var B = 0; B < v; ++B) for (var P = B - E, L = Math.max(0, Math.ceil(P / b)), W = Math.min(y, (f + P) / b), U = 0; U < m; ++U) {
 
-           for (var V = U - R, z = Math.max(0, Math.ceil(V / w)), G = Math.min(x, (p + V) / w), H = 0, q = L; q < W; ++q) for (var K = q * b - P, j = z; j < G; ++j) for (var X = T * _ + N * q + F * j, $ = s * (f - 1 - K) + c * (p - 1 - (j * w - V)) + l * M, Y = 0; Y < g; ++Y) {
 
-             H += a[X + O * Y] * i[$ + Y];
 
-           }
 
-           o[k * _ + S * B + A * U + D * M] = H;
 
-         }
 
-         return r.toTensor();
 
-       }, o.prototype.conv3dDerInput = function (t, e, n) {
 
-         for (var r = ur(n.inShape, "float32"), o = r.values, a = r.strides, i = a[0], u = a[1], s = a[2], c = a[3], l = this.readSync(t.dataId), h = t.strides, f = h[0], p = h[1], d = h[2], v = h[3], m = this.readSync(e.dataId), g = e.strides, y = g[0], x = g[1], b = g[2], w = g[3], C = n.batchSize, E = n.filterDepth, R = n.filterHeight, I = n.filterWidth, k = n.inChannels, S = n.inDepth, A = n.inHeight, D = n.inWidth, T = n.outChannels, N = n.outDepth, F = n.outHeight, O = n.outWidth, _ = n.strideDepth, M = n.strideHeight, B = n.strideWidth, P = E - 1 - n.padInfo.front, L = R - 1 - n.padInfo.top, W = I - 1 - n.padInfo.left, U = 0; U < C; ++U) for (var V = 0; V < k; ++V) for (var z = 0; z < S; ++z) for (var G = z - P, H = Math.max(0, Math.ceil(G / _)), q = Math.min(N, (E + G) / _), K = 0; K < A; ++K) for (var j = K - L, X = Math.max(0, Math.ceil(j / M)), $ = Math.min(F, (R + j) / M), Y = 0; Y < D; ++Y) {
 
-           for (var Q = Y - W, J = Math.max(0, Math.ceil(Q / B)), Z = Math.min(O, (I + Q) / B), tt = 0, et = H; et < q; ++et) for (var nt = et * _ - G, rt = X; rt < $; ++rt) for (var ot = rt * M - j, at = J; at < Z; ++at) for (var it = f * U + p * et + d * rt + v * at, ut = y * (E - 1 - nt) + x * (R - 1 - ot) + b * (I - 1 - (at * B - Q)) + w * V, st = 0; st < T; ++st) {
 
-             tt += l[it + st] * m[ut + st];
 
-           }
 
-           o[i * U + u * z + s * K + c * Y + V] = tt;
 
-         }
 
-         return r.toTensor();
 
-       }, o.prototype.conv2dDerFilter = function (t, e, n) {
 
-         Ih([t, e], "conv2dDerFilter");
 
-         for (var r = n.strideHeight, o = n.strideWidth, a = n.filterHeight, i = n.filterWidth, u = "channelsLast" === n.dataFormat, s = ur(n.filterShape, "float32"), c = n.padInfo.left, l = n.padInfo.top, h = this.bufferSync(t), f = this.bufferSync(e), p = 0; p < a; ++p) for (var d = Math.max(0, Math.ceil((l - p) / r)), v = Math.min(n.outHeight, (n.inHeight + l - p) / r), m = 0; m < i; ++m) for (var g = Math.max(0, Math.ceil((c - m) / o)), y = Math.min(n.outWidth, (n.inWidth + c - m) / o), x = 0; x < n.inChannels; ++x) for (var b = 0; b < n.outChannels; ++b) {
 
-           for (var w = 0, C = 0; C < n.batchSize; ++C) for (var E = d; E < v; ++E) for (var R = p + E * r - l, I = g; I < y; ++I) {
 
-             var k = m + I * o - c;
 
-             w += u ? h.get(C, R, k, x) * f.get(C, E, I, b) : h.get(C, x, R, k) * f.get(C, b, E, I);
 
-           }
 
-           s.set(w, p, m, x, b);
 
-         }
 
-         return s.toTensor();
 
-       }, o.prototype.conv3dDerFilter = function (t, e, n) {
 
-         for (var r = n.strideDepth, o = n.strideHeight, a = n.strideWidth, i = n.filterDepth, u = n.filterHeight, s = n.filterWidth, c = ur(n.filterShape, "float32"), l = c.values, h = c.strides, f = h[0], p = h[1], d = h[2], v = h[3], m = this.readSync(e.dataId), g = e.strides, y = g[0], x = g[1], b = g[2], w = g[3], C = this.readSync(t.dataId), E = t.strides, R = E[0], I = E[1], k = E[2], S = E[3], A = n.padInfo.front, D = n.padInfo.left, T = n.padInfo.top, N = 0; N < i; ++N) for (var F = Math.max(0, Math.ceil((A - N) / r)), O = Math.min(n.outDepth, (n.inDepth + A - N) / r), _ = N * f, M = 0; M < u; ++M) for (var B = Math.max(0, Math.ceil((T - M) / o)), P = Math.min(n.outHeight, (n.inHeight + T - M) / o), L = M * p + _, W = 0; W < s; ++W) for (var U = Math.max(0, Math.ceil((D - W) / a)), V = Math.min(n.outWidth, (n.inWidth + D - W) / a), z = W * d + L, G = 0; G < n.inChannels; ++G) for (var H = G * v + z, q = 0; q < n.outChannels; ++q) {
 
-           for (var K = 0, j = 0; j < n.batchSize; ++j) for (var X = j * R, $ = j * y, Y = F; Y < O; ++Y) for (var Q = (N + Y * r - A) * I + X, J = Y * x + $, Z = B; Z < P; ++Z) for (var tt = (M + Z * o - T) * k + Q, et = Z * b + J, nt = U; nt < V; ++nt) {
 
-             var rt = nt * w + et;
 
-             K += C[(W + nt * a - D) * S + tt + G] * m[rt + q];
 
-           }
 
-           l[H + q] = K;
 
-         }
 
-         return c.toTensor();
 
-       }, o.prototype.fusedDepthwiseConv2D = function (t) {
 
-         var e = t.input,
 
-           n = t.filter,
 
-           r = t.convInfo,
 
-           o = t.bias,
 
-           a = t.activation,
 
-           i = t.preluActivationWeights,
 
-           u = this.depthwiseConv2D(e, n, r);
 
-         return o && (u = this.add(u, o)), a && (u = kh(this, u, a, i)), u;
 
-       }, o.prototype.depthwiseConv2D = function (t, e, n) {
 
-         Ih([t, e], "depthwiseConv2D");
 
-         for (var r = n.filterHeight, o = n.filterWidth, a = n.dilationHeight, i = n.dilationWidth, u = n.padInfo.left, s = n.padInfo.top, c = n.outChannels / n.inChannels, l = ur(n.outShape, t.dtype), h = this.readSync(t.dataId), f = this.readSync(e.dataId), p = l.values, d = 0; d < n.batchSize; ++d) for (var v = d * t.strides[0], m = d * l.strides[0], g = 0; g < n.outHeight; ++g) for (var y = m + g * l.strides[1], x = g * n.strideHeight - u, b = 0; b < r; ++b) {
 
-           var w = x + b * a;
 
-           if (!(w < 0 || w >= n.inHeight)) for (var C = b * e.strides[0], E = v + w * t.strides[1], R = 0; R < n.outWidth; ++R) for (var I = y + R * l.strides[2], k = R * n.strideWidth - s, S = 0; S < o; ++S) {
 
-             var A = k + S * i;
 
-             if (!(A < 0 || A >= n.inWidth)) for (var D = C + S * e.strides[1], T = E + A * n.inChannels, N = I, F = D, O = 0; O < n.inChannels; ++O) {
 
-               for (var _ = h[T + O], M = 0; M < c; ++M) p[N + M] += _ * f[F + M];
 
-               N += c, F += c;
 
-             }
 
-           }
 
-         }
 
-         return l.toTensor();
 
-       }, o.prototype.depthwiseConv2DDerInput = function (t, e, n) {
 
-         Ih([t, e], "depthwiseConv2DDerInput");
 
-         for (var r = ur(n.inShape, "float32"), o = r.values, a = r.strides, i = a[0], u = a[1], s = a[2], c = this.readSync(t.dataId), l = t.strides, h = l[0], f = l[1], p = l[2], d = this.readSync(e.dataId), v = e.strides, m = v[0], g = v[1], y = v[2], x = n.batchSize, b = n.filterHeight, w = n.filterWidth, C = n.inChannels, E = n.inHeight, R = n.inWidth, I = n.outChannels, k = n.outHeight, S = n.outWidth, A = n.strideHeight, D = n.strideWidth, T = b - 1 - n.padInfo.top, N = w - 1 - n.padInfo.left, F = I / C, O = 0; O < x; ++O) for (var _ = 0; _ < C; ++_) for (var M = 0; M < E; ++M) for (var B = M - T, P = Math.max(0, Math.ceil(B / A)), L = Math.min(k, (b + B) / A), W = 0; W < R; ++W) {
 
-           for (var U = W - N, V = Math.max(0, Math.ceil(U / D)), z = Math.min(S, (w + U) / D), G = 0, H = P; H < L; ++H) for (var q = H * A - B, K = V; K < z; ++K) for (var j = h * O + f * H + p * K, X = m * (b - 1 - q) + g * (w - 1 - (K * D - U)) + y * _, $ = 0; $ < F; ++$) {
 
-             G += c[j + (_ * F + $)] * d[X + $];
 
-           }
 
-           o[i * O + u * M + s * W + _] = G;
 
-         }
 
-         return r.toTensor();
 
-       }, o.prototype.depthwiseConv2DDerFilter = function (t, e, n) {
 
-         Ih([t, e], "depthwiseConv2DDerFilter");
 
-         for (var r = n.strideHeight, o = n.strideWidth, a = n.filterHeight, i = n.filterWidth, u = ur(n.filterShape, "float32"), s = n.padInfo.left, c = n.padInfo.top, l = n.outChannels / n.inChannels, h = this.bufferSync(t), f = this.bufferSync(e), p = 0; p < a; ++p) for (var d = Math.max(0, Math.ceil((c - p) / r)), v = Math.min(n.outHeight, (n.inHeight + c - p) / r), m = 0; m < i; ++m) for (var g = Math.max(0, Math.ceil((s - m) / o)), y = Math.min(n.outWidth, (n.inWidth + s - m) / o), x = 0; x < n.outChannels; ++x) {
 
-           for (var b = Math.trunc(x / l), w = x % l, C = 0, E = 0; E < n.batchSize; ++E) for (var R = d; R < v; ++R) for (var I = p + R * r - c, k = g; k < y; ++k) {
 
-             var S = m + k * o - s;
 
-             C += h.get(E, I, S, b) * f.get(E, R, k, x);
 
-           }
 
-           u.set(C, p, m, b, w);
 
-         }
 
-         return u.toTensor();
 
-       }, o.prototype.tile = function (t, e) {
 
-         return Ih(t, "tile"), Lo(this.bufferSync(t), e);
 
-       }, o.prototype.pad = function (t, e, n) {
 
-         Ih(t, "pad");
 
-         var r = e.map(function (e, n) {
 
-           return e[0] + t.shape[n] + e[1];
 
-         }),
 
-           o = e.map(function (t) {
 
-             return t[0];
 
-           }),
 
-           a = this.bufferSync(t),
 
-           i = ur(r, t.dtype);
 
-         0 !== n && i.values.fill(n);
 
-         for (var u = 0; u < t.size; u++) {
 
-           var s = a.indexToLoc(u),
 
-             c = s.map(function (t, e) {
 
-               return t + o[e];
 
-             });
 
-           i.set.apply(i, [a.get.apply(a, s)].concat(c));
 
-         }
 
-         return i.toTensor();
 
-       }, o.prototype.transpose = function (t, e) {
 
-         Ih(t, "transpose");
 
-         for (var n = new Array(t.rank), r = 0; r < n.length; r++) n[r] = t.shape[e[r]];
 
-         var o = this.readSync(t.dataId),
 
-           a = ur(n, t.dtype),
 
-           i = this.bufferSync(t);
 
-         for (r = 0; r < t.size; ++r) {
 
-           for (var u = i.indexToLoc(r), s = new Array(u.length), c = 0; c < s.length; c++) s[c] = u[e[c]];
 
-           var l = a.locToIndex(s);
 
-           a.values[l] = o[r];
 
-         }
 
-         return a.toTensor();
 
-       }, o.prototype.gather = function (t, e, n) {
 
-         Ih([t, e], "gather");
 
-         var r = t.shape.slice(),
 
-           o = this.readSync(e.dataId);
 
-         r[n] = o.length;
 
-         for (var a = ur(r, t.dtype), i = this.bufferSync(t), u = 0; u < a.size; ++u) {
 
-           var s = a.indexToLoc(u),
 
-             c = s.slice();
 
-           c[n] = o[s[n]];
 
-           var l = i.locToIndex(c);
 
-           a.values[u] = i.values[l];
 
-         }
 
-         return a.toTensor();
 
-       }, o.prototype.batchToSpaceND = function (t, e, n) {
 
-         Ih([t], "batchToSpaceND");
 
-         var r = e.reduce(function (t, e) {
 
-           return t * e;
 
-         }),
 
-           o = Mr(t.shape, e, r),
 
-           a = Br(o.length, e.length),
 
-           i = Pr(t.shape, e, r),
 
-           u = Lr(n, e.length),
 
-           s = Wr(i, n, e.length);
 
-         return t.reshape(o).transpose(a).reshape(i).slice(u, s);
 
-       }, o.prototype.spaceToBatchND = function (t, e, n) {
 
-         Ih([t], "spaceToBatchND");
 
-         var r = e.reduce(function (t, e) {
 
-           return t * e;
 
-         }),
 
-           o = [[0, 0]];
 
-         o.push.apply(o, n);
 
-         for (var a = 1 + e.length; a < t.shape.length; ++a) o.push([0, 0]);
 
-         var i = t.pad(o),
 
-           u = Mr(i.shape, e, r, !1),
 
-           s = Br(u.length, e.length, !1),
 
-           c = Pr(i.shape, e, r, !1);
 
-         return i.reshape(u).transpose(s).reshape(c);
 
-       }, o.prototype.pool = function (t, e, n) {
 
-         Ih(t, "pool");
 
-         for (var r = e.strideHeight, o = e.strideWidth, a = e.dilationHeight, i = e.dilationWidth, u = e.effectiveFilterHeight, s = e.effectiveFilterWidth, c = e.padInfo.top, l = e.padInfo.left, h = "max" === n ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY, f = this.readSync(t.dataId), p = ur(e.outShape, t.dtype), d = p.values, v = e.outShape[1] * e.outShape[2] * e.outShape[3], m = e.outShape[2] * e.outShape[3], g = e.outShape[3], y = 0; y < e.batchSize; ++y) for (var x = y * v, b = y * t.strides[0], w = 0; w < e.inChannels; ++w) for (var C = 0; C < e.outHeight; ++C) for (var E = C * r - c, R = Math.max(0, E), I = Math.min(e.inHeight, u + E), k = x + C * m, S = 0; S < e.outWidth; ++S) {
 
-           for (var A = S * o - l, D = Math.max(0, A), T = Math.min(e.inWidth, s + A), N = h, F = 0, O = 0, _ = R; _ < I; _ += a) {
 
-             for (var M = b + _ * t.strides[1], B = D; B < T; B += i) {
 
-               var P = f[M + B * t.strides[2] + w];
 
-               "max" === n && P > N ? N = P : "avg" === n && (F += P, O++);
 
-             }
 
-             if (isNaN(N)) break;
 
-           }
 
-           d[k + S * g + w] = "avg" === n ? F / O : N;
 
-         }
 
-         return p.toTensor();
 
-       }, o.prototype.maxPool = function (t, e) {
 
-         return this.pool(t, e, "max");
 
-       }, o.prototype.maxPoolPositions = function (t, e) {
 
-         for (var n = ur(e.outShape, "int32"), r = e.strideHeight, o = e.strideWidth, a = e.dilationHeight, i = e.dilationWidth, u = e.effectiveFilterHeight, s = e.effectiveFilterWidth, c = e.padInfo.top, l = e.padInfo.left, h = this.bufferSync(t), f = 0; f < e.batchSize; ++f) for (var p = 0; p < e.inChannels; ++p) for (var d = 0; d < e.outHeight; ++d) {
 
-           for (var v = d * r - c, m = v; m < 0;) m += a;
 
-           for (var g = Math.min(e.inHeight, u + v), y = 0; y < e.outWidth; ++y) {
 
-             for (var x = y * o - l, b = x; b < 0;) b += i;
 
-             for (var w = Math.min(e.inWidth, s + x), C = Number.NEGATIVE_INFINITY, E = -1, R = m; R < g; R += a) for (var I = R - v, k = b; k < w; k += i) {
 
-               var S = k - x,
 
-                 A = h.get(f, R, k, p);
 
-               A > C && (C = A, E = I * s + S);
 
-             }
 
-             n.set(E, f, d, y, p);
 
-           }
 
-         }
 
-         return n.toTensor();
 
-       }, o.prototype.maxPoolBackprop = function (t, e, n, r) {
 
-         Ih([e, n], "maxPoolBackprop");
 
-         for (var o = this.maxPoolPositions(e, r), a = r.strideHeight, i = r.strideWidth, u = r.dilationHeight, s = r.dilationWidth, c = r.effectiveFilterHeight, l = r.effectiveFilterWidth, h = l - 1 - r.padInfo.left, f = c - 1 - r.padInfo.top, p = ur(e.shape, "float32"), d = this.bufferSync(o), v = this.bufferSync(t), m = 0; m < r.batchSize; ++m) for (var g = 0; g < r.inChannels; ++g) for (var y = 0; y < r.inHeight; ++y) for (var x = 0; x < r.inWidth; ++x) {
 
-           for (var b = y - f, w = x - h, C = 0, E = 0; E < c; E += u) {
 
-             var R = (b + E) / a;
 
-             if (!(R < 0 || R >= r.outHeight || Math.floor(R) !== R)) for (var I = 0; I < l; I += s) {
 
-               var k = (w + I) / i;
 
-               if (!(k < 0 || k >= r.outWidth || Math.floor(k) !== k)) {
 
-                 var S = c * l - 1 - d.get(m, R, k, g) === E * l + I ? 1 : 0;
 
-                 if (0 !== S) C += v.get(m, R, k, g) * S;
 
-               }
 
-             }
 
-           }
 
-           p.set(C, m, y, x, g);
 
-         }
 
-         return p.toTensor();
 
-       }, o.prototype.avgPoolBackprop = function (t, e, n) {
 
-         Ih([t, e], "avgPoolBackprop");
 
-         for (var r = n.strideHeight, o = n.strideWidth, a = n.filterHeight, i = n.filterWidth, u = n.dilationHeight, s = n.dilationWidth, c = n.effectiveFilterHeight, l = n.effectiveFilterWidth, h = l - 1 - n.padInfo.left, f = c - 1 - n.padInfo.top, p = ur(e.shape, "float32"), d = 1 / (a * i), v = this.bufferSync(t), m = 0; m < n.batchSize; ++m) for (var g = 0; g < n.inChannels; ++g) for (var y = 0; y < n.inHeight; ++y) for (var x = 0; x < n.inWidth; ++x) {
 
-           for (var b = y - f, w = x - h, C = 0, E = 0; E < c; E += u) {
 
-             var R = (b + E) / r;
 
-             if (!(R < 0 || R >= n.outHeight || Math.floor(R) !== R)) for (var I = 0; I < l; I += s) {
 
-               var k = (w + I) / o;
 
-               if (!(k < 0 || k >= n.outWidth || Math.floor(k) !== k)) C += v.get(m, R, k, g);
 
-             }
 
-           }
 
-           p.set(C * d, m, y, x, g);
 
-         }
 
-         return p.toTensor();
 
-       }, o.prototype.pool3d = function (t, e, n) {
 
-         Ih(t, "pool3d");
 
-         for (var r = e.strideDepth, o = e.strideHeight, a = e.strideWidth, i = e.dilationDepth, u = e.dilationHeight, s = e.dilationWidth, c = e.effectiveFilterDepth, l = e.effectiveFilterHeight, h = e.effectiveFilterWidth, f = e.padInfo.front, p = e.padInfo.top, d = e.padInfo.left, v = "max" === n ? Number.NEGATIVE_INFINITY : Number.POSITIVE_INFINITY, m = this.readSync(t.dataId), g = ur(e.outShape, t.dtype), y = g.values, x = e.outShape[1] * e.outShape[2] * e.outShape[3] * e.outShape[4], b = e.outShape[2] * e.outShape[3] * e.outShape[4], w = e.outShape[3] * e.outShape[4], C = e.outShape[4], E = 0; E < e.batchSize; ++E) for (var R = E * x, I = E * t.strides[0], k = 0; k < e.inChannels; ++k) for (var S = 0; S < e.outDepth; ++S) {
 
-           for (var A = S * r - f, D = A; D < 0;) D += i;
 
-           for (var T = Math.min(e.inDepth, c + A), N = R + S * b, F = 0; F < e.outHeight; ++F) {
 
-             for (var O = F * o - p, _ = O; _ < 0;) _ += u;
 
-             for (var M = Math.min(e.inHeight, l + O), B = N + F * w, P = 0; P < e.outWidth; ++P) {
 
-               for (var L = P * a - d, W = L; W < 0;) W += s;
 
-               for (var U = Math.min(e.inWidth, h + L), V = B + P * C, z = v, G = 0, H = 0, q = D; q < T; q += i) {
 
-                 for (var K = I + q * t.strides[1], j = _; j < M; j += u) {
 
-                   for (var X = K + j * t.strides[2], $ = W; $ < U; $ += s) {
 
-                     var Y = m[X + $ * t.strides[3] + k];
 
-                     if ("max" === n && Y > z ? z = Y : "avg" === n && (G += Y, H++), isNaN(z)) break;
 
-                   }
 
-                   if (isNaN(z)) break;
 
-                 }
 
-                 if (isNaN(z)) break;
 
-               }
 
-               y[V + k] = "avg" === n ? G / H : z;
 
-             }
 
-           }
 
-         }
 
-         return g.toTensor();
 
-       }, o.prototype.avgPool3d = function (t, e) {
 
-         return Ih(t, "avgPool3d"), this.pool3d(t, e, "avg").toFloat();
 
-       }, o.prototype.avgPool3dBackprop = function (t, e, n) {
 
-         Ih([t, e], "avgPool3dBackprop");
 
-         for (var r = n.strideDepth, o = n.strideHeight, a = n.strideWidth, i = n.filterDepth, u = n.filterHeight, s = n.filterWidth, c = n.dilationDepth, l = n.dilationHeight, h = n.dilationWidth, f = n.effectiveFilterDepth, p = n.effectiveFilterHeight, d = n.effectiveFilterWidth, v = f - 1 - n.padInfo.front, m = d - 1 - n.padInfo.left, g = p - 1 - n.padInfo.top, y = ur(e.shape, "float32"), x = 1 / (i * u * s), b = this.bufferSync(t), w = 0; w < n.batchSize; ++w) for (var C = 0; C < n.inChannels; ++C) for (var E = 0; E < n.inDepth; ++E) for (var R = 0; R < n.inHeight; ++R) for (var I = 0; I < n.inWidth; ++I) {
 
-           for (var k = E - v, S = R - g, A = I - m, D = 0, T = 0; T < f; T += c) {
 
-             var N = (k + T) / r;
 
-             if (!(N < 0 || N >= n.outDepth || Math.floor(N) !== N)) for (var F = 0; F < p; F += l) {
 
-               var O = (S + F) / o;
 
-               if (!(O < 0 || O >= n.outHeight || Math.floor(O) !== O)) for (var _ = 0; _ < d; _ += h) {
 
-                 var M = (A + _) / a;
 
-                 if (!(M < 0 || M >= n.outWidth || Math.floor(M) !== M)) D += b.get(w, N, O, M, C);
 
-               }
 
-             }
 
-           }
 
-           y.set(D * x, w, E, R, I, C);
 
-         }
 
-         return y.toTensor();
 
-       }, o.prototype.maxPool3d = function (t, e) {
 
-         return Ih(t, "maxPool3d"), this.pool3d(t, e, "max").toFloat();
 
-       }, o.prototype.maxPool3dPositions = function (t, e) {
 
-         for (var n = ur(e.outShape, "int32"), r = e.strideDepth, o = e.strideHeight, a = e.strideWidth, i = e.dilationDepth, u = e.dilationHeight, s = e.dilationWidth, c = e.effectiveFilterDepth, l = e.effectiveFilterHeight, h = e.effectiveFilterWidth, f = e.padInfo.front, p = e.padInfo.top, d = e.padInfo.left, v = this.bufferSync(t), m = 0; m < e.batchSize; ++m) for (var g = 0; g < e.inChannels; ++g) for (var y = 0; y < e.outDepth; ++y) {
 
-           for (var x = y * r - f, b = x; b < 0;) b += i;
 
-           for (var w = Math.min(e.inDepth, c + x), C = 0; C < e.outHeight; ++C) {
 
-             for (var E = C * o - p, R = E; R < 0;) R += u;
 
-             for (var I = Math.min(e.inHeight, l + E), k = 0; k < e.outWidth; ++k) {
 
-               for (var S = k * a - d, A = S; A < 0;) A += s;
 
-               for (var D = Math.min(e.inWidth, h + S), T = Number.NEGATIVE_INFINITY, N = -1, F = b; F < w; F += i) for (var O = F - x, _ = R; _ < I; _ += u) for (var M = _ - E, B = A; B < D; B += s) {
 
-                 var P = B - S,
 
-                   L = v.get(m, F, _, B, g);
 
-                 L >= T && (T = L, N = O * l * h + M * l + P);
 
-               }
 
-               n.set(N, m, y, C, k, g);
 
-             }
 
-           }
 
-         }
 
-         return n.toTensor();
 
-       }, o.prototype.maxPool3dBackprop = function (t, e, n, r) {
 
-         Ih([e, n], "maxPool3dBackprop");
 
-         for (var o = this.maxPool3dPositions(e, r), a = r.strideDepth, i = r.strideHeight, u = r.strideWidth, s = r.dilationDepth, c = r.dilationHeight, l = r.dilationWidth, h = r.effectiveFilterDepth, f = r.effectiveFilterHeight, p = r.effectiveFilterWidth, d = h - 1 - r.padInfo.front, v = p - 1 - r.padInfo.left, m = f - 1 - r.padInfo.top, g = ur(e.shape, "float32"), y = this.bufferSync(o), x = this.bufferSync(t), b = 0; b < r.batchSize; ++b) for (var w = 0; w < r.inChannels; ++w) for (var C = 0; C < r.inDepth; ++C) for (var E = 0; E < r.inHeight; ++E) for (var R = 0; R < r.inWidth; ++R) {
 
-           for (var I = C - d, k = E - m, S = R - v, A = 0, D = 0; D < h; D += s) {
 
-             var T = (I + D) / a;
 
-             if (!(T < 0 || T >= r.outDepth || Math.floor(T) !== T)) for (var N = 0; N < f; N += c) {
 
-               var F = (k + N) / i;
 
-               if (!(F < 0 || F >= r.outHeight || Math.floor(F) !== F)) for (var O = 0; O < p; O += l) {
 
-                 var _ = (S + O) / u;
 
-                 if (!(_ < 0 || _ >= r.outWidth || Math.floor(_) !== _)) {
 
-                   var M = h * f * p - 1 - y.get(b, T, F, _, w) === D * f * p + N * p + O ? 1 : 0;
 
-                   if (0 !== M) A += x.get(b, T, F, _, w) * M;
 
-                 }
 
-               }
 
-             }
 
-           }
 
-           g.set(A, b, C, E, R, w);
 
-         }
 
-         return g.toTensor();
 
-       }, o.prototype.cast = function (t, e) {
 
-         return So(t, e, this);
 
-       }, o.prototype.reshape = function (t, e) {
 
-         return Ao(t, e);
 
-       }, o.prototype.avgPool = function (t, e) {
 
-         return Ih(t, "avgPool"), this.pool(t, e, "avg").toFloat();
 
-       }, o.prototype.resizeBilinear = function (t, e, n, r) {
 
-         Ih(t, "resizeBilinear");
 
-         for (var o = t.shape, a = o[0], i = o[1], u = o[2], s = o[3], c = this.readSync(t.dataId), l = new Float32Array(w([a, e, n, s])), h = [r && e > 1 ? i - 1 : i, r && n > 1 ? u - 1 : u], f = [r && e > 1 ? e - 1 : e, r && n > 1 ? n - 1 : n], p = 0, d = h[0] / f[0], v = h[1] / f[1], m = 0; m < a; m++) for (var g = 0; g < e; g++) for (var y = d * g, x = Math.floor(y), b = y - x, C = Math.min(i - 1, Math.ceil(y)), E = m * t.strides[0] + x * t.strides[1], R = m * t.strides[0] + C * t.strides[1], I = 0; I < n; I++) for (var k = v * I, S = Math.floor(k), A = k - S, D = Math.min(u - 1, Math.ceil(k)), T = E + S * t.strides[2], N = R + S * t.strides[2], F = E + +D * t.strides[2], O = R + D * t.strides[2], _ = 0; _ < s; _++) {
 
-           var M = c[T + _],
 
-             B = c[N + _],
 
-             P = M + (c[F + _] - M) * A,
 
-             L = P + (B + (c[O + _] - B) * A - P) * b;
 
-           l[p++] = L;
 
-         }
 
-         return kn(l, [a, e, n, s]);
 
-       }, o.prototype.resizeBilinearBackprop = function (t, e, n) {
 
-         Ih([t, e], "resizeBilinearBackprop");
 
-         for (var r = e.shape, o = r[0], a = r[1], i = r[2], u = r[3], s = t.shape, c = s[1], l = s[2], h = new Float32Array(o * a * i * u), f = [n && c > 1 ? a - 1 : a, n && l > 1 ? i - 1 : i], p = [n && c > 1 ? c - 1 : c, n && l > 1 ? l - 1 : l], d = f[0] / p[0], v = f[1] / p[1], m = this.readSync(t.dataId), g = 0, y = 0; y < o; y++) for (var x = y * e.strides[0], b = 0; b < c; b++) for (var w = b * d, C = Math.floor(w), E = Math.min(Math.ceil(w), a - 1), R = x + C * e.strides[1], I = x + E * e.strides[1], k = w - C, S = 1 - k, A = 0; A < l; A++) for (var D = A * v, T = Math.floor(D), N = Math.min(Math.ceil(D), i - 1), F = D - T, O = 1 - F, _ = R + T * e.strides[2], M = R + N * e.strides[2], B = I + T * e.strides[2], P = I + N * e.strides[2], L = S * O, W = S * F, U = k * O, V = k * F, z = 0; z < u; z++) {
 
-           var G = m[g++];
 
-           h[_ + z] += G * L, h[M + z] += G * W, h[B + z] += G * U, h[P + z] += G * V;
 
-         }
 
-         return Fn(h, [o, i, a, u], e.dtype);
 
-       }, o.prototype.resizeNearestNeighbor = function (t, e, n, r) {
 
-         Ih(t, "resizeNearestNeighbor");
 
-         for (var o = t.shape, a = o[0], i = o[1], u = o[2], s = o[3], c = this.readSync(t.dataId), l = new Float32Array(a * e * n * s), h = [r && e > 1 ? i - 1 : i, r && n > 1 ? u - 1 : u], f = [r && e > 1 ? e - 1 : e, r && n > 1 ? n - 1 : n], p = h[0] / f[0], d = h[1] / f[1], v = 0, m = 0; m < a; m++) for (var g = m * t.strides[0], y = 0; y < e; y++) for (var x = p * y, b = g + Math.min(i - 1, r ? Math.round(x) : Math.floor(x)) * t.strides[1], w = 0; w < n; w++) for (var C = d * w, E = b + Math.min(u - 1, r ? Math.round(C) : Math.floor(C)) * t.strides[2], R = 0; R < s; R++) {
 
-           var I = c[E + R];
 
-           l[v++] = I;
 
-         }
 
-         return kn(l, [a, e, n, s], t.dtype);
 
-       }, o.prototype.resizeNearestNeighborBackprop = function (t, e, n) {
 
-         Ih([t, e], "resizeNearestNeighborBackprop");
 
-         for (var r = e.shape, o = r[0], a = r[1], i = r[2], u = r[3], s = t.shape, c = s[1], l = s[2], h = new Float32Array(o * a * i * u), f = this.readSync(t.dataId), p = [n && c > 1 ? a - 1 : a, n && l > 1 ? i - 1 : i], d = [n && c > 1 ? c - 1 : c, n && l > 1 ? l - 1 : l], v = p[0] / d[0], m = p[1] / d[1], g = 1 / v, y = 1 / m, x = 2 * Math.ceil(g) + 2, b = 2 * Math.ceil(y) + 2, w = 0; w < o; w++) for (var C = w * e.strides[0], E = 0; E < a; E++) for (var R = C + E * e.strides[1], I = Math.floor(E * g), k = Math.floor(I - x / 2), S = 0; S < i; S++) for (var A = R + S * e.strides[2], D = Math.floor(S * y), T = Math.floor(D - b / 2), N = 0; N < u; N++) {
 
-           for (var F = 0, O = 0; O < x; O++) {
 
-             var _ = O + k;
 
-             if (!(_ < 0 || _ >= c)) {
 
-               var M = C + _ * t.strides[1],
 
-                 B = _ * v;
 
-               if (E === Math.min(a - 1, n ? Math.round(B) : Math.floor(B))) for (var P = 0; P < b; P++) {
 
-                 var L = P + T;
 
-                 if (!(L < 0 || L >= l)) {
 
-                   var W = M + L * t.strides[2],
 
-                     U = L * m;
 
-                   S === Math.min(i - 1, n ? Math.round(U) : Math.floor(U)) && (F += f[W + N]);
 
-                 }
 
-               }
 
-             }
 
-           }
 
-           h[A + N] = F;
 
-         }
 
-         return Fn(h, e.shape, e.dtype);
 
-       }, o.prototype.batchNormalization = function (t, e, n, r, o, a) {
 
-         Ih([t, e, n, o, a], "batchNorm");
 
-         for (var i = this.readSync(t.dataId), u = this.readSync(e.dataId), s = this.readSync(n.dataId), c = o ? this.readSync(o.dataId) : new Float32Array([1]), l = a ? this.readSync(a.dataId) : new Float32Array([0]), h = new Float32Array(i.length), f = l.length, p = c.length, d = s.length, v = u.length, m = 0, g = 0, y = 0, x = 0, b = 0; b < i.length; ++b) h[b] = l[m++] + (i[b] - u[g++]) * c[y++] / Math.sqrt(s[x++] + r), m >= f && (m = 0), g >= v && (g = 0), y >= p && (y = 0), x >= d && (x = 0);
 
-         return Fn(h, t.shape);
 
-       }, o.prototype.localResponseNormalization4D = function (t, e, n, r, o) {
 
-         Ih(t, "localResponseNormalization4D");
 
-         var a = t.shape[3],
 
-           i = a - 1,
 
-           u = this.readSync(t.dataId),
 
-           s = t.size,
 
-           c = new Float32Array(s);
 
-         function l(t) {
 
-           for (var n = t % a, r = t - n + Math.max(0, n - e), o = t - n + Math.min(n + e, i), s = 0; r <= o; r++) {
 
-             var c = u[r];
 
-             s += c * c;
 
-           }
 
-           return s;
 
-         }
 
-         for (var h = 0; h < s; h++) {
 
-           var f = l(h),
 
-             p = u[h] * Math.pow(n + r * f, -o);
 
-           c[h] = p;
 
-         }
 
-         return Fn(c, t.shape);
 
-       }, o.prototype.LRNGrad = function (t, e, n, r, o, a, i) {
 
-         Ih(t, "LRNGrad");
 
-         for (var u = t.shape[3], s = this.readSync(t.dataId), c = this.readSync(e.dataId), l = this.readSync(n.dataId), h = new Float32Array(t.size), f = t.size, p = 0; p < f; p++) {
 
-           for (var d = p % u, v = p - d + Math.max(0, d - r), m = p - d + Math.min(u, d + r + 1), g = 0, y = v; y < m; y++) g += Math.pow(c[y], 2);
 
-           g = a * g + o;
 
-           for (y = v; y < m; y++) {
 
-             var x = -2 * a * i * c[y] * l[p] / g;
 
-             p === y && (x += Math.pow(g, -i)), x *= s[p], h[y] += x;
 
-           }
 
-         }
 
-         return Fn(h, t.shape);
 
-       }, o.prototype.multinomial = function (t, e, n, r) {
 
-         Ih(t, "multinomial");
 
-         for (var o = e ? t : io(t), a = o.shape[0], i = o.shape[1], u = Pn([a, n], "int32"), s = this.readSync(u.dataId), c = this.readSync(o.dataId), l = 0; l < a; ++l) {
 
-           var h = l * i,
 
-             f = new Float32Array(i - 1);
 
-           f[0] = c[h];
 
-           for (var p = 1; p < f.length; ++p) f[p] = f[p - 1] + c[h + p];
 
-           for (var d = rr(r.toString()), v = l * n, m = 0; m < n; ++m) {
 
-             var g = d();
 
-             s[v + m] = f.length;
 
-             for (var y = 0; y < f.length; y++) if (g < f[y]) {
 
-               s[v + m] = y;
 
-               break;
 
-             }
 
-           }
 
-         }
 
-         return u;
 
-       }, o.prototype.oneHot = function (t, e, n, r) {
 
-         Ih(t, "oneHot");
 
-         var o = new Float32Array(t.size * e);
 
-         o.fill(r);
 
-         for (var a = this.readSync(t.dataId), i = 0; i < t.size; ++i) a[i] >= 0 && a[i] < e && (o[i * e + a[i]] = n);
 
-         return Tn(o, [t.size, e], "int32");
 
-       }, o.prototype.nonMaxSuppression = function (t, e, n, r, o) {
 
-         return Ih(t, "nonMaxSuppression"), Mo(this.readSync(t.dataId), this.readSync(e.dataId), n, r, o);
 
-       }, o.prototype.fft = function (t) {
 
-         return this.fftBatch(t, !1);
 
-       }, o.prototype.ifft = function (t) {
 
-         return this.fftBatch(t, !0);
 
-       }, o.prototype.fftBatch = function (t, e) {
 
-         for (var n = t.shape[0], r = t.shape[1], o = ur(t.shape, "float32"), a = ur(t.shape, "float32"), i = Rn(t).as2D(n, r), u = In(t).as2D(n, r), s = 0; s < n; s++) for (var c = i.slice([s, 0], [1, r]), l = u.slice([s, 0], [1, r]), h = En(c, l), f = this.readSync(this.fftImpl(h, e).dataId), p = 0; p < r; p++) {
 
-           var d = Fo(f, p);
 
-           o.values[s * r + p] = d.real, a.values[s * r + p] = d.imag;
 
-         }
 
-         return En(o.toTensor(), a.toTensor()).as2D(n, r);
 
-       }, o.prototype.fftImpl = function (t, e) {
 
-         var n = t.as1D(),
 
-           r = n.size;
 
-         if (this.isExponentOf2(r)) {
 
-           var o = this.fftRadix2(n, r, e).as2D(t.shape[0], t.shape[1]);
 
-           return e && (o = En(Rn(o).div(An(r)), In(o).div(An(r)))), o;
 
-         }
 
-         var a = this.readSync(t.dataId),
 
-           i = function (t) {
 
-             for (var e = new Float32Array(t.length / 2), n = new Float32Array(t.length / 2), r = 0; r < t.length; r += 2) e[r / 2] = t[r], n[r / 2] = t[r + 1];
 
-             return {
 
-               real: e,
 
-               imag: n
 
-             };
 
-           }(this.fourierTransformByMatmul(a, r, e));
 
-         return En(i.real, i.imag).as2D(t.shape[0], t.shape[1]);
 
-       }, o.prototype.isExponentOf2 = function (t) {
 
-         return 0 == (t & t - 1);
 
-       }, o.prototype.fftRadix2 = function (t, e, n) {
 
-         if (1 === e) return t;
 
-         var r = this.readSync(t.dataId),
 
-           o = e / 2,
 
-           a = function (t) {
 
-             for (var e = Math.ceil(t.length / 4), n = new Float32Array(e), r = new Float32Array(e), o = 0; o < t.length; o += 4) n[Math.floor(o / 4)] = t[o], r[Math.floor(o / 4)] = t[o + 1];
 
-             return {
 
-               real: n,
 
-               imag: r
 
-             };
 
-           }(r),
 
-           i = En(a.real, a.imag).as1D(),
 
-           u = function (t) {
 
-             for (var e = Math.floor(t.length / 4), n = new Float32Array(e), r = new Float32Array(e), o = 2; o < t.length; o += 4) n[Math.floor(o / 4)] = t[o], r[Math.floor(o / 4)] = t[o + 1];
 
-             return {
 
-               real: n,
 
-               imag: r
 
-             };
 
-           }(r),
 
-           s = En(u.real, u.imag).as1D();
 
-         i = this.fftRadix2(i, o, n), s = this.fftRadix2(s, o, n);
 
-         var c = function (t, e) {
 
-           for (var n = new Float32Array(t / 2), r = new Float32Array(t / 2), o = 0; o < Math.ceil(t / 2); o++) {
 
-             var a = (e ? 2 : -2) * Math.PI * (o / t);
 
-             n[o] = Math.cos(a), r[o] = Math.sin(a);
 
-           }
 
-           return {
 
-             real: n,
 
-             imag: r
 
-           };
 
-         }(e, n),
 
-           l = En(c.real, c.imag).mul(s),
 
-           h = i.add(l),
 
-           f = i.sub(l),
 
-           p = Rn(h).concat(Rn(f)),
 
-           d = In(h).concat(In(f));
 
-         return En(p, d).as1D();
 
-       }, o.prototype.fourierTransformByMatmul = function (t, e, n) {
 
-         for (var r = new Float32Array(2 * e), o = 0; o < e; o++) {
 
-           for (var a = 0, i = 0, u = 0; u < e; u++) {
 
-             var s = _o(o * u, e, n),
 
-               c = Fo(t, u);
 
-             a += c.real * s.real - c.imag * s.imag, i += c.real * s.imag + c.imag * s.real;
 
-           }
 
-           n && (a /= e, i /= e), Oo(r, a, i, o);
 
-         }
 
-         return r;
 
-       }, o.prototype.depthToSpace = function (t, e, n) {
 
-         g("NHWC" === n, function () {
 
-           return "Only NHWC dataFormat supported on CPU for depthToSpace. Got " + n;
 
-         }), g(e > 1, function () {
 
-           return "blockSize should be > 1 for depthToSpace, but was: " + e;
 
-         });
 
-         for (var r = t.shape[0], o = t.shape[1], a = t.shape[2], i = t.shape[3], u = o * e, s = a * e, c = i / (e * e), l = this.readSync(t.dataId), h = new Float32Array(r * u * s * c), f = 0, p = 0; p < r; ++p) for (var d = 0; d < u; ++d) for (var v = Math.floor(d / e), m = d % e, y = 0; y < s; ++y) for (var x = Math.floor(y / e), b = (m * e + y % e) * c, w = 0; w < c; ++w) {
 
-           var C = w + b + i * (x + a * (v + o * p));
 
-           h[f++] = l[C];
 
-         }
 
-         return Fn(h, [r, u, s, c]);
 
-       }, o.prototype.broadcastedBinaryOp = function (t, e, n, r) {
 
-         var o = po(t.shape, e.shape),
 
-           a = ur(o, n),
 
-           i = this.readSync(t.dataId),
 
-           u = this.readSync(e.dataId),
 
-           s = ho(t.shape, o),
 
-           c = ho(e.shape, o),
 
-           l = a.values;
 
-         if (s.length + c.length === 0) for (var h = 0; h < l.length; ++h) l[h] = r(i[h % i.length], u[h % u.length]); else {
 
-           var f = this.bufferSync(t),
 
-             p = this.bufferSync(e),
 
-             d = function (n) {
 
-               var o = a.indexToLoc(n),
 
-                 h = o.slice(-t.rank);
 
-               s.forEach(function (t) {
 
-                 return h[t] = 0;
 
-               });
 
-               var d = f.locToIndex(h),
 
-                 v = o.slice(-e.rank);
 
-               c.forEach(function (t) {
 
-                 return v[t] = 0;
 
-               });
 
-               var m = p.locToIndex(v);
 
-               l[n] = r(i[d], u[m]);
 
-             };
 
-           for (h = 0; h < l.length; ++h) d(h);
 
-         }
 
-         return a.toTensor();
 
-       }, o.prototype.broadcastedBinaryComplexOp = function (t, e, n) {
 
-         var r = po(t.shape, e.shape),
 
-           o = ur(r, "float32"),
 
-           a = ur(r, "float32"),
 
-           i = this.readSync(t.dataId),
 
-           u = this.readSync(e.dataId),
 
-           s = ho(t.shape, r),
 
-           c = ho(e.shape, r),
 
-           l = o.values,
 
-           h = a.values;
 
-         if (s.length + c.length === 0) for (var f = 0; f < l.length; f++) {
 
-           var p = f % i.length,
 
-             d = f % u.length,
 
-             v = n(i[2 * p], i[2 * p + 1], u[2 * d], u[2 * d + 1]);
 
-           l[f] = v.real, h[f] = v.imag;
 
-         } else {
 
-           var m = this.bufferSync(this.data.get(t.dataId).complexTensors.real),
 
-             g = this.bufferSync(this.data.get(e.dataId).complexTensors.real),
 
-             y = function (r) {
 
-               var a = o.indexToLoc(r),
 
-                 f = a.slice(-t.rank);
 
-               s.forEach(function (t) {
 
-                 return f[t] = 0;
 
-               });
 
-               var p = m.locToIndex(f),
 
-                 d = a.slice(-e.rank);
 
-               c.forEach(function (t) {
 
-                 return d[t] = 0;
 
-               });
 
-               var v = g.locToIndex(d),
 
-                 y = n(i[2 * p], i[2 * p + 1], u[2 * v], u[2 * v + 1]);
 
-               l[r] = y.real, h[r] = y.imag;
 
-             };
 
-           for (f = 0; f < l.length; f++) y(f);
 
-         }
 
-         return this.complex(o.toTensor(), a.toTensor());
 
-       }, o.prototype.split = function (t, e, n) {
 
-         return Po(t, e, n);
 
-       }, o.prototype.dispose = function () { }, o.prototype.floatPrecision = function () {
 
-         return 32;
 
-       }, o.prototype.epsilon = function () {
 
-         return 1e-7;
 
-       }, o.prototype.cropAndResize = function (t, e, n, r, o, a) {
 
-         for (var i = t.shape, u = i[0], s = i[1], c = i[2], l = i[3], h = e.shape[0], f = r[0], p = r[1], d = ur([h, f, p, l], t.dtype), v = this.readSync(e.dataId), m = this.readSync(n.dataId), g = this.readSync(t.dataId), y = t.strides, x = d.strides, b = 0; b < h; b++) {
 
-           var w = 4 * b,
 
-             C = v[w],
 
-             E = v[w + 1],
 
-             R = v[w + 2],
 
-             I = v[w + 3],
 
-             k = m[b];
 
-           if (!(k >= u)) for (var S = f > 1 ? (R - C) * (s - 1) / (f - 1) : 0, A = p > 1 ? (I - E) * (c - 1) / (p - 1) : 0, D = 0; D < f; D++) {
 
-             var T = f > 1 ? C * (s - 1) + D * S : .5 * (C + R) * (s - 1);
 
-             if (T < 0 || T > s - 1) for (var N = 0; N < p; N++) for (var F = 0; F < l; F++) {
 
-               var O = F + N * x[2] + D * x[1] + b * x[0];
 
-               d.values[O] = a;
 
-             } else if ("bilinear" === o) {
 
-               var _ = Math.floor(T),
 
-                 M = Math.ceil(T),
 
-                 B = T - _;
 
-               for (N = 0; N < p; N++) {
 
-                 if ((q = p > 1 ? E * (c - 1) + N * A : .5 * (E + I) * (c - 1)) < 0 || q > c - 1) for (F = 0; F < l; F++) {
 
-                   O = F + N * x[2] + D * x[1] + b * x[0];
 
-                   d.values[O] = a;
 
-                 } else {
 
-                   var P = Math.floor(q),
 
-                     L = Math.ceil(q),
 
-                     W = q - P;
 
-                   for (F = 0; F < l; F++) {
 
-                     var U = g[O = F + P * y[2] + _ * y[1] + k * y[0]],
 
-                       V = g[O = F + L * y[2] + _ * y[1] + k * y[0]],
 
-                       z = g[O = F + P * y[2] + M * y[1] + k * y[0]],
 
-                       G = U + (V - U) * W,
 
-                       H = z + (g[O = F + L * y[2] + M * y[1] + k * y[0]] - z) * W;
 
-                     O = F + N * x[2] + D * x[1] + b * x[0], d.values[O] = G + (H - G) * B;
 
-                   }
 
-                 }
 
-               }
 
-             } else for (N = 0; N < p; ++N) {
 
-               var q;
 
-               if ((q = p > 1 ? E * (c - 1) + N * A : .5 * (E + I) * (c - 1)) < 0 || q > c - 1) for (F = 0; F < l; F++) {
 
-                 O = F + N * x[2] + D * x[1] + b * x[0];
 
-                 d.values[O] = a;
 
-               } else {
 
-                 var K = Math.round(q),
 
-                   j = Math.round(T);
 
-                 for (F = 0; F < l; F++) {
 
-                   var X = F + K * y[2] + j * y[1] + k * y[0],
 
-                     $ = F + N * x[2] + D * x[1] + b * x[0];
 
-                   d.values[$] = g[X];
 
-                 }
 
-               }
 
-             }
 
-           }
 
-         }
 
-         return d.toTensor();
 
-       }, o.prototype.sparseToDense = function (t, e, n, r) {
 
-         var o = Hr(0, t, n),
 
-           a = o.sliceRank,
 
-           i = o.numUpdates,
 
-           u = o.sliceSize,
 
-           s = o.strides,
 
-           c = o.outputSize;
 
-         return this.scatter(t, e, n, c, u, i, a, s, r, !1);
 
-       }, o.prototype.gatherND = function (t, e) {
 
-         var n = e.shape,
 
-           r = n[n.length - 1],
 
-           o = Ur(t, e),
 
-           a = o[0],
 
-           i = o[1],
 
-           u = o[2],
 
-           s = o[3];
 
-         if (0 === i) return kn([], a, t.dtype);
 
-         for (var c = new lt([i, u], t.dtype), l = this.readSync(e.dataId), h = this.readSync(t.dataId), f = 0; f < i; f++) {
 
-           for (var p = [], d = 0, v = 0; v < r; v++) {
 
-             var m = l[f * r + v];
 
-             d += m * s[v], p.push(m);
 
-           }
 
-           if (d < 0 || d >= t.size / u) throw new Error("Invalid indices: " + p + " does not index into " + t.shape);
 
-           for (var g = 0; g < u; g++) c.values[f * u + g] = h[d * u + g];
 
-         }
 
-         return c.toTensor().reshape(a);
 
-       }, o.prototype.scatterND = function (t, e, n) {
 
-         var r = Hr(0, t, n),
 
-           o = r.sliceRank,
 
-           a = r.numUpdates,
 
-           i = r.sliceSize,
 
-           u = r.strides,
 
-           s = r.outputSize,
 
-           c = An(0);
 
-         return this.scatter(t, e, n, s, i, a, o, u, c, !0);
 
-       }, o.prototype.fill = function (t, e, n) {
 
-         var r = F(n = n || z(e), w(t));
 
-         return r.fill(e), Nt.makeTensor(r, t, n, this);
 
-       }, o.prototype.onesLike = function (t) {
 
-         if ("string" === t.dtype) throw new Error("onesLike is not supported for string tensors");
 
-         return this.fill(t.shape, 1, t.dtype);
 
-       }, o.prototype.zerosLike = function (t) {
 
-         var e = F(t.dtype, w(t.shape));
 
-         return this.makeOutput(e, t.shape, t.dtype);
 
-       }, o.prototype.linspace = function (t, e, n) {
 
-         return Do(t, e, n);
 
-       }, o.prototype.scatter = function (t, e, n, r, o, a, i, u, s, c) {
 
-         var l = [r / o, o],
 
-           h = this.readSync(t.dataId),
 
-           f = this.readSync(e.dataId);
 
-         if (0 === r) return kn([], n, e.dtype);
 
-         var p = new lt(l, e.dtype);
 
-         p.values.fill(this.readSync(s.dataId)[0]);
 
-         for (var d = 0; d < a; d++) {
 
-           for (var v = [], m = 0, g = 0; g < i; g++) {
 
-             var y = h[d * i + g];
 
-             v.push(y), m += y * u[g];
 
-           }
 
-           if (m < 0 || m >= r / o) throw new Error("Invalid indices: " + v + " does not index into " + n);
 
-           for (var x = 0; x < o; x++) c ? p.values[m * o + x] += f[d * o + x] : p.values[m * o + x] = 0 === e.rank ? f[0] : f[d * o + x];
 
-         }
 
-         return p.toTensor().reshape(n);
 
-       }, o;
 
-     }(co);
 
-     Nt.registerBackend("cpu", function () {
 
-       return new Sh();
 
-     }, 1), l({
 
-       kernelName: "Square",
 
-       backendName: "cpu",
 
-       kernelFunc: function (t) {
 
-         var e = t.inputs,
 
-           n = t.backend,
 
-           r = e.x,
 
-           o = n;
 
-         Ih(r, "square");
 
-         for (var a = o.data.get(r.dataId).values, i = new Float32Array(a.length), u = 0; u < a.length; ++u) {
 
-           var s = a[u];
 
-           i[u] = s * s;
 
-         }
 
-         return {
 
-           dataId: o.write(i, r.shape, r.dtype),
 
-           shape: r.shape,
 
-           dtype: r.dtype
 
-         };
 
-       }
 
-     }), l({
 
-       kernelName: "Square",
 
-       backendName: "webgl",
 
-       kernelFunc: function (t) {
 
-         var e = t.inputs,
 
-           n = t.backend,
 
-           r = e.x,
 
-           o = n,
 
-           a = new su(r.shape, "return x * x;");
 
-         return o.runWebGLProgram(a, [r], r.dtype);
 
-       }
 
-     });
 
-     var Ah = function () {
 
-       function t() { }
 
-       return t.prototype.fetch = function (t, e) {
 
-         return fetch(t, e);
 
-       }, t.prototype.now = function () {
 
-         return performance.now();
 
-       }, t.prototype.encode = function (t, e) {
 
-         if ("utf-8" !== e && "utf8" !== e) throw new Error("Browser's encoder only supports utf-8, but got " + e);
 
-         return null == this.textEncoder && (this.textEncoder = new TextEncoder()), this.textEncoder.encode(t);
 
-       }, t.prototype.decode = function (t, e) {
 
-         return new TextDecoder(e).decode(t);
 
-       }, t;
 
-     }();
 
-     a().get("IS_BROWSER") && a().setPlatform("browser", new Ah());
 
-     var Dh,
 
-       Th = function () {
 
-         return require("node-fetch");
 
-       },
 
-       Nh = function () {
 
-         function t() {
 
-           this.util = require("util"), this.textEncoder = new this.util.TextEncoder();
 
-         }
 
-         return t.prototype.fetch = function (t, e) {
 
-           return null != a().global.fetch ? a().global.fetch(t, e) : (null == Dh && (Dh = Th()), Dh(t, e));
 
-         }, t.prototype.now = function () {
 
-           var t = process.hrtime();
 
-           return 1e3 * t[0] + t[1] / 1e6;
 
-         }, t.prototype.encode = function (t, e) {
 
-           if ("utf-8" !== e && "utf8" !== e) throw new Error("Node built-in encoder only supports utf-8, but got " + e);
 
-           return this.textEncoder.encode(t);
 
-         }, t.prototype.decode = function (t, e) {
 
-           return 0 === t.length ? "" : new this.util.TextDecoder(e).decode(t);
 
-         }, t;
 
-       }();
 
-     a().get("IS_NODE") && a().setPlatform("node", new Nh());
 
-     var Fh = {
 
-       float32: 4,
 
-       int32: 4,
 
-       uint16: 2,
 
-       uint8: 1,
 
-       bool: 1
 
-     },
 
-       Oh = 4;
 
-     function _h(t, e) {
 
-       for (var n = {}, r = 0, o = function (e) {
 
-         var o = e.name,
 
-           a = e.dtype,
 
-           i = e.shape,
 
-           u = w(i),
 
-           s = void 0;
 
-         if (("quantization" in e)) {
 
-           var c = e.quantization;
 
-           if ("uint8" !== c.dtype && "uint16" !== c.dtype) throw new Error("Weight " + e.name + " has unknown quantization dtype " + c.dtype + ". Supported quantization dtypes are: 'uint8' and 'uint16'.");
 
-           var l = Fh[c.dtype],
 
-             h = t.slice(r, r + u * l),
 
-             f = "uint8" === c.dtype ? new Uint8Array(h) : new Uint16Array(h);
 
-           if ("float32" === a) s = Float32Array.from(f, function (t) {
 
-             return t * c.scale + c.min;
 
-           }); else {
 
-             if ("int32" !== a) throw new Error("Unsupported dtype in weight '" + o + "': " + a);
 
-             s = Int32Array.from(f, function (t) {
 
-               return Math.round(t * c.scale + c.min);
 
-             });
 
-           }
 
-           r += u * l;
 
-         } else if ("string" === a) {
 
-           var p = w(e.shape);
 
-           s = [];
 
-           for (var d = 0; d < p; d++) {
 
-             var v = new Uint32Array(t.slice(r, r + Oh))[0];
 
-             r += Oh;
 
-             var m = new Uint8Array(t.slice(r, r + v));
 
-             s.push(m), r += v;
 
-           }
 
-         } else {
 
-           var g = Fh[a];
 
-           h = t.slice(r, r + u * g);
 
-           if ("float32" === a) s = new Float32Array(h); else if ("int32" === a) s = new Int32Array(h); else {
 
-             if ("bool" !== a) throw new Error("Unsupported dtype in weight '" + o + "': " + a);
 
-             s = new Uint8Array(h);
 
-           }
 
-           r += u * g;
 
-         }
 
-         n[o] = kn(s, i, a);
 
-       }, a = 0, i = e; a < i.length; a++) {
 
-         o(i[a]);
 
-       }
 
-       return n;
 
-     }
 
-     function Mh(t) {
 
-       if (null === t) throw new Error("Invalid input value: " + JSON.stringify(t));
 
-       var e = 0,
 
-         n = [];
 
-       t.forEach(function (t) {
 
-         if (e += t.byteLength, n.push(t.byteLength === t.buffer.byteLength ? t : new t.constructor(t)), !(t instanceof Float32Array || t instanceof Int32Array || t instanceof Uint8Array)) throw new Error("Unsupported TypedArray subtype: " + t.constructor.name);
 
-       });
 
-       var r = new Uint8Array(e),
 
-         o = 0;
 
-       return n.forEach(function (t) {
 
-         r.set(new Uint8Array(t.buffer), o), o += t.byteLength;
 
-       }), r.buffer;
 
-     }
 
-     var Bh = "undefined" != typeof Buffer && ("undefined" == typeof Blob || "undefined" == typeof atob || "undefined" == typeof btoa);
 
-     function Ph(t) {
 
-       return Bh ? Buffer.byteLength(t) : new Blob([t]).size;
 
-     }
 
-     function Lh(t) {
 
-       var e = 0;
 
-       t.forEach(function (t) {
 
-         e += t.byteLength;
 
-       });
 
-       var n = new Uint8Array(e),
 
-         r = 0;
 
-       return t.forEach(function (t) {
 
-         n.set(new Uint8Array(t), r), r += t.byteLength;
 
-       }), n.buffer;
 
-     }
 
-     function Wh(t) {
 
-       for (t = t.trim(); t.endsWith("/");) t = t.slice(0, t.length - 1);
 
-       var e = t.split("/");
 
-       return e[e.length - 1];
 
-     }
 
-     function Uh(t) {
 
-       if (t.modelTopology instanceof ArrayBuffer) throw new Error("Expected JSON model topology, received ArrayBuffer.");
 
-       return {
 
-         dateSaved: new Date(),
 
-         modelTopologyType: "JSON",
 
-         modelTopologyBytes: null == t.modelTopology ? 0 : Ph(JSON.stringify(t.modelTopology)),
 
-         weightSpecsBytes: null == t.weightSpecs ? 0 : Ph(JSON.stringify(t.weightSpecs)),
 
-         weightDataBytes: null == t.weightData ? 0 : t.weightData.byteLength
 
-       };
 
-     }
 
-     var Vh = function () {
 
-       function t() {
 
-         this.saveRouters = [], this.loadRouters = [];
 
-       }
 
-       return t.getInstance = function () {
 
-         return null == t.instance && (t.instance = new t()), t.instance;
 
-       }, t.registerSaveRouter = function (e) {
 
-         t.getInstance().saveRouters.push(e);
 
-       }, t.registerLoadRouter = function (e) {
 
-         t.getInstance().loadRouters.push(e);
 
-       }, t.getSaveHandlers = function (e) {
 
-         return t.getHandlers(e, "save");
 
-       }, t.getLoadHandlers = function (e, n) {
 
-         return t.getHandlers(e, "load", n);
 
-       }, t.getHandlers = function (e, n, r) {
 
-         var o = [];
 
-         return ("load" === n ? t.getInstance().loadRouters : t.getInstance().saveRouters).forEach(function (t) {
 
-           var n = t(e, r);
 
-           null !== n && o.push(n);
 
-         }), o;
 
-       }, t;
 
-     }(),
 
-       zh = "://",
 
-       Gh = function () {
 
-         function t() {
 
-           this.managers = {};
 
-         }
 
-         return t.getInstance = function () {
 
-           return null == t.instance && (t.instance = new t()), t.instance;
 
-         }, t.registerManager = function (e, n) {
 
-           g(null != e, function () {
 
-             return "scheme must not be undefined or null.";
 
-           }), e.endsWith(zh) && (e = e.slice(0, e.indexOf(zh))), g(e.length > 0, function () {
 
-             return "scheme must not be an empty string.";
 
-           });
 
-           var r = t.getInstance();
 
-           g(null == r.managers[e], function () {
 
-             return "A model store manager is already registered for scheme '" + e + "'.";
 
-           }), r.managers[e] = n;
 
-         }, t.getManager = function (t) {
 
-           var e = this.getInstance().managers[t];
 
-           if (null == e) throw new Error("Cannot find model manager for scheme '" + t + "'");
 
-           return e;
 
-         }, t.getSchemes = function () {
 
-           return Object.keys(this.getInstance().managers);
 
-         }, t;
 
-       }();
 
-     function Hh(t) {
 
-       if (-1 === t.indexOf(zh)) throw new Error("The url string provided does not contain a scheme. Supported schemes are: " + Gh.getSchemes().join(","));
 
-       return {
 
-         scheme: t.split(zh)[0],
 
-         path: t.split(zh)[1]
 
-       };
 
-     }
 
-     function qh(t, e, o) {
 
-       return void 0 === o && (o = !1), n(this, void 0, void 0, function () {
 
-         var n, a, i, u, s, c, l, h, f;
 
-         return r(this, function (r) {
 
-           switch (r.label) {
 
-             case 0:
 
-               return g(t !== e, function () {
 
-                 return "Old path and new path are the same: '" + t + "'";
 
-               }), g((n = Vh.getLoadHandlers(t)).length > 0, function () {
 
-                 return "Copying failed because no load handler is found for source URL " + t + ".";
 
-               }), g(n.length < 2, function () {
 
-                 return "Copying failed because more than one (" + n.length + ") load handlers for source URL " + t + ".";
 
-               }), a = n[0], g((i = Vh.getSaveHandlers(e)).length > 0, function () {
 
-                 return "Copying failed because no save handler is found for destination URL " + e + ".";
 
-               }), g(i.length < 2, function () {
 
-                 return "Copying failed because more than one (" + n.length + ") save handlers for destination URL " + e + ".";
 
-               }), u = i[0], s = Hh(t).scheme, c = Hh(t).path, l = s === Hh(t).scheme, [4, a.load()];
 
-             case 1:
 
-               return h = r.sent(), o && l ? [4, Gh.getManager(s).removeModel(c)] : [3, 3];
 
-             case 2:
 
-               r.sent(), r.label = 3;
 
-             case 3:
 
-               return [4, u.save(h)];
 
-             case 4:
 
-               return f = r.sent(), !o || l ? [3, 6] : [4, Gh.getManager(s).removeModel(c)];
 
-             case 5:
 
-               r.sent(), r.label = 6;
 
-             case 6:
 
-               return [2, f.modelArtifactsInfo];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     var Kh = "models_store",
 
-       jh = "model_info_store";
 
-     function Xh() {
 
-       if (!a().getBool("IS_BROWSER")) throw new Error("Failed to obtain IndexedDB factory because the current environmentis not a web browser.");
 
-       var t = window,
 
-         e = t.indexedDB || t.mozIndexedDB || t.webkitIndexedDB || t.msIndexedDB || t.shimIndexedDB;
 
-       if (null == e) throw new Error("The current browser does not appear to support IndexedDB.");
 
-       return e;
 
-     }
 
-     function $h(t) {
 
-       var e = t.result;
 
-       e.createObjectStore(Kh, {
 
-         keyPath: "modelPath"
 
-       }), e.createObjectStore(jh, {
 
-         keyPath: "modelPath"
 
-       });
 
-     }
 
-     var Yh = function () {
 
-       function t(t) {
 
-         if (this.indexedDB = Xh(), null == t || !t) throw new Error("For IndexedDB, modelPath must not be null, undefined or empty.");
 
-         this.modelPath = t;
 
-       }
 
-       return t.prototype.save = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (e) {
 
-             if (t.modelTopology instanceof ArrayBuffer) throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");
 
-             return [2, this.databaseAction(this.modelPath, t)];
 
-           });
 
-         });
 
-       }, t.prototype.load = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             return [2, this.databaseAction(this.modelPath)];
 
-           });
 
-         });
 
-       }, t.prototype.databaseAction = function (t, e) {
 
-         var n = this;
 
-         return new Promise(function (t, r) {
 
-           var o = n.indexedDB.open("tensorflowjs", 1);
 
-           o.onupgradeneeded = function () {
 
-             return $h(o);
 
-           }, o.onsuccess = function () {
 
-             var a = o.result;
 
-             if (null == e) {
 
-               var i = a.transaction(Kh, "readonly"),
 
-                 u = i.objectStore(Kh).get(n.modelPath);
 
-               u.onsuccess = function () {
 
-                 if (null == u.result) return a.close(), r(new Error("Cannot find model with path '" + n.modelPath + "' in IndexedDB."));
 
-                 t(u.result.modelArtifacts);
 
-               }, u.onerror = function (t) {
 
-                 return a.close(), r(u.error);
 
-               }, i.oncomplete = function () {
 
-                 return a.close();
 
-               };
 
-             } else {
 
-               var s,
 
-                 c = Uh(e),
 
-                 l = a.transaction(jh, "readwrite"),
 
-                 h = l.objectStore(jh),
 
-                 f = h.put({
 
-                   modelPath: n.modelPath,
 
-                   modelArtifactsInfo: c
 
-                 });
 
-               f.onsuccess = function () {
 
-                 var o = (s = a.transaction(Kh, "readwrite")).objectStore(Kh).put({
 
-                   modelPath: n.modelPath,
 
-                   modelArtifacts: e,
 
-                   modelArtifactsInfo: c
 
-                 });
 
-                 o.onsuccess = function () {
 
-                   return t({
 
-                     modelArtifactsInfo: c
 
-                   });
 
-                 }, o.onerror = function (t) {
 
-                   var e = (h = l.objectStore(jh)).delete(n.modelPath);
 
-                   e.onsuccess = function () {
 
-                     return a.close(), r(o.error);
 
-                   }, e.onerror = function (t) {
 
-                     return a.close(), r(o.error);
 
-                   };
 
-                 };
 
-               }, f.onerror = function (t) {
 
-                 return a.close(), r(f.error);
 
-               }, l.oncomplete = function () {
 
-                 null == s ? a.close() : s.oncomplete = function () {
 
-                   return a.close();
 
-                 };
 
-               };
 
-             }
 
-           }, o.onerror = function (t) {
 
-             return r(o.error);
 
-           };
 
-         });
 
-       }, t.URL_SCHEME = "indexeddb://", t;
 
-     }(),
 
-       Qh = function (t) {
 
-         return a().getBool("IS_BROWSER") && !Array.isArray(t) && t.startsWith(Yh.URL_SCHEME) ? (e = t.slice(Yh.URL_SCHEME.length), new Yh(e)) : null;
 
-         var e;
 
-       };
 
-     Vh.registerSaveRouter(Qh), Vh.registerLoadRouter(Qh);
 
-     var Jh = function () {
 
-       function t() {
 
-         this.indexedDB = Xh();
 
-       }
 
-       return t.prototype.listModels = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t = this;
 
-           return r(this, function (e) {
 
-             return [2, new Promise(function (e, n) {
 
-               var r = t.indexedDB.open("tensorflowjs", 1);
 
-               r.onupgradeneeded = function () {
 
-                 return $h(r);
 
-               }, r.onsuccess = function () {
 
-                 var t = r.result,
 
-                   o = t.transaction(jh, "readonly"),
 
-                   a = o.objectStore(jh).getAll();
 
-                 a.onsuccess = function () {
 
-                   for (var t = {}, n = 0, r = a.result; n < r.length; n++) {
 
-                     var o = r[n];
 
-                     t[o.modelPath] = o.modelArtifactsInfo;
 
-                   }
 
-                   e(t);
 
-                 }, a.onerror = function (e) {
 
-                   return t.close(), n(a.error);
 
-                 }, o.oncomplete = function () {
 
-                   return t.close();
 
-                 };
 
-               }, r.onerror = function (t) {
 
-                 return n(r.error);
 
-               };
 
-             })];
 
-           });
 
-         });
 
-       }, t.prototype.removeModel = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e = this;
 
-           return r(this, function (n) {
 
-             var r;
 
-             return t = (r = t).startsWith(Yh.URL_SCHEME) ? r.slice(Yh.URL_SCHEME.length) : r, [2, new Promise(function (n, r) {
 
-               var o = e.indexedDB.open("tensorflowjs", 1);
 
-               o.onupgradeneeded = function () {
 
-                 return $h(o);
 
-               }, o.onsuccess = function () {
 
-                 var e,
 
-                   a = o.result,
 
-                   i = a.transaction(jh, "readwrite"),
 
-                   u = i.objectStore(jh),
 
-                   s = u.get(t);
 
-                 s.onsuccess = function () {
 
-                   if (null == s.result) return a.close(), r(new Error("Cannot find model with path '" + t + "' in IndexedDB."));
 
-                   var o = u.delete(t),
 
-                     i = function () {
 
-                       var o = (e = a.transaction(Kh, "readwrite")).objectStore(Kh).delete(t);
 
-                       o.onsuccess = function () {
 
-                         return n(s.result.modelArtifactsInfo);
 
-                       }, o.onerror = function (t) {
 
-                         return r(s.error);
 
-                       };
 
-                     };
 
-                   o.onsuccess = i, o.onerror = function (t) {
 
-                     return i(), a.close(), r(s.error);
 
-                   };
 
-                 }, s.onerror = function (t) {
 
-                   return a.close(), r(s.error);
 
-                 }, i.oncomplete = function () {
 
-                   null == e ? a.close() : e.oncomplete = function () {
 
-                     return a.close();
 
-                   };
 
-                 };
 
-               }, o.onerror = function (t) {
 
-                 return r(o.error);
 
-               };
 
-             })];
 
-           });
 
-         });
 
-       }, t;
 
-     }();
 
-     if (a().getBool("IS_BROWSER")) try {
 
-       Gh.registerManager(Yh.URL_SCHEME, new Jh());
 
-     } catch (t) { }
 
-     var Zh = "/",
 
-       tf = "tensorflowjs_models",
 
-       ef = "info",
 
-       nf = "model_topology",
 
-       rf = "weight_specs",
 
-       of = "weight_data",
 
-       af = "model_metadata";
 
-     function uf(t) {
 
-       return {
 
-         info: [tf, t, ef].join(Zh),
 
-         topology: [tf, t, nf].join(Zh),
 
-         weightSpecs: [tf, t, rf].join(Zh),
 
-         weightData: [tf, t, of].join(Zh),
 
-         modelMetadata: [tf, t, af].join(Zh)
 
-       };
 
-     }
 
-     function sf(t) {
 
-       var e = t.split(Zh);
 
-       if (e.length < 3) throw new Error("Invalid key format: " + t);
 
-       return e.slice(1, e.length - 1).join(Zh);
 
-     }
 
-     var cf = function () {
 
-       function t(t) {
 
-         if (!a().getBool("IS_BROWSER") || void 0 === window.localStorage) throw new Error("The current environment does not support local storage.");
 
-         if (this.LS = window.localStorage, null == t || !t) throw new Error("For local storage, modelPath must not be null, undefined or empty.");
 
-         this.modelPath = t, this.keys = uf(this.modelPath);
 
-       }
 
-       return t.prototype.save = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o;
 
-           return r(this, function (r) {
 
-             if (t.modelTopology instanceof ArrayBuffer) throw new Error("BrowserLocalStorage.save() does not support saving model topology in binary formats yet.");
 
-             e = JSON.stringify(t.modelTopology), n = JSON.stringify(t.weightSpecs), o = Uh(t);
 
-             try {
 
-               return this.LS.setItem(this.keys.info, JSON.stringify(o)), this.LS.setItem(this.keys.topology, e), this.LS.setItem(this.keys.weightSpecs, n), this.LS.setItem(this.keys.weightData, (a = t.weightData, Bh ? Buffer.from(a).toString("base64") : btoa(String.fromCharCode.apply(null, new Uint8Array(a))))), this.LS.setItem(this.keys.modelMetadata, JSON.stringify({
 
-                 format: t.format,
 
-                 generatedBy: t.generatedBy,
 
-                 convertedBy: t.convertedBy
 
-               })), [2, {
 
-                 modelArtifactsInfo: o
 
-               }];
 
-             } catch (t) {
 
-               throw this.LS.removeItem(this.keys.info), this.LS.removeItem(this.keys.topology), this.LS.removeItem(this.keys.weightSpecs), this.LS.removeItem(this.keys.weightData), this.LS.removeItem(this.keys.modelMetadata), new Error("Failed to save model '" + this.modelPath + "' to local storage: size quota being exceeded is a possible cause of this failure: modelTopologyBytes=" + o.modelTopologyBytes + ", weightSpecsBytes=" + o.weightSpecsBytes + ", weightDataBytes=" + o.weightDataBytes + ".");
 
-             }
 
-             var a;
 
-             return [2];
 
-           });
 
-         });
 
-       }, t.prototype.load = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t, e, n, o, a, i, u;
 
-           return r(this, function (r) {
 
-             if (null == (t = JSON.parse(this.LS.getItem(this.keys.info)))) throw new Error("In local storage, there is no model with name '" + this.modelPath + "'");
 
-             if ("JSON" !== t.modelTopologyType) throw new Error("BrowserLocalStorage does not support loading non-JSON model topology yet.");
 
-             if (e = {}, null == (n = JSON.parse(this.LS.getItem(this.keys.topology)))) throw new Error("In local storage, the topology of model '" + this.modelPath + "' is missing.");
 
-             if (e.modelTopology = n, null == (o = JSON.parse(this.LS.getItem(this.keys.weightSpecs)))) throw new Error("In local storage, the weight specs of model '" + this.modelPath + "' are missing.");
 
-             if (e.weightSpecs = o, null != (a = this.LS.getItem(this.keys.modelMetadata)) && (i = JSON.parse(a), e.format = i.format, e.generatedBy = i.generatedBy, e.convertedBy = i.convertedBy), null == (u = this.LS.getItem(this.keys.weightData))) throw new Error("In local storage, the binary weight values of model '" + this.modelPath + "' are missing.");
 
-             return e.weightData = function (t) {
 
-               if (Bh) {
 
-                 var e = Buffer.from(t, "base64");
 
-                 return e.buffer.slice(e.byteOffset, e.byteOffset + e.byteLength);
 
-               }
 
-               for (var n = atob(t), r = new Uint8Array(n.length), o = 0; o < n.length; ++o) r.set([n.charCodeAt(o)], o);
 
-               return r.buffer;
 
-             }(u), [2, e];
 
-           });
 
-         });
 
-       }, t.URL_SCHEME = "localstorage://", t;
 
-     }(),
 
-       lf = function (t) {
 
-         return a().getBool("IS_BROWSER") && !Array.isArray(t) && t.startsWith(cf.URL_SCHEME) ? (e = t.slice(cf.URL_SCHEME.length), new cf(e)) : null;
 
-         var e;
 
-       };
 
-     Vh.registerSaveRouter(lf), Vh.registerLoadRouter(lf);
 
-     var hf = function () {
 
-       function t() {
 
-         g(a().getBool("IS_BROWSER"), function () {
 
-           return "Current environment is not a web browser";
 
-         }), g(void 0 !== window.localStorage, function () {
 
-           return "Current browser does not appear to support localStorage";
 
-         }), this.LS = window.localStorage;
 
-       }
 
-       return t.prototype.listModels = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t, e, n, o, a, i;
 
-           return r(this, function (r) {
 
-             for (t = {}, e = tf + Zh, n = Zh + ef, o = 0; o < this.LS.length; ++o) (a = this.LS.key(o)).startsWith(e) && a.endsWith(n) && (i = sf(a), t[i] = JSON.parse(this.LS.getItem(a)));
 
-             return [2, t];
 
-           });
 
-         });
 
-       }, t.prototype.removeModel = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n;
 
-           return r(this, function (r) {
 
-             var o;
 
-             if (t = (o = t).startsWith(cf.URL_SCHEME) ? o.slice(cf.URL_SCHEME.length) : o, e = uf(t), null == this.LS.getItem(e.info)) throw new Error("Cannot find model at path '" + t + "'");
 
-             return n = JSON.parse(this.LS.getItem(e.info)), this.LS.removeItem(e.info), this.LS.removeItem(e.topology), this.LS.removeItem(e.weightSpecs), this.LS.removeItem(e.weightData), [2, n];
 
-           });
 
-         });
 
-       }, t;
 
-     }();
 
-     if (a().getBool("IS_BROWSER")) try {
 
-       Gh.registerManager(cf.URL_SCHEME, new hf());
 
-     } catch (t) { }
 
-     var ff = "model",
 
-       pf = ".json",
 
-       df = ".weights.bin";
 
-     function vf(t) {
 
-       return new Promise(function (t) {
 
-         return setTimeout(t);
 
-       }).then(t);
 
-     }
 
-     var mf = function () {
 
-       function t(e) {
 
-         if (!a().getBool("IS_BROWSER")) throw new Error("browserDownloads() cannot proceed because the current environment is not a browser.");
 
-         e.startsWith(t.URL_SCHEME) && (e = e.slice(t.URL_SCHEME.length)), null != e && 0 !== e.length || (e = ff), this.modelTopologyFileName = e + pf, this.weightDataFileName = e + df;
 
-       }
 
-       return t.prototype.save = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o, a, i, u;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 if ("undefined" == typeof document) throw new Error("Browser downloads are not supported in this environment since `document` is not present");
 
-                 if (e = window.URL.createObjectURL(new Blob([t.weightData], {
 
-                   type: "application/octet-stream"
 
-                 })), !(t.modelTopology instanceof ArrayBuffer)) return [3, 1];
 
-                 throw new Error("BrowserDownloads.save() does not support saving model topology in binary formats yet.");
 
-               case 1:
 
-                 return n = [{
 
-                   paths: ["./" + this.weightDataFileName],
 
-                   weights: t.weightSpecs
 
-                 }], o = {
 
-                   modelTopology: t.modelTopology,
 
-                   format: t.format,
 
-                   generatedBy: t.generatedBy,
 
-                   convertedBy: t.convertedBy,
 
-                   weightsManifest: n
 
-                 }, a = window.URL.createObjectURL(new Blob([JSON.stringify(o)], {
 
-                   type: "application/json"
 
-                 })), (i = null == this.jsonAnchor ? document.createElement("a") : this.jsonAnchor).download = this.modelTopologyFileName, i.href = a, [4, vf(function () {
 
-                   return i.dispatchEvent(new MouseEvent("click"));
 
-                 })];
 
-               case 2:
 
-                 return r.sent(), null == t.weightData ? [3, 4] : ((u = null == this.weightDataAnchor ? document.createElement("a") : this.weightDataAnchor).download = this.weightDataFileName, u.href = e, [4, vf(function () {
 
-                   return u.dispatchEvent(new MouseEvent("click"));
 
-                 })]);
 
-               case 3:
 
-                 r.sent(), r.label = 4;
 
-               case 4:
 
-                 return [2, {
 
-                   modelArtifactsInfo: Uh(t)
 
-                 }];
 
-             }
 
-           });
 
-         });
 
-       }, t.URL_SCHEME = "downloads://", t;
 
-     }(),
 
-       gf = function () {
 
-         function t(t) {
 
-           if (null == t || t.length < 1) throw new Error("When calling browserFiles, at least 1 file is required, but received " + t);
 
-           this.files = t;
 
-         }
 
-         return t.prototype.load = function () {
 
-           return n(this, void 0, void 0, function () {
 
-             var t,
 
-               e,
 
-               n = this;
 
-             return r(this, function (r) {
 
-               return t = this.files[0], e = this.files.slice(1), [2, new Promise(function (r, o) {
 
-                 var a = new FileReader();
 
-                 a.onload = function (a) {
 
-                   var i = JSON.parse(a.target.result),
 
-                     u = i.modelTopology;
 
-                   if (null != u) {
 
-                     0 === e.length && r({
 
-                       modelTopology: u
 
-                     });
 
-                     var s = i.weightsManifest;
 
-                     if (null != s) {
 
-                       var c;
 
-                       try {
 
-                         c = n.checkManifestAndWeightFiles(s, e);
 
-                       } catch (t) {
 
-                         return void o(t);
 
-                       }
 
-                       var l = [],
 
-                         h = [],
 
-                         f = [];
 
-                       s.forEach(function (t) {
 
-                         t.paths.forEach(function (t) {
 
-                           h.push(t), f.push(null);
 
-                         }), l.push.apply(l, t.weights);
 
-                       }), s.forEach(function (t) {
 
-                         t.paths.forEach(function (t) {
 
-                           var e = new FileReader();
 
-                           e.onload = function (e) {
 
-                             var n = e.target.result,
 
-                               o = h.indexOf(t);
 
-                             f[o] = n, -1 === f.indexOf(null) && r({
 
-                               modelTopology: u,
 
-                               weightSpecs: l,
 
-                               weightData: Lh(f)
 
-                             });
 
-                           }, e.onerror = function (e) {
 
-                             return o("Failed to weights data from file of path '" + t + "'.");
 
-                           }, e.readAsArrayBuffer(c[t]);
 
-                         });
 
-                       });
 
-                     } else o(new Error("weightManifest field is missing from file " + t.name));
 
-                   } else o(new Error("modelTopology field is missing from file " + t.name));
 
-                 }, a.onerror = function (e) {
 
-                   return o("Failed to read model topology and weights manifest JSON from file '" + t.name + "'. BrowserFiles supports loading Keras-style tf.Model artifacts only.");
 
-                 }, a.readAsText(t);
 
-               })];
 
-             });
 
-           });
 
-         }, t.prototype.checkManifestAndWeightFiles = function (t, e) {
 
-           for (var n = [], r = e.map(function (t) {
 
-             return Wh(t.name);
 
-           }), o = {}, a = 0, i = t; a < i.length; a++) {
 
-             i[a].paths.forEach(function (t) {
 
-               var a = Wh(t);
 
-               if (-1 !== n.indexOf(a)) throw new Error("Duplicate file basename found in weights manifest: '" + a + "'");
 
-               if (n.push(a), -1 === r.indexOf(a)) throw new Error("Weight file with basename '" + a + "' is not provided.");
 
-               o[t] = e[r.indexOf(a)];
 
-             });
 
-           }
 
-           if (n.length !== e.length) throw new Error("Mismatch in the number of files in weights manifest (" + n.length + ") and the number of weight files provided (" + e.length + ").");
 
-           return o;
 
-         }, t;
 
-       }();
 
-     function yf(t, e, n, r) {
 
-       !function (t) {
 
-         g(null != t && Array.isArray(t) && t.length > 0, function () {
 
-           return "promises must be a none empty array";
 
-         });
 
-       }(t), function (t, e) {
 
-         g(t >= 0 && t <= 1, function () {
 
-           return "Progress fraction must be in range [0, 1], but got startFraction " + t;
 
-         }), g(e >= 0 && e <= 1, function () {
 
-           return "Progress fraction must be in range [0, 1], but got endFraction " + e;
 
-         }), g(e >= t, function () {
 
-           return "startFraction must be no more than endFraction, but got startFraction " + t + " and endFraction " + e;
 
-         });
 
-       }(n = null == n ? 0 : n, r = null == r ? 1 : r);
 
-       var o = 0;
 
-       return Promise.all(t.map(function (a) {
 
-         return a.then(function (a) {
 
-           var i = n + ++o / t.length * (r - n);
 
-           return e(i), a;
 
-         }), a;
 
-       }));
 
-     }
 
-     function xf(t, e) {
 
-       return n(this, void 0, void 0, function () {
 
-         var n, o, i, u, s, c, l, h, f;
 
-         return r(this, function (r) {
 
-           switch (r.label) {
 
-             case 0:
 
-               return null == e && (e = {}), n = null == e.fetchFunc ? a().platform.fetch : e.fetchFunc, o = t.map(function (t) {
 
-                 return n(t, e.requestInit, {
 
-                   isBinary: !0
 
-                 });
 
-               }), i = 0, u = .5, null != e.onProgress ? [3, 2] : [4, Promise.all(o)];
 
-             case 1:
 
-               return s = r.sent(), [3, 4];
 
-             case 2:
 
-               return [4, yf(o, e.onProgress, i, u)];
 
-             case 3:
 
-               s = r.sent(), r.label = 4;
 
-             case 4:
 
-               return c = s.map(function (t) {
 
-                 return t.arrayBuffer();
 
-               }), l = .5, h = 1, null != e.onProgress ? [3, 6] : [4, Promise.all(c)];
 
-             case 5:
 
-               return f = r.sent(), [3, 8];
 
-             case 6:
 
-               return [4, yf(c, e.onProgress, l, h)];
 
-             case 7:
 
-               f = r.sent(), r.label = 8;
 
-             case 8:
 
-               return [2, f];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function bf(t) {
 
-       var e = this;
 
-       return function (o, a, i) {
 
-         return void 0 === a && (a = ""), n(e, void 0, void 0, function () {
 
-           var e, n, u, s, c, l, h, f, p, d;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 if (e = o.map(function () {
 
-                   return !1;
 
-                 }), n = {}, u = null != i ? i.map(function () {
 
-                   return !1;
 
-                 }) : [], s = [], o.forEach(function (t, r) {
 
-                   var o = 0;
 
-                   t.weights.forEach(function (t) {
 
-                     var a = "quantization" in t ? t.quantization.dtype : t.dtype,
 
-                       c = Fh[a] * w(t.shape),
 
-                       l = function () {
 
-                         e[r] = !0, null == n[r] && (n[r] = []), n[r].push({
 
-                           manifestEntry: t,
 
-                           groupOffset: o,
 
-                           sizeBytes: c
 
-                         });
 
-                       };
 
-                     null != i ? i.forEach(function (e, n) {
 
-                       e === t.name && (l(), u[n] = !0);
 
-                     }) : l(), s.push(t.name), o += c;
 
-                   });
 
-                 }), !u.every(function (t) {
 
-                   return t;
 
-                 })) throw c = i.filter(function (t, e) {
 
-                   return !u[e];
 
-                 }), new Error("Could not find weights in manifest with names: " + c.join(", ") + ". \nManifest JSON has weights with names: " + s.join(", ") + ".");
 
-                 return l = e.reduce(function (t, e, n) {
 
-                   return e && t.push(n), t;
 
-                 }, []), h = [], l.forEach(function (t) {
 
-                   o[t].paths.forEach(function (t) {
 
-                     var e = a + (a.endsWith("/") ? "" : "/") + t;
 
-                     h.push(e);
 
-                   });
 
-                 }), [4, t(h)];
 
-               case 1:
 
-                 return f = r.sent(), p = {}, d = 0, l.forEach(function (t) {
 
-                   for (var e = o[t].paths.length, r = 0, a = 0; a < e; a++) r += f[d + a].byteLength;
 
-                   for (var i = new ArrayBuffer(r), u = new Uint8Array(i), s = 0, c = 0; c < e; c++) {
 
-                     var l = new Uint8Array(f[d + c]);
 
-                     u.set(l, s), s += l.byteLength;
 
-                   }
 
-                   n[t].forEach(function (t) {
 
-                     var e = _h(i.slice(t.groupOffset, t.groupOffset + t.sizeBytes), [t.manifestEntry]);
 
-                     for (var n in e) p[n] = e[n];
 
-                   }), d += e;
 
-                 }), [2, p];
 
-             }
 
-           });
 
-         });
 
-       };
 
-     }
 
-     Vh.registerSaveRouter(function (t) {
 
-       return a().getBool("IS_BROWSER") && !Array.isArray(t) && t.startsWith(mf.URL_SCHEME) ? (e = t.slice(mf.URL_SCHEME.length), void 0 === e && (e = "model"), new mf(e)) : null;
 
-       var e;
 
-     });
 
-     var wf = function () {
 
-       function t(t, e) {
 
-         if (this.DEFAULT_METHOD = "POST", null == e && (e = {}), this.weightPathPrefix = e.weightPathPrefix, this.onProgress = e.onProgress, null != e.fetchFunc ? (g("function" == typeof e.fetchFunc, function () {
 
-           return "Must pass a function that matches the signature of `fetch` (see https://developer.mozilla.org/en-US/docs/Web/API/Fetch_API)";
 
-         }), this.fetch = e.fetchFunc) : this.fetch = a().platform.fetch, g(null != t && t.length > 0, function () {
 
-           return "URL path for http must not be null, undefined or empty.";
 
-         }), Array.isArray(t) && g(2 === t.length, function () {
 
-           return "URL paths for http must have a length of 2, (actual length is " + t.length + ").";
 
-         }), this.path = t, null != e.requestInit && null != e.requestInit.body) throw new Error("requestInit is expected to have no pre-existing body, but has one.");
 
-         this.requestInit = e.requestInit || {};
 
-       }
 
-       return t.prototype.save = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o, a;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 if (t.modelTopology instanceof ArrayBuffer) throw new Error("BrowserHTTPRequest.save() does not support saving model topology in binary formats yet.");
 
-                 return (e = Object.assign({
 
-                   method: this.DEFAULT_METHOD
 
-                 }, this.requestInit)).body = new FormData(), n = [{
 
-                   paths: ["./model.weights.bin"],
 
-                   weights: t.weightSpecs
 
-                 }], o = {
 
-                   modelTopology: t.modelTopology,
 
-                   format: t.format,
 
-                   generatedBy: t.generatedBy,
 
-                   convertedBy: t.convertedBy,
 
-                   userDefinedMetadata: t.userDefinedMetadata,
 
-                   weightsManifest: n
 
-                 }, e.body.append("model.json", new Blob([JSON.stringify(o)], {
 
-                   type: "application/json"
 
-                 }), "model.json"), null != t.weightData && e.body.append("model.weights.bin", new Blob([t.weightData], {
 
-                   type: "application/octet-stream"
 
-                 }), "model.weights.bin"), [4, this.fetch(this.path, e)];
 
-               case 1:
 
-                 if ((a = r.sent()).ok) return [2, {
 
-                   modelArtifactsInfo: Uh(t),
 
-                   responses: [a]
 
-                 }];
 
-                 throw new Error("BrowserHTTPRequest.save() failed due to HTTP response status " + a.status + ".");
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.load = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t, e, n, o, a, i, u, s;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return [4, this.fetch(this.path, this.requestInit)];
 
-               case 1:
 
-                 if (!(t = r.sent()).ok) throw new Error("Request to " + this.path + " failed with status code " + t.status + ". Please verify this URL points to the model JSON of the model to load.");
 
-                 r.label = 2;
 
-               case 2:
 
-                 return r.trys.push([2, 4, , 5]), [4, t.json()];
 
-               case 3:
 
-                 return e = r.sent(), [3, 5];
 
-               case 4:
 
-                 throw r.sent(), n = "Failed to parse model JSON of response from " + this.path + ".", this.path.endsWith(".pb") ? n += " Your path contains a .pb file extension. Support for .pb models have been removed in TensorFlow.js 1.0 in favor of .json models. You can re-convert your Python TensorFlow model using the TensorFlow.js 1.0 conversion scripts or you can convert your.pb models with the 'pb2json'NPM script in the tensorflow/tfjs-converter repository." : n += " Please make sure the server is serving valid JSON for this request.", new Error(n);
 
-               case 5:
 
-                 if (o = e.modelTopology, a = e.weightsManifest, null == o && null == a) throw new Error("The JSON from HTTP path " + this.path + " contains neither model topology or manifest for weights.");
 
-                 return null == a ? [3, 7] : [4, this.loadWeights(a)];
 
-               case 6:
 
-                 s = r.sent(), i = s[0], u = s[1], r.label = 7;
 
-               case 7:
 
-                 return [2, {
 
-                   modelTopology: o,
 
-                   weightSpecs: i,
 
-                   weightData: u
 
-                 }];
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.loadWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e, n, o, a, i, u, s, c, l, h, f;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 for (e = Array.isArray(this.path) ? this.path[1] : this.path, n = function (t) {
 
-                   var e = t.lastIndexOf("/"),
 
-                     n = t.lastIndexOf("?"),
 
-                     r = t.substring(0, e),
 
-                     o = n > e ? t.substring(n) : "";
 
-                   return [r + "/", o];
 
-                 }(e), o = n[0], a = n[1], i = this.weightPathPrefix || o, u = [], s = 0, c = t; s < c.length; s++) l = c[s], u.push.apply(u, l.weights);
 
-                 return h = [], t.forEach(function (t) {
 
-                   t.paths.forEach(function (t) {
 
-                     h.push(i + t + a);
 
-                   });
 
-                 }), [4, xf(h, {
 
-                   requestInit: this.requestInit,
 
-                   fetchFunc: this.fetch,
 
-                   onProgress: this.onProgress
 
-                 })];
 
-               case 1:
 
-                 return f = r.sent(), [2, [u, Lh(f)]];
 
-             }
 
-           });
 
-         });
 
-       }, t.URL_SCHEME_REGEX = /^https?:\/\//, t;
 
-     }();
 
-     function Cf(t) {
 
-       return null != t.match(wf.URL_SCHEME_REGEX);
 
-     }
 
-     var Ef = function (t, e) {
 
-       if ("undefined" == typeof fetch) return null;
 
-       return (Array.isArray(t) ? t.every(function (t) {
 
-         return Cf(t);
 
-       }) : Cf(t)) ? Rf(t, {
 
-         onProgress: e
 
-       }) : null;
 
-     };
 
-     function Rf(t, e) {
 
-       return new wf(t, e);
 
-     }
 
-     Vh.registerSaveRouter(Ef), Vh.registerLoadRouter(Ef);
 
-     var If = function () {
 
-       function t(t) {
 
-         this.modelArtifacts = t;
 
-       }
 
-       return t.prototype.load = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             return [2, this.modelArtifacts];
 
-           });
 
-         });
 
-       }, t;
 
-     }(),
 
-       kf = function () {
 
-         function t(t) {
 
-           this.saveHandler = t;
 
-         }
 
-         return t.prototype.save = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             return r(this, function (e) {
 
-               return [2, this.saveHandler(t)];
 
-             });
 
-           });
 
-         }, t;
 
-       }();
 
-     var Sf = Object.freeze({
 
-       browserFiles: function (t) {
 
-         return new gf(t);
 
-       },
 
-       browserHTTPRequest: function (t, e) {
 
-         return Rf(t, e);
 
-       },
 
-       concatenateArrayBuffers: Lh,
 
-       decodeWeights: _h,
 
-       encodeWeights: function (t, e) {
 
-         return n(this, void 0, void 0, function () {
 
-           var o,
 
-             a,
 
-             i,
 
-             u,
 
-             s,
 
-             c = this;
 
-           return r(this, function (l) {
 
-             switch (l.label) {
 
-               case 0:
 
-                 for (o = [], a = [], i = Array.isArray(t) ? t.map(function (t) {
 
-                   return t.name;
 
-                 }) : Object.keys(t), u = function (u) {
 
-                   var s = i[u],
 
-                     l = Array.isArray(t) ? t[u].tensor : t[s];
 
-                   if ("float32" !== l.dtype && "int32" !== l.dtype && "bool" !== l.dtype && "string" !== l.dtype) throw new Error("Unsupported dtype in weight '" + s + "': " + l.dtype);
 
-                   var h = {
 
-                     name: s,
 
-                     shape: l.shape,
 
-                     dtype: l.dtype
 
-                   };
 
-                   if ("string" === l.dtype) {
 
-                     var f = new Promise(function (t) {
 
-                       return n(c, void 0, void 0, function () {
 
-                         var e, n, o, a, i, u, s;
 
-                         return r(this, function (r) {
 
-                           switch (r.label) {
 
-                             case 0:
 
-                               return [4, l.bytes()];
 
-                             case 1:
 
-                               for (e = r.sent(), n = e.reduce(function (t, e) {
 
-                                 return t + e.length;
 
-                               }, 0) + Oh * e.length, o = new Uint8Array(n), a = 0, i = 0; i < e.length; i++) u = e[i], s = new Uint8Array(new Uint32Array([u.length]).buffer), o.set(s, a), a += Oh, o.set(u, a), a += u.length;
 
-                               return t(o), [2];
 
-                           }
 
-                         });
 
-                       });
 
-                     });
 
-                     a.push(f);
 
-                   } else a.push(l.data());
 
-                   null != e && (h.group = e), o.push(h);
 
-                 }, s = 0; s < i.length; ++s) u(s);
 
-                 return [4, Promise.all(a)];
 
-               case 1:
 
-                 return [2, {
 
-                   data: Mh(l.sent()),
 
-                   specs: o
 
-                 }];
 
-             }
 
-           });
 
-         });
 
-       },
 
-       fromMemory: function (t, e, n, r) {
 
-         return 1 === arguments.length ? null != t.modelTopology || null != t.weightSpecs ? new If(t) : (console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."), new If({
 
-           modelTopology: t
 
-         })) : (console.warn("Please call tf.io.fromMemory() with only one argument. The argument should be of type ModelArtifacts. The multi-argument signature of tf.io.fromMemory() has been deprecated and will be removed in a future release."), new If({
 
-           modelTopology: t,
 
-           weightSpecs: e,
 
-           weightData: n,
 
-           trainingConfig: r
 
-         }));
 
-       },
 
-       getLoadHandlers: function (t, e) {
 
-         return Vh.getLoadHandlers(t, e);
 
-       },
 
-       getModelArtifactsInfoForJSON: Uh,
 
-       getSaveHandlers: function (t) {
 
-         return Vh.getSaveHandlers(t);
 
-       },
 
-       http: Rf,
 
-       isHTTPScheme: Cf,
 
-       loadWeights: function (t, e, o, a) {
 
-         return void 0 === e && (e = ""), n(this, void 0, void 0, function () {
 
-           return r(this, function (n) {
 
-             return [2, bf(function (t) {
 
-               return xf(t, {
 
-                 requestInit: a
 
-               });
 
-             })(t, e, o)];
 
-           });
 
-         });
 
-       },
 
-       registerLoadRouter: function (t) {
 
-         return Vh.registerLoadRouter(t);
 
-       },
 
-       registerSaveRouter: function (t) {
 
-         return Vh.registerSaveRouter(t);
 
-       },
 
-       weightsLoaderFactory: bf,
 
-       withSaveHandler: function (t) {
 
-         return new kf(t);
 
-       },
 
-       copyModel: function (t, e) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (n) {
 
-             return [2, qh(t, e, !1)];
 
-           });
 
-         });
 
-       },
 
-       listModels: function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t, e, n, o, a, i, u;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 t = Gh.getSchemes(), e = {}, n = 0, o = t, r.label = 1;
 
-               case 1:
 
-                 return n < o.length ? (a = o[n], [4, Gh.getManager(a).listModels()]) : [3, 4];
 
-               case 2:
 
-                 for (u in i = r.sent()) e[a + zh + u] = i[u];
 
-                 r.label = 3;
 
-               case 3:
 
-                 return n++, [3, 1];
 
-               case 4:
 
-                 return [2, e];
 
-             }
 
-           });
 
-         });
 
-       },
 
-       moveModel: function (t, e) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (n) {
 
-             return [2, qh(t, e, !0)];
 
-           });
 
-         });
 
-       },
 
-       removeModel: function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e;
 
-           return r(this, function (n) {
 
-             return e = Hh(t), [2, Gh.getManager(e.scheme).removeModel(e.path)];
 
-           });
 
-         });
 
-       }
 
-     });
 
-     exports.io = Sf;
 
-     var Af = Cn({
 
-       confusionMatrix_: function (t, e, n) {
 
-         var r = ln(t, "labels", "confusionMatrix"),
 
-           o = ln(e, "predictions", "confusionMatrix");
 
-         g(null == n || n > 0 && Number.isInteger(n), function () {
 
-           return "If provided, numClasses must be a positive integer, but got " + n;
 
-         }), g(1 === r.rank, function () {
 
-           return "Expected the rank of labels to be 1, but got " + r.rank;
 
-         }), g(1 === o.rank, function () {
 
-           return "Expected the rank of predictions to be 1, but got " + o.rank;
 
-         }), g(r.shape[0] === o.shape[0], function () {
 
-           return "Mismatch in the number of examples: " + r.shape[0] + " vs. " + o.shape[0] + ". Labels and predictions should have the same number of elements.";
 
-         }), g(n > 0 && Number.isInteger(n), function () {
 
-           return "numClasses is required to be a positive integer, but got " + n;
 
-         });
 
-         var a = gr(r.asType("int32"), n),
 
-           i = gr(o.asType("int32"), n);
 
-         return a.transpose().matMul(i).asType("int32");
 
-       }
 
-     }),
 
-       Df = Object.freeze({
 
-         confusionMatrix: Af
 
-       });
 
-     exports.math = Df;
 
-     var Tf = Cn({
 
-       fromPixels_: function (t, e) {
 
-         if (void 0 === e && (e = 3), e > 4) throw new Error("Cannot construct Tensor with more than 4 channels from pixels.");
 
-         var n = "undefined" != typeof HTMLVideoElement && t instanceof HTMLVideoElement;
 
-         if (n && n && t.readyState < 2) throw new Error("The video element has not loaded data yet. Please wait for `loadeddata` event on the <video> element.");
 
-         return Nt.fromPixels(t, e);
 
-       }
 
-     }),
 
-       Nf = Object.freeze({
 
-         toPixels: function (t, e) {
 
-           return n(this, void 0, void 0, function () {
 
-             var n, o, a, i, u, s, c, l, h, f, p, d, v, m, g, y, x, b, w, C, E, R, I;
 
-             return r(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   if (n = ln(t, "img", "toPixels"), t instanceof dt || (n = n.toInt()), 2 !== n.rank && 3 !== n.rank) throw new Error("toPixels only supports rank 2 or 3 tensors, got rank " + n.rank + ".");
 
-                   if (o = n.shape.slice(0, 2), a = o[0], i = o[1], (u = 2 === n.rank ? 1 : n.shape[2]) > 4 || 2 === u) throw new Error("toPixels only supports depth of size 1, 3 or 4 but got " + u);
 
-                   return [4, n.data()];
 
-                 case 1:
 
-                   return s = r.sent(), c = n.min(), l = n.max(), [4, Promise.all([c.data(), l.data()])];
 
-                 case 2:
 
-                   if (h = r.sent(), f = h[0], p = h[1], d = f[0], v = p[0], c.dispose(), l.dispose(), "float32" === n.dtype) {
 
-                     if (d < 0 || v > 1) throw new Error("Tensor values for a float32 Tensor must be in the range [0 - 1] but got range [" + d + " - " + v + "].");
 
-                   } else {
 
-                     if ("int32" !== n.dtype) throw new Error("Unsupported type for toPixels: " + n.dtype + ". Please use float32 or int32 tensors.");
 
-                     if (d < 0 || v > 255) throw new Error("Tensor values for a int32 Tensor must be in the range [0 - 255] but got range [" + d + " - " + v + "].");
 
-                   }
 
-                   for (m = "float32" === n.dtype ? 255 : 1, g = new Uint8ClampedArray(i * a * 4), y = 0; y < a * i; ++y) x = void 0, b = void 0, w = void 0, C = void 0, 1 === u ? (x = s[y] * m, b = s[y] * m, w = s[y] * m, C = 255) : 3 === u ? (x = s[3 * y] * m, b = s[3 * y + 1] * m, w = s[3 * y + 2] * m, C = 255) : 4 === u && (x = s[4 * y] * m, b = s[4 * y + 1] * m, w = s[4 * y + 2] * m, C = s[4 * y + 3] * m), g[0 + (E = 4 * y)] = Math.round(x), g[E + 1] = Math.round(b), g[E + 2] = Math.round(w), g[E + 3] = Math.round(C);
 
-                   return null != e && (e.width = i, e.height = a, R = e.getContext("2d"), I = new ImageData(g, i, a), R.putImageData(I, 0, 0)), n !== t && n.dispose(), [2, g];
 
-               }
 
-             });
 
-           });
 
-         },
 
-         fromPixels: Tf
 
-       }),
 
-       Ff = function () {
 
-         function t() { }
 
-         return t.prototype.getClassName = function () {
 
-           return this.constructor.className;
 
-         }, t.fromConfig = function (t, e) {
 
-           return new t(e);
 
-         }, t;
 
-       }(),
 
-       Of = function () {
 
-         function t() {
 
-           this.classNameMap = {};
 
-         }
 
-         return t.getMap = function () {
 
-           return null == t.instance && (t.instance = new t()), t.instance;
 
-         }, t.register = function (e) {
 
-           t.getMap().classNameMap[e.className] = [e, e.fromConfig];
 
-         }, t;
 
-       }();
 
-     exports.browser = Nf;
 
-     function _f(t) {
 
-       g(null != t.className, function () {
 
-         return "Class being registered does not have the static className property defined.";
 
-       }), g("string" == typeof t.className, function () {
 
-         return "className is required to be a string, but got type " + typeof t.className;
 
-       }), g(t.className.length > 0, function () {
 
-         return "Class being registered has an empty-string as its className, which is disallowed.";
 
-       }), Of.register(t);
 
-     }
 
-     var Mf = Object.freeze({
 
-       Serializable: Ff,
 
-       SerializationMap: Of,
 
-       registerClass: _f
 
-     }),
 
-       Bf = .001,
 
-       Pf = .1;
 
-     exports.serialization = Mf;
 
-     function Lf() {
 
-       return 32 === Nt.backend.floatPrecision() ? Bf : Pf;
 
-     }
 
-     function Wf(t, e, n) {
 
-       var r = !0;
 
-       if ((B(t) || B(e)) && (r = !1), B(t) && B(e) && (r = !0), r) {
 
-         var o = t.constructor.name,
 
-           a = e.constructor.name;
 
-         if (o !== a) throw new Error("Arrays are of different type. Actual: " + o + ". Expected: " + a);
 
-       }
 
-       if (Array.isArray(t) && Array.isArray(e)) {
 
-         var i = sn(t),
 
-           u = sn(e);
 
-         if (!C(i, u)) throw new Error("Arrays have different shapes. Actual: [" + i + "]. Expected: [" + u + "]");
 
-       }
 
-       var s = B(t) ? t : b(t),
 
-         c = B(e) ? e : b(e);
 
-       if (s.length !== c.length) throw new Error("Arrays have different lengths actual: " + s.length + " vs expected: " + c.length + ".\nActual:   " + s + ".\nExpected: " + c + ".");
 
-       for (var l = 0; l < c.length; ++l) {
 
-         var h = s[l],
 
-           f = c[l];
 
-         if (!n(h, f)) throw new Error("Arrays differ: actual[" + l + "] = " + h + ", expected[" + l + "] = " + f + ".\nActual:   " + s + ".\nExpected: " + c + ".");
 
-       }
 
-     }
 
-     function Uf(t, e, n) {
 
-       return !isFinite(t) && !isFinite(e) || !(isNaN(t) || isNaN(e) || Math.abs(t - e) > n);
 
-     }
 
-     var Vf = Object.freeze({
 
-       TEST_EPSILON_FLOAT16: Pf,
 
-       expectArraysClose: function (t, e, n) {
 
-         return null == n && (n = Lf()), Wf(t, e, function (t, e) {
 
-           return Uf(t, e, n);
 
-         });
 
-       },
 
-       testEpsilon: Lf,
 
-       expectPromiseToFail: function (t, e) {
 
-         t().then(function () {
 
-           return e.fail();
 
-         }, function () {
 
-           return e();
 
-         });
 
-       },
 
-       expectArraysEqual: function (t, e) {
 
-         var n = "string" == typeof e || "number" == typeof e || "boolean" == typeof e ? [e] : e;
 
-         return W(t) || W(t[0]) || W(e) || W(e[0]) ? Wf(t, n, function (t, e) {
 
-           return t == e;
 
-         }) : Wf(t, e, function (t, e) {
 
-           return Uf(t, e, 0);
 
-         });
 
-       },
 
-       expectNumbersClose: function (t, e, n) {
 
-         if (null == n && (n = Lf()), !Uf(t, e, n)) throw new Error("Numbers differ: actual === " + t + ", expected === " + e);
 
-       },
 
-       expectValuesInRange: function (t, e, n) {
 
-         for (var r = 0; r < t.length; r++) if (t[r] < e || t[r] > n) throw new Error("Value out of range:" + t[r] + " low: " + e + ", high: " + n);
 
-       },
 
-       expectArrayBuffersEqual: function (t, e) {
 
-         expect(new Float32Array(t)).toEqual(new Float32Array(e));
 
-       }
 
-     }),
 
-       zf = "1.3.1";
 
-     exports.version_core = zf;
 
-     exports.test_util = Vf;
 
-     var Gf = Object.freeze({
 
-       gpgpu_util: wi,
 
-       webgl_util: Pe,
 
-       forceHalfFloat: function () {
 
-         a().set("WEBGL_FORCE_F16_TEXTURES", !0);
 
-       },
 
-       MathBackendWebGL: Wu,
 
-       setWebGLContext: Wt,
 
-       GPGPUContext: Ci
 
-     }),
 
-       Hf = function (t) {
 
-         function o() {
 
-           return null !== t && t.apply(this, arguments) || this;
 
-         }
 
-         return e(o, t), o.prototype.minimize = function (t, e, n) {
 
-           void 0 === e && (e = !1);
 
-           var r = this.computeGradients(t, n),
 
-             o = r.value,
 
-             a = r.grads;
 
-           if (null != n) {
 
-             var i = n.map(function (t) {
 
-               return {
 
-                 name: t.name,
 
-                 tensor: a[t.name]
 
-               };
 
-             });
 
-             this.applyGradients(i);
 
-           } else this.applyGradients(a);
 
-           return Xe(a), e ? o : (o.dispose(), null);
 
-         }, Object.defineProperty(o.prototype, "iterations", {
 
-           get: function () {
 
-             return null == this.iterations_ && (this.iterations_ = 0), this.iterations_;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), o.prototype.incrementIterations = function () {
 
-           this.iterations_ = this.iterations + 1;
 
-         }, o.prototype.computeGradients = function (t, e) {
 
-           return ro(t, e);
 
-         }, o.prototype.dispose = function () {
 
-           null != this.iterations_ && Xe(this.iterations_);
 
-         }, o.prototype.saveIterations = function () {
 
-           return n(this, void 0, void 0, function () {
 
-             return r(this, function (t) {
 
-               return null == this.iterations_ && (this.iterations_ = 0), [2, {
 
-                 name: "iter",
 
-                 tensor: An(this.iterations_, "int32")
 
-               }];
 
-             });
 
-           });
 
-         }, o.prototype.getWeights = function () {
 
-           return n(this, void 0, void 0, function () {
 
-             return r(this, function (t) {
 
-               throw new Error("getWeights() is not implemented for this optimizer yet.");
 
-             });
 
-           });
 
-         }, o.prototype.setWeights = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             return r(this, function (t) {
 
-               throw new Error("setWeights() is not implemented for this optimizer class " + this.getClassName());
 
-             });
 
-           });
 
-         }, o.prototype.extractIterations = function (t) {
 
-           return n(this, void 0, void 0, function () {
 
-             var e;
 
-             return r(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return e = this, [4, t[0].tensor.data()];
 
-                 case 1:
 
-                   return e.iterations_ = n.sent()[0], [2, t.slice(1)];
 
-               }
 
-             });
 
-           });
 
-         }, o;
 
-       }(Ff);
 
-     exports.Optimizer = Hf;
 
-     exports.webgl = Gf;
 
-     Object.defineProperty(Hf, Symbol.hasInstance, {
 
-       value: function (t) {
 
-         return null != t.minimize && null != t.computeGradients && null != t.applyGradients;
 
-       }
 
-     });
 
-     var qf = function (t) {
 
-       function o(e, n, r) {
 
-         void 0 === r && (r = null);
 
-         var o = t.call(this) || this;
 
-         return o.learningRate = e, o.rho = n, o.epsilon = r, o.accumulatedGrads = [], o.accumulatedUpdates = [], null == r && (o.epsilon = Nt.backend.epsilon()), o;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this;
 
-         (Array.isArray(t) ? t.map(function (t) {
 
-           return t.name;
 
-         }) : Object.keys(t)).forEach(function (n, r) {
 
-           var o = Nt.registeredVariables[n];
 
-           null == e.accumulatedGrads[r] && (e.accumulatedGrads[r] = {
 
-             originalName: n + "/accum_grad",
 
-             variable: je(function () {
 
-               return zn(o).variable(!1);
 
-             })
 
-           }), null == e.accumulatedUpdates[r] && (e.accumulatedUpdates[r] = {
 
-             originalName: n + "/accum_var",
 
-             variable: je(function () {
 
-               return zn(o).variable(!1);
 
-             })
 
-           });
 
-           var a = Array.isArray(t) ? t[r].tensor : t[n];
 
-           if (null != a) {
 
-             var i = e.accumulatedGrads[r].variable,
 
-               u = e.accumulatedUpdates[r].variable;
 
-             je(function () {
 
-               var t = i.mul(e.rho).add(a.square().mul(1 - e.rho)),
 
-                 n = u.add(e.epsilon).sqrt().div(i.add(e.epsilon).sqrt()).mul(a),
 
-                 r = u.mul(e.rho).add(n.square().mul(1 - e.rho));
 
-               i.assign(t), u.assign(r);
 
-               var s = n.mul(-e.learningRate).add(o);
 
-               o.assign(s);
 
-             });
 
-           }
 
-         }), this.incrementIterations();
 
-       }, o.prototype.dispose = function () {
 
-         null != this.accumulatedUpdates && (Xe(this.accumulatedGrads.map(function (t) {
 
-           return t.variable;
 
-         })), Xe(this.accumulatedUpdates.map(function (t) {
 
-           return t.variable;
 
-         })));
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t;
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return t = this.accumulatedGrads.concat(this.accumulatedUpdates), [4, this.saveIterations()];
 
-               case 1:
 
-                 return [2, [e.sent()].concat(t.map(function (t) {
 
-                   return {
 
-                     name: t.originalName,
 
-                     tensor: t.variable
 
-                   };
 
-                 }))];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e;
 
-           return r(this, function (n) {
 
-             switch (n.label) {
 
-               case 0:
 
-                 return [4, this.extractIterations(t)];
 
-               case 1:
 
-                 return t = n.sent(), e = t.length / 2, !1, this.accumulatedGrads = t.slice(0, e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), this.accumulatedUpdates = t.slice(e, 2 * e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), [2];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate,
 
-           rho: this.rho,
 
-           epsilon: this.epsilon
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate, e.rho, e.epsilon);
 
-       }, o.className = "Adadelta", o;
 
-     }(Hf);
 
-     exports.AdadeltaOptimizer = qf;
 
-     _f(qf);
 
-     var Kf = function (t) {
 
-       function o(e, n) {
 
-         void 0 === n && (n = .1);
 
-         var r = t.call(this) || this;
 
-         return r.learningRate = e, r.initialAccumulatorValue = n, r.accumulatedGrads = [], r;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this;
 
-         (Array.isArray(t) ? t.map(function (t) {
 
-           return t.name;
 
-         }) : Object.keys(t)).forEach(function (n, r) {
 
-           var o = Nt.registeredVariables[n];
 
-           if (null == e.accumulatedGrads[r]) {
 
-             e.accumulatedGrads[r] = {
 
-               originalName: n + "/accumulator",
 
-               variable: je(function () {
 
-                 return Ln(o.shape, e.initialAccumulatorValue).variable(!1);
 
-               })
 
-             };
 
-           }
 
-           var a = Array.isArray(t) ? t[r].tensor : t[n];
 
-           if (null != a) {
 
-             var i = e.accumulatedGrads[r].variable;
 
-             je(function () {
 
-               var t = i.add(a.square());
 
-               i.assign(t);
 
-               var n = a.div(t.add(Nt.backend.epsilon()).sqrt()).mul(-e.learningRate).add(o);
 
-               o.assign(n);
 
-             });
 
-           }
 
-         }), this.incrementIterations();
 
-       }, o.prototype.dispose = function () {
 
-         null != this.accumulatedGrads && Xe(this.accumulatedGrads.map(function (t) {
 
-           return t.variable;
 
-         }));
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             switch (t.label) {
 
-               case 0:
 
-                 return [4, this.saveIterations()];
 
-               case 1:
 
-                 return [2, [t.sent()].concat(this.accumulatedGrads.map(function (t) {
 
-                   return {
 
-                     name: t.originalName,
 
-                     tensor: t.variable
 
-                   };
 
-                 }))];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return [4, this.extractIterations(t)];
 
-               case 1:
 
-                 return t = e.sent(), !1, this.accumulatedGrads = t.map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), [2];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate,
 
-           initialAccumulatorValue: this.initialAccumulatorValue
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate, e.initialAccumulatorValue);
 
-       }, o.className = "Adagrad", o;
 
-     }(Hf);
 
-     exports.AdagradOptimizer = Kf;
 
-     _f(Kf);
 
-     var jf = function (t) {
 
-       function o(e, n, r, o) {
 
-         void 0 === o && (o = null);
 
-         var a = t.call(this) || this;
 
-         return a.learningRate = e, a.beta1 = n, a.beta2 = r, a.epsilon = o, a.accumulatedFirstMoment = [], a.accumulatedSecondMoment = [], je(function () {
 
-           a.accBeta1 = An(n).variable(), a.accBeta2 = An(r).variable();
 
-         }), null == o && (a.epsilon = Nt.backend.epsilon()), a;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this,
 
-           n = Array.isArray(t) ? t.map(function (t) {
 
-             return t.name;
 
-           }) : Object.keys(t);
 
-         je(function () {
 
-           var r = ic(1, e.accBeta1),
 
-             o = ic(1, e.accBeta2);
 
-           n.forEach(function (n, a) {
 
-             var i = Nt.registeredVariables[n];
 
-             null == e.accumulatedFirstMoment[a] && (e.accumulatedFirstMoment[a] = {
 
-               originalName: n + "/m",
 
-               variable: je(function () {
 
-                 return zn(i).variable(!1);
 
-               })
 
-             }), null == e.accumulatedSecondMoment[a] && (e.accumulatedSecondMoment[a] = {
 
-               originalName: n + "/v",
 
-               variable: je(function () {
 
-                 return zn(i).variable(!1);
 
-               })
 
-             });
 
-             var u = Array.isArray(t) ? t[a].tensor : t[n];
 
-             if (null != u) {
 
-               var s = e.accumulatedFirstMoment[a].variable,
 
-                 c = e.accumulatedSecondMoment[a].variable,
 
-                 l = s.mul(e.beta1).add(u.mul(1 - e.beta1)),
 
-                 h = c.mul(e.beta2).add(u.square().mul(1 - e.beta2)),
 
-                 f = l.div(r),
 
-                 p = h.div(o);
 
-               s.assign(l), c.assign(h);
 
-               var d = f.div(p.sqrt().add(e.epsilon)).mul(-e.learningRate).add(i);
 
-               i.assign(d);
 
-             }
 
-           }), e.accBeta1.assign(e.accBeta1.mul(e.beta1)), e.accBeta2.assign(e.accBeta2.mul(e.beta2));
 
-         }), this.incrementIterations();
 
-       }, o.prototype.dispose = function () {
 
-         this.accBeta1.dispose(), this.accBeta2.dispose(), null != this.accumulatedFirstMoment && Xe(this.accumulatedFirstMoment.map(function (t) {
 
-           return t.variable;
 
-         })), null != this.accumulatedSecondMoment && Xe(this.accumulatedSecondMoment.map(function (t) {
 
-           return t.variable;
 
-         }));
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t;
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return t = this.accumulatedFirstMoment.concat(this.accumulatedSecondMoment), [4, this.saveIterations()];
 
-               case 1:
 
-                 return [2, [e.sent()].concat(t.map(function (t) {
 
-                   return {
 
-                     name: t.originalName,
 
-                     tensor: t.variable
 
-                   };
 
-                 }))];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e,
 
-             n = this;
 
-           return r(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return [4, this.extractIterations(t)];
 
-               case 1:
 
-                 return t = r.sent(), je(function () {
 
-                   n.accBeta1.assign(nc(n.beta1, n.iterations_ + 1)), n.accBeta2.assign(nc(n.beta2, n.iterations_ + 1));
 
-                 }), e = t.length / 2, !1, this.accumulatedFirstMoment = t.slice(0, e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), this.accumulatedSecondMoment = t.slice(e, 2 * e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), [2];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate,
 
-           beta1: this.beta1,
 
-           beta2: this.beta2,
 
-           epsilon: this.epsilon
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate, e.beta1, e.beta2, e.epsilon);
 
-       }, o.className = "Adam", o;
 
-     }(Hf);
 
-     exports.AdamOptimizer = jf;
 
-     _f(jf);
 
-     var Xf = function (t) {
 
-       function o(e, n, r, o, a) {
 
-         void 0 === o && (o = null), void 0 === a && (a = 0);
 
-         var i = t.call(this) || this;
 
-         return i.learningRate = e, i.beta1 = n, i.beta2 = r, i.epsilon = o, i.decay = a, i.accumulatedFirstMoment = [], i.accumulatedWeightedInfNorm = [], je(function () {
 
-           i.iteration = An(0).variable(), i.accBeta1 = An(n).variable();
 
-         }), null == o && (i.epsilon = Nt.backend.epsilon()), i;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this,
 
-           n = Array.isArray(t) ? t.map(function (t) {
 
-             return t.name;
 
-           }) : Object.keys(t);
 
-         je(function () {
 
-           var r = ic(1, e.accBeta1),
 
-             o = qs(-e.learningRate, e.iteration.mul(e.decay).add(1));
 
-           n.forEach(function (n, a) {
 
-             var i = Nt.registeredVariables[n];
 
-             null == e.accumulatedFirstMoment[a] && (e.accumulatedFirstMoment[a] = {
 
-               originalName: n + "/m",
 
-               variable: zn(i).variable(!1)
 
-             }), null == e.accumulatedWeightedInfNorm[a] && (e.accumulatedWeightedInfNorm[a] = {
 
-               originalName: n + "/v",
 
-               variable: zn(i).variable(!1)
 
-             });
 
-             var u = Array.isArray(t) ? t[a].tensor : t[n];
 
-             if (null != u) {
 
-               var s = e.accumulatedFirstMoment[a].variable,
 
-                 c = e.accumulatedWeightedInfNorm[a].variable,
 
-                 l = s.mul(e.beta1).add(u.mul(1 - e.beta1)),
 
-                 h = c.mul(e.beta2),
 
-                 f = u.abs(),
 
-                 p = h.maximum(f);
 
-               s.assign(l), c.assign(p);
 
-               var d = o.div(r).mul(l.div(p.add(e.epsilon))).add(i);
 
-               i.assign(d);
 
-             }
 
-           }), e.iteration.assign(e.iteration.add(1)), e.accBeta1.assign(e.accBeta1.mul(e.beta1));
 
-         }), this.incrementIterations();
 
-       }, o.prototype.dispose = function () {
 
-         this.accBeta1.dispose(), this.iteration.dispose(), null != this.accumulatedFirstMoment && Xe(this.accumulatedFirstMoment.map(function (t) {
 
-           return t.variable;
 
-         })), null != this.accumulatedWeightedInfNorm && Xe(this.accumulatedWeightedInfNorm.map(function (t) {
 
-           return t.variable;
 
-         }));
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             throw new Error("getWeights() is not implemented for Adamax yet.");
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             throw new Error("setWeights() is not implemented for Adamax yet.");
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate,
 
-           beta1: this.beta1,
 
-           beta2: this.beta2,
 
-           epsilon: this.epsilon,
 
-           decay: this.decay
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate, e.beta1, e.beta2, e.epsilon, e.decay);
 
-       }, o.className = "Adamax", o;
 
-     }(Hf);
 
-     exports.AdamaxOptimizer = Xf;
 
-     _f(Xf);
 
-     var $f = function (t) {
 
-       function o(e) {
 
-         var n = t.call(this) || this;
 
-         return n.learningRate = e, n.setLearningRate(e), n;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this;
 
-         (Array.isArray(t) ? t.map(function (t) {
 
-           return t.name;
 
-         }) : Object.keys(t)).forEach(function (n, r) {
 
-           var o = Array.isArray(t) ? t[r].tensor : t[n];
 
-           if (null != o) {
 
-             var a = Nt.registeredVariables[n];
 
-             je(function () {
 
-               var t = e.c.mul(o).add(a);
 
-               a.assign(t);
 
-             });
 
-           }
 
-         }), this.incrementIterations();
 
-       }, o.prototype.setLearningRate = function (t) {
 
-         this.learningRate = t, null != this.c && this.c.dispose(), this.c = $e(An(-t));
 
-       }, o.prototype.dispose = function () {
 
-         this.c.dispose();
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             switch (t.label) {
 
-               case 0:
 
-                 return [4, this.saveIterations()];
 
-               case 1:
 
-                 return [2, [t.sent()]];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return [4, this.extractIterations(t)];
 
-               case 1:
 
-                 if (0 !== (t = e.sent()).length) throw new Error("SGD optimizer does not have settable weights.");
 
-                 return [2];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate);
 
-       }, o.className = "SGD", o;
 
-     }(Hf);
 
-     exports.SGDOptimizer = $f;
 
-     _f($f);
 
-     var Yf = function (t) {
 
-       function o(e, n, r) {
 
-         void 0 === r && (r = !1);
 
-         var o = t.call(this, e) || this;
 
-         return o.learningRate = e, o.momentum = n, o.useNesterov = r, o.accumulations = [], o.m = An(o.momentum), o;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this;
 
-         (Array.isArray(t) ? t.map(function (t) {
 
-           return t.name;
 
-         }) : Object.keys(t)).forEach(function (n, r) {
 
-           var o = Nt.registeredVariables[n];
 
-           if (null == e.accumulations[r]) {
 
-             e.accumulations[r] = {
 
-               originalName: n + "/momentum",
 
-               variable: je(function () {
 
-                 return zn(o).variable(!1);
 
-               })
 
-             };
 
-           }
 
-           var a = e.accumulations[r].variable,
 
-             i = Array.isArray(t) ? t[r].tensor : t[n];
 
-           null != i && je(function () {
 
-             var t,
 
-               n = e.m.mul(a).add(i);
 
-             t = e.useNesterov ? e.c.mul(i.add(n.mul(e.m))).add(o) : e.c.mul(n).add(o), a.assign(n), o.assign(t);
 
-           });
 
-         }), this.incrementIterations();
 
-       }, o.prototype.dispose = function () {
 
-         this.m.dispose(), null != this.accumulations && Xe(this.accumulations.map(function (t) {
 
-           return t.variable;
 
-         }));
 
-       }, o.prototype.setMomentum = function (t) {
 
-         this.momentum = t;
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (t) {
 
-             switch (t.label) {
 
-               case 0:
 
-                 return [4, this.saveIterations()];
 
-               case 1:
 
-                 return [2, [t.sent()].concat(this.accumulations.map(function (t) {
 
-                   return {
 
-                     name: t.originalName,
 
-                     tensor: t.variable
 
-                   };
 
-                 }))];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return [4, this.extractIterations(t)];
 
-               case 1:
 
-                 return t = e.sent(), !1, this.accumulations = t.map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), [2];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate,
 
-           momentum: this.momentum,
 
-           useNesterov: this.useNesterov
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate, e.momentum, e.useNesterov);
 
-       }, o.className = "Momentum", o;
 
-     }($f);
 
-     exports.MomentumOptimizer = Yf;
 
-     _f(Yf);
 
-     var Qf = function (t) {
 
-       function o(e, n, r, o, a) {
 
-         void 0 === n && (n = .9), void 0 === r && (r = 0), void 0 === o && (o = null), void 0 === a && (a = !1);
 
-         var i = t.call(this) || this;
 
-         return i.learningRate = e, i.decay = n, i.momentum = r, i.epsilon = o, i.accumulatedMeanSquares = [], i.accumulatedMoments = [], i.accumulatedMeanGrads = [], i.centered = a, null == o && (i.epsilon = Nt.backend.epsilon()), i;
 
-       }
 
-       return e(o, t), o.prototype.applyGradients = function (t) {
 
-         var e = this;
 
-         (Array.isArray(t) ? t.map(function (t) {
 
-           return t.name;
 
-         }) : Object.keys(t)).forEach(function (n, r) {
 
-           var o = Nt.registeredVariables[n];
 
-           null == e.accumulatedMeanSquares[r] && (e.accumulatedMeanSquares[r] = {
 
-             originalName: n + "/rms",
 
-             variable: je(function () {
 
-               return zn(o).variable(!1);
 
-             })
 
-           }), null == e.accumulatedMoments[r] && (e.accumulatedMoments[r] = {
 
-             originalName: n + "/momentum",
 
-             variable: je(function () {
 
-               return zn(o).variable(!1);
 
-             })
 
-           }), null == e.accumulatedMeanGrads[r] && e.centered && (e.accumulatedMeanGrads[r] = {
 
-             originalName: n + "/mg",
 
-             variable: je(function () {
 
-               return zn(o).variable(!1);
 
-             })
 
-           });
 
-           var a = Array.isArray(t) ? t[r].tensor : t[n];
 
-           if (null != a) {
 
-             var i = e.accumulatedMeanSquares[r].variable,
 
-               u = e.accumulatedMoments[r].variable;
 
-             je(function () {
 
-               var t = i.mul(e.decay).add(a.square().mul(1 - e.decay));
 
-               if (e.centered) {
 
-                 var n = e.accumulatedMeanGrads[r].variable,
 
-                   s = n.mul(e.decay).add(a.mul(1 - e.decay)),
 
-                   c = u.mul(e.momentum).add(a.mul(e.learningRate).div(t.sub(s.square().add(e.epsilon)).sqrt()));
 
-                 i.assign(t), n.assign(s), u.assign(c);
 
-                 var l = o.sub(c);
 
-                 o.assign(l);
 
-               } else {
 
-                 var h = i.mul(e.decay).add(a.square().mul(1 - e.decay));
 
-                 c = u.mul(e.momentum).add(a.mul(e.learningRate).div(h.add(e.epsilon).sqrt()));
 
-                 i.assign(h), u.assign(c);
 
-                 l = o.sub(c);
 
-                 o.assign(l);
 
-               }
 
-             });
 
-           }
 
-         }), this.incrementIterations();
 
-       }, o.prototype.dispose = function () {
 
-         null != this.accumulatedMeanSquares && Xe(this.accumulatedMeanSquares.map(function (t) {
 
-           return t.variable;
 
-         })), null != this.accumulatedMeanGrads && this.centered && Xe(this.accumulatedMeanGrads.map(function (t) {
 
-           return t.variable;
 
-         })), null != this.accumulatedMoments && Xe(this.accumulatedMoments.map(function (t) {
 
-           return t.variable;
 
-         }));
 
-       }, o.prototype.getWeights = function () {
 
-         return n(this, void 0, void 0, function () {
 
-           var t;
 
-           return r(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return t = this.accumulatedMeanSquares.concat(this.accumulatedMoments), this.centered && t.push.apply(t, this.accumulatedMeanGrads), [4, this.saveIterations()];
 
-               case 1:
 
-                 return [2, [e.sent()].concat(t.map(function (t) {
 
-                   return {
 
-                     name: t.originalName,
 
-                     tensor: t.variable
 
-                   };
 
-                 }))];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.setWeights = function (t) {
 
-         return n(this, void 0, void 0, function () {
 
-           var e;
 
-           return r(this, function (n) {
 
-             switch (n.label) {
 
-               case 0:
 
-                 return [4, this.extractIterations(t)];
 
-               case 1:
 
-                 return t = n.sent(), e = this.centered ? t.length / 3 : t.length / 2, !1, this.accumulatedMeanSquares = t.slice(0, e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), this.accumulatedMoments = t.slice(e, 2 * e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 }), this.centered && (this.accumulatedMeanGrads = t.slice(2 * e, 3 * e).map(function (t) {
 
-                   return {
 
-                     originalName: t.name,
 
-                     variable: t.tensor.variable(!1)
 
-                   };
 
-                 })), [2];
 
-             }
 
-           });
 
-         });
 
-       }, o.prototype.getConfig = function () {
 
-         return {
 
-           learningRate: this.learningRate,
 
-           decay: this.decay,
 
-           momentum: this.momentum,
 
-           epsilon: this.epsilon,
 
-           centered: this.centered
 
-         };
 
-       }, o.fromConfig = function (t, e) {
 
-         return new t(e.learningRate, e.decay, e.momentum, e.epsilon, e.centered);
 
-       }, o.className = "RMSProp", o;
 
-     }(Hf);
 
-     exports.RMSPropOptimizer = Qf;
 
-     _f(Qf);
 
-     var Jf = function () {
 
-       function t() { }
 
-       return t.sgd = function (t) {
 
-         return new $f(t);
 
-       }, t.momentum = function (t, e, n) {
 
-         return void 0 === n && (n = !1), new Yf(t, e, n);
 
-       }, t.rmsprop = function (t, e, n, r, o) {
 
-         return void 0 === e && (e = .9), void 0 === n && (n = 0), void 0 === r && (r = null), void 0 === o && (o = !1), new Qf(t, e, n, r, o);
 
-       }, t.adam = function (t, e, n, r) {
 
-         return void 0 === t && (t = .001), void 0 === e && (e = .9), void 0 === n && (n = .999), void 0 === r && (r = null), new jf(t, e, n, r);
 
-       }, t.adadelta = function (t, e, n) {
 
-         return void 0 === t && (t = .001), void 0 === e && (e = .95), void 0 === n && (n = null), new qf(t, e, n);
 
-       }, t.adamax = function (t, e, n, r, o) {
 
-         return void 0 === t && (t = .002), void 0 === e && (e = .9), void 0 === n && (n = .999), void 0 === r && (r = null), void 0 === o && (o = 0), new Xf(t, e, n, r, o);
 
-       }, t.adagrad = function (t, e) {
 
-         return void 0 === e && (e = .1), new Kf(t, e);
 
-       }, t;
 
-     }(),
 
-       Zf = {
 
-         sgd: Jf.sgd,
 
-         momentum: Jf.momentum,
 
-         adadelta: Jf.adadelta,
 
-         adagrad: Jf.adagrad,
 
-         rmsprop: Jf.rmsprop,
 
-         adamax: Jf.adamax,
 
-         adam: Jf.adam
 
-       },
 
-       tp = "undefined" != typeof requestAnimationFrame ? requestAnimationFrame : "undefined" != typeof setImmediate ? setImmediate : function (t) {
 
-         return t();
 
-       };
 
-     exports.train = Zf;
 
-     function ep() {
 
-       return new Promise(function (t) {
 
-         return tp(function () {
 
-           return t();
 
-         });
 
-       });
 
-     }
 
-     ft = Rh;
 
-   }, { "crypto": "node_modules/parcel-bundler/src/builtins/_empty.js", "node-fetch": "node_modules/parcel-bundler/src/builtins/_empty.js", "util": "node_modules/parcel-bundler/src/builtins/_empty.js", "process": "node_modules/process/browser.js", "buffer": "node_modules/buffer/index.js" }], "node_modules/@tensorflow/tfjs-converter/dist/tf-converter.esm.js": [function (require, module, exports) {
 
-     var Buffer = require("buffer").Buffer;
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.loadGraphModel = loadGraphModel;
 
-     exports.deregisterOp = deregisterOp;
 
-     exports.registerOp = registerOp;
 
-     exports.version_converter = exports.GraphModel = void 0;
 
-     var _tfjsCore = require("@tensorflow/tfjs-core");
 
-     /**
 
-      * @license
 
-      * Copyright 2019 Google LLC. All Rights Reserved.
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * http://www.apache.org/licenses/LICENSE-2.0
 
-      *
 
-      * Unless required by applicable law or agreed to in writing, software
 
-      * distributed under the License is distributed on an "AS IS" BASIS,
 
-      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-      * See the License for the specific language governing permissions and
 
-      * limitations under the License.
 
-      * =============================================================================
 
-      */
 
-     var DataType,
 
-       SaverDef,
 
-       __assign = function () {
 
-         return (__assign = Object.assign || function (e) {
 
-           for (var t, a = 1, r = arguments.length; a < r; a++) for (var n in t = arguments[a]) Object.prototype.hasOwnProperty.call(t, n) && (e[n] = t[n]);
 
-           return e;
 
-         }).apply(this, arguments);
 
-       };
 
-     function __awaiter(e, t, a, r) {
 
-       return new (a || (a = Promise))(function (n, s) {
 
-         function o(e) {
 
-           try {
 
-             u(r.next(e));
 
-           } catch (e) {
 
-             s(e);
 
-           }
 
-         }
 
-         function p(e) {
 
-           try {
 
-             u(r.throw(e));
 
-           } catch (e) {
 
-             s(e);
 
-           }
 
-         }
 
-         function u(e) {
 
-           e.done ? n(e.value) : new a(function (t) {
 
-             t(e.value);
 
-           }).then(o, p);
 
-         }
 
-         u((r = r.apply(e, t || [])).next());
 
-       });
 
-     }
 
-     function __generator(e, t) {
 
-       var a,
 
-         r,
 
-         n,
 
-         s,
 
-         o = {
 
-           label: 0,
 
-           sent: function () {
 
-             if (1 & n[0]) throw n[1];
 
-             return n[1];
 
-           },
 
-           trys: [],
 
-           ops: []
 
-         };
 
-       return s = {
 
-         next: p(0),
 
-         throw: p(1),
 
-         return: p(2)
 
-       }, "function" == typeof Symbol && (s[Symbol.iterator] = function () {
 
-         return this;
 
-       }), s;
 
-       function p(s) {
 
-         return function (p) {
 
-           return function (s) {
 
-             if (a) throw new TypeError("Generator is already executing.");
 
-             for (; o;) try {
 
-               if (a = 1, r && (n = 2 & s[0] ? r.return : s[0] ? r.throw || ((n = r.return) && n.call(r), 0) : r.next) && !(n = n.call(r, s[1])).done) return n;
 
-               switch (r = 0, n && (s = [2 & s[0], n.value]), s[0]) {
 
-                 case 0:
 
-                 case 1:
 
-                   n = s;
 
-                   break;
 
-                 case 4:
 
-                   return o.label++, {
 
-                     value: s[1],
 
-                     done: !1
 
-                   };
 
-                 case 5:
 
-                   o.label++, r = s[1], s = [0];
 
-                   continue;
 
-                 case 7:
 
-                   s = o.ops.pop(), o.trys.pop();
 
-                   continue;
 
-                 default:
 
-                   if (!(n = (n = o.trys).length > 0 && n[n.length - 1]) && (6 === s[0] || 2 === s[0])) {
 
-                     o = 0;
 
-                     continue;
 
-                   }
 
-                   if (3 === s[0] && (!n || s[1] > n[0] && s[1] < n[3])) {
 
-                     o.label = s[1];
 
-                     break;
 
-                   }
 
-                   if (6 === s[0] && o.label < n[1]) {
 
-                     o.label = n[1], n = s;
 
-                     break;
 
-                   }
 
-                   if (n && o.label < n[2]) {
 
-                     o.label = n[2], o.ops.push(s);
 
-                     break;
 
-                   }
 
-                   n[2] && o.ops.pop(), o.trys.pop();
 
-                   continue;
 
-               }
 
-               s = t.call(e, o);
 
-             } catch (e) {
 
-               s = [6, e], r = 0;
 
-             } finally {
 
-                 a = n = 0;
 
-               }
 
-             if (5 & s[0]) throw s[1];
 
-             return {
 
-               value: s[0] ? s[1] : void 0,
 
-               done: !0
 
-             };
 
-           }([s, p]);
 
-         };
 
-       }
 
-     }
 
-     !function (e) {
 
-       e[e.DT_INVALID = 0] = "DT_INVALID", e[e.DT_FLOAT = 1] = "DT_FLOAT", e[e.DT_DOUBLE = 2] = "DT_DOUBLE", e[e.DT_INT32 = 3] = "DT_INT32", e[e.DT_UINT8 = 4] = "DT_UINT8", e[e.DT_INT16 = 5] = "DT_INT16", e[e.DT_INT8 = 6] = "DT_INT8", e[e.DT_STRING = 7] = "DT_STRING", e[e.DT_COMPLEX64 = 8] = "DT_COMPLEX64", e[e.DT_INT64 = 9] = "DT_INT64", e[e.DT_BOOL = 10] = "DT_BOOL", e[e.DT_QINT8 = 11] = "DT_QINT8", e[e.DT_QUINT8 = 12] = "DT_QUINT8", e[e.DT_QINT32 = 13] = "DT_QINT32", e[e.DT_BFLOAT16 = 14] = "DT_BFLOAT16", e[e.DT_FLOAT_REF = 101] = "DT_FLOAT_REF", e[e.DT_DOUBLE_REF = 102] = "DT_DOUBLE_REF", e[e.DT_INT32_REF = 103] = "DT_INT32_REF", e[e.DT_UINT8_REF = 104] = "DT_UINT8_REF", e[e.DT_INT16_REF = 105] = "DT_INT16_REF", e[e.DT_INT8_REF = 106] = "DT_INT8_REF", e[e.DT_STRING_REF = 107] = "DT_STRING_REF", e[e.DT_COMPLEX64_REF = 108] = "DT_COMPLEX64_REF", e[e.DT_INT64_REF = 109] = "DT_INT64_REF", e[e.DT_BOOL_REF = 110] = "DT_BOOL_REF", e[e.DT_QINT8_REF = 111] = "DT_QINT8_REF", e[e.DT_QUINT8_REF = 112] = "DT_QUINT8_REF", e[e.DT_QINT32_REF = 113] = "DT_QINT32_REF", e[e.DT_BFLOAT16_REF = 114] = "DT_BFLOAT16_REF";
 
-     }(DataType || (DataType = {})), function (e) {
 
-       !function (e) {
 
-         e[e.LEGACY = 0] = "LEGACY", e[e.V1 = 1] = "V1", e[e.V2 = 2] = "V2";
 
-       }(e.CheckpointFormatVersion || (e.CheckpointFormatVersion = {}));
 
-     }(SaverDef || (SaverDef = {}));
 
-     var CUSTOM_OPS = {};
 
-     function registerOp(e, t) {
 
-       var a = {
 
-         tfOpName: e,
 
-         category: "custom",
 
-         inputs: [],
 
-         attrs: [],
 
-         customExecutor: t
 
-       };
 
-       CUSTOM_OPS[e] = a;
 
-     }
 
-     function getRegisteredOp(e) {
 
-       return CUSTOM_OPS[e];
 
-     }
 
-     function deregisterOp(e) {
 
-       delete CUSTOM_OPS[e];
 
-     }
 
-     function getParamValue(e, t, a, r) {
 
-       var n = t.inputParams[e];
 
-       if (n && void 0 !== n.inputIndexStart) {
 
-         var s = n.inputIndexStart,
 
-           o = 0 === n.inputIndexEnd ? void 0 : void 0 === n.inputIndexEnd ? s + 1 : n.inputIndexEnd;
 
-         if ("tensor" === n.type) return getTensor(t.inputNames[n.inputIndexStart], a, r);
 
-         if ("tensors" === n.type) return t.inputNames.slice(s, o).map(function (e) {
 
-           return getTensor(e, a, r);
 
-         });
 
-         var p = Array.prototype.slice.call(getTensor(t.inputNames.slice(s)[0], a, r).dataSync());
 
-         return "number" === n.type ? p[0] : p;
 
-       }
 
-       var u = t.attrParams[e];
 
-       return u && u.value;
 
-     }
 
-     function getTensor(e, t, a) {
 
-       var r = parseNodeName(e),
 
-         n = r[0],
 
-         s = r[1],
 
-         o = a.currentContextIds.find(function (e) {
 
-           return !!t[getNodeNameWithContextId(n, e)];
 
-         });
 
-       return void 0 !== o ? t[getNodeNameWithContextId(n, o)][s] : void 0;
 
-     }
 
-     function getTensorsForCurrentContenxt(e, t, a) {
 
-       return t[getNodeNameWithContextId(e, a.currentContextId)];
 
-     }
 
-     function getNodeNameAndIndex(e, t) {
 
-       var a = parseNodeName(e),
 
-         r = a[0],
 
-         n = a[1];
 
-       return [getNodeNameWithContextId(r, t && t.currentContextId), n];
 
-     }
 
-     function getNodeNameWithContextId(e, t) {
 
-       return t ? e + "-" + t : e;
 
-     }
 
-     function parseNodeName(e) {
 
-       var t = e.lastIndexOf(":");
 
-       return -1 === t ? [e, 0] : [e.substring(0, t), Number(e.substring(t + 1))];
 
-     }
 
-     function split$1(e, t) {
 
-       for (var a = [], r = 0; r < e.length; r += t) a.push(e.slice(r, r + t));
 
-       return a;
 
-     }
 
-     var json = [{
 
-       tfOpName: "Add",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "AddV2",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "AddN",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         end: 0,
 
-         name: "tensors",
 
-         type: "tensors"
 
-       }]
 
-     }, {
 
-       tfOpName: "BiasAdd",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "Sub",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "RealDiv",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "Div",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "FloorDiv",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "Mul",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "Maximum",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }]
 
-     }, {
 
-       tfOpName: "Minimum",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }]
 
-     }, {
 
-       tfOpName: "Pow",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "SquaredDifference",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "Mod",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }, {
 
-       tfOpName: "FloorMod",
 
-       category: "arithmetic",
 
-       inputs: [{
 
-         start: 0,
 
-         name: "a",
 
-         type: "tensor"
 
-       }, {
 
-         start: 1,
 
-         name: "b",
 
-         type: "tensor"
 
-       }],
 
-       attrs: [{
 
-         tfName: "T",
 
-         name: "dtype",
 
-         type: "dtype",
 
-         notSupported: !0
 
-       }]
 
-     }],
 
-       arithmetic = Object.freeze({
 
-         json: json
 
-       }),
 
-       json$1 = [{
 
-         tfOpName: "Abs",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Acos",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Asin",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Atan",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Atan2",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "y",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Ceil",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "ClipByValue",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "clip_value_min",
 
-           name: "clipValueMin",
 
-           type: "number"
 
-         }, {
 
-           tfName: "clip_value_max",
 
-           name: "clipValueMax",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "Complex",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "real",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "imag",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "ComplexAbs",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Cos",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Cosh",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Elu",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Exp",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Floor",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Log",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Imag",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "Tout",
 
-           name: "outputType",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Neg",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Real",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "Tout",
 
-           name: "outputType",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Prelu",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "alpha",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Relu",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Relu6",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "clipValueMin",
 
-           name: "clipValueMin",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "clipValueMax",
 
-           name: "clipValueMax",
 
-           type: "number",
 
-           defaultValue: 6
 
-         }]
 
-       }, {
 
-         tfOpName: "Selu",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Sigmoid",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Sin",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Sinh",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Sqrt",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Rsqrt",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Square",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Tan",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Tanh",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Sign",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Round",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Expm1",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Log1p",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Reciprocal",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Softplus",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Asinh",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Acosh",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Atanh",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Erf",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Prod",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axes",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "LeakyRelu",
 
-         category: "basic_math",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "alpha",
 
-           name: "alpha",
 
-           type: "number",
 
-           defaultValue: .2
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       basicMath = Object.freeze({
 
-         json: json$1
 
-       }),
 
-       json$2 = [{
 
-         tfOpName: "LoopCond",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "pred",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "Switch",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "data",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "pred",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "Merge",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           end: 0,
 
-           name: "tensors",
 
-           type: "tensors"
 
-         }]
 
-       }, {
 
-         tfOpName: "Enter",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "frame_name",
 
-           name: "frameName",
 
-           type: "string"
 
-         }, {
 
-           tfName: "is_constant",
 
-           name: "isConstant",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "Exit",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "NextIteration",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "size",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }, {
 
-           tfName: "element_shape",
 
-           name: "elementShape",
 
-           type: "shape"
 
-         }, {
 
-           tfName: "dynamic_size",
 
-           name: "dynamicSize",
 
-           type: "bool"
 
-         }, {
 
-           tfName: "clear_after_read",
 
-           name: "clearAfterRead",
 
-           type: "bool"
 
-         }, {
 
-           tfName: "identical_element_shapes",
 
-           name: "identicalElementShapes",
 
-           type: "bool"
 
-         }, {
 
-           tfName: "tensor_array_name",
 
-           name: "name",
 
-           type: "string"
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayWriteV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "index",
 
-           type: "number"
 
-         }, {
 
-           start: 2,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayReadV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "index",
 
-           type: "number"
 
-         }, {
 
-           start: 2,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayGatherV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "indices",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }, {
 
-           tfName: "element_shape",
 
-           name: "elementShape",
 
-           type: "shape"
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayScatterV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "indices",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayConcatV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }, {
 
-           tfName: "element_shape_except0",
 
-           name: "elementShapeExcept0",
 
-           type: "shape",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArraySplitV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "lengths",
 
-           type: "number[]"
 
-         }, {
 
-           start: 3,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArraySizeV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "flowIn",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "TensorArrayCloseV3",
 
-         category: "control",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensorArrayId",
 
-           type: "number"
 
-         }]
 
-       }],
 
-       control = Object.freeze({
 
-         json: json$2
 
-       }),
 
-       json$3 = [{
 
-         tfOpName: "AvgPool",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "ksize",
 
-           name: "kernelSize",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "MaxPool",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "ksize",
 
-           name: "kernelSize",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "AvgPool3D",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "ksize",
 
-           name: "kernelSize",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "MaxPool3D",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "ksize",
 
-           name: "kernelSize",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Conv1D",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "stride",
 
-           name: "stride",
 
-           type: "number"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           defaultValue: "NWC"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "dilation",
 
-           name: "dilation",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }]
 
-       }, {
 
-         tfOpName: "Conv2D",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "useCudnnOnGpu",
 
-           name: "useCudnnOnGpu",
 
-           type: "bool"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           defaultValue: "NHWC"
 
-         }, {
 
-           tfName: "dilations",
 
-           name: "dilations",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "_FusedConv2D",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           end: 0,
 
-           name: "args",
 
-           type: "tensors"
 
-         }],
 
-         attrs: [{
 
-           tfName: "num_args",
 
-           name: "numArgs",
 
-           type: "number"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "explicit_paddings",
 
-           name: "explicitPaddings",
 
-           type: "number[]",
 
-           defaultValue: []
 
-         }, {
 
-           tfName: "use_cudnn_on_gpu",
 
-           name: "useCudnnOnGpu",
 
-           type: "bool",
 
-           defaultValue: !0
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           defaultValue: "NHWC"
 
-         }, {
 
-           tfName: "dilations",
 
-           name: "dilations",
 
-           type: "number[]",
 
-           defaultValue: [1, 1, 1, 1]
 
-         }, {
 
-           tfName: "fused_ops",
 
-           name: "fusedOps",
 
-           type: "string[]",
 
-           defaultValue: []
 
-         }, {
 
-           tfName: "epsilon",
 
-           name: "epsilon",
 
-           type: "number",
 
-           defaultValue: 1e-4
 
-         }]
 
-       }, {
 
-         tfOpName: "Conv2DBackpropInput",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 2,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }, {
 
-           start: 0,
 
-           name: "outputShape",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "DepthwiseConv2d",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "input",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           defaultValue: "NHWC"
 
-         }, {
 
-           tfName: "dilations",
 
-           name: "dilations",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "DepthwiseConv2dNative",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "input",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           defaultValue: "NHWC"
 
-         }, {
 
-           tfName: "dilations",
 
-           name: "dilations",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "Conv3D",
 
-         category: "convolution",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "filter",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "strides",
 
-           name: "strides",
 
-           type: "number[]"
 
-         }, {
 
-           tfName: "padding",
 
-           name: "pad",
 
-           type: "string"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           defaultValue: "NHWC"
 
-         }, {
 
-           tfName: "dilations",
 
-           name: "dilations",
 
-           type: "number[]"
 
-         }]
 
-       }],
 
-       convolution = Object.freeze({
 
-         json: json$3
 
-       }),
 
-       json$4 = [{
 
-         tfOpName: "Fill",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }, {
 
-           start: 1,
 
-           name: "value",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "LinSpace",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "start",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "stop",
 
-           type: "number"
 
-         }, {
 
-           start: 2,
 
-           name: "num",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "OneHot",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "indices",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "depth",
 
-           type: "number"
 
-         }, {
 
-           start: 2,
 
-           name: "onValue",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }, {
 
-           start: 3,
 
-           name: "offValue",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }],
 
-         attrs: [{
 
-           tfName: "axis",
 
-           name: "axis",
 
-           type: "number",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Ones",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "OnesLike",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "RandomUniform",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "minval",
 
-           name: "minval",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "maxval",
 
-           name: "maxval",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }, {
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }, {
 
-           tfName: "seed",
 
-           name: "seed",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "seed2",
 
-           name: "seed2",
 
-           type: "number",
 
-           defaultValue: 0,
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "T",
 
-           name: "T",
 
-           type: "number",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Range",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "start",
 
-           type: "number"
 
-         }, {
 
-           start: 1,
 
-           name: "stop",
 
-           type: "number"
 
-         }, {
 
-           start: 2,
 
-           name: "step",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }],
 
-         attrs: [{
 
-           tfName: "Tidx",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "TruncatedNormal",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "means",
 
-           name: "mean",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "stddev",
 
-           name: "stdDev",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }, {
 
-           tfName: "seed",
 
-           name: "seed",
 
-           type: "number"
 
-         }, {
 
-           tfName: "seed2",
 
-           name: "seed2",
 
-           type: "number",
 
-           defaultValue: 0,
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }, {
 
-           tfName: "T",
 
-           name: "T",
 
-           type: "number",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Zeros",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "ZerosLike",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "Multinomial",
 
-         category: "creation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "logits",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "numSamples",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "seed",
 
-           name: "seed",
 
-           type: "number"
 
-         }, {
 
-           tfName: "seed2",
 
-           name: "seed2",
 
-           type: "number"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }, {
 
-           tfName: "output_dtype",
 
-           name: "output_dtype",
 
-           type: "dtype"
 
-         }]
 
-       }],
 
-       creation = Object.freeze({
 
-         json: json$4
 
-       }),
 
-       json$5 = [{
 
-         tfOpName: "NonMaxSuppressionV2",
 
-         category: "dynamic",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "boxes",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "scores",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "maxOutputSize",
 
-           type: "number"
 
-         }, {
 
-           start: 3,
 
-           name: "iouThreshold",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "NonMaxSuppressionV3",
 
-         category: "dynamic",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "boxes",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "scores",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "maxOutputSize",
 
-           type: "number"
 
-         }, {
 
-           start: 3,
 
-           name: "iouThreshold",
 
-           type: "number"
 
-         }, {
 
-           start: 4,
 
-           name: "scoreThreshold",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "Where",
 
-         category: "dynamic",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "condition",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "ListDiff",
 
-         category: "dynamic",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "y",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       dynamic = Object.freeze({
 
-         json: json$5
 
-       }),
 
-       json$6 = [{
 
-         tfOpName: "TopKV2",
 
-         category: "evaluation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "k",
 
-           type: "number"
 
-         }],
 
-         attrs: [{
 
-           tfName: "sorted",
 
-           name: "sorted",
 
-           type: "bool"
 
-         }]
 
-       }],
 
-       evaluation = Object.freeze({
 
-         json: json$6
 
-       }),
 
-       json$7 = [{
 
-         tfOpName: "PlaceholderWithDefault",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "default",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "shape",
 
-           name: "shape",
 
-           type: "shape"
 
-         }, {
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "Placeholder",
 
-         category: "graph",
 
-         attrs: [{
 
-           tfName: "shape",
 
-           name: "shape",
 
-           type: "shape"
 
-         }, {
 
-           tfName: "dtype",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "Const",
 
-         category: "graph"
 
-       }, {
 
-         tfOpName: "Identity",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "IdentityN",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           end: 0,
 
-           name: "x",
 
-           type: "tensors"
 
-         }]
 
-       }, {
 
-         tfOpName: "Snapshot",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "Rank",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "Size",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "Shape",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "ShapeN",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           end: 0,
 
-           name: "x",
 
-           type: "tensors"
 
-         }]
 
-       }, {
 
-         tfOpName: "Print",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "data",
 
-           type: "tensors"
 
-         }],
 
-         attrs: [{
 
-           tfName: "message",
 
-           name: "message",
 
-           type: "string"
 
-         }, {
 
-           tfName: "first_n",
 
-           name: "firstN",
 
-           type: "number",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "summarize",
 
-           name: "summarize",
 
-           type: "number",
 
-           defaultValue: 3
 
-         }]
 
-       }, {
 
-         tfOpName: "NoOp",
 
-         category: "graph",
 
-         inputs: []
 
-       }, {
 
-         tfOpName: "StopGradient",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "FakeQuantWithMinMaxVars",
 
-         category: "graph",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "min",
 
-           name: "min",
 
-           type: "number"
 
-         }, {
 
-           tfName: "max",
 
-           name: "max",
 
-           type: "number"
 
-         }]
 
-       }],
 
-       graph = Object.freeze({
 
-         json: json$7
 
-       }),
 
-       json$8 = [{
 
-         tfOpName: "ResizeBilinear",
 
-         category: "image",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "images",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "size",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "align_corners",
 
-           name: "alignCorners",
 
-           type: "bool"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "ResizeNearestNeighbor",
 
-         category: "image",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "images",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "size",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "align_corners",
 
-           name: "alignCorners",
 
-           type: "bool"
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "CropAndResize",
 
-         category: "image",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "image",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "boxes",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "boxInd",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "cropSize",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "method",
 
-           name: "method",
 
-           type: "string"
 
-         }, {
 
-           tfName: "extrapolation_value",
 
-           name: "extrapolationValue",
 
-           type: "number"
 
-         }]
 
-       }],
 
-       image$1 = Object.freeze({
 
-         json: json$8
 
-       }),
 
-       json$9 = [{
 
-         tfOpName: "Equal",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "NotEqual",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Greater",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "GreaterEqual",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Less",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "LessEqual",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "LogicalAnd",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "LogicalNot",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "LogicalOr",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Select",
 
-         category: "logical",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "condition",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       logical = Object.freeze({
 
-         json: json$9
 
-       }),
 
-       json$10 = [{
 
-         tfOpName: "MatMul",
 
-         category: "matrices",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "transpose_a",
 
-           name: "transposeA",
 
-           type: "bool",
 
-           defaultValue: !1
 
-         }, {
 
-           tfName: "transpose_b",
 
-           name: "transposeB",
 
-           type: "bool",
 
-           defaultValue: !1
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "BatchMatMul",
 
-         category: "matrices",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "adj_x",
 
-           name: "transposeA",
 
-           type: "bool",
 
-           defaultValue: !1
 
-         }, {
 
-           tfName: "adj_y",
 
-           name: "transposeB",
 
-           type: "bool",
 
-           defaultValue: !1
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "BatchMatMulV2",
 
-         category: "matrices",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "a",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "b",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "adj_x",
 
-           name: "transposeA",
 
-           type: "bool",
 
-           defaultValue: !1
 
-         }, {
 
-           tfName: "adj_y",
 
-           name: "transposeB",
 
-           type: "bool",
 
-           defaultValue: !1
 
-         }, {
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Transpose",
 
-         category: "matrices",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "perm",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "T",
 
-           name: "dtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       matrices = Object.freeze({
 
-         json: json$10
 
-       }),
 
-       json$11 = [{
 
-         tfOpName: "FusedBatchNorm",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "scale",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "offset",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "mean",
 
-           type: "tensor"
 
-         }, {
 
-           start: 4,
 
-           name: "variance",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "epsilon",
 
-           name: "epsilon",
 
-           type: "number",
 
-           defaultValue: .001
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "FusedBatchNormV2",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "scale",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "offset",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "mean",
 
-           type: "tensor"
 
-         }, {
 
-           start: 4,
 
-           name: "variance",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "epsilon",
 
-           name: "epsilon",
 
-           type: "number",
 
-           defaultValue: .001
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "FusedBatchNormV3",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "scale",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "offset",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "mean",
 
-           type: "tensor"
 
-         }, {
 
-           start: 4,
 
-           name: "variance",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "epsilon",
 
-           name: "epsilon",
 
-           type: "number",
 
-           defaultValue: .001
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "LRN",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "depth_radius",
 
-           name: "radius",
 
-           type: "number",
 
-           defaultValue: 5
 
-         }, {
 
-           tfName: "bias",
 
-           name: "bias",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }, {
 
-           tfName: "alpha",
 
-           name: "alpha",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }, {
 
-           tfName: "beta",
 
-           name: "beta",
 
-           type: "number",
 
-           defaultValue: .5
 
-         }]
 
-       }, {
 
-         tfOpName: "Softmax",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "LogSoftmax",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "SparseToDense",
 
-         category: "normalization",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "sparseIndices",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "outputShape",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "sparseValues",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "defaultValue",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "validate_indices",
 
-           name: "validateIndices",
 
-           type: "bool",
 
-           defaultValue: !0,
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       normalization = Object.freeze({
 
-         json: json$11
 
-       }),
 
-       json$12 = [{
 
-         tfOpName: "Max",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "Mean",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "Min",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "Sum",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "All",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "Any",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }, {
 
-         tfOpName: "ArgMax",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "ArgMin",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "Prod",
 
-         category: "reduction",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "keep_dims",
 
-           name: "keepDims",
 
-           type: "bool"
 
-         }]
 
-       }],
 
-       reduction = Object.freeze({
 
-         json: json$12
 
-       }),
 
-       json$13 = [{
 
-         tfOpName: "ConcatV2",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           end: -1,
 
-           name: "tensors",
 
-           type: "tensors"
 
-         }, {
 
-           start: -1,
 
-           name: "axis",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "Concat",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 1,
 
-           end: 0,
 
-           name: "tensors",
 
-           type: "tensors"
 
-         }, {
 
-           start: 0,
 
-           name: "axis",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "GatherV2",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "indices",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "axis",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }]
 
-       }, {
 
-         tfOpName: "Gather",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "indices",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "axis",
 
-           name: "axis",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "validate_indices",
 
-           name: "validateIndices",
 
-           type: "bool",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Reverse",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "dims",
 
-           type: "bool",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "ReverseV2",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "Slice",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "begin",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "size",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "StridedSlice",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "begin",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "end",
 
-           type: "number[]"
 
-         }, {
 
-           start: 3,
 
-           name: "strides",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "begin_mask",
 
-           name: "beginMask",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "end_mask",
 
-           name: "endMask",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "new_axis_mask",
 
-           name: "newAxisMask",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "ellipsis_mask",
 
-           name: "ellipsisMask",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "shrink_axis_mask",
 
-           name: "shrinkAxisMask",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }]
 
-       }, {
 
-         tfOpName: "Pack",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           end: 0,
 
-           name: "tensors",
 
-           type: "tensors"
 
-         }],
 
-         attrs: [{
 
-           tfName: "axis",
 
-           name: "axis",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }]
 
-       }, {
 
-         tfOpName: "Unpack",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "tensor",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "axis",
 
-           name: "axis",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           tfName: "num",
 
-           name: "num",
 
-           type: "number",
 
-           defaultValue: 0,
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "Tile",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "reps",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "Split",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "axis",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }, {
 
-           start: 1,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "num_split",
 
-           name: "numOrSizeSplits",
 
-           type: "number",
 
-           defaultValue: 1
 
-         }]
 
-       }, {
 
-         tfOpName: "SplitV",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "numOrSizeSplits",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "axis",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }]
 
-       }, {
 
-         tfOpName: "ScatterNd",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "indices",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "values",
 
-           type: "tensor"
 
-         }, {
 
-           start: 2,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "GatherNd",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "indices",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "SparseToDense",
 
-         category: "slice_join",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "sparseIndices",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "outputShape",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "sparseValues",
 
-           type: "tensor"
 
-         }, {
 
-           start: 3,
 
-           name: "defaultValue",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "validate_indices",
 
-           name: "validateIndices",
 
-           type: "bool",
 
-           defaultValue: !1,
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       sliceJoin = Object.freeze({
 
-         json: json$13
 
-       }),
 
-       json$14 = [{
 
-         tfOpName: "FFT",
 
-         category: "spectral",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "IFFT",
 
-         category: "spectral",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }]
 
-       }, {
 
-         tfOpName: "RFFT",
 
-         category: "spectral",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "fft_length",
 
-           type: "number",
 
-           notSupported: !0
 
-         }]
 
-       }, {
 
-         tfOpName: "IRFFT",
 
-         category: "spectral",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "fft_length",
 
-           type: "number",
 
-           notSupported: !0
 
-         }]
 
-       }],
 
-       spectral = Object.freeze({
 
-         json: json$14
 
-       }),
 
-       json$15 = [{
 
-         tfOpName: "Cast",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "SrcT",
 
-           name: "sdtype",
 
-           type: "dtype",
 
-           notSupported: !0
 
-         }, {
 
-           tfName: "DstT",
 
-           name: "dtype",
 
-           type: "dtype"
 
-         }]
 
-       }, {
 
-         tfOpName: "ExpandDims",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "axis",
 
-           type: "number"
 
-         }]
 
-       }, {
 
-         tfOpName: "Pad",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "padding",
 
-           type: "number[]"
 
-         }],
 
-         attrs: [{
 
-           tfName: "constant_value",
 
-           name: "constantValue",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }]
 
-       }, {
 
-         tfOpName: "PadV2",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "padding",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "constantValue",
 
-           type: "number",
 
-           defaultValue: 0
 
-         }]
 
-       }, {
 
-         tfOpName: "Reshape",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "shape",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "Squeeze",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "axis",
 
-           tfDeprecatedName: "squeeze_dims",
 
-           name: "axis",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "SpaceToBatchND",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "blockShape",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "paddings",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "BatchToSpaceND",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }, {
 
-           start: 1,
 
-           name: "blockShape",
 
-           type: "number[]"
 
-         }, {
 
-           start: 2,
 
-           name: "crops",
 
-           type: "number[]"
 
-         }]
 
-       }, {
 
-         tfOpName: "DepthToSpace",
 
-         category: "transformation",
 
-         inputs: [{
 
-           start: 0,
 
-           name: "x",
 
-           type: "tensor"
 
-         }],
 
-         attrs: [{
 
-           tfName: "block_size",
 
-           name: "blockSize",
 
-           type: "number"
 
-         }, {
 
-           tfName: "data_format",
 
-           name: "dataFormat",
 
-           type: "string"
 
-         }]
 
-       }],
 
-       transformation = Object.freeze({
 
-         json: json$15
 
-       }),
 
-       OperationMapper = function () {
 
-         function e() {
 
-           var e = [arithmetic, basicMath, control, convolution, creation, dynamic, evaluation, logical, image$1, graph, matrices, normalization, reduction, sliceJoin, spectral, transformation],
 
-             t = [].concat.apply([], e.map(function (e) {
 
-               return e.json;
 
-             }));
 
-           this.opMappers = t.reduce(function (e, t) {
 
-             return e[t.tfOpName] = t, e;
 
-           }, {});
 
-         }
 
-         return Object.defineProperty(e, "Instance", {
 
-           get: function () {
 
-             return this._instance || (this._instance = new this());
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), e.prototype.transformGraph = function (e) {
 
-           var t = this,
 
-             a = [],
 
-             r = [],
 
-             n = e.node.reduce(function (e, n) {
 
-               return e[n.name] = t.mapNode(n), "Placeholder" === n.op && a.push(e[n.name]), "Const" === n.op && r.push(e[n.name]), e;
 
-             }, {}),
 
-             s = [],
 
-             o = [],
 
-             p = Object.keys(n);
 
-           return p.forEach(function (e) {
 
-             var t = n[e];
 
-             t.inputNames.forEach(function (e) {
 
-               var a = getNodeNameAndIndex(e)[0];
 
-               t.inputs.push(n[a]), n[a].children.push(t);
 
-             }), 0 === t.inputs.length && s.push(t);
 
-           }), p.forEach(function (e) {
 
-             var t = n[e];
 
-             0 === t.children.length && o.push(t);
 
-           }), {
 
-             nodes: n,
 
-             inputs: s,
 
-             outputs: o,
 
-             weights: r,
 
-             placeholders: a
 
-           };
 
-         }, e.prototype.mapNode = function (e) {
 
-           var t = getRegisteredOp(e.op) || this.opMappers[e.op] || {};
 
-           null == e.attr && (e.attr = {});
 
-           var a = {
 
-             name: e.name,
 
-             op: e.op,
 
-             category: t.category,
 
-             inputNames: (e.input || []).map(function (e) {
 
-               return e.startsWith("^") ? e.substr(1) : e;
 
-             }),
 
-             inputs: [],
 
-             children: [],
 
-             inputParams: {},
 
-             attrParams: {},
 
-             rawAttrs: e.attr
 
-           };
 
-           return null != t.inputs && (a.inputParams = t.inputs.reduce(function (e, t) {
 
-             return e[t.name] = {
 
-               type: t.type,
 
-               inputIndexStart: t.start,
 
-               inputIndexEnd: t.end
 
-             }, e;
 
-           }, {})), null != t.attrs && (a.attrParams = t.attrs.reduce(function (t, a) {
 
-             var r = a.type,
 
-               n = void 0;
 
-             switch (a.type) {
 
-               case "string":
 
-                 void 0 === (n = getStringParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getStringParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "string[]":
 
-                 void 0 === (n = getStringArrayParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getStringArrayParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "number":
 
-                 void 0 === (n = getNumberParam(e.attr, a.tfName, a.defaultValue || 0)) && a.tfDeprecatedName && (n = getNumberParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "number[]":
 
-                 void 0 === (n = getNumericArrayParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getNumericArrayParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "bool":
 
-                 void 0 === (n = getBoolParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getBoolParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "bool[]":
 
-                 void 0 === (n = getBoolArrayParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getBoolArrayParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "shape":
 
-                 void 0 === (n = getTensorShapeParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getTensorShapeParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "shape[]":
 
-                 void 0 === (n = getTensorShapeArrayParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getTensorShapeArrayParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "dtype":
 
-                 void 0 === (n = getDtypeParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getDtypeParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "dtype[]":
 
-                 void 0 === (n = getDtypeArrayParam(e.attr, a.tfName, a.defaultValue)) && a.tfDeprecatedName && (n = getDtypeArrayParam(e.attr, a.tfDeprecatedName, a.defaultValue));
 
-                 break;
 
-               case "tensor":
 
-               case "tensors":
 
-                 break;
 
-               default:
 
-                 throw new Error("Unsupported param type: " + a.type + " for op: " + e.op);
 
-             }
 
-             return t[a.name] = {
 
-               value: n,
 
-               type: r
 
-             }, t;
 
-           }, {})), a;
 
-         }, e;
 
-       }();
 
-     function decodeBase64(e) {
 
-       var t = (0, _tfjsCore.env)().global;
 
-       if (void 0 !== t.atob) return t.atob(e);
 
-       if ("undefined" != typeof Buffer) return new Buffer(e, "base64").toString();
 
-       throw new Error("Unable to decode base64 in this environment. Missing built-in atob() or Buffer()");
 
-     }
 
-     function parseStringParam(e, t) {
 
-       var a = Array.isArray(e) ? String.fromCharCode.apply(null, e) : decodeBase64(e);
 
-       return t ? a : a.toLowerCase();
 
-     }
 
-     function getStringParam(e, t, a, r) {
 
-       void 0 === r && (r = !1);
 
-       var n = e[t];
 
-       return null != n ? parseStringParam(n.s, r) : a;
 
-     }
 
-     function getBoolParam(e, t, a) {
 
-       var r = e[t];
 
-       return r ? r.b : a;
 
-     }
 
-     function getNumberParam(e, t, a) {
 
-       var r = e[t] || {},
 
-         n = null != r.i ? r.i : null != r.f ? r.f : a;
 
-       return "number" == typeof n ? n : parseInt(n, 10);
 
-     }
 
-     function parseDtypeParam(e) {
 
-       switch ("string" == typeof e && (e = DataType[e]), e) {
 
-         case DataType.DT_FLOAT:
 
-           return "float32";
 
-         case DataType.DT_INT32:
 
-         case DataType.DT_INT64:
 
-           return "int32";
 
-         case DataType.DT_BOOL:
 
-           return "bool";
 
-         case DataType.DT_DOUBLE:
 
-           return "float32";
 
-         case DataType.DT_STRING:
 
-           return "string";
 
-         default:
 
-           return null;
 
-       }
 
-     }
 
-     function getDtypeParam(e, t, a) {
 
-       var r = e[t];
 
-       return r && r.type ? parseDtypeParam(r.type) : a;
 
-     }
 
-     function getDtypeArrayParam(e, t, a) {
 
-       var r = e[t];
 
-       return r && r.list && r.list.type ? r.list.type.map(function (e) {
 
-         return parseDtypeParam(e);
 
-       }) : a;
 
-     }
 
-     function parseTensorShapeParam(e) {
 
-       if (!e.unknownRank) return null != e.dim ? e.dim.map(function (e) {
 
-         return "number" == typeof e.size ? e.size : parseInt(e.size, 10);
 
-       }) : [];
 
-     }
 
-     function getTensorShapeParam(e, t, a) {
 
-       var r = e[t];
 
-       return r && r.shape ? parseTensorShapeParam(r.shape) : a;
 
-     }
 
-     function getNumericArrayParam(e, t, a) {
 
-       var r = e[t];
 
-       return r ? ((r.list.f && r.list.f.length ? r.list.f : r.list.i) || []).map(function (e) {
 
-         return "number" == typeof e ? e : parseInt(e, 10);
 
-       }) : a;
 
-     }
 
-     function getStringArrayParam(e, t, a, r) {
 
-       void 0 === r && (r = !1);
 
-       var n = e[t];
 
-       return n && n.list && n.list.s ? n.list.s.map(function (e) {
 
-         return parseStringParam(e, r);
 
-       }) : a;
 
-     }
 
-     function getTensorShapeArrayParam(e, t, a) {
 
-       var r = e[t];
 
-       return r && r.list && r.list.shape ? r.list.shape.map(function (e) {
 
-         return parseTensorShapeParam(e);
 
-       }) : a;
 
-     }
 
-     function getBoolArrayParam(e, t, a) {
 
-       var r = e[t];
 
-       return r && r.list && r.list.b ? r.list.b : a;
 
-     }
 
-     var NodeValueImpl = function () {
 
-       function e(e, t, a) {
 
-         var r = this;
 
-         this.node = e, this.tensorMap = t, this.context = a, this.inputs = [], this.attrs = {}, this.inputs = e.inputNames.map(function (e) {
 
-           return r.getInput(e);
 
-         }), null != e.rawAttrs && (this.attrs = Object.keys(e.rawAttrs).reduce(function (e, t) {
 
-           return e[t] = r.getAttr(t), e;
 
-         }, {}));
 
-       }
 
-       return e.prototype.getInput = function (e) {
 
-         return getTensor(e, this.tensorMap, this.context);
 
-       }, e.prototype.getAttr = function (e, t) {
 
-         var a = this.node.rawAttrs[e];
 
-         if (null != a.tensor) return getTensor(e, this.tensorMap, this.context);
 
-         if (null != a.i || null != a.f) return getNumberParam(this.node.rawAttrs, e, t);
 
-         if (null != a.s) return getStringParam(this.node.rawAttrs, e, t);
 
-         if (null != a.b) return getBoolParam(this.node.rawAttrs, e, t);
 
-         if (null != a.shape) return getTensorShapeParam(this.node.rawAttrs, e, t);
 
-         if (null != a.type) return getDtypeParam(this.node.rawAttrs, e, t);
 
-         if (null != a.list) {
 
-           if (null != a.list.i || null != a.list.f) return getNumericArrayParam(this.node.rawAttrs, e, t);
 
-           if (null != a.list.s) return getStringArrayParam(this.node.rawAttrs, e, t);
 
-           if (null != a.list.shape) return getTensorShapeArrayParam(this.node.rawAttrs, e, t);
 
-           if (null != a.list.b) return getBoolArrayParam(this.node.rawAttrs, e, t);
 
-           if (null != a.list.type) return getDtypeArrayParam(this.node.rawAttrs, e, t);
 
-         }
 
-         return t;
 
-       }, e;
 
-     }(),
 
-       executeOp = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "BiasAdd":
 
-           case "AddV2":
 
-           case "Add":
 
-             return [(0, _tfjsCore.add)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "AddN":
 
-             return [(0, _tfjsCore.addN)(getParamValue("tensors", e, t, a))];
 
-           case "FloorMod":
 
-           case "Mod":
 
-             return [(0, _tfjsCore.mod)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Mul":
 
-             return [(0, _tfjsCore.mul)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "RealDiv":
 
-           case "Div":
 
-             return [(0, _tfjsCore.div)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "FloorDiv":
 
-             return [(0, _tfjsCore.floorDiv)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Sub":
 
-             return [(0, _tfjsCore.sub)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Minimum":
 
-             return [(0, _tfjsCore.minimum)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Maximum":
 
-             return [(0, _tfjsCore.maximum)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Pow":
 
-             return [(0, _tfjsCore.pow)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "SquaredDifference":
 
-             return [(0, _tfjsCore.squaredDifference)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$1 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "Abs":
 
-           case "ComplexAbs":
 
-             return [(0, _tfjsCore.abs)(getParamValue("x", e, t, a))];
 
-           case "Acos":
 
-             return [(0, _tfjsCore.acos)(getParamValue("x", e, t, a))];
 
-           case "Acosh":
 
-             return [(0, _tfjsCore.acosh)(getParamValue("x", e, t, a))];
 
-           case "Asin":
 
-             return [(0, _tfjsCore.asin)(getParamValue("x", e, t, a))];
 
-           case "Asinh":
 
-             return [(0, _tfjsCore.asinh)(getParamValue("x", e, t, a))];
 
-           case "Atan":
 
-             return [(0, _tfjsCore.atan)(getParamValue("x", e, t, a))];
 
-           case "Atan2":
 
-             return [(0, _tfjsCore.atan2)(getParamValue("x", e, t, a), getParamValue("y", e, t, a))];
 
-           case "Atanh":
 
-             return [(0, _tfjsCore.atanh)(getParamValue("x", e, t, a))];
 
-           case "Ceil":
 
-             return [(0, _tfjsCore.ceil)(getParamValue("x", e, t, a))];
 
-           case "Complex":
 
-             return [(0, _tfjsCore.complex)(getParamValue("real", e, t, a), getParamValue("imag", e, t, a))];
 
-           case "Cos":
 
-             return [(0, _tfjsCore.cos)(getParamValue("x", e, t, a))];
 
-           case "Cosh":
 
-             return [(0, _tfjsCore.cosh)(getParamValue("x", e, t, a))];
 
-           case "Elu":
 
-             return [(0, _tfjsCore.elu)(getParamValue("x", e, t, a))];
 
-           case "Erf":
 
-             return [(0, _tfjsCore.erf)(getParamValue("x", e, t, a))];
 
-           case "Exp":
 
-             return [(0, _tfjsCore.exp)(getParamValue("x", e, t, a))];
 
-           case "Expm1":
 
-             return [(0, _tfjsCore.expm1)(getParamValue("x", e, t, a))];
 
-           case "Floor":
 
-             return [(0, _tfjsCore.floor)(getParamValue("x", e, t, a))];
 
-           case "Log":
 
-             return [(0, _tfjsCore.log)(getParamValue("x", e, t, a))];
 
-           case "Log1p":
 
-             return [(0, _tfjsCore.log1p)(getParamValue("x", e, t, a))];
 
-           case "Imag":
 
-             return [(0, _tfjsCore.imag)(getParamValue("x", e, t, a))];
 
-           case "Neg":
 
-             return [(0, _tfjsCore.neg)(getParamValue("x", e, t, a))];
 
-           case "Reciprocal":
 
-             return [(0, _tfjsCore.reciprocal)(getParamValue("x", e, t, a))];
 
-           case "Real":
 
-             return [(0, _tfjsCore.real)(getParamValue("x", e, t, a))];
 
-           case "Relu":
 
-             return [(0, _tfjsCore.relu)(getParamValue("x", e, t, a))];
 
-           case "Round":
 
-             return [(0, _tfjsCore.round)(getParamValue("x", e, t, a))];
 
-           case "Selu":
 
-             return [(0, _tfjsCore.selu)(getParamValue("x", e, t, a))];
 
-           case "Sigmoid":
 
-             return [(0, _tfjsCore.sigmoid)(getParamValue("x", e, t, a))];
 
-           case "Sin":
 
-             return [(0, _tfjsCore.sin)(getParamValue("x", e, t, a))];
 
-           case "Sign":
 
-             return [(0, _tfjsCore.sign)(getParamValue("x", e, t, a))];
 
-           case "Sinh":
 
-             return [(0, _tfjsCore.sinh)(getParamValue("x", e, t, a))];
 
-           case "Softplus":
 
-             return [(0, _tfjsCore.softplus)(getParamValue("x", e, t, a))];
 
-           case "Sqrt":
 
-             return [(0, _tfjsCore.sqrt)(getParamValue("x", e, t, a))];
 
-           case "Square":
 
-             return [(0, _tfjsCore.square)(getParamValue("x", e, t, a))];
 
-           case "Tanh":
 
-             return [(0, _tfjsCore.tanh)(getParamValue("x", e, t, a))];
 
-           case "Tan":
 
-             return [(0, _tfjsCore.tan)(getParamValue("x", e, t, a))];
 
-           case "Relu6":
 
-           case "ClipByValue":
 
-             return [(0, _tfjsCore.clipByValue)(getParamValue("x", e, t, a), getParamValue("clipValueMin", e, t, a), getParamValue("clipValueMax", e, t, a))];
 
-           case "Rsqrt":
 
-             return [(0, _tfjsCore.rsqrt)(getTensor(e.inputNames[0], t, a))];
 
-           case "Prod":
 
-             return [(0, _tfjsCore.prod)(getParamValue("x", e, t, a), getParamValue("axes", e, t, a))];
 
-           case "LeakyRelu":
 
-             return [(0, _tfjsCore.leakyRelu)(getParamValue("x", e, t, a), getParamValue("alpha", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       TensorArray = function () {
 
-         function e(t, a, r, n, s, o, p) {
 
-           this.name = t, this.dtype = a, this.maxSize = r, this.elementShape = n, this.identicalElementShapes = s, this.dynamicSize = o, this.clearAfterRead = p, this.tensors = [], this.closed_ = !1, this.id = e.nextId++;
 
-         }
 
-         return Object.defineProperty(e.prototype, "closed", {
 
-           get: function () {
 
-             return this.closed_;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), e.prototype.clearAndClose = function () {
 
-           this.tensors.forEach(function (e) {
 
-             return e.tensor.dispose();
 
-           }), this.tensors = [], this.closed_ = !0;
 
-         }, e.prototype.size = function () {
 
-           return this.tensors.length;
 
-         }, e.prototype.read = function (e) {
 
-           if (this.closed_) throw new Error("TensorArray " + this.name + " has already been closed.");
 
-           if (e < 0 || e >= this.tensors.length) throw new Error("Tried to read from index " + e + ", but array size is: " + this.tensors.length);
 
-           var t = this.tensors[e];
 
-           if (t.cleared) throw new Error("TensorArray " + this.name + ": Could not read index " + e + " twice because it was cleared after a previous read (perhaps try setting clear_after_read = false?).");
 
-           return this.clearAfterRead && (t.cleared = !0), t.read = !0, t.tensor;
 
-         }, e.prototype.readMany = function (e) {
 
-           var t = this;
 
-           return e.map(function (e) {
 
-             return t.read(e);
 
-           });
 
-         }, e.prototype.write = function (e, t) {
 
-           if (this.closed_) throw new Error("TensorArray " + this.name + " has already been closed.");
 
-           if (e < 0 || !this.dynamicSize && e >= this.maxSize) throw new Error("Tried to write to index " + e + ", but array is not resizeable and size is: " + this.maxSize);
 
-           var a = this.tensors[e] || {};
 
-           if (t.dtype !== this.dtype) throw new Error("TensorArray " + this.name + ": Could not write to TensorArray index " + e + ",\n          because the value dtype is " + t.dtype + ", but TensorArray dtype is " + this.dtype + ".");
 
-           if (0 !== this.size() || null != this.elementShape && 0 !== this.elementShape.length || (this.elementShape = t.shape), this.assertShapesMatchAllowUndefinedSize(this.elementShape, t.shape, "TensorArray " + this.name + ": Could not write to TensorArray index " + e + "."), a && a.read) throw new Error("TensorArray " + this.name + ": Could not write to TensorArray index " + e + ", because it has already been read.");
 
-           if (a && a.written) throw new Error("TensorArray " + this.name + ": Could not write to TensorArray index " + e + ", because it has already been written.");
 
-           a.tensor = t, a.written = !0, this.tensors[e] = a;
 
-         }, e.prototype.writeMany = function (e, t) {
 
-           var a = this;
 
-           if (e.length !== t.length) throw new Error("TensorArray " + this.name + ": could not write multiple tensors,because the index size: " + e.length + " is not the same as tensors size: " + t.length + ".");
 
-           e.forEach(function (e, r) {
 
-             return a.write(e, t[r]);
 
-           });
 
-         }, e.prototype.gather = function (e, t) {
 
-           if (t && t !== this.dtype) throw new Error("TensorArray dtype is " + this.dtype + " but gather requested dtype " + t);
 
-           if (!e) {
 
-             e = [];
 
-             for (var a = 0; a < this.size(); a++) e.push(a);
 
-           }
 
-           if (0 === e.length) return (0, _tfjsCore.tensor)([], [0].concat(this.elementShape));
 
-           var r = this.readMany(e);
 
-           return this.assertShapesMatchAllowUndefinedSize(this.elementShape, r[0].shape, "TensorArray shape mismatch: "), (0, _tfjsCore.stack)(r, 0);
 
-         }, e.prototype.concat = function (e) {
 
-           if (e && e !== this.dtype) throw new Error("TensorArray dtype is " + this.dtype + " but concat requested dtype " + e);
 
-           if (0 === this.size()) return (0, _tfjsCore.tensor)([], [0].concat(this.elementShape));
 
-           for (var t = [], a = 0; a < this.size(); a++) t.push(a);
 
-           var r = this.readMany(t);
 
-           return this.assertShapesMatchAllowUndefinedSize(this.elementShape, r[0].shape, "TensorArray shape mismatch: tensor array shape (" + this.elementShape + ") vs first tensor shape (" + r[0].shape + ")"), (0, _tfjsCore.concat)(r, 0);
 
-         }, e.prototype.scatter = function (e, t) {
 
-           if (t.dtype !== this.dtype) throw new Error("TensorArray dtype is " + this.dtype + " but tensor has dtype " + t.dtype);
 
-           if (e.length !== t.shape[0]) throw new Error("Expected len(indices) == tensor.shape[0], but saw: " + e.length + " vs. " + t.shape[0]);
 
-           var a = Math.max.apply(Math, e);
 
-           if (!this.dynamicSize && a >= this.maxSize) throw new Error("Max index must be < array size (" + a + "  vs. " + this.maxSize + ")");
 
-           this.writeMany(e, (0, _tfjsCore.unstack)(t, 0));
 
-         }, e.prototype.split = function (e, t) {
 
-           var a = this;
 
-           if (t.dtype !== this.dtype) throw new Error("TensorArray dtype is " + this.dtype + " but tensor has dtype " + t.dtype);
 
-           var r = 0,
 
-             n = e.map(function (e) {
 
-               return r += e;
 
-             });
 
-           if (r !== t.shape[0]) throw new Error("Expected sum of lengths to be equal to\n          tensor.shape[0], but sum of lengths is\n        " + r + ", and tensor's shape is: " + t.shape);
 
-           if (!this.dynamicSize && e.length !== this.maxSize) throw new Error("TensorArray's size is not equal to the size of lengths (" + this.maxSize + " vs. " + e.length + "), and the TensorArray is not marked as dynamically resizeable");
 
-           var s = 0 === r ? 0 : t.size / r,
 
-             o = [];
 
-           (0, _tfjsCore.tidy)(function () {
 
-             t = t.reshape([1, r, s]);
 
-             for (var p = 0; p < e.length; ++p) {
 
-               var u = [0, 0 === p ? 0 : n[p - 1], 0],
 
-                 i = [1, e[p], s];
 
-               o[p] = (0, _tfjsCore.slice)(t, u, i).reshape(a.elementShape);
 
-             }
 
-             return o;
 
-           });
 
-           for (var p = [], u = 0; u < e.length; u++) p[u] = u;
 
-           this.writeMany(p, o);
 
-         }, e.prototype.assertShapesMatchAllowUndefinedSize = function (e, t, a) {
 
-           void 0 === a && (a = ""), _tfjsCore.util.assert(this.shapesEqualAllowUndefinedSize(e, t), function () {
 
-             return a + " Shapes " + e + " and " + t + " must match";
 
-           });
 
-         }, e.prototype.shapesEqualAllowUndefinedSize = function (e, t) {
 
-           if (e.length !== t.length) return !1;
 
-           for (var a = 0; a < e.length; a++) if (-1 !== e[a] && -1 !== t[a] && e[a] !== t[a]) return !1;
 
-           return !0;
 
-         }, e.nextId = 0, e;
 
-       }();
 
-     function executeOp$2(e, t, a) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, n, s, o, p, u, i, m, l, c, d, y, f, g, h, N, x, V, P, b, T, O, S, v, _, w, A, D, E, I, C, M, k, z, j;
 
-         return __generator(this, function (F) {
 
-           switch (F.label) {
 
-             case 0:
 
-               switch (e.op) {
 
-                 case "LoopCond":
 
-                   return [3, 1];
 
-                 case "Switch":
 
-                   return [3, 2];
 
-                 case "Merge":
 
-                   return [3, 4];
 
-                 case "Enter":
 
-                   return [3, 5];
 
-                 case "Exit":
 
-                   return [3, 6];
 
-                 case "NextIteration":
 
-                   return [3, 7];
 
-                 case "TensorArrayV3":
 
-                   return [3, 8];
 
-                 case "TensorArrayWriteV3":
 
-                   return [3, 9];
 
-                 case "TensorArrayReadV3":
 
-                   return [3, 10];
 
-                 case "TensorArrayGatherV3":
 
-                   return [3, 11];
 
-                 case "TensorArrayScatterV3":
 
-                   return [3, 12];
 
-                 case "TensorArrayConcatV3":
 
-                   return [3, 13];
 
-                 case "TensorArraySplitV3":
 
-                   return [3, 14];
 
-                 case "TensorArraySizeV3":
 
-                   return [3, 15];
 
-                 case "TensorArrayCloseV3":
 
-                   return [3, 16];
 
-               }
 
-               return [3, 17];
 
-             case 1:
 
-               return [2, [getParamValue("pred", e, t, a).clone()]];
 
-             case 2:
 
-               return r = getParamValue("pred", e, t, a), n = getParamValue("data", e, t, a), [4, r.data()];
 
-             case 3:
 
-               return [2, F.sent()[0] ? [void 0, n.clone()] : [n.clone(), void 0]];
 
-             case 4:
 
-               return [2, (s = e.inputNames.find(function (e) {
 
-                 return void 0 !== getTensor(e, t, a);
 
-               })) ? [getTensor(s, t, a).clone()] : void 0];
 
-             case 5:
 
-               return o = getParamValue("frameName", e, t, a), p = getParamValue("tensor", e, t, a), a.enterFrame(o), [2, [p.clone()]];
 
-             case 6:
 
-               return u = getParamValue("tensor", e, t, a), a.exitFrame(), [2, [u.clone()]];
 
-             case 7:
 
-               return i = getParamValue("tensor", e, t, a), a.nextIteration(), [2, [i.clone()]];
 
-             case 8:
 
-               return m = getParamValue("size", e, t, a), l = getParamValue("dtype", e, t, a), c = getParamValue("elementShape", e, t, a), d = getParamValue("dynamicSize", e, t, a), y = getParamValue("clearAfterRead", e, t, a), f = getParamValue("identicalElementShapes", e, t, a), g = getParamValue("name", e, t, a), h = new TensorArray(g, l, m, c, f, d, y), a.addTensorArray(h), [2, [(0, _tfjsCore.scalar)(h.id), (0, _tfjsCore.scalar)(1)]];
 
-             case 9:
 
-               return N = getParamValue("tensorArrayId", e, t, a), x = getParamValue("index", e, t, a), V = getParamValue("tensor", e, t, a), a.getTensorArray(N).write(x, V), [2, [(0, _tfjsCore.scalar)(1)]];
 
-             case 10:
 
-               return P = getParamValue("tensorArrayId", e, t, a), b = getParamValue("index", e, t, a), [2, [a.getTensorArray(P).read(b)]];
 
-             case 11:
 
-               return T = getParamValue("tensorArrayId", e, t, a), O = getParamValue("indices", e, t, a), S = getParamValue("dtype", e, t, a), [2, [a.getTensorArray(T).gather(O, S)]];
 
-             case 12:
 
-               return v = getParamValue("tensorArrayId", e, t, a), _ = getParamValue("indices", e, t, a), w = getParamValue("tensor", e, t, a), a.getTensorArray(v).scatter(_, w), [2, [(0, _tfjsCore.scalar)(1)]];
 
-             case 13:
 
-               return A = getParamValue("tensorArrayId", e, t, a), D = a.getTensorArray(A), E = getParamValue("dtype", e, t, a), [2, [D.concat(E)]];
 
-             case 14:
 
-               return I = getParamValue("tensorArrayId", e, t, a), C = getParamValue("tensor", e, t, a), M = getParamValue("lengths", e, t, a), a.getTensorArray(I).split(M, C), [2, [(0, _tfjsCore.scalar)(1)]];
 
-             case 15:
 
-               return k = getParamValue("tensorArrayId", e, t, a), z = a.getTensorArray(k), [2, [(0, _tfjsCore.scalar)(z.size(), "int32")]];
 
-             case 16:
 
-               return j = getParamValue("tensorArrayId", e, t, a), a.getTensorArray(j).clearAndClose(), [2, []];
 
-             case 17:
 
-               throw TypeError("Node type " + e.op + " is not implemented");
 
-           }
 
-         });
 
-       });
 
-     }
 
-     var executeOp$3 = function (e, t, a) {
 
-       var r, n;
 
-       switch (e.op) {
 
-         case "Conv1D":
 
-           var s = getParamValue("stride", e, t, a),
 
-             o = getParamValue("pad", e, t, a),
 
-             p = getParamValue("dataFormat", e, t, a).toUpperCase(),
 
-             u = getParamValue("dilation", e, t, a);
 
-           return [(0, _tfjsCore.conv1d)(getParamValue("x", e, t, a), getParamValue("filter", e, t, a), s, o, p, u)];
 
-         case "Conv2D":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), p = getParamValue("dataFormat", e, t, a).toUpperCase();
 
-           var i = getParamValue("dilations", e, t, a);
 
-           return [(0, _tfjsCore.conv2d)(getParamValue("x", e, t, a), getParamValue("filter", e, t, a), [s[1], s[2]], o, p, [i[1], i[2]])];
 
-         case "_FusedConv2D":
 
-           var m = (r = getParamValue("fusedOps", e, t, a))[0],
 
-             l = r[1],
 
-             c = "biasadd" === m,
 
-             d = "prelu" === l,
 
-             y = "fusedbatchnorm" === m,
 
-             f = getParamValue("numArgs", e, t, a);
 
-           if (c) {
 
-             if (d && 2 !== f) throw new Error("Fused Conv2d with BiasAdd and Prelu must have two extra arguments: bias and alpha.");
 
-             if (!d && 1 !== f) throw new Error("Fused Conv2d with BiasAdd must have one extra argument: bias.");
 
-           }
 
-           if (y) throw new Error("Fused Conv2d with FusedBatchNorm is not supported.");
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), p = getParamValue("dataFormat", e, t, a).toUpperCase(), i = getParamValue("dilations", e, t, a);
 
-           var g = (n = getParamValue("args", e, t, a))[0],
 
-             h = n[1];
 
-           return [_tfjsCore.fused.conv2d({
 
-             x: getParamValue("x", e, t, a),
 
-             filter: getParamValue("filter", e, t, a),
 
-             strides: [s[1], s[2]],
 
-             pad: o,
 
-             dataFormat: p,
 
-             dilations: [i[1], i[2]],
 
-             bias: g,
 
-             activation: l,
 
-             preluActivationWeights: h
 
-           })];
 
-         case "Conv2DBackpropInput":
 
-         case "Conv2dTranspose":
 
-           var N = getParamValue("outputShape", e, t, a);
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a);
 
-           return [(0, _tfjsCore.conv2dTranspose)(getParamValue("x", e, t, a), getParamValue("filter", e, t, a), N, [s[1], s[2]], o)];
 
-         case "DepthwiseConv2dNative":
 
-         case "DepthwiseConv2d":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), i = getParamValue("dilations", e, t, a), p = getParamValue("dataFormat", e, t, a).toUpperCase();
 
-           return [(0, _tfjsCore.depthwiseConv2d)(getParamValue("input", e, t, a), getParamValue("filter", e, t, a), [s[1], s[2]], o, p, [i[1], i[2]])];
 
-         case "Conv3D":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), p = getParamValue("dataFormat", e, t, a).toUpperCase(), i = getParamValue("dilations", e, t, a);
 
-           return [(0, _tfjsCore.conv3d)(getParamValue("x", e, t, a), getParamValue("filter", e, t, a), [s[1], s[2], s[3]], o, p, [i[1], i[2], i[3]])];
 
-         case "AvgPool":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a);
 
-           var x = getParamValue("kernelSize", e, t, a);
 
-           return [(0, _tfjsCore.avgPool)(getParamValue("x", e, t, a), [x[1], x[2]], [s[1], s[2]], o)];
 
-         case "MaxPool":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), x = getParamValue("kernelSize", e, t, a);
 
-           return [(0, _tfjsCore.maxPool)(getParamValue("x", e, t, a), [x[1], x[2]], [s[1], s[2]], o)];
 
-         case "AvgPool3D":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), x = getParamValue("kernelSize", e, t, a);
 
-           return [(0, _tfjsCore.avgPool3d)(getParamValue("x", e, t, a), [x[1], x[2], x[3]], [s[1], s[2], s[3]], o)];
 
-         case "MaxPool3D":
 
-           s = getParamValue("strides", e, t, a), o = getParamValue("pad", e, t, a), x = getParamValue("kernelSize", e, t, a);
 
-           return [(0, _tfjsCore.maxPool3d)(getParamValue("x", e, t, a), [x[1], x[2], x[3]], [s[1], s[2], s[3]], o)];
 
-         default:
 
-           throw TypeError("Node type " + e.op + " is not implemented");
 
-       }
 
-     },
 
-       executeOp$4 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "Fill":
 
-             var r = getParamValue("shape", e, t, a),
 
-               n = getParamValue("dtype", e, t, a),
 
-               s = getParamValue("value", e, t, a);
 
-             return [(0, _tfjsCore.fill)(r, s, n)];
 
-           case "LinSpace":
 
-             var o = getParamValue("start", e, t, a),
 
-               p = getParamValue("stop", e, t, a),
 
-               u = getParamValue("num", e, t, a);
 
-             return [(0, _tfjsCore.linspace)(o, p, u)];
 
-           case "Multinomial":
 
-             var i = getParamValue("logits", e, t, a),
 
-               m = getParamValue("numSamples", e, t, a),
 
-               l = getParamValue("seed", e, t, a);
 
-             return [(0, _tfjsCore.multinomial)(i, m, l)];
 
-           case "OneHot":
 
-             var c = getParamValue("indices", e, t, a),
 
-               d = getParamValue("depth", e, t, a),
 
-               y = getParamValue("onValue", e, t, a),
 
-               f = getParamValue("offValue", e, t, a);
 
-             return [(0, _tfjsCore.oneHot)(c, d, y, f)];
 
-           case "Ones":
 
-             return [(0, _tfjsCore.ones)(getParamValue("shape", e, t, a), getParamValue("dtype", e, t, a))];
 
-           case "OnesLike":
 
-             return [(0, _tfjsCore.onesLike)(getParamValue("x", e, t, a))];
 
-           case "RandomUniform":
 
-             return [(0, _tfjsCore.randomUniform)(getParamValue("shape", e, t, a), getParamValue("minval", e, t, a), getParamValue("maxval", e, t, a), getParamValue("dtype", e, t, a))];
 
-           case "Range":
 
-             o = getParamValue("start", e, t, a);
 
-             var g = getParamValue("stop", e, t, a),
 
-               h = getParamValue("step", e, t, a);
 
-             return [(0, _tfjsCore.range)(o, g, h, getParamValue("dtype", e, t, a))];
 
-           case "TruncatedNormal":
 
-             r = getParamValue("shape", e, t, a);
 
-             var N = getParamValue("mean", e, t, a),
 
-               x = getParamValue("stdDev", e, t, a);
 
-             l = getParamValue("seed", e, t, a);
 
-             return [(0, _tfjsCore.truncatedNormal)(r, N, x, getParamValue("dtype", e, t, a), l)];
 
-           case "Zeros":
 
-             return [(0, _tfjsCore.zeros)(getParamValue("shape", e, t, a), getParamValue("dtype", e, t, a))];
 
-           case "ZerosLike":
 
-             return [(0, _tfjsCore.zerosLike)(getParamValue("x", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       };
 
-     function executeOp$5(e, t, a) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, n, s, o, p;
 
-         return __generator(this, function (u) {
 
-           switch (u.label) {
 
-             case 0:
 
-               switch (e.op) {
 
-                 case "NonMaxSuppressionV3":
 
-                 case "NonMaxSuppressionV2":
 
-                   return [3, 1];
 
-                 case "Where":
 
-                   return [3, 3];
 
-                 case "ListDiff":
 
-                   return [3, 5];
 
-               }
 
-               return [3, 6];
 
-             case 1:
 
-               return r = getParamValue("boxes", e, t, a), n = getParamValue("scores", e, t, a), s = getParamValue("maxOutputSize", e, t, a), o = getParamValue("iouThreshold", e, t, a), p = getParamValue("scoreThreshold", e, t, a), [4, _tfjsCore.image.nonMaxSuppressionAsync(r, n, s, o, p)];
 
-             case 2:
 
-               return [2, [u.sent()]];
 
-             case 3:
 
-               return [4, (0, _tfjsCore.whereAsync)(getParamValue("condition", e, t, a).asType("bool"))];
 
-             case 4:
 
-               return [2, [u.sent()]];
 
-             case 5:
 
-               return [2, (0, _tfjsCore.setdiff1dAsync)(getParamValue("x", e, t, a), getParamValue("y", e, t, a))];
 
-             case 6:
 
-               throw TypeError("Node type " + e.op + " is not implemented");
 
-           }
 
-         });
 
-       });
 
-     }
 
-     var executeOp$6 = function (e, t, a) {
 
-       switch (e.op) {
 
-         case "TopKV2":
 
-           var r = getParamValue("x", e, t, a),
 
-             n = getParamValue("k", e, t, a),
 
-             s = getParamValue("sorted", e, t, a),
 
-             o = (0, _tfjsCore.topk)(r, n, s);
 
-           return [o.values, o.indices];
 
-         default:
 
-           throw TypeError("Node type " + e.op + " is not implemented");
 
-       }
 
-     },
 
-       executeOp$7 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "Const":
 
-             return t[e.name];
 
-           case "PlaceholderWithDefault":
 
-             var r = getParamValue("default", e, t, a);
 
-             return [getTensor(e.name, t, a) || r];
 
-           case "Placeholder":
 
-             return [getTensor(e.name, t, a)];
 
-           case "Identity":
 
-           case "StopGradient":
 
-           case "FakeQuantWithMinMaxVars":
 
-             return [getParamValue("x", e, t, a).clone()];
 
-           case "IdentityN":
 
-             return getParamValue("x", e, t, a).map(function (e) {
 
-               return e.clone();
 
-             });
 
-           case "Snapshot":
 
-             return [getParamValue("x", e, t, a).clone()];
 
-           case "Shape":
 
-             return [(0, _tfjsCore.tensor1d)(getParamValue("x", e, t, a).shape, "int32")];
 
-           case "ShapeN":
 
-             return getParamValue("x", e, t, a).map(function (e) {
 
-               return (0, _tfjsCore.tensor1d)(e.shape);
 
-             });
 
-           case "Size":
 
-             return [(0, _tfjsCore.scalar)(getParamValue("x", e, t, a).size, "int32")];
 
-           case "Rank":
 
-             return [(0, _tfjsCore.scalar)(getParamValue("x", e, t, a).rank, "int32")];
 
-           case "NoOp":
 
-             return [];
 
-           case "Print":
 
-             var n = getParamValue("x", e, t, a),
 
-               s = getParamValue("data", e, t, a),
 
-               o = getParamValue("message", e, t, a),
 
-               p = getParamValue("summarize", e, t, a);
 
-             console.warn("The graph has a tf.print() operation,usually used for debugging, which slows down performance."), console.log(o);
 
-             for (var u = 0; u < s.length; u++) console.log(Array.prototype.slice.call(s[u].dataSync()).slice(0, p));
 
-             return [n];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$8 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "ResizeBilinear":
 
-             var r = getParamValue("images", e, t, a),
 
-               n = getParamValue("size", e, t, a),
 
-               s = getParamValue("alignCorners", e, t, a);
 
-             return [_tfjsCore.image.resizeBilinear(r, [n[0], n[1]], s)];
 
-           case "ResizeNearestNeighbor":
 
-             r = getParamValue("images", e, t, a), n = getParamValue("size", e, t, a), s = getParamValue("alignCorners", e, t, a);
 
-             return [_tfjsCore.image.resizeNearestNeighbor(r, [n[0], n[1]], s)];
 
-           case "CropAndResize":
 
-             var o = getParamValue("image", e, t, a),
 
-               p = getParamValue("boxes", e, t, a),
 
-               u = getParamValue("boxInd", e, t, a),
 
-               i = getParamValue("cropSize", e, t, a),
 
-               m = getParamValue("method", e, t, a),
 
-               l = getParamValue("extrapolationValue", e, t, a);
 
-             return [_tfjsCore.image.cropAndResize(o, p, u, i, m, l)];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$9 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "Equal":
 
-             return [(0, _tfjsCore.equal)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "NotEqual":
 
-             return [(0, _tfjsCore.notEqual)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Greater":
 
-             return [(0, _tfjsCore.greater)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "GreaterEqual":
 
-             return [(0, _tfjsCore.greaterEqual)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Less":
 
-             return [(0, _tfjsCore.less)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "LessEqual":
 
-             return [(0, _tfjsCore.lessEqual)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "LogicalAnd":
 
-             return [(0, _tfjsCore.logicalAnd)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "LogicalNot":
 
-             return [(0, _tfjsCore.logicalNot)(getParamValue("a", e, t, a))];
 
-           case "LogicalOr":
 
-             return [(0, _tfjsCore.logicalOr)(getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           case "Select":
 
-             return [(0, _tfjsCore.where)(getParamValue("condition", e, t, a), getParamValue("a", e, t, a), getParamValue("b", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$10 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "BatchMatMul":
 
-           case "BatchMatMulV2":
 
-           case "MatMul":
 
-             return [(0, _tfjsCore.matMul)(getParamValue("a", e, t, a), getParamValue("b", e, t, a), getParamValue("transposeA", e, t, a), getParamValue("transposeB", e, t, a))];
 
-           case "Transpose":
 
-             return [(0, _tfjsCore.transpose)(getParamValue("x", e, t, a), getParamValue("perm", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$11 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "FusedBatchNorm":
 
-           case "FusedBatchNormV2":
 
-           case "FusedBatchNormV3":
 
-             return [(0, _tfjsCore.batchNorm)(getParamValue("x", e, t, a), getParamValue("mean", e, t, a), getParamValue("variance", e, t, a), getParamValue("offset", e, t, a), getParamValue("scale", e, t, a), getParamValue("epsilon", e, t, a))];
 
-           case "LRN":
 
-             return [(0, _tfjsCore.localResponseNormalization)(getParamValue("x", e, t, a), getParamValue("radius", e, t, a), getParamValue("bias", e, t, a), getParamValue("alpha", e, t, a), getParamValue("beta", e, t, a))];
 
-           case "Softmax":
 
-             return [(0, _tfjsCore.softmax)(getParamValue("x", e, t, a))];
 
-           case "LogSoftmax":
 
-             return [(0, _tfjsCore.logSoftmax)(getParamValue("x", e, t, a))];
 
-           case "SparseToDense":
 
-             return [(0, _tfjsCore.sparseToDense)(getParamValue("sparseIndices", e, t, a), getParamValue("outputShape", e, t, a), getParamValue("sparseValues", e, t, a), getParamValue("defaultValue", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$12 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "Max":
 
-             var r = getParamValue("axis", e, t, a),
 
-               n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.max)(getParamValue("x", e, t, a), r, n)];
 
-           case "Mean":
 
-             r = getParamValue("axis", e, t, a), n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.mean)(getParamValue("x", e, t, a), r, n)];
 
-           case "Min":
 
-             r = getParamValue("axis", e, t, a), n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.min)(getParamValue("x", e, t, a), r, n)];
 
-           case "Sum":
 
-             r = getParamValue("axis", e, t, a), n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.sum)(getParamValue("x", e, t, a), r, n)];
 
-           case "All":
 
-             r = getParamValue("axis", e, t, a), n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.all)(getParamValue("x", e, t, a), r, n)];
 
-           case "Any":
 
-             r = getParamValue("axis", e, t, a), n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.any)(getParamValue("x", e, t, a), r, n)];
 
-           case "ArgMax":
 
-             r = getParamValue("axis", e, t, a);
 
-             return [(0, _tfjsCore.argMax)(getParamValue("x", e, t, a), r)];
 
-           case "ArgMin":
 
-             r = getParamValue("axis", e, t, a);
 
-             return [(0, _tfjsCore.argMin)(getParamValue("x", e, t, a), r)];
 
-           case "Prod":
 
-             r = getParamValue("axis", e, t, a), n = getParamValue("keepDims", e, t, a);
 
-             return [(0, _tfjsCore.prod)(getParamValue("x", e, t, a), r, n)];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$13 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "ConcatV2":
 
-           case "Concat":
 
-             var r = getParamValue("axis", e, t, a),
 
-               n = getParamValue("tensors", e, t, a);
 
-             return [(0, _tfjsCore.concat)(n, r)];
 
-           case "GatherV2":
 
-           case "Gather":
 
-             r = getParamValue("axis", e, t, a);
 
-             var s = getParamValue("x", e, t, a),
 
-               o = getParamValue("indices", e, t, a);
 
-             return [(0, _tfjsCore.gather)(s, o.asType("int32"), r)];
 
-           case "ReverseV2":
 
-           case "Reverse":
 
-             r = getParamValue("axis", e, t, a), s = getParamValue("x", e, t, a);
 
-             return [(0, _tfjsCore.reverse)(s, r)];
 
-           case "Slice":
 
-             var p = getParamValue("begin", e, t, a),
 
-               u = getParamValue("size", e, t, a);
 
-             return [(0, _tfjsCore.slice)(getParamValue("x", e, t, a), p, u)];
 
-           case "StridedSlice":
 
-             p = getParamValue("begin", e, t, a);
 
-             var i = getParamValue("end", e, t, a),
 
-               m = getParamValue("strides", e, t, a),
 
-               l = getParamValue("beginMask", e, t, a),
 
-               c = getParamValue("endMask", e, t, a),
 
-               d = getParamValue("ellipsisMask", e, t, a),
 
-               y = getParamValue("newAxisMask", e, t, a),
 
-               f = getParamValue("shrinkAxisMask", e, t, a),
 
-               g = getParamValue("x", e, t, a);
 
-             if (1 === p.length && g.shape.length > 1) for (var h = 1; h < g.shape.length; h++) p.push(0), i.push(g.shape[h]), m.push(m[0]);
 
-             return [(0, _tfjsCore.stridedSlice)(g, p, i, m, l, c, d, y, f)];
 
-           case "Pack":
 
-             return (0, _tfjsCore.tidy)(function () {
 
-               var r = getParamValue("axis", e, t, a),
 
-                 n = getParamValue("tensors", e, t, a),
 
-                 s = n[0].shape,
 
-                 o = n[0].squeeze().shape,
 
-                 p = n.map(function (e) {
 
-                   var t = _tfjsCore.util.arraysEqual(e.shape, s);
 
-                   if (!t && !_tfjsCore.util.arraysEqual(e.squeeze().shape, o)) throw new Error("the input tensors shape does not match");
 
-                   return t ? e : e.reshape(s);
 
-                 });
 
-               return [(0, _tfjsCore.stack)(p, r)];
 
-             });
 
-           case "Unpack":
 
-             return (0, _tfjsCore.tidy)(function () {
 
-               var r = getParamValue("axis", e, t, a),
 
-                 n = getParamValue("tensor", e, t, a);
 
-               return (0, _tfjsCore.unstack)(n, r);
 
-             });
 
-           case "Tile":
 
-             var N = getParamValue("reps", e, t, a);
 
-             return [(0, _tfjsCore.tile)(getParamValue("x", e, t, a), N)];
 
-           case "Split":
 
-           case "SplitV":
 
-             r = getParamValue("axis", e, t, a);
 
-             var x = getParamValue("numOrSizeSplits", e, t, a);
 
-             return (0, _tfjsCore.split)(getParamValue("x", e, t, a), x, r);
 
-           case "ScatterNd":
 
-             o = getParamValue("indices", e, t, a);
 
-             var V = getParamValue("values", e, t, a),
 
-               P = getParamValue("shape", e, t, a);
 
-             return [(0, _tfjsCore.scatterND)(o, V, P)];
 
-           case "GatherNd":
 
-             var b = getParamValue("x", e, t, a);
 
-             o = getParamValue("indices", e, t, a);
 
-             return [(0, _tfjsCore.gatherND)(b, o)];
 
-           case "SparseToDense":
 
-             o = getParamValue("sparseIndices", e, t, a), P = getParamValue("outputShape", e, t, a);
 
-             var T = getParamValue("sparseValues", e, t, a),
 
-               O = getParamValue("defaultValue", e, t, a);
 
-             return [(0, _tfjsCore.sparseToDense)(o, T, P, T.dtype === O.dtype ? O : O.asType(T.dtype))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$14 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "FFT":
 
-             return [(0, _tfjsCore.fft)(getParamValue("x", e, t, a))];
 
-           case "IFFT":
 
-             return [(0, _tfjsCore.ifft)(getParamValue("x", e, t, a))];
 
-           case "RFFT":
 
-             return [(0, _tfjsCore.rfft)(getParamValue("x", e, t, a))];
 
-           case "IRFFT":
 
-             return [(0, _tfjsCore.irfft)(getParamValue("x", e, t, a))];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       },
 
-       executeOp$15 = function (e, t, a) {
 
-         switch (e.op) {
 
-           case "Cast":
 
-             return [(0, _tfjsCore.cast)(getParamValue("x", e, t, a), getParamValue("dtype", e, t, a))];
 
-           case "ExpandDims":
 
-             var r = getParamValue("axis", e, t, a);
 
-             return [(0, _tfjsCore.expandDims)(getParamValue("x", e, t, a), r)];
 
-           case "Squeeze":
 
-             r = getParamValue("axis", e, t, a);
 
-             return [(0, _tfjsCore.squeeze)(getParamValue("x", e, t, a), r)];
 
-           case "Reshape":
 
-             return [(0, _tfjsCore.reshape)(getParamValue("x", e, t, a), getParamValue("shape", e, t, a))];
 
-           case "PadV2":
 
-           case "Pad":
 
-             return [(0, _tfjsCore.pad)(getParamValue("x", e, t, a), split$1(getParamValue("padding", e, t, a), 2), getParamValue("constantValue", e, t, a))];
 
-           case "SpaceToBatchND":
 
-             var n = getParamValue("blockShape", e, t, a),
 
-               s = split$1(getParamValue("paddings", e, t, a), 2);
 
-             return [(0, _tfjsCore.spaceToBatchND)(getParamValue("x", e, t, a), n, s)];
 
-           case "BatchToSpaceND":
 
-             n = getParamValue("blockShape", e, t, a);
 
-             var o = split$1(getParamValue("crops", e, t, a), 2);
 
-             return [(0, _tfjsCore.batchToSpaceND)(getParamValue("x", e, t, a), n, o)];
 
-           case "DepthToSpace":
 
-             var p = getParamValue("blockSize", e, t, a),
 
-               u = getParamValue("dataFormat", e, t, a).toUpperCase();
 
-             return [(0, _tfjsCore.depthToSpace)(getParamValue("x", e, t, a), p, u)];
 
-           default:
 
-             throw TypeError("Node type " + e.op + " is not implemented");
 
-         }
 
-       };
 
-     function executeOp$16(e, t, a) {
 
-       var r = function (e, t, a) {
 
-         switch (e.category) {
 
-           case "arithmetic":
 
-             return executeOp(e, t, a);
 
-           case "basic_math":
 
-             return executeOp$1(e, t, a);
 
-           case "control":
 
-             return executeOp$2(e, t, a);
 
-           case "convolution":
 
-             return executeOp$3(e, t, a);
 
-           case "creation":
 
-             return executeOp$4(e, t, a);
 
-           case "dynamic":
 
-             return executeOp$5(e, t, a);
 
-           case "evaluation":
 
-             return executeOp$6(e, t, a);
 
-           case "image":
 
-             return executeOp$8(e, t, a);
 
-           case "graph":
 
-             return executeOp$7(e, t, a);
 
-           case "logical":
 
-             return executeOp$9(e, t, a);
 
-           case "matrices":
 
-             return executeOp$10(e, t, a);
 
-           case "normalization":
 
-             return executeOp$11(e, t, a);
 
-           case "reduction":
 
-             return executeOp$12(e, t, a);
 
-           case "slice_join":
 
-             return executeOp$13(e, t, a);
 
-           case "spectral":
 
-             return executeOp$14(e, t, a);
 
-           case "transformation":
 
-             return executeOp$15(e, t, a);
 
-           case "custom":
 
-             var r = getRegisteredOp(e.op);
 
-             if (r && r.customExecutor) return r.customExecutor(new NodeValueImpl(e, t, a));
 
-             throw TypeError("Custom op " + e.op + " is not registered.");
 
-           default:
 
-             throw TypeError("Unknown op '" + e.op + "'. File an issue at https://github.com/tensorflow/tfjs/issues so we can add it, or register a custom execution with tf.registerOp()");
 
-         }
 
-       }(e, t, a);
 
-       return r instanceof Promise ? r.then(function (e) {
 
-         return [].concat(e);
 
-       }) : [].concat(r);
 
-     }
 
-     var ExecutionContext = function () {
 
-       function e(e, t) {
 
-         this.weightMap = e, this.tensorArrayMap = t, this.rootContext = {
 
-           id: 0,
 
-           frameName: "",
 
-           iterationId: 0
 
-         }, this.contexts = [this.rootContext], this.lastId = 0, this.generateCurrentContextIds();
 
-       }
 
-       return e.prototype.newFrame = function (e, t) {
 
-         return {
 
-           id: e,
 
-           frameName: t,
 
-           iterationId: 0
 
-         };
 
-       }, Object.defineProperty(e.prototype, "currentContext", {
 
-         get: function () {
 
-           return this.contexts;
 
-         },
 
-         set: function (e) {
 
-           this.contexts !== e && (this.contexts = e, this.generateCurrentContextIds());
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(e.prototype, "currentContextId", {
 
-         get: function () {
 
-           return this._currentContextIds[0];
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(e.prototype, "currentContextIds", {
 
-         get: function () {
 
-           return this._currentContextIds;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), e.prototype.generateCurrentContextIds = function () {
 
-         for (var e = [], t = 0; t < this.contexts.length - 1; t++) {
 
-           var a = this.contexts.slice(0, this.contexts.length - t);
 
-           e.push(this.contextIdforContexts(a));
 
-         }
 
-         e.push(""), this._currentContextIds = e;
 
-       }, e.prototype.contextIdforContexts = function (e) {
 
-         return e ? e.map(function (e) {
 
-           return 0 === e.id && 0 === e.iterationId ? "" : e.frameName + "-" + e.iterationId;
 
-         }).join("/") : "";
 
-       }, e.prototype.enterFrame = function (e) {
 
-         this.contexts && (this.lastId++, this.contexts = this.contexts.slice(), this.contexts.push(this.newFrame(this.lastId, e)), this._currentContextIds.unshift(this.contextIdforContexts(this.contexts)));
 
-       }, e.prototype.exitFrame = function () {
 
-         if (!(this.contexts && this.contexts.length > 1)) throw new Error("Cannot exit frame, the context is empty");
 
-         this.contexts = this.contexts.slice(), this.contexts.splice(-1), this.currentContextIds.shift();
 
-       }, e.prototype.nextIteration = function () {
 
-         if (!(this.contexts && this.contexts.length > 0)) throw new Error("Cannot increase frame iteration, the context is empty");
 
-         this.contexts = this.contexts.slice(), this.lastId++;
 
-         var e = Object.assign({}, this.contexts[this.contexts.length - 1]);
 
-         e.iterationId += 1, e.id = this.lastId, this.contexts.splice(-1, 1, e), this._currentContextIds.splice(0, 1, this.contextIdforContexts(this.contexts));
 
-       }, e.prototype.getWeight = function (e) {
 
-         return this.weightMap[e];
 
-       }, e.prototype.addTensorArray = function (e) {
 
-         this.tensorArrayMap[e.id] = e;
 
-       }, e.prototype.getTensorArray = function (e) {
 
-         return this.tensorArrayMap[e];
 
-       }, e;
 
-     }();
 
-     function getExecutionSubgraph(e, t, a) {
 
-       for (var r = new Set(), n = [], s = null, o = null, p = new Set(), u = t.slice(); u.length > 0;) {
 
-         var i = u.pop();
 
-         (isControlFlow(i) || isDynamicShape(i)) && null == s && (o = (s = i).children.map(function (e) {
 
-           return e.name;
 
-         }).filter(function (e) {
 
-           return r.has(e);
 
-         })), r.add(i.name), null == a[i.name] && null == e[i.name] && (0 !== i.inputs.length ? i.inputs.forEach(function (e) {
 
-           p.has(e.name) || (p.add(e.name), u.push(e));
 
-         }) : n.push(i.name));
 
-       }
 
-       return {
 
-         inputs: e,
 
-         outputs: t,
 
-         usedNodes: r,
 
-         missingInputs: n,
 
-         dynamicNode: s,
 
-         syncInputs: o
 
-       };
 
-     }
 
-     function getNodesInTopologicalOrder(e, t, a) {
 
-       var r = a.usedNodes,
 
-         n = a.inputs,
 
-         s = [];
 
-       Object.keys(n).map(function (t) {
 
-         return e.nodes[t];
 
-       }).forEach(function (e) {
 
-         r.has(e.name) && s.push(e);
 
-       }), e.weights.forEach(function (e) {
 
-         r.has(e.name) && s.push(e);
 
-       });
 
-       for (var o = new Set(), p = []; s.length > 0;) {
 
-         var u = s.pop();
 
-         o.add(u.name), t[u.name] || p.push(u), u.children.forEach(function (e) {
 
-           !o.has(e.name) && r.has(e.name) && e.inputs.every(function (e) {
 
-             return o.has(e.name);
 
-           }) && s.push(e);
 
-         });
 
-       }
 
-       return p;
 
-     }
 
-     var CONTROL_FLOW_OPS = ["Switch", "Merge", "Enter", "Exit", "NextIteration"],
 
-       DYNAMIC_SHAPE_OPS = ["NonMaxSuppressionV2", "NonMaxSuppressionV3", "Where"];
 
-     function isControlFlow(e) {
 
-       return CONTROL_FLOW_OPS.indexOf(e.op) >= 0;
 
-     }
 
-     function isDynamicShape(e) {
 
-       return DYNAMIC_SHAPE_OPS.indexOf(e.op) >= 0;
 
-     }
 
-     var GraphExecutor = function () {
 
-       function e(e) {
 
-         this.graph = e, this.compiledMap = new Map(), this._weightMap = {}, this.SEPERATOR = ",", this.placeholders = e.placeholders, this._outputs = e.outputs;
 
-       }
 
-       return Object.defineProperty(e.prototype, "weightMap", {
 
-         get: function () {
 
-           return this._weightMap;
 
-         },
 
-         set: function (e) {
 
-           var t = Object.keys(e).map(function (t) {
 
-             return e[t].map(function (e) {
 
-               return e.id;
 
-             });
 
-           });
 
-           this.weightIds = [].concat.apply([], t), this._weightMap = e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(e.prototype, "inputs", {
 
-         get: function () {
 
-           return this.placeholders.map(function (e) {
 
-             return {
 
-               name: e.name,
 
-               shape: e.attrParams.shape ? e.attrParams.shape.value : void 0,
 
-               dtype: e.attrParams.dtype ? e.attrParams.dtype.value : void 0
 
-             };
 
-           });
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(e.prototype, "outputs", {
 
-         get: function () {
 
-           return this._outputs.map(function (e) {
 
-             return {
 
-               name: e.name,
 
-               shape: e.attrParams.shape ? e.attrParams.shape.value : void 0,
 
-               dtype: e.attrParams.dtype ? e.attrParams.dtype.value : void 0
 
-             };
 
-           });
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(e.prototype, "inputNodes", {
 
-         get: function () {
 
-           return this.placeholders.map(function (e) {
 
-             return e.name;
 
-           });
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(e.prototype, "outputNodes", {
 
-         get: function () {
 
-           return this.outputs.map(function (e) {
 
-             return e.name;
 
-           });
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), e.prototype.getCompilationKey = function (e, t) {
 
-         var a = e.map(function (e) {
 
-           return e.name;
 
-         }).sort(),
 
-           r = t.map(function (e) {
 
-             return e.name;
 
-           }).sort();
 
-         return a.join(this.SEPERATOR) + "--" + r.join(this.SEPERATOR);
 
-       }, e.prototype.compile = function (e, t) {
 
-         var a = getExecutionSubgraph(e, t, this.weightMap),
 
-           r = a.missingInputs,
 
-           n = a.dynamicNode,
 
-           s = a.syncInputs;
 
-         if (null != n) throw new Error("This execution contains the node '" + n.name + "', which has the dynamic op '" + n.op + "'. Please use model.executeAsync() instead. Alternatively, to avoid the dynamic ops, specify the inputs [" + s + "]");
 
-         if (r.length > 0) {
 
-           var o = t.map(function (e) {
 
-             return e.name;
 
-           }),
 
-             p = Object.keys(e);
 
-           throw new Error("Cannot compute the outputs [" + o + "] from the provided inputs [" + p + "]. Missing the following inputs: [" + r + "]");
 
-         }
 
-         return getNodesInTopologicalOrder(this.graph, this.weightMap, a);
 
-       }, e.prototype.execute = function (e, t) {
 
-         var a = this,
 
-           r = Object.keys(e).sort();
 
-         this.checkInputs(e), this.checkInputShapeAndType(e), this.checkOutputs(t);
 
-         var n = r.map(function (e) {
 
-           return a.graph.nodes[e];
 
-         }),
 
-           s = t.map(function (e) {
 
-             return a.graph.nodes[parseNodeName(e)[0]];
 
-           }),
 
-           o = this.getCompilationKey(n, s),
 
-           p = this.compiledMap.get(o);
 
-         null == p && (p = this.compile(e, s), this.compiledMap.set(o, p));
 
-         var u = {};
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var r = new ExecutionContext(a._weightMap, u),
 
-             n = __assign({}, a.weightMap);
 
-           Object.keys(e).forEach(function (t) {
 
-             n[t] = [e[t]];
 
-           });
 
-           for (var s = a.getFrozenTensorIds(n), o = {}, i = 0; i < p.length; i++) {
 
-             var m = p[i];
 
-             if (!n[m.name]) {
 
-               var l = executeOp$16(m, n, r);
 
-               if (l instanceof Promise) throw new Error("The execution of the op '" + m.op + "' returned a promise. Please use model.executeAsync() instead.");
 
-               n[m.name] = l, a.checkTensorForDisposal(m.name, m, n, r, s, t, o);
 
-             }
 
-           }
 
-           return t.map(function (e) {
 
-             return getTensor(e, n, r);
 
-           });
 
-         });
 
-       }, e.prototype.getFrozenTensorIds = function (e) {
 
-         var t = [].concat.apply([], Object.keys(e).map(function (t) {
 
-           return e[t];
 
-         }).map(function (e) {
 
-           return e.map(function (e) {
 
-             return e.id;
 
-           });
 
-         }));
 
-         return new Set(t);
 
-       }, e.prototype.checkTensorForDisposal = function (e, t, a, r, n, s, o) {
 
-         "control" !== t.category && -1 === s.indexOf(e) && (a[e].forEach(function (e) {
 
-           null != e && (o[e.id] = (o[e.id] || 0) + t.children.length);
 
-         }), t.inputs.forEach(function (e) {
 
-           if ("control" !== e.category) {
 
-             var t = getTensorsForCurrentContenxt(e.name, a, r);
 
-             null != t && t.forEach(function (e) {
 
-               if (e && !n.has(e.id)) {
 
-                 var t = o[e.id];
 
-                 1 === t ? (e.dispose(), delete o[e.id]) : null != t && o[e.id]--;
 
-               }
 
-             });
 
-           }
 
-         }));
 
-       }, e.prototype.executeAsync = function (e, t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           var a,
 
-             r,
 
-             n,
 
-             s,
 
-             o,
 
-             p,
 
-             u = this;
 
-           return __generator(this, function (i) {
 
-             switch (i.label) {
 
-               case 0:
 
-                 return this.checkInputs(e), this.checkInputShapeAndType(e), this.checkOutputs(t), a = {}, r = new ExecutionContext(this._weightMap, a), [4, this.executeWithControlFlow(e, r, t)];
 
-               case 1:
 
-                 return n = i.sent(), s = t.map(function (e) {
 
-                   return getTensor(e, n, r);
 
-                 }), o = new Set(s.map(function (e) {
 
-                   return e.id;
 
-                 })), p = new Set(Object.keys(e).map(function (t) {
 
-                   return e[t].id;
 
-                 })), Object.keys(n).forEach(function (e) {
 
-                   n[e].forEach(function (e) {
 
-                     !e || e.isDisposed || o.has(e.id) || p.has(e.id) || -1 !== u.weightIds.indexOf(e.id) || e.dispose();
 
-                   });
 
-                 }), [2, s];
 
-             }
 
-           });
 
-         });
 
-       }, e.prototype.executeWithControlFlow = function (e, t, a) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           var r,
 
-             n,
 
-             s,
 
-             o,
 
-             p,
 
-             u,
 
-             i,
 
-             m,
 
-             l,
 
-             c,
 
-             d,
 
-             y,
 
-             f,
 
-             g,
 
-             h,
 
-             N,
 
-             x = this;
 
-           return __generator(this, function (V) {
 
-             switch (V.label) {
 
-               case 0:
 
-                 r = Object.keys(e), n = r.map(function (e) {
 
-                   return x.graph.nodes[e];
 
-                 }), s = a.map(function (e) {
 
-                   return x.graph.nodes[parseNodeName(e)[0]];
 
-                 }), o = getExecutionSubgraph(e, s, this.weightMap), p = o.usedNodes, u = o.missingInputs, i = o.dynamicNode, m = o.syncInputs, l = n.concat(this.graph.weights).map(function (e) {
 
-                   return {
 
-                     node: e,
 
-                     contexts: t.currentContext
 
-                   };
 
-                 }), c = __assign({}, this.weightMap), Object.keys(e).forEach(function (t) {
 
-                   c[t] = [e[t]];
 
-                 }), d = {}, y = this.getFrozenTensorIds(c), f = {}, V.label = 1;
 
-               case 1:
 
-                 return l.length > 0 ? (g = this.processStack(n, l, t, c, f, y, a, d, p), [4, Promise.all(g)]) : [3, 3];
 
-               case 2:
 
-                 return V.sent(), [3, 1];
 
-               case 3:
 
-                 if (null == i && console.warn("This model execution did not contain any nodes with control flow or dynamic output shapes. You can use model.execute() instead."), (h = s.filter(function (e) {
 
-                   return !isControlFlow(e) && !getTensor(e.name, c, t);
 
-                 }).map(function (e) {
 
-                   return e.name;
 
-                 })).length > 0) throw N = "", null != i && (N = "Alternatively, to avoid the dynamic ops, use model.execute() and specify the inputs [" + m + "]"), new Error("Cannot compute the outputs [" + h + "] from the provided inputs [" + r + "]. Consider providing the following inputs: [" + u + "]. " + N);
 
-                 return [2, c];
 
-             }
 
-           });
 
-         });
 
-       }, e.prototype.processStack = function (e, t, a, r, n, s, o, p, u) {
 
-         for (var i = this, m = [], l = function () {
 
-           var l = t.pop();
 
-           a.currentContext = l.contexts;
 
-           var d = "";
 
-           if ("Enter" === l.node.op && getParamValue("isConstant", l.node, r, a) && (d = getNodeNameAndIndex(l.node.name, a)[0]), -1 === e.indexOf(l.node)) {
 
-             var y = executeOp$16(l.node, r, a);
 
-             d || (d = getNodeNameAndIndex(l.node.name, a)[0]);
 
-             var f = a.currentContext;
 
-             y instanceof Promise ? m.push(y.then(function (e) {
 
-               return r[d] = e, a.currentContext = f, i.checkTensorForDisposal(d, l.node, r, a, s, o, p), i.processChildNodes(l.node, t, a, r, n, u), e;
 
-             })) : (r[d] = y, c.checkTensorForDisposal(d, l.node, r, a, s, o, p), c.processChildNodes(l.node, t, a, r, n, u));
 
-           } else c.processChildNodes(l.node, t, a, r, n, u);
 
-         }, c = this; t.length > 0;) l();
 
-         return m;
 
-       }, e.prototype.processChildNodes = function (e, t, a, r, n, s) {
 
-         e.children.forEach(function (e) {
 
-           var o = getNodeNameAndIndex(e.name, a)[0];
 
-           !n[o] && s.has(e.name) && ("Merge" === e.op ? e.inputNames.some(function (e) {
 
-             return !!getTensor(e, r, a);
 
-           }) && (n[o] = !0, t.push({
 
-             contexts: a.currentContext,
 
-             node: e
 
-           })) : e.inputNames.every(function (e) {
 
-             return !!getTensor(e, r, a);
 
-           }) && (n[o] = !0, t.push({
 
-             contexts: a.currentContext,
 
-             node: e
 
-           })));
 
-         });
 
-       }, e.prototype.dispose = function () {
 
-         var e = this;
 
-         Object.keys(this.weightMap).forEach(function (t) {
 
-           return e.weightMap[t].forEach(function (e) {
 
-             return e.dispose();
 
-           });
 
-         });
 
-       }, e.prototype.checkInputShapeAndType = function (e) {
 
-         var t = this;
 
-         Object.keys(e).forEach(function (a) {
 
-           var r = e[a],
 
-             n = t.graph.nodes[a];
 
-           if (n.attrParams.shape && n.attrParams.shape.value) {
 
-             var s = n.attrParams.shape.value,
 
-               o = s.length === r.shape.length && r.shape.every(function (e, t) {
 
-                 return -1 === s[t] || s[t] === e;
 
-               });
 
-             _tfjsCore.util.assert(o, function () {
 
-               return "The shape of dict['" + n.name + "'] provided in model.execute(dict) must be [" + s + "], but was [" + r.shape + "]";
 
-             });
 
-           }
 
-           n.attrParams.dtype && n.attrParams.dtype.value && _tfjsCore.util.assert(r.dtype === n.attrParams.dtype.value, function () {
 
-             return "The dtype of dict['" + n.name + "'] provided in model.execute(dict) must be " + n.attrParams.dtype.value + ", but was " + r.dtype;
 
-           });
 
-         });
 
-       }, e.prototype.checkInputs = function (e) {
 
-         var t = this,
 
-           a = Object.keys(e).filter(function (e) {
 
-             return !t.graph.nodes[e];
 
-           });
 
-         if (a.length > 0) throw new Error("The dict provided in model.execute(dict) has keys: [" + a + "] that are not part of graph");
 
-       }, e.prototype.checkOutputs = function (e) {
 
-         var t = this;
 
-         e.forEach(function (e) {
 
-           var a = parseNodeName(e)[0];
 
-           if (!t.graph.nodes[a]) throw new Error("The output '" + e + "' is not found in the graph");
 
-         });
 
-       }, e;
 
-     }(),
 
-       TFHUB_SEARCH_PARAM = "?tfjs-format=file",
 
-       DEFAULT_MODEL_NAME = "model.json",
 
-       GraphModel = function () {
 
-         function e(e, t) {
 
-           void 0 === t && (t = {}), this.modelUrl = e, this.loadOptions = t, this.version = "n/a", null == t && (this.loadOptions = {});
 
-         }
 
-         return Object.defineProperty(e.prototype, "modelVersion", {
 
-           get: function () {
 
-             return this.version;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(e.prototype, "inputNodes", {
 
-           get: function () {
 
-             return this.executor.inputNodes;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(e.prototype, "outputNodes", {
 
-           get: function () {
 
-             return this.executor.outputNodes;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(e.prototype, "inputs", {
 
-           get: function () {
 
-             return this.executor.inputs;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(e.prototype, "outputs", {
 
-           get: function () {
 
-             return this.executor.outputs;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(e.prototype, "weights", {
 
-           get: function () {
 
-             return this.executor.weightMap;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), e.prototype.findIOHandler = function () {
 
-           var e = this.modelUrl;
 
-           if (null != e.load) this.handler = e; else if (null != this.loadOptions.requestInit) this.handler = _tfjsCore.io.browserHTTPRequest(e, this.loadOptions); else {
 
-             var t = _tfjsCore.io.getLoadHandlers(e, this.loadOptions.onProgress);
 
-             if (0 === t.length) t.push(_tfjsCore.io.browserHTTPRequest(e, this.loadOptions)); else if (t.length > 1) throw new Error("Found more than one (" + t.length + ") load handlers for URL '" + [e] + "'");
 
-             this.handler = t[0];
 
-           }
 
-         }, e.prototype.load = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var e, t, a;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   if (this.findIOHandler(), null == this.handler.load) throw new Error("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");
 
-                   return [4, this.handler.load()];
 
-                 case 1:
 
-                   return e = r.sent(), t = e.modelTopology, this.version = t.versions.producer + "." + t.versions.minConsumer, a = _tfjsCore.io.decodeWeights(e.weightData, e.weightSpecs), this.executor = new GraphExecutor(OperationMapper.Instance.transformGraph(t)), this.executor.weightMap = this.convertTensorMapToTensorsMap(a), [2, !0];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.predict = function (e, t) {
 
-           return this.execute(e, this.outputNodes);
 
-         }, e.prototype.normalizeInputs = function (e) {
 
-           if (!(e instanceof _tfjsCore.Tensor || Array.isArray(e))) return e;
 
-           if ((e = Array.isArray(e) ? e : [e]).length !== this.inputNodes.length) throw new Error("Input tensor count mismatch,the graph model has " + this.inputNodes.length + " placeholders, while there are " + e.length + " input tensors.");
 
-           return this.inputNodes.reduce(function (t, a, r) {
 
-             return t[a] = e[r], t;
 
-           }, {});
 
-         }, e.prototype.normalizeOutputs = function (e) {
 
-           return e = e || this.outputNodes, Array.isArray(e) ? e : [e];
 
-         }, e.prototype.execute = function (e, t) {
 
-           e = this.normalizeInputs(e), t = this.normalizeOutputs(t);
 
-           var a = this.executor.execute(e, t);
 
-           return a.length > 1 ? a : a[0];
 
-         }, e.prototype.executeAsync = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var a;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return e = this.normalizeInputs(e), t = this.normalizeOutputs(t), [4, this.executor.executeAsync(e, t)];
 
-                 case 1:
 
-                   return [2, (a = r.sent()).length > 1 ? a : a[0]];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.convertTensorMapToTensorsMap = function (e) {
 
-           return Object.keys(e).reduce(function (t, a) {
 
-             return t[a] = [e[a]], t;
 
-           }, {});
 
-         }, e.prototype.dispose = function () {
 
-           this.executor.dispose();
 
-         }, e;
 
-       }();
 
-     exports.GraphModel = GraphModel;
 
-     function loadGraphModel(e, t) {
 
-       return void 0 === t && (t = {}), __awaiter(this, void 0, void 0, function () {
 
-         var a;
 
-         return __generator(this, function (r) {
 
-           switch (r.label) {
 
-             case 0:
 
-               if (null == e) throw new Error("modelUrl in loadGraphModel() cannot be null. Please provide a url or an IOHandler that loads the model");
 
-               return null == t && (t = {}), t.fromTFHub && null == e.load && (e.endsWith("/") || (e += "/"), e = "" + e + DEFAULT_MODEL_NAME + TFHUB_SEARCH_PARAM), [4, (a = new GraphModel(e, t)).load()];
 
-             case 1:
 
-               return r.sent(), [2, a];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     var version = "1.3.1";
 
-     exports.version_converter = version;
 
-   }, { "@tensorflow/tfjs-core": "node_modules/@tensorflow/tfjs-core/dist/tf-core.esm.js", "buffer": "node_modules/buffer/index.js" }], "node_modules/@tensorflow-models/posenet/dist/posenet.esm.js": [function (require, module, exports) {
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.decodeMultiplePoses = decodeMultiplePoses;
 
-     exports.decodeSinglePose = decodeSinglePose;
 
-     exports.load = load;
 
-     exports.getAdjacentKeyPoints = getAdjacentKeyPoints;
 
-     exports.getBoundingBox = getBoundingBox;
 
-     exports.getBoundingBoxPoints = getBoundingBoxPoints;
 
-     exports.scaleAndFlipPoses = scaleAndFlipPoses;
 
-     exports.scalePose = scalePose;
 
-     exports.PoseNet = exports.poseChain = exports.partNames = exports.partIds = exports.partChannels = exports.MobileNet = void 0;
 
-     var tf = _interopRequireWildcard(require("@tensorflow/tfjs-core"));
 
-     var _tfjsConverter = require("@tensorflow/tfjs-converter");
 
-     function _getRequireWildcardCache() { if (typeof WeakMap !== "function") return null; var cache = new WeakMap(); _getRequireWildcardCache = function () { return cache; }; return cache; }
 
-     function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; if (obj != null) { var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
 
-     /**
 
-         * @license
 
-         * Copyright 2019 Google LLC. All Rights Reserved.
 
-         * Licensed under the Apache License, Version 2.0 (the "License");
 
-         * you may not use this file except in compliance with the License.
 
-         * You may obtain a copy of the License at
 
-         *
 
-         * http://www.apache.org/licenses/LICENSE-2.0
 
-         *
 
-         * Unless required by applicable law or agreed to in writing, software
 
-         * distributed under the License is distributed on an "AS IS" BASIS,
 
-         * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-         * See the License for the specific language governing permissions and
 
-         * limitations under the License.
 
-         * =============================================================================
 
-         */
 
-     var extendStatics = function (e, t) {
 
-       return (extendStatics = Object.setPrototypeOf || {
 
-         __proto__: []
 
-       } instanceof Array && function (e, t) {
 
-         e.__proto__ = t;
 
-       } || function (e, t) {
 
-         for (var n in t) t.hasOwnProperty(n) && (e[n] = t[n]);
 
-       })(e, t);
 
-     };
 
-     function __extends(e, t) {
 
-       function n() {
 
-         this.constructor = e;
 
-       }
 
-       extendStatics(e, t), e.prototype = null === t ? Object.create(t) : (n.prototype = t.prototype, new n());
 
-     }
 
-     var __assign = function () {
 
-       return (__assign = Object.assign || function (e) {
 
-         for (var t, n = 1, r = arguments.length; n < r; n++) for (var o in t = arguments[n]) Object.prototype.hasOwnProperty.call(t, o) && (e[o] = t[o]);
 
-         return e;
 
-       }).apply(this, arguments);
 
-     };
 
-     function __awaiter(e, t, n, r) {
 
-       return new (n || (n = Promise))(function (o, i) {
 
-         function s(e) {
 
-           try {
 
-             a(r.next(e));
 
-           } catch (e) {
 
-             i(e);
 
-           }
 
-         }
 
-         function u(e) {
 
-           try {
 
-             a(r.throw(e));
 
-           } catch (e) {
 
-             i(e);
 
-           }
 
-         }
 
-         function a(e) {
 
-           e.done ? o(e.value) : new n(function (t) {
 
-             t(e.value);
 
-           }).then(s, u);
 
-         }
 
-         a((r = r.apply(e, t || [])).next());
 
-       });
 
-     }
 
-     function __generator(e, t) {
 
-       var n,
 
-         r,
 
-         o,
 
-         i,
 
-         s = {
 
-           label: 0,
 
-           sent: function () {
 
-             if (1 & o[0]) throw o[1];
 
-             return o[1];
 
-           },
 
-           trys: [],
 
-           ops: []
 
-         };
 
-       return i = {
 
-         next: u(0),
 
-         throw: u(1),
 
-         return: u(2)
 
-       }, "function" == typeof Symbol && (i[Symbol.iterator] = function () {
 
-         return this;
 
-       }), i;
 
-       function u(i) {
 
-         return function (u) {
 
-           return function (i) {
 
-             if (n) throw new TypeError("Generator is already executing.");
 
-             for (; s;) try {
 
-               if (n = 1, r && (o = 2 & i[0] ? r.return : i[0] ? r.throw || ((o = r.return) && o.call(r), 0) : r.next) && !(o = o.call(r, i[1])).done) return o;
 
-               switch (r = 0, o && (i = [2 & i[0], o.value]), i[0]) {
 
-                 case 0:
 
-                 case 1:
 
-                   o = i;
 
-                   break;
 
-                 case 4:
 
-                   return s.label++, {
 
-                     value: i[1],
 
-                     done: !1
 
-                   };
 
-                 case 5:
 
-                   s.label++, r = i[1], i = [0];
 
-                   continue;
 
-                 case 7:
 
-                   i = s.ops.pop(), s.trys.pop();
 
-                   continue;
 
-                 default:
 
-                   if (!(o = (o = s.trys).length > 0 && o[o.length - 1]) && (6 === i[0] || 2 === i[0])) {
 
-                     s = 0;
 
-                     continue;
 
-                   }
 
-                   if (3 === i[0] && (!o || i[1] > o[0] && i[1] < o[3])) {
 
-                     s.label = i[1];
 
-                     break;
 
-                   }
 
-                   if (6 === i[0] && s.label < o[1]) {
 
-                     s.label = o[1], o = i;
 
-                     break;
 
-                   }
 
-                   if (o && s.label < o[2]) {
 
-                     s.label = o[2], s.ops.push(i);
 
-                     break;
 
-                   }
 
-                   o[2] && s.ops.pop(), s.trys.pop();
 
-                   continue;
 
-               }
 
-               i = t.call(e, s);
 
-             } catch (e) {
 
-               i = [6, e], r = 0;
 
-             } finally {
 
-                 n = o = 0;
 
-               }
 
-             if (5 & i[0]) throw i[1];
 
-             return {
 
-               value: i[0] ? i[1] : void 0,
 
-               done: !0
 
-             };
 
-           }([i, u]);
 
-         };
 
-       }
 
-     }
 
-     var BaseModel = function () {
 
-       function e(e, t) {
 
-         this.model = e, this.outputStride = t;
 
-         var n = this.model.inputs[0].shape;
 
-         tf.util.assert(-1 === n[1] && -1 === n[2], function () {
 
-           return "Input shape [" + n[1] + ", " + n[2] + "] must both be equal to or -1";
 
-         });
 
-       }
 
-       return e.prototype.predict = function (e) {
 
-         var t = this;
 
-         return (0, tf.tidy)(function () {
 
-           var n = t.preprocessInput(e.toFloat()).expandDims(0),
 
-             r = t.model.predict(n).map(function (e) {
 
-               return e.squeeze([0]);
 
-             }),
 
-             o = t.nameOutputResults(r);
 
-           return {
 
-             heatmapScores: o.heatmap.sigmoid(),
 
-             offsets: o.offsets,
 
-             displacementFwd: o.displacementFwd,
 
-             displacementBwd: o.displacementBwd
 
-           };
 
-         });
 
-       }, e.prototype.dispose = function () {
 
-         this.model.dispose();
 
-       }, e;
 
-     }(),
 
-       MobileNet = function (e) {
 
-         function t() {
 
-           return null !== e && e.apply(this, arguments) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.preprocessInput = function (e) {
 
-           return (0, tf.tidy)(function () {
 
-             return (0, tf.div)(e, 127.5).sub(1);
 
-           });
 
-         }, t.prototype.nameOutputResults = function (e) {
 
-           return {
 
-             offsets: e[0],
 
-             heatmap: e[1],
 
-             displacementFwd: e[2],
 
-             displacementBwd: e[3]
 
-           };
 
-         }, t;
 
-       }(BaseModel);
 
-     exports.MobileNet = MobileNet;
 
-     function half(e) {
 
-       return Math.floor(e / 2);
 
-     }
 
-     var MaxHeap = function () {
 
-       function e(e, t) {
 
-         this.priorityQueue = new Array(e), this.numberOfElements = -1, this.getElementValue = t;
 
-       }
 
-       return e.prototype.enqueue = function (e) {
 
-         this.priorityQueue[++this.numberOfElements] = e, this.swim(this.numberOfElements);
 
-       }, e.prototype.dequeue = function () {
 
-         var e = this.priorityQueue[0];
 
-         return this.exchange(0, this.numberOfElements--), this.sink(0), this.priorityQueue[this.numberOfElements + 1] = null, e;
 
-       }, e.prototype.empty = function () {
 
-         return -1 === this.numberOfElements;
 
-       }, e.prototype.size = function () {
 
-         return this.numberOfElements + 1;
 
-       }, e.prototype.all = function () {
 
-         return this.priorityQueue.slice(0, this.numberOfElements + 1);
 
-       }, e.prototype.max = function () {
 
-         return this.priorityQueue[0];
 
-       }, e.prototype.swim = function (e) {
 
-         for (; e > 0 && this.less(half(e), e);) this.exchange(e, half(e)), e = half(e);
 
-       }, e.prototype.sink = function (e) {
 
-         for (; 2 * e <= this.numberOfElements;) {
 
-           var t = 2 * e;
 
-           if (t < this.numberOfElements && this.less(t, t + 1) && t++, !this.less(e, t)) break;
 
-           this.exchange(e, t), e = t;
 
-         }
 
-       }, e.prototype.getValueAt = function (e) {
 
-         return this.getElementValue(this.priorityQueue[e]);
 
-       }, e.prototype.less = function (e, t) {
 
-         return this.getValueAt(e) < this.getValueAt(t);
 
-       }, e.prototype.exchange = function (e, t) {
 
-         var n = this.priorityQueue[e];
 
-         this.priorityQueue[e] = this.priorityQueue[t], this.priorityQueue[t] = n;
 
-       }, e;
 
-     }();
 
-     function scoreIsMaximumInLocalWindow(e, t, n, r, o, i) {
 
-       for (var s = i.shape, u = s[0], a = s[1], l = !0, p = Math.max(n - o, 0), c = Math.min(n + o + 1, u), f = p; f < c; ++f) {
 
-         for (var d = Math.max(r - o, 0), h = Math.min(r + o + 1, a), m = d; m < h; ++m) if (i.get(f, m, e) > t) {
 
-           l = !1;
 
-           break;
 
-         }
 
-         if (!l) break;
 
-       }
 
-       return l;
 
-     }
 
-     function buildPartWithScoreQueue(e, t, n) {
 
-       for (var r = n.shape, o = r[0], i = r[1], s = r[2], u = new MaxHeap(o * i * s, function (e) {
 
-         return e.score;
 
-       }), a = 0; a < o; ++a) for (var l = 0; l < i; ++l) for (var p = 0; p < s; ++p) {
 
-         var c = n.get(a, l, p);
 
-         c < e || scoreIsMaximumInLocalWindow(p, c, a, l, t, n) && u.enqueue({
 
-           score: c,
 
-           part: {
 
-             heatmapY: a,
 
-             heatmapX: l,
 
-             id: p
 
-           }
 
-         });
 
-       }
 
-       return u;
 
-     }
 
-     var partNames = ["nose", "leftEye", "rightEye", "leftEar", "rightEar", "leftShoulder", "rightShoulder", "leftElbow", "rightElbow", "leftWrist", "rightWrist", "leftHip", "rightHip", "leftKnee", "rightKnee", "leftAnkle", "rightAnkle"],
 
-       NUM_KEYPOINTS = partNames.length,
 
-       partIds = partNames.reduce(function (e, t, n) {
 
-         return e[t] = n, e;
 
-       }, {}),
 
-       connectedPartNames = [["leftHip", "leftShoulder"], ["leftElbow", "leftShoulder"], ["leftElbow", "leftWrist"], ["leftHip", "leftKnee"], ["leftKnee", "leftAnkle"], ["rightHip", "rightShoulder"], ["rightElbow", "rightShoulder"], ["rightElbow", "rightWrist"], ["rightHip", "rightKnee"], ["rightKnee", "rightAnkle"], ["leftShoulder", "rightShoulder"], ["leftHip", "rightHip"]],
 
-       poseChain = [["nose", "leftEye"], ["leftEye", "leftEar"], ["nose", "rightEye"], ["rightEye", "rightEar"], ["nose", "leftShoulder"], ["leftShoulder", "leftElbow"], ["leftElbow", "leftWrist"], ["leftShoulder", "leftHip"], ["leftHip", "leftKnee"], ["leftKnee", "leftAnkle"], ["nose", "rightShoulder"], ["rightShoulder", "rightElbow"], ["rightElbow", "rightWrist"], ["rightShoulder", "rightHip"], ["rightHip", "rightKnee"], ["rightKnee", "rightAnkle"]],
 
-       connectedPartIndices = connectedPartNames.map(function (e) {
 
-         var t = e[0],
 
-           n = e[1];
 
-         return [partIds[t], partIds[n]];
 
-       }),
 
-       partChannels = ["left_face", "right_face", "right_upper_leg_front", "right_lower_leg_back", "right_upper_leg_back", "left_lower_leg_front", "left_upper_leg_front", "left_upper_leg_back", "left_lower_leg_back", "right_feet", "right_lower_leg_front", "left_feet", "torso_front", "torso_back", "right_upper_arm_front", "right_upper_arm_back", "right_lower_arm_back", "left_lower_arm_front", "left_upper_arm_front", "left_upper_arm_back", "left_lower_arm_back", "right_hand", "right_lower_arm_front", "left_hand"];
 
-     exports.partChannels = partChannels;
 
-     exports.poseChain = poseChain;
 
-     exports.partIds = partIds;
 
-     exports.partNames = partNames;
 
-     function getOffsetPoint(e, t, n, r) {
 
-       return {
 
-         y: r.get(e, t, n),
 
-         x: r.get(e, t, n + NUM_KEYPOINTS)
 
-       };
 
-     }
 
-     function getImageCoords(e, t, n) {
 
-       var r = getOffsetPoint(e.heatmapY, e.heatmapX, e.id, n),
 
-         o = r.y,
 
-         i = r.x;
 
-       return {
 
-         x: e.heatmapX * t + i,
 
-         y: e.heatmapY * t + o
 
-       };
 
-     }
 
-     function clamp(e, t, n) {
 
-       return e < t ? t : e > n ? n : e;
 
-     }
 
-     function squaredDistance(e, t, n, r) {
 
-       var o = n - e,
 
-         i = r - t;
 
-       return o * o + i * i;
 
-     }
 
-     function addVectors(e, t) {
 
-       return {
 
-         x: e.x + t.x,
 
-         y: e.y + t.y
 
-       };
 
-     }
 
-     var parentChildrenTuples = poseChain.map(function (e) {
 
-       var t = e[0],
 
-         n = e[1];
 
-       return [partIds[t], partIds[n]];
 
-     }),
 
-       parentToChildEdges = parentChildrenTuples.map(function (e) {
 
-         return e[1];
 
-       }),
 
-       childToParentEdges = parentChildrenTuples.map(function (e) {
 
-         return e[0];
 
-       });
 
-     function getDisplacement(e, t, n) {
 
-       var r = n.shape[2] / 2;
 
-       return {
 
-         y: n.get(t.y, t.x, e),
 
-         x: n.get(t.y, t.x, r + e)
 
-       };
 
-     }
 
-     function getStridedIndexNearPoint(e, t, n, r) {
 
-       return {
 
-         y: clamp(Math.round(e.y / t), 0, n - 1),
 
-         x: clamp(Math.round(e.x / t), 0, r - 1)
 
-       };
 
-     }
 
-     function traverseToTargetKeypoint(e, t, n, r, o, i, s, u) {
 
-       void 0 === u && (u = 2);
 
-       for (var a = r.shape, l = a[0], p = a[1], c = getDisplacement(e, getStridedIndexNearPoint(t.position, i, l, p), s), f = addVectors(t.position, c), d = 0; d < u; d++) {
 
-         var h = getStridedIndexNearPoint(f, i, l, p),
 
-           m = getOffsetPoint(h.y, h.x, n, o);
 
-         f = addVectors({
 
-           x: h.x * i,
 
-           y: h.y * i
 
-         }, {
 
-           x: m.x,
 
-           y: m.y
 
-         });
 
-       }
 
-       var g = getStridedIndexNearPoint(f, i, l, p),
 
-         _ = r.get(g.y, g.x, n);
 
-       return {
 
-         position: f,
 
-         part: partNames[n],
 
-         score: _
 
-       };
 
-     }
 
-     function decodePose(e, t, n, r, o, i) {
 
-       var s = t.shape[2],
 
-         u = parentToChildEdges.length,
 
-         a = new Array(s),
 
-         l = e.part,
 
-         p = e.score,
 
-         c = getImageCoords(l, r, n);
 
-       a[l.id] = {
 
-         score: p,
 
-         part: partNames[l.id],
 
-         position: c
 
-       };
 
-       for (var f = u - 1; f >= 0; --f) {
 
-         var d = parentToChildEdges[f],
 
-           h = childToParentEdges[f];
 
-         a[d] && !a[h] && (a[h] = traverseToTargetKeypoint(f, a[d], h, t, n, r, i));
 
-       }
 
-       for (f = 0; f < u; ++f) {
 
-         d = childToParentEdges[f], h = parentToChildEdges[f];
 
-         a[d] && !a[h] && (a[h] = traverseToTargetKeypoint(f, a[d], h, t, n, r, o));
 
-       }
 
-       return a;
 
-     }
 
-     function withinNmsRadiusOfCorrespondingPoint(e, t, n, r) {
 
-       var o = n.x,
 
-         i = n.y;
 
-       return e.some(function (e) {
 
-         var n = e.keypoints[r].position;
 
-         return squaredDistance(i, o, n.y, n.x) <= t;
 
-       });
 
-     }
 
-     function getInstanceScore(e, t, n) {
 
-       return n.reduce(function (n, r, o) {
 
-         var i = r.position,
 
-           s = r.score;
 
-         return withinNmsRadiusOfCorrespondingPoint(e, t, i, o) || (n += s), n;
 
-       }, 0) / n.length;
 
-     }
 
-     var kLocalMaximumRadius = 1;
 
-     function decodeMultiplePoses(e, t, n, r, o, i, s, u) {
 
-       void 0 === s && (s = .5), void 0 === u && (u = 20);
 
-       for (var a = [], l = buildPartWithScoreQueue(s, kLocalMaximumRadius, e), p = u * u; a.length < i && !l.empty();) {
 
-         var c = l.dequeue();
 
-         if (!withinNmsRadiusOfCorrespondingPoint(a, p, getImageCoords(c.part, o, t), c.part.id)) {
 
-           var f = decodePose(c, e, t, o, n, r),
 
-             d = getInstanceScore(a, p, f);
 
-           a.push({
 
-             keypoints: f,
 
-             score: d
 
-           });
 
-         }
 
-       }
 
-       return a;
 
-     }
 
-     function mod(e, t) {
 
-       return (0, tf.tidy)(function () {
 
-         var n = e.div((0, tf.scalar)(t, "int32"));
 
-         return e.sub(n.mul((0, tf.scalar)(t, "int32")));
 
-       });
 
-     }
 
-     function argmax2d(e) {
 
-       var t = e.shape,
 
-         n = t[0],
 
-         r = t[1],
 
-         o = t[2];
 
-       return (0, tf.tidy)(function () {
 
-         var t = e.reshape([n * r, o]).argMax(0),
 
-           i = t.div((0, tf.scalar)(r, "int32")).expandDims(1),
 
-           s = mod(t, r).expandDims(1);
 
-         return (0, tf.concat)([i, s], 1);
 
-       });
 
-     }
 
-     function getPointsConfidence(e, t) {
 
-       for (var n = t.shape[0], r = new Float32Array(n), o = 0; o < n; o++) {
 
-         var i = t.get(o, 0),
 
-           s = t.get(o, 1);
 
-         r[o] = e.get(i, s, o);
 
-       }
 
-       return r;
 
-     }
 
-     function getOffsetPoint$1(e, t, n, r) {
 
-       return {
 
-         y: r.get(e, t, n),
 
-         x: r.get(e, t, n + NUM_KEYPOINTS)
 
-       };
 
-     }
 
-     function getOffsetVectors(e, t) {
 
-       for (var n = [], r = 0; r < NUM_KEYPOINTS; r++) {
 
-         var o = getOffsetPoint$1(e.get(r, 0).valueOf(), e.get(r, 1).valueOf(), r, t),
 
-           i = o.x,
 
-           s = o.y;
 
-         n.push(s), n.push(i);
 
-       }
 
-       return (0, tf.tensor2d)(n, [NUM_KEYPOINTS, 2]);
 
-     }
 
-     function getOffsetPoints(e, t, n) {
 
-       return (0, tf.tidy)(function () {
 
-         var r = getOffsetVectors(e, n);
 
-         return e.toTensor().mul((0, tf.scalar)(t, "int32")).toFloat().add(r);
 
-       });
 
-     }
 
-     function decodeSinglePose(e, t, n) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, o, i, s, u, a, l, p, c, f;
 
-         return __generator(this, function (d) {
 
-           switch (d.label) {
 
-             case 0:
 
-               return r = 0, o = argmax2d(e), [4, Promise.all([e.buffer(), t.buffer(), o.buffer()])];
 
-             case 1:
 
-               return i = d.sent(), s = i[0], u = i[1], a = i[2], [4, (l = getOffsetPoints(a, n, u)).buffer()];
 
-             case 2:
 
-               return p = d.sent(), c = Array.from(getPointsConfidence(s, a)), f = c.map(function (e, t) {
 
-                 return r += e, {
 
-                   position: {
 
-                     y: p.get(t, 0),
 
-                     x: p.get(t, 1)
 
-                   },
 
-                   part: partNames[t],
 
-                   score: e
 
-                 };
 
-               }), o.dispose(), l.dispose(), [2, {
 
-                 keypoints: f,
 
-                 score: r / f.length
 
-               }];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     // var MOBILENET_BASE_URL = "https://storage.googleapis.com/tfjs-models/savedmodel/posenet/mobilenet/",
 
-     var MOBILENET_BASE_URL = "https://cocorobo.cn/model/posenet/",
 
-       RESNET50_BASE_URL = "https://storage.googleapis.com/tfjs-models/savedmodel/posenet/resnet50/";
 
-     function resNet50Checkpoint(e, t) {
 
-       var n = "model-stride" + e + ".json";
 
-       return 4 === t ? RESNET50_BASE_URL + "float/" + n : RESNET50_BASE_URL + "quant" + t + "/" + n;
 
-     }
 
-     function mobileNetCheckpoint(e, t, n) {
 
-       var r = {
 
-         1: "100",
 
-         .75: "075",
 
-         .5: "050"
 
-       },
 
-         o = "model-stride" + e + ".json";
 
-       return 4 === n ? MOBILENET_BASE_URL + "float/" + r[t] + "/" + o : MOBILENET_BASE_URL + o;
 
-     }
 
-     var imageNetMean = [-123.15, -115.9, -103.06],
 
-       ResNet = function (e) {
 
-         function t() {
 
-           return null !== e && e.apply(this, arguments) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.preprocessInput = function (e) {
 
-           return e.add(imageNetMean);
 
-         }, t.prototype.nameOutputResults = function (e) {
 
-           var t = e[0],
 
-             n = e[1];
 
-           return {
 
-             offsets: e[2],
 
-             heatmap: e[3],
 
-             displacementFwd: t,
 
-             displacementBwd: n
 
-           };
 
-         }, t;
 
-       }(BaseModel);
 
-     function eitherPointDoesntMeetConfidence(e, t, n) {
 
-       return e < n || t < n;
 
-     }
 
-     function getAdjacentKeyPoints(e, t) {
 
-       return connectedPartIndices.reduce(function (n, r) {
 
-         var o = r[0],
 
-           i = r[1];
 
-         return eitherPointDoesntMeetConfidence(e[o].score, e[i].score, t) ? n : (n.push([e[o], e[i]]), n);
 
-       }, []);
 
-     }
 
-     var NEGATIVE_INFINITY = Number.NEGATIVE_INFINITY,
 
-       POSITIVE_INFINITY = Number.POSITIVE_INFINITY;
 
-     function getBoundingBox(e) {
 
-       return e.reduce(function (e, t) {
 
-         var n = e.maxX,
 
-           r = e.maxY,
 
-           o = e.minX,
 
-           i = e.minY,
 
-           s = t.position,
 
-           u = s.x,
 
-           a = s.y;
 
-         return {
 
-           maxX: Math.max(n, u),
 
-           maxY: Math.max(r, a),
 
-           minX: Math.min(o, u),
 
-           minY: Math.min(i, a)
 
-         };
 
-       }, {
 
-         maxX: NEGATIVE_INFINITY,
 
-         maxY: NEGATIVE_INFINITY,
 
-         minX: POSITIVE_INFINITY,
 
-         minY: POSITIVE_INFINITY
 
-       });
 
-     }
 
-     function getBoundingBoxPoints(e) {
 
-       var t = getBoundingBox(e),
 
-         n = t.minX,
 
-         r = t.minY,
 
-         o = t.maxX,
 
-         i = t.maxY;
 
-       return [{
 
-         x: n,
 
-         y: r
 
-       }, {
 
-         x: o,
 
-         y: r
 
-       }, {
 
-         x: o,
 
-         y: i
 
-       }, {
 
-         x: n,
 
-         y: i
 
-       }];
 
-     }
 
-     function toTensorBuffers3D(e) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         return __generator(this, function (t) {
 
-           return [2, Promise.all(e.map(function (e) {
 
-             return e.buffer();
 
-           }))];
 
-         });
 
-       });
 
-     }
 
-     function scalePose(e, t, n, r, o) {
 
-       return void 0 === r && (r = 0), void 0 === o && (o = 0), {
 
-         score: e.score,
 
-         keypoints: e.keypoints.map(function (e) {
 
-           var i = e.score,
 
-             s = e.part,
 
-             u = e.position;
 
-           return {
 
-             score: i,
 
-             part: s,
 
-             position: {
 
-               x: u.x * n + o,
 
-               y: u.y * t + r
 
-             }
 
-           };
 
-         })
 
-       };
 
-     }
 
-     function scalePoses(e, t, n, r, o) {
 
-       return void 0 === r && (r = 0), void 0 === o && (o = 0), 1 === n && 1 === t && 0 === r && 0 === o ? e : e.map(function (e) {
 
-         return scalePose(e, t, n, r, o);
 
-       });
 
-     }
 
-     function flipPoseHorizontal(e, t) {
 
-       return {
 
-         score: e.score,
 
-         keypoints: e.keypoints.map(function (e) {
 
-           var n = e.score,
 
-             r = e.part,
 
-             o = e.position;
 
-           return {
 
-             score: n,
 
-             part: r,
 
-             position: {
 
-               x: t - 1 - o.x,
 
-               y: o.y
 
-             }
 
-           };
 
-         })
 
-       };
 
-     }
 
-     function flipPosesHorizontal(e, t) {
 
-       return t <= 0 ? e : e.map(function (e) {
 
-         return flipPoseHorizontal(e, t);
 
-       });
 
-     }
 
-     function toValidInputResolution(e, t) {
 
-       return isValidInputResolution(e, t) ? e : Math.floor(e / t) * t + 1;
 
-     }
 
-     function validateInputResolution(e) {
 
-       tf.util.assert("number" == typeof e || "object" == typeof e, function () {
 
-         return "Invalid inputResolution " + e + ". Should be a number or an object with width and height";
 
-       }), "object" == typeof e && (tf.util.assert("number" == typeof e.width, function () {
 
-         return "inputResolution.width has a value of " + e.width + " which is invalid; it must be a number";
 
-       }), tf.util.assert("number" == typeof e.height, function () {
 
-         return "inputResolution.height has a value of " + e.height + " which is invalid; it must be a number";
 
-       }));
 
-     }
 
-     function getValidInputResolutionDimensions(e, t) {
 
-       return validateInputResolution(e), "object" == typeof e ? [toValidInputResolution(e.height, t), toValidInputResolution(e.width, t)] : [toValidInputResolution(e, t), toValidInputResolution(e, t)];
 
-     }
 
-     var VALID_OUTPUT_STRIDES = [8, 16, 32];
 
-     function assertValidOutputStride(e) {
 
-       tf.util.assert("number" == typeof e, function () {
 
-         return "outputStride is not a number";
 
-       }), tf.util.assert(VALID_OUTPUT_STRIDES.indexOf(e) >= 0, function () {
 
-         return "outputStride of " + e + " is invalid. It must be either 8, 16, or 32";
 
-       });
 
-     }
 
-     function isValidInputResolution(e, t) {
 
-       return (e - 1) % t == 0;
 
-     }
 
-     function assertValidResolution(e, t) {
 
-       tf.util.assert("number" == typeof e[0] && "number" == typeof e[1], function () {
 
-         return "both resolution values must be a number but had values " + e;
 
-       }), tf.util.assert(isValidInputResolution(e[0], t), function () {
 
-         return "height of " + e[0] + " is invalid for output stride " + t + ".";
 
-       }), tf.util.assert(isValidInputResolution(e[1], t), function () {
 
-         return "width of " + e[1] + " is invalid for output stride " + t + ".";
 
-       });
 
-     }
 
-     function getInputTensorDimensions(e) {
 
-       return e instanceof tf.Tensor ? [e.shape[0], e.shape[1]] : [e.height, e.width];
 
-     }
 
-     function toInputTensor(e) {
 
-       return e instanceof tf.Tensor ? e : tf.browser.fromPixels(e);
 
-     }
 
-     function padAndResizeTo(e, t) {
 
-       var n = t[0],
 
-         r = t[1],
 
-         o = getInputTensorDimensions(e),
 
-         i = o[0],
 
-         s = o[1],
 
-         u = r / n,
 
-         a = [0, 0, 0, 0],
 
-         l = a[0],
 
-         p = a[1],
 
-         c = a[2],
 
-         f = a[3];
 
-       return s / i < u ? (l = 0, p = 0, c = Math.round(.5 * (u * i - s)), f = Math.round(.5 * (u * i - s))) : (l = Math.round(.5 * (1 / u * s - i)), p = Math.round(.5 * (1 / u * s - i)), c = 0, f = 0), {
 
-         resized: (0, tf.tidy)(function () {
 
-           var t = toInputTensor(e);
 
-           return (t = (0, tf.pad3d)(t, [[l, p], [c, f], [0, 0]])).resizeBilinear([n, r]);
 
-         }),
 
-         padding: {
 
-           top: l,
 
-           left: c,
 
-           right: f,
 
-           bottom: p
 
-         }
 
-       };
 
-     }
 
-     function scaleAndFlipPoses(e, t, n, r, o) {
 
-       var i = t[0],
 
-         s = t[1],
 
-         u = n[0],
 
-         a = n[1],
 
-         l = scalePoses(e, (i + r.top + r.bottom) / u, (s + r.left + r.right) / a, -r.top, -r.left);
 
-       return o ? flipPosesHorizontal(l, s) : l;
 
-     }
 
-     var MOBILENET_V1_CONFIG = {
 
-       architecture: "MobileNetV1",
 
-       outputStride: 16,
 
-       multiplier: .75,
 
-       inputResolution: 257
 
-     },
 
-       VALID_ARCHITECTURE = ["MobileNetV1", "ResNet50"],
 
-       VALID_STRIDE = {
 
-         MobileNetV1: [8, 16, 32],
 
-         ResNet50: [32, 16]
 
-       },
 
-       VALID_MULTIPLIER = {
 
-         MobileNetV1: [.5, .75, 1],
 
-         ResNet50: [1]
 
-       },
 
-       VALID_QUANT_BYTES = [1, 2, 4];
 
-     function validateModelConfig(e) {
 
-       if (null == (e = e || MOBILENET_V1_CONFIG).architecture && (e.architecture = "MobileNetV1"), VALID_ARCHITECTURE.indexOf(e.architecture) < 0) throw new Error("Invalid architecture " + e.architecture + ". Should be one of " + VALID_ARCHITECTURE);
 
-       if (null == e.inputResolution && (e.inputResolution = 257), validateInputResolution(e.inputResolution), null == e.outputStride && (e.outputStride = 16), VALID_STRIDE[e.architecture].indexOf(e.outputStride) < 0) throw new Error("Invalid outputStride " + e.outputStride + ". Should be one of " + VALID_STRIDE[e.architecture] + " for architecutre " + e.architecture + ".");
 
-       if (null == e.multiplier && (e.multiplier = 1), VALID_MULTIPLIER[e.architecture].indexOf(e.multiplier) < 0) throw new Error("Invalid multiplier " + e.multiplier + ". Should be one of " + VALID_MULTIPLIER[e.architecture] + " for architecutre " + e.architecture + ".");
 
-       if (null == e.quantBytes && (e.quantBytes = 4), VALID_QUANT_BYTES.indexOf(e.quantBytes) < 0) throw new Error("Invalid quantBytes " + e.quantBytes + ". Should be one of " + VALID_QUANT_BYTES + " for architecutre " + e.architecture + ".");
 
-       return e;
 
-     }
 
-     var SINGLE_PERSON_INFERENCE_CONFIG = {
 
-       flipHorizontal: !1
 
-     },
 
-       MULTI_PERSON_INFERENCE_CONFIG = {
 
-         flipHorizontal: !1,
 
-         maxDetections: 5,
 
-         scoreThreshold: .5,
 
-         nmsRadius: 20
 
-       };
 
-     function validateMultiPersonInputConfig(e) {
 
-       var t = e.maxDetections,
 
-         n = e.scoreThreshold,
 
-         r = e.nmsRadius;
 
-       if (t <= 0) throw new Error("Invalid maxDetections " + t + ". Should be > 0");
 
-       if (n < 0 || n > 1) throw new Error("Invalid scoreThreshold " + n + ". Should be in range [0.0, 1.0]");
 
-       if (r <= 0) throw new Error("Invalid nmsRadius " + r + ".");
 
-     }
 
-     var PoseNet = function () {
 
-       function e(e, t) {
 
-         assertValidOutputStride(e.outputStride), assertValidResolution(t, e.outputStride), this.baseModel = e, this.inputResolution = t;
 
-       }
 
-       return e.prototype.estimateMultiplePoses = function (e, t) {
 
-         return void 0 === t && (t = MULTI_PERSON_INFERENCE_CONFIG), __awaiter(this, void 0, void 0, function () {
 
-           var n, r, o, i, s, u, a, l, p, c, f, d, h, m, g, _, I, v, y, E, b;
 
-           return __generator(this, function (N) {
 
-             switch (N.label) {
 
-               case 0:
 
-                 return n = __assign({}, MULTI_PERSON_INFERENCE_CONFIG, t), validateMultiPersonInputConfig(t), r = this.baseModel.outputStride, o = this.inputResolution, i = getInputTensorDimensions(e), s = i[0], u = i[1], a = padAndResizeTo(e, o), l = a.resized, p = a.padding, c = this.baseModel.predict(l), f = c.heatmapScores, d = c.offsets, h = c.displacementFwd, m = c.displacementBwd, [4, toTensorBuffers3D([f, d, h, m])];
 
-               case 1:
 
-                 return g = N.sent(), _ = g[0], I = g[1], v = g[2], y = g[3], [4, decodeMultiplePoses(_, I, v, y, r, n.maxDetections, n.scoreThreshold, n.nmsRadius)];
 
-               case 2:
 
-                 return E = N.sent(), b = scaleAndFlipPoses(E, [s, u], o, p, n.flipHorizontal), f.dispose(), d.dispose(), h.dispose(), m.dispose(), l.dispose(), [2, b];
 
-             }
 
-           });
 
-         });
 
-       }, e.prototype.estimateSinglePose = function (e, t) {
 
-         return void 0 === t && (t = SINGLE_PERSON_INFERENCE_CONFIG), __awaiter(this, void 0, void 0, function () {
 
-           var n, r, o, i, s, u, a, l, p, c, f, d, h, m, g, _;
 
-           return __generator(this, function (I) {
 
-             switch (I.label) {
 
-               case 0:
 
-                 return n = __assign({}, SINGLE_PERSON_INFERENCE_CONFIG, t), r = this.baseModel.outputStride, o = this.inputResolution, i = getInputTensorDimensions(e), s = i[0], u = i[1], a = padAndResizeTo(e, o), l = a.resized, p = a.padding, c = this.baseModel.predict(l), f = c.heatmapScores, d = c.offsets, h = c.displacementFwd, m = c.displacementBwd, [4, decodeSinglePose(f, d, r)];
 
-               case 1:
 
-                 return g = I.sent(), _ = scaleAndFlipPoses([g], [s, u], o, p, n.flipHorizontal), f.dispose(), d.dispose(), h.dispose(), m.dispose(), l.dispose(), [2, _[0]];
 
-             }
 
-           });
 
-         });
 
-       }, e.prototype.estimatePoses = function (e, t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (n) {
 
-             switch (n.label) {
 
-               case 0:
 
-                 return "single-person" !== t.decodingMethod ? [3, 2] : [4, this.estimateSinglePose(e, t)];
 
-               case 1:
 
-                 return [2, [n.sent()]];
 
-               case 2:
 
-                 return [2, this.estimateMultiplePoses(e, t)];
 
-             }
 
-           });
 
-         });
 
-       }, e.prototype.dispose = function () {
 
-         this.baseModel.dispose();
 
-       }, e;
 
-     }();
 
-     exports.PoseNet = PoseNet;
 
-     function loadMobileNet(e) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var t, n, r, o, i, s, u;
 
-         return __generator(this, function (a) {
 
-           switch (a.label) {
 
-             case 0:
 
-               if (t = e.outputStride, n = e.quantBytes, r = e.multiplier, null == tf) throw new Error("Cannot find TensorFlow.js. If you are using a <script> tag, please also include @tensorflow/tfjs on the page before using this\n        model.");
 
-               return o = mobileNetCheckpoint(t, r, n), [4, (0, _tfjsConverter.loadGraphModel)(e.modelUrl || o)];
 
-             case 1:
 
-               return i = a.sent(), s = new MobileNet(i, t), u = getValidInputResolutionDimensions(e.inputResolution, s.outputStride), [2, new PoseNet(s, u)];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function loadResNet(e) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var t, n, r, o, i, s;
 
-         return __generator(this, function (u) {
 
-           switch (u.label) {
 
-             case 0:
 
-               if (t = e.outputStride, n = e.quantBytes, null == tf) throw new Error("Cannot find TensorFlow.js. If you are using a <script> tag, please also include @tensorflow/tfjs on the page before using this\n        model.");
 
-               return r = resNet50Checkpoint(t, n), [4, (0, _tfjsConverter.loadGraphModel)(e.modelUrl || r)];
 
-             case 1:
 
-               return o = u.sent(), i = new ResNet(o, t), s = getValidInputResolutionDimensions(e.inputResolution, i.outputStride), [2, new PoseNet(i, s)];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function load(e) {
 
-       return void 0 === e && (e = MOBILENET_V1_CONFIG), __awaiter(this, void 0, void 0, function () {
 
-         return __generator(this, function (t) {
 
-           return "ResNet50" === (e = validateModelConfig(e)).architecture ? [2, loadResNet(e)] : "MobileNetV1" === e.architecture ? [2, loadMobileNet(e)] : [2, null];
 
-         });
 
-       });
 
-     }
 
-   }, { "@tensorflow/tfjs-core": "node_modules/@tensorflow/tfjs-core/dist/tf-core.esm.js", "@tensorflow/tfjs-converter": "node_modules/@tensorflow/tfjs-converter/dist/tf-converter.esm.js" }], "node_modules/dat.gui/build/dat.gui.module.js": [function (require, module, exports) {
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.default = exports.GUI = exports.gui = exports.dom = exports.controllers = exports.color = void 0;
 
-     /**
 
-      * dat-gui JavaScript Controller Library
 
-      * http://code.google.com/p/dat-gui
 
-      *
 
-      * Copyright 2011 Data Arts Team, Google Creative Lab
 
-      *
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * http://www.apache.org/licenses/LICENSE-2.0
 
-      */
 
-     function ___$insertStyle(css) {
 
-       if (!css) {
 
-         return;
 
-       }
 
-       if (typeof window === 'undefined') {
 
-         return;
 
-       }
 
-       var style = document.createElement('style');
 
-       style.setAttribute('type', 'text/css');
 
-       style.innerHTML = css;
 
-       document.head.appendChild(style);
 
-       return css;
 
-     }
 
-     function colorToString(color, forceCSSHex) {
 
-       var colorFormat = color.__state.conversionName.toString();
 
-       var r = Math.round(color.r);
 
-       var g = Math.round(color.g);
 
-       var b = Math.round(color.b);
 
-       var a = color.a;
 
-       var h = Math.round(color.h);
 
-       var s = color.s.toFixed(1);
 
-       var v = color.v.toFixed(1);
 
-       if (forceCSSHex || colorFormat === 'THREE_CHAR_HEX' || colorFormat === 'SIX_CHAR_HEX') {
 
-         var str = color.hex.toString(16);
 
-         while (str.length < 6) {
 
-           str = '0' + str;
 
-         }
 
-         return '#' + str;
 
-       } else if (colorFormat === 'CSS_RGB') {
 
-         return 'rgb(' + r + ',' + g + ',' + b + ')';
 
-       } else if (colorFormat === 'CSS_RGBA') {
 
-         return 'rgba(' + r + ',' + g + ',' + b + ',' + a + ')';
 
-       } else if (colorFormat === 'HEX') {
 
-         return '0x' + color.hex.toString(16);
 
-       } else if (colorFormat === 'RGB_ARRAY') {
 
-         return '[' + r + ',' + g + ',' + b + ']';
 
-       } else if (colorFormat === 'RGBA_ARRAY') {
 
-         return '[' + r + ',' + g + ',' + b + ',' + a + ']';
 
-       } else if (colorFormat === 'RGB_OBJ') {
 
-         return '{r:' + r + ',g:' + g + ',b:' + b + '}';
 
-       } else if (colorFormat === 'RGBA_OBJ') {
 
-         return '{r:' + r + ',g:' + g + ',b:' + b + ',a:' + a + '}';
 
-       } else if (colorFormat === 'HSV_OBJ') {
 
-         return '{h:' + h + ',s:' + s + ',v:' + v + '}';
 
-       } else if (colorFormat === 'HSVA_OBJ') {
 
-         return '{h:' + h + ',s:' + s + ',v:' + v + ',a:' + a + '}';
 
-       }
 
-       return 'unknown format';
 
-     }
 
-     var ARR_EACH = Array.prototype.forEach;
 
-     var ARR_SLICE = Array.prototype.slice;
 
-     var Common = {
 
-       BREAK: {},
 
-       extend: function extend(target) {
 
-         this.each(ARR_SLICE.call(arguments, 1), function (obj) {
 
-           var keys = this.isObject(obj) ? Object.keys(obj) : [];
 
-           keys.forEach(function (key) {
 
-             if (!this.isUndefined(obj[key])) {
 
-               target[key] = obj[key];
 
-             }
 
-           }.bind(this));
 
-         }, this);
 
-         return target;
 
-       },
 
-       defaults: function defaults(target) {
 
-         this.each(ARR_SLICE.call(arguments, 1), function (obj) {
 
-           var keys = this.isObject(obj) ? Object.keys(obj) : [];
 
-           keys.forEach(function (key) {
 
-             if (this.isUndefined(target[key])) {
 
-               target[key] = obj[key];
 
-             }
 
-           }.bind(this));
 
-         }, this);
 
-         return target;
 
-       },
 
-       compose: function compose() {
 
-         var toCall = ARR_SLICE.call(arguments);
 
-         return function () {
 
-           var args = ARR_SLICE.call(arguments);
 
-           for (var i = toCall.length - 1; i >= 0; i--) {
 
-             args = [toCall[i].apply(this, args)];
 
-           }
 
-           return args[0];
 
-         };
 
-       },
 
-       each: function each(obj, itr, scope) {
 
-         if (!obj) {
 
-           return;
 
-         }
 
-         if (ARR_EACH && obj.forEach && obj.forEach === ARR_EACH) {
 
-           obj.forEach(itr, scope);
 
-         } else if (obj.length === obj.length + 0) {
 
-           var key = void 0;
 
-           var l = void 0;
 
-           for (key = 0, l = obj.length; key < l; key++) {
 
-             if (key in obj && itr.call(scope, obj[key], key) === this.BREAK) {
 
-               return;
 
-             }
 
-           }
 
-         } else {
 
-           for (var _key in obj) {
 
-             if (itr.call(scope, obj[_key], _key) === this.BREAK) {
 
-               return;
 
-             }
 
-           }
 
-         }
 
-       },
 
-       defer: function defer(fnc) {
 
-         setTimeout(fnc, 0);
 
-       },
 
-       debounce: function debounce(func, threshold, callImmediately) {
 
-         var timeout = void 0;
 
-         return function () {
 
-           var obj = this;
 
-           var args = arguments;
 
-           function delayed() {
 
-             timeout = null;
 
-             if (!callImmediately) func.apply(obj, args);
 
-           }
 
-           var callNow = callImmediately || !timeout;
 
-           clearTimeout(timeout);
 
-           timeout = setTimeout(delayed, threshold);
 
-           if (callNow) {
 
-             func.apply(obj, args);
 
-           }
 
-         };
 
-       },
 
-       toArray: function toArray(obj) {
 
-         if (obj.toArray) return obj.toArray();
 
-         return ARR_SLICE.call(obj);
 
-       },
 
-       isUndefined: function isUndefined(obj) {
 
-         return obj === undefined;
 
-       },
 
-       isNull: function isNull(obj) {
 
-         return obj === null;
 
-       },
 
-       isNaN: function (_isNaN) {
 
-         function isNaN(_x) {
 
-           return _isNaN.apply(this, arguments);
 
-         }
 
-         isNaN.toString = function () {
 
-           return _isNaN.toString();
 
-         };
 
-         return isNaN;
 
-       }(function (obj) {
 
-         return isNaN(obj);
 
-       }),
 
-       isArray: Array.isArray || function (obj) {
 
-         return obj.constructor === Array;
 
-       },
 
-       isObject: function isObject(obj) {
 
-         return obj === Object(obj);
 
-       },
 
-       isNumber: function isNumber(obj) {
 
-         return obj === obj + 0;
 
-       },
 
-       isString: function isString(obj) {
 
-         return obj === obj + '';
 
-       },
 
-       isBoolean: function isBoolean(obj) {
 
-         return obj === false || obj === true;
 
-       },
 
-       isFunction: function isFunction(obj) {
 
-         return Object.prototype.toString.call(obj) === '[object Function]';
 
-       }
 
-     };
 
-     var INTERPRETATIONS = [{
 
-       litmus: Common.isString,
 
-       conversions: {
 
-         THREE_CHAR_HEX: {
 
-           read: function read(original) {
 
-             var test = original.match(/^#([A-F0-9])([A-F0-9])([A-F0-9])$/i);
 
-             if (test === null) {
 
-               return false;
 
-             }
 
-             return {
 
-               space: 'HEX',
 
-               hex: parseInt('0x' + test[1].toString() + test[1].toString() + test[2].toString() + test[2].toString() + test[3].toString() + test[3].toString(), 0)
 
-             };
 
-           },
 
-           write: colorToString
 
-         },
 
-         SIX_CHAR_HEX: {
 
-           read: function read(original) {
 
-             var test = original.match(/^#([A-F0-9]{6})$/i);
 
-             if (test === null) {
 
-               return false;
 
-             }
 
-             return {
 
-               space: 'HEX',
 
-               hex: parseInt('0x' + test[1].toString(), 0)
 
-             };
 
-           },
 
-           write: colorToString
 
-         },
 
-         CSS_RGB: {
 
-           read: function read(original) {
 
-             var test = original.match(/^rgb\(\s*(.+)\s*,\s*(.+)\s*,\s*(.+)\s*\)/);
 
-             if (test === null) {
 
-               return false;
 
-             }
 
-             return {
 
-               space: 'RGB',
 
-               r: parseFloat(test[1]),
 
-               g: parseFloat(test[2]),
 
-               b: parseFloat(test[3])
 
-             };
 
-           },
 
-           write: colorToString
 
-         },
 
-         CSS_RGBA: {
 
-           read: function read(original) {
 
-             var test = original.match(/^rgba\(\s*(.+)\s*,\s*(.+)\s*,\s*(.+)\s*,\s*(.+)\s*\)/);
 
-             if (test === null) {
 
-               return false;
 
-             }
 
-             return {
 
-               space: 'RGB',
 
-               r: parseFloat(test[1]),
 
-               g: parseFloat(test[2]),
 
-               b: parseFloat(test[3]),
 
-               a: parseFloat(test[4])
 
-             };
 
-           },
 
-           write: colorToString
 
-         }
 
-       }
 
-     }, {
 
-       litmus: Common.isNumber,
 
-       conversions: {
 
-         HEX: {
 
-           read: function read(original) {
 
-             return {
 
-               space: 'HEX',
 
-               hex: original,
 
-               conversionName: 'HEX'
 
-             };
 
-           },
 
-           write: function write(color) {
 
-             return color.hex;
 
-           }
 
-         }
 
-       }
 
-     }, {
 
-       litmus: Common.isArray,
 
-       conversions: {
 
-         RGB_ARRAY: {
 
-           read: function read(original) {
 
-             if (original.length !== 3) {
 
-               return false;
 
-             }
 
-             return {
 
-               space: 'RGB',
 
-               r: original[0],
 
-               g: original[1],
 
-               b: original[2]
 
-             };
 
-           },
 
-           write: function write(color) {
 
-             return [color.r, color.g, color.b];
 
-           }
 
-         },
 
-         RGBA_ARRAY: {
 
-           read: function read(original) {
 
-             if (original.length !== 4) return false;
 
-             return {
 
-               space: 'RGB',
 
-               r: original[0],
 
-               g: original[1],
 
-               b: original[2],
 
-               a: original[3]
 
-             };
 
-           },
 
-           write: function write(color) {
 
-             return [color.r, color.g, color.b, color.a];
 
-           }
 
-         }
 
-       }
 
-     }, {
 
-       litmus: Common.isObject,
 
-       conversions: {
 
-         RGBA_OBJ: {
 
-           read: function read(original) {
 
-             if (Common.isNumber(original.r) && Common.isNumber(original.g) && Common.isNumber(original.b) && Common.isNumber(original.a)) {
 
-               return {
 
-                 space: 'RGB',
 
-                 r: original.r,
 
-                 g: original.g,
 
-                 b: original.b,
 
-                 a: original.a
 
-               };
 
-             }
 
-             return false;
 
-           },
 
-           write: function write(color) {
 
-             return {
 
-               r: color.r,
 
-               g: color.g,
 
-               b: color.b,
 
-               a: color.a
 
-             };
 
-           }
 
-         },
 
-         RGB_OBJ: {
 
-           read: function read(original) {
 
-             if (Common.isNumber(original.r) && Common.isNumber(original.g) && Common.isNumber(original.b)) {
 
-               return {
 
-                 space: 'RGB',
 
-                 r: original.r,
 
-                 g: original.g,
 
-                 b: original.b
 
-               };
 
-             }
 
-             return false;
 
-           },
 
-           write: function write(color) {
 
-             return {
 
-               r: color.r,
 
-               g: color.g,
 
-               b: color.b
 
-             };
 
-           }
 
-         },
 
-         HSVA_OBJ: {
 
-           read: function read(original) {
 
-             if (Common.isNumber(original.h) && Common.isNumber(original.s) && Common.isNumber(original.v) && Common.isNumber(original.a)) {
 
-               return {
 
-                 space: 'HSV',
 
-                 h: original.h,
 
-                 s: original.s,
 
-                 v: original.v,
 
-                 a: original.a
 
-               };
 
-             }
 
-             return false;
 
-           },
 
-           write: function write(color) {
 
-             return {
 
-               h: color.h,
 
-               s: color.s,
 
-               v: color.v,
 
-               a: color.a
 
-             };
 
-           }
 
-         },
 
-         HSV_OBJ: {
 
-           read: function read(original) {
 
-             if (Common.isNumber(original.h) && Common.isNumber(original.s) && Common.isNumber(original.v)) {
 
-               return {
 
-                 space: 'HSV',
 
-                 h: original.h,
 
-                 s: original.s,
 
-                 v: original.v
 
-               };
 
-             }
 
-             return false;
 
-           },
 
-           write: function write(color) {
 
-             return {
 
-               h: color.h,
 
-               s: color.s,
 
-               v: color.v
 
-             };
 
-           }
 
-         }
 
-       }
 
-     }];
 
-     var result = void 0;
 
-     var toReturn = void 0;
 
-     var interpret = function interpret() {
 
-       toReturn = false;
 
-       var original = arguments.length > 1 ? Common.toArray(arguments) : arguments[0];
 
-       Common.each(INTERPRETATIONS, function (family) {
 
-         if (family.litmus(original)) {
 
-           Common.each(family.conversions, function (conversion, conversionName) {
 
-             result = conversion.read(original);
 
-             if (toReturn === false && result !== false) {
 
-               toReturn = result;
 
-               result.conversionName = conversionName;
 
-               result.conversion = conversion;
 
-               return Common.BREAK;
 
-             }
 
-           });
 
-           return Common.BREAK;
 
-         }
 
-       });
 
-       return toReturn;
 
-     };
 
-     var tmpComponent = void 0;
 
-     var ColorMath = {
 
-       hsv_to_rgb: function hsv_to_rgb(h, s, v) {
 
-         var hi = Math.floor(h / 60) % 6;
 
-         var f = h / 60 - Math.floor(h / 60);
 
-         var p = v * (1.0 - s);
 
-         var q = v * (1.0 - f * s);
 
-         var t = v * (1.0 - (1.0 - f) * s);
 
-         var c = [[v, t, p], [q, v, p], [p, v, t], [p, q, v], [t, p, v], [v, p, q]][hi];
 
-         return {
 
-           r: c[0] * 255,
 
-           g: c[1] * 255,
 
-           b: c[2] * 255
 
-         };
 
-       },
 
-       rgb_to_hsv: function rgb_to_hsv(r, g, b) {
 
-         var min = Math.min(r, g, b);
 
-         var max = Math.max(r, g, b);
 
-         var delta = max - min;
 
-         var h = void 0;
 
-         var s = void 0;
 
-         if (max !== 0) {
 
-           s = delta / max;
 
-         } else {
 
-           return {
 
-             h: NaN,
 
-             s: 0,
 
-             v: 0
 
-           };
 
-         }
 
-         if (r === max) {
 
-           h = (g - b) / delta;
 
-         } else if (g === max) {
 
-           h = 2 + (b - r) / delta;
 
-         } else {
 
-           h = 4 + (r - g) / delta;
 
-         }
 
-         h /= 6;
 
-         if (h < 0) {
 
-           h += 1;
 
-         }
 
-         return {
 
-           h: h * 360,
 
-           s: s,
 
-           v: max / 255
 
-         };
 
-       },
 
-       rgb_to_hex: function rgb_to_hex(r, g, b) {
 
-         var hex = this.hex_with_component(0, 2, r);
 
-         hex = this.hex_with_component(hex, 1, g);
 
-         hex = this.hex_with_component(hex, 0, b);
 
-         return hex;
 
-       },
 
-       component_from_hex: function component_from_hex(hex, componentIndex) {
 
-         return hex >> componentIndex * 8 & 0xFF;
 
-       },
 
-       hex_with_component: function hex_with_component(hex, componentIndex, value) {
 
-         return value << (tmpComponent = componentIndex * 8) | hex & ~(0xFF << tmpComponent);
 
-       }
 
-     };
 
-     var _typeof = typeof Symbol === "function" && typeof Symbol.iterator === "symbol" ? function (obj) {
 
-       return typeof obj;
 
-     } : function (obj) {
 
-       return obj && typeof Symbol === "function" && obj.constructor === Symbol && obj !== Symbol.prototype ? "symbol" : typeof obj;
 
-     };
 
-     var classCallCheck = function (instance, Constructor) {
 
-       if (!(instance instanceof Constructor)) {
 
-         throw new TypeError("Cannot call a class as a function");
 
-       }
 
-     };
 
-     var createClass = function () {
 
-       function defineProperties(target, props) {
 
-         for (var i = 0; i < props.length; i++) {
 
-           var descriptor = props[i];
 
-           descriptor.enumerable = descriptor.enumerable || false;
 
-           descriptor.configurable = true;
 
-           if ("value" in descriptor) descriptor.writable = true;
 
-           Object.defineProperty(target, descriptor.key, descriptor);
 
-         }
 
-       }
 
-       return function (Constructor, protoProps, staticProps) {
 
-         if (protoProps) defineProperties(Constructor.prototype, protoProps);
 
-         if (staticProps) defineProperties(Constructor, staticProps);
 
-         return Constructor;
 
-       };
 
-     }();
 
-     var get = function get(object, property, receiver) {
 
-       if (object === null) object = Function.prototype;
 
-       var desc = Object.getOwnPropertyDescriptor(object, property);
 
-       if (desc === undefined) {
 
-         var parent = Object.getPrototypeOf(object);
 
-         if (parent === null) {
 
-           return undefined;
 
-         } else {
 
-           return get(parent, property, receiver);
 
-         }
 
-       } else if ("value" in desc) {
 
-         return desc.value;
 
-       } else {
 
-         var getter = desc.get;
 
-         if (getter === undefined) {
 
-           return undefined;
 
-         }
 
-         return getter.call(receiver);
 
-       }
 
-     };
 
-     var inherits = function (subClass, superClass) {
 
-       if (typeof superClass !== "function" && superClass !== null) {
 
-         throw new TypeError("Super expression must either be null or a function, not " + typeof superClass);
 
-       }
 
-       subClass.prototype = Object.create(superClass && superClass.prototype, {
 
-         constructor: {
 
-           value: subClass,
 
-           enumerable: false,
 
-           writable: true,
 
-           configurable: true
 
-         }
 
-       });
 
-       if (superClass) Object.setPrototypeOf ? Object.setPrototypeOf(subClass, superClass) : subClass.__proto__ = superClass;
 
-     };
 
-     var possibleConstructorReturn = function (self, call) {
 
-       if (!self) {
 
-         throw new ReferenceError("this hasn't been initialised - super() hasn't been called");
 
-       }
 
-       return call && (typeof call === "object" || typeof call === "function") ? call : self;
 
-     };
 
-     var Color = function () {
 
-       function Color() {
 
-         classCallCheck(this, Color);
 
-         this.__state = interpret.apply(this, arguments);
 
-         if (this.__state === false) {
 
-           throw new Error('Failed to interpret color arguments');
 
-         }
 
-         this.__state.a = this.__state.a || 1;
 
-       }
 
-       createClass(Color, [{
 
-         key: 'toString',
 
-         value: function toString() {
 
-           return colorToString(this);
 
-         }
 
-       }, {
 
-         key: 'toHexString',
 
-         value: function toHexString() {
 
-           return colorToString(this, true);
 
-         }
 
-       }, {
 
-         key: 'toOriginal',
 
-         value: function toOriginal() {
 
-           return this.__state.conversion.write(this);
 
-         }
 
-       }]);
 
-       return Color;
 
-     }();
 
-     function defineRGBComponent(target, component, componentHexIndex) {
 
-       Object.defineProperty(target, component, {
 
-         get: function get$$1() {
 
-           if (this.__state.space === 'RGB') {
 
-             return this.__state[component];
 
-           }
 
-           Color.recalculateRGB(this, component, componentHexIndex);
 
-           return this.__state[component];
 
-         },
 
-         set: function set$$1(v) {
 
-           if (this.__state.space !== 'RGB') {
 
-             Color.recalculateRGB(this, component, componentHexIndex);
 
-             this.__state.space = 'RGB';
 
-           }
 
-           this.__state[component] = v;
 
-         }
 
-       });
 
-     }
 
-     function defineHSVComponent(target, component) {
 
-       Object.defineProperty(target, component, {
 
-         get: function get$$1() {
 
-           if (this.__state.space === 'HSV') {
 
-             return this.__state[component];
 
-           }
 
-           Color.recalculateHSV(this);
 
-           return this.__state[component];
 
-         },
 
-         set: function set$$1(v) {
 
-           if (this.__state.space !== 'HSV') {
 
-             Color.recalculateHSV(this);
 
-             this.__state.space = 'HSV';
 
-           }
 
-           this.__state[component] = v;
 
-         }
 
-       });
 
-     }
 
-     Color.recalculateRGB = function (color, component, componentHexIndex) {
 
-       if (color.__state.space === 'HEX') {
 
-         color.__state[component] = ColorMath.component_from_hex(color.__state.hex, componentHexIndex);
 
-       } else if (color.__state.space === 'HSV') {
 
-         Common.extend(color.__state, ColorMath.hsv_to_rgb(color.__state.h, color.__state.s, color.__state.v));
 
-       } else {
 
-         throw new Error('Corrupted color state');
 
-       }
 
-     };
 
-     Color.recalculateHSV = function (color) {
 
-       var result = ColorMath.rgb_to_hsv(color.r, color.g, color.b);
 
-       Common.extend(color.__state, {
 
-         s: result.s,
 
-         v: result.v
 
-       });
 
-       if (!Common.isNaN(result.h)) {
 
-         color.__state.h = result.h;
 
-       } else if (Common.isUndefined(color.__state.h)) {
 
-         color.__state.h = 0;
 
-       }
 
-     };
 
-     Color.COMPONENTS = ['r', 'g', 'b', 'h', 's', 'v', 'hex', 'a'];
 
-     defineRGBComponent(Color.prototype, 'r', 2);
 
-     defineRGBComponent(Color.prototype, 'g', 1);
 
-     defineRGBComponent(Color.prototype, 'b', 0);
 
-     defineHSVComponent(Color.prototype, 'h');
 
-     defineHSVComponent(Color.prototype, 's');
 
-     defineHSVComponent(Color.prototype, 'v');
 
-     Object.defineProperty(Color.prototype, 'a', {
 
-       get: function get$$1() {
 
-         return this.__state.a;
 
-       },
 
-       set: function set$$1(v) {
 
-         this.__state.a = v;
 
-       }
 
-     });
 
-     Object.defineProperty(Color.prototype, 'hex', {
 
-       get: function get$$1() {
 
-         if (!this.__state.space !== 'HEX') {
 
-           this.__state.hex = ColorMath.rgb_to_hex(this.r, this.g, this.b);
 
-         }
 
-         return this.__state.hex;
 
-       },
 
-       set: function set$$1(v) {
 
-         this.__state.space = 'HEX';
 
-         this.__state.hex = v;
 
-       }
 
-     });
 
-     var Controller = function () {
 
-       function Controller(object, property) {
 
-         classCallCheck(this, Controller);
 
-         this.initialValue = object[property];
 
-         this.domElement = document.createElement('div');
 
-         this.object = object;
 
-         this.property = property;
 
-         this.__onChange = undefined;
 
-         this.__onFinishChange = undefined;
 
-       }
 
-       createClass(Controller, [{
 
-         key: 'onChange',
 
-         value: function onChange(fnc) {
 
-           this.__onChange = fnc;
 
-           return this;
 
-         }
 
-       }, {
 
-         key: 'onFinishChange',
 
-         value: function onFinishChange(fnc) {
 
-           this.__onFinishChange = fnc;
 
-           return this;
 
-         }
 
-       }, {
 
-         key: 'setValue',
 
-         value: function setValue(newValue) {
 
-           this.object[this.property] = newValue;
 
-           if (this.__onChange) {
 
-             this.__onChange.call(this, newValue);
 
-           }
 
-           this.updateDisplay();
 
-           return this;
 
-         }
 
-       }, {
 
-         key: 'getValue',
 
-         value: function getValue() {
 
-           return this.object[this.property];
 
-         }
 
-       }, {
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           return this;
 
-         }
 
-       }, {
 
-         key: 'isModified',
 
-         value: function isModified() {
 
-           return this.initialValue !== this.getValue();
 
-         }
 
-       }]);
 
-       return Controller;
 
-     }();
 
-     var EVENT_MAP = {
 
-       HTMLEvents: ['change'],
 
-       MouseEvents: ['click', 'mousemove', 'mousedown', 'mouseup', 'mouseover'],
 
-       KeyboardEvents: ['keydown']
 
-     };
 
-     var EVENT_MAP_INV = {};
 
-     Common.each(EVENT_MAP, function (v, k) {
 
-       Common.each(v, function (e) {
 
-         EVENT_MAP_INV[e] = k;
 
-       });
 
-     });
 
-     var CSS_VALUE_PIXELS = /(\d+(\.\d+)?)px/;
 
-     function cssValueToPixels(val) {
 
-       if (val === '0' || Common.isUndefined(val)) {
 
-         return 0;
 
-       }
 
-       var match = val.match(CSS_VALUE_PIXELS);
 
-       if (!Common.isNull(match)) {
 
-         return parseFloat(match[1]);
 
-       }
 
-       return 0;
 
-     }
 
-     var dom = {
 
-       makeSelectable: function makeSelectable(elem, selectable) {
 
-         if (elem === undefined || elem.style === undefined) return;
 
-         elem.onselectstart = selectable ? function () {
 
-           return false;
 
-         } : function () { };
 
-         elem.style.MozUserSelect = selectable ? 'auto' : 'none';
 
-         elem.style.KhtmlUserSelect = selectable ? 'auto' : 'none';
 
-         elem.unselectable = selectable ? 'on' : 'off';
 
-       },
 
-       makeFullscreen: function makeFullscreen(elem, hor, vert) {
 
-         var vertical = vert;
 
-         var horizontal = hor;
 
-         if (Common.isUndefined(horizontal)) {
 
-           horizontal = true;
 
-         }
 
-         if (Common.isUndefined(vertical)) {
 
-           vertical = true;
 
-         }
 
-         elem.style.position = 'absolute';
 
-         if (horizontal) {
 
-           elem.style.left = 0;
 
-           elem.style.right = 0;
 
-         }
 
-         if (vertical) {
 
-           elem.style.top = 0;
 
-           elem.style.bottom = 0;
 
-         }
 
-       },
 
-       fakeEvent: function fakeEvent(elem, eventType, pars, aux) {
 
-         var params = pars || {};
 
-         var className = EVENT_MAP_INV[eventType];
 
-         if (!className) {
 
-           throw new Error('Event type ' + eventType + ' not supported.');
 
-         }
 
-         var evt = document.createEvent(className);
 
-         switch (className) {
 
-           case 'MouseEvents':
 
-             {
 
-               var clientX = params.x || params.clientX || 0;
 
-               var clientY = params.y || params.clientY || 0;
 
-               evt.initMouseEvent(eventType, params.bubbles || false, params.cancelable || true, window, params.clickCount || 1, 0, 0, clientX, clientY, false, false, false, false, 0, null);
 
-               break;
 
-             }
 
-           case 'KeyboardEvents':
 
-             {
 
-               var init = evt.initKeyboardEvent || evt.initKeyEvent;
 
-               Common.defaults(params, {
 
-                 cancelable: true,
 
-                 ctrlKey: false,
 
-                 altKey: false,
 
-                 shiftKey: false,
 
-                 metaKey: false,
 
-                 keyCode: undefined,
 
-                 charCode: undefined
 
-               });
 
-               init(eventType, params.bubbles || false, params.cancelable, window, params.ctrlKey, params.altKey, params.shiftKey, params.metaKey, params.keyCode, params.charCode);
 
-               break;
 
-             }
 
-           default:
 
-             {
 
-               evt.initEvent(eventType, params.bubbles || false, params.cancelable || true);
 
-               break;
 
-             }
 
-         }
 
-         Common.defaults(evt, aux);
 
-         elem.dispatchEvent(evt);
 
-       },
 
-       bind: function bind(elem, event, func, newBool) {
 
-         var bool = newBool || false;
 
-         if (elem.addEventListener) {
 
-           elem.addEventListener(event, func, bool);
 
-         } else if (elem.attachEvent) {
 
-           elem.attachEvent('on' + event, func);
 
-         }
 
-         return dom;
 
-       },
 
-       unbind: function unbind(elem, event, func, newBool) {
 
-         var bool = newBool || false;
 
-         if (elem.removeEventListener) {
 
-           elem.removeEventListener(event, func, bool);
 
-         } else if (elem.detachEvent) {
 
-           elem.detachEvent('on' + event, func);
 
-         }
 
-         return dom;
 
-       },
 
-       addClass: function addClass(elem, className) {
 
-         if (elem.className === undefined) {
 
-           elem.className = className;
 
-         } else if (elem.className !== className) {
 
-           var classes = elem.className.split(/ +/);
 
-           if (classes.indexOf(className) === -1) {
 
-             classes.push(className);
 
-             elem.className = classes.join(' ').replace(/^\s+/, '').replace(/\s+$/, '');
 
-           }
 
-         }
 
-         return dom;
 
-       },
 
-       removeClass: function removeClass(elem, className) {
 
-         if (className) {
 
-           if (elem.className === className) {
 
-             elem.removeAttribute('class');
 
-           } else {
 
-             var classes = elem.className.split(/ +/);
 
-             var index = classes.indexOf(className);
 
-             if (index !== -1) {
 
-               classes.splice(index, 1);
 
-               elem.className = classes.join(' ');
 
-             }
 
-           }
 
-         } else {
 
-           elem.className = undefined;
 
-         }
 
-         return dom;
 
-       },
 
-       hasClass: function hasClass(elem, className) {
 
-         return new RegExp('(?:^|\\s+)' + className + '(?:\\s+|$)').test(elem.className) || false;
 
-       },
 
-       getWidth: function getWidth(elem) {
 
-         var style = getComputedStyle(elem);
 
-         return cssValueToPixels(style['border-left-width']) + cssValueToPixels(style['border-right-width']) + cssValueToPixels(style['padding-left']) + cssValueToPixels(style['padding-right']) + cssValueToPixels(style.width);
 
-       },
 
-       getHeight: function getHeight(elem) {
 
-         var style = getComputedStyle(elem);
 
-         return cssValueToPixels(style['border-top-width']) + cssValueToPixels(style['border-bottom-width']) + cssValueToPixels(style['padding-top']) + cssValueToPixels(style['padding-bottom']) + cssValueToPixels(style.height);
 
-       },
 
-       getOffset: function getOffset(el) {
 
-         var elem = el;
 
-         var offset = {
 
-           left: 0,
 
-           top: 0
 
-         };
 
-         if (elem.offsetParent) {
 
-           do {
 
-             offset.left += elem.offsetLeft;
 
-             offset.top += elem.offsetTop;
 
-             elem = elem.offsetParent;
 
-           } while (elem);
 
-         }
 
-         return offset;
 
-       },
 
-       isActive: function isActive(elem) {
 
-         return elem === document.activeElement && (elem.type || elem.href);
 
-       }
 
-     };
 
-     var BooleanController = function (_Controller) {
 
-       inherits(BooleanController, _Controller);
 
-       function BooleanController(object, property) {
 
-         classCallCheck(this, BooleanController);
 
-         var _this2 = possibleConstructorReturn(this, (BooleanController.__proto__ || Object.getPrototypeOf(BooleanController)).call(this, object, property));
 
-         var _this = _this2;
 
-         _this2.__prev = _this2.getValue();
 
-         _this2.__checkbox = document.createElement('input');
 
-         _this2.__checkbox.setAttribute('type', 'checkbox');
 
-         function onChange() {
 
-           _this.setValue(!_this.__prev);
 
-         }
 
-         dom.bind(_this2.__checkbox, 'change', onChange, false);
 
-         _this2.domElement.appendChild(_this2.__checkbox);
 
-         _this2.updateDisplay();
 
-         return _this2;
 
-       }
 
-       createClass(BooleanController, [{
 
-         key: 'setValue',
 
-         value: function setValue(v) {
 
-           var toReturn = get(BooleanController.prototype.__proto__ || Object.getPrototypeOf(BooleanController.prototype), 'setValue', this).call(this, v);
 
-           if (this.__onFinishChange) {
 
-             this.__onFinishChange.call(this, this.getValue());
 
-           }
 
-           this.__prev = this.getValue();
 
-           return toReturn;
 
-         }
 
-       }, {
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           if (this.getValue() === true) {
 
-             this.__checkbox.setAttribute('checked', 'checked');
 
-             this.__checkbox.checked = true;
 
-             this.__prev = true;
 
-           } else {
 
-             this.__checkbox.checked = false;
 
-             this.__prev = false;
 
-           }
 
-           return get(BooleanController.prototype.__proto__ || Object.getPrototypeOf(BooleanController.prototype), 'updateDisplay', this).call(this);
 
-         }
 
-       }]);
 
-       return BooleanController;
 
-     }(Controller);
 
-     var OptionController = function (_Controller) {
 
-       inherits(OptionController, _Controller);
 
-       function OptionController(object, property, opts) {
 
-         classCallCheck(this, OptionController);
 
-         var _this2 = possibleConstructorReturn(this, (OptionController.__proto__ || Object.getPrototypeOf(OptionController)).call(this, object, property));
 
-         var options = opts;
 
-         var _this = _this2;
 
-         _this2.__select = document.createElement('select');
 
-         if (Common.isArray(options)) {
 
-           var map = {};
 
-           Common.each(options, function (element) {
 
-             map[element] = element;
 
-           });
 
-           options = map;
 
-         }
 
-         Common.each(options, function (value, key) {
 
-           var opt = document.createElement('option');
 
-           opt.innerHTML = key;
 
-           opt.setAttribute('value', value);
 
-           _this.__select.appendChild(opt);
 
-         });
 
-         _this2.updateDisplay();
 
-         dom.bind(_this2.__select, 'change', function () {
 
-           var desiredValue = this.options[this.selectedIndex].value;
 
-           _this.setValue(desiredValue);
 
-         });
 
-         _this2.domElement.appendChild(_this2.__select);
 
-         return _this2;
 
-       }
 
-       createClass(OptionController, [{
 
-         key: 'setValue',
 
-         value: function setValue(v) {
 
-           var toReturn = get(OptionController.prototype.__proto__ || Object.getPrototypeOf(OptionController.prototype), 'setValue', this).call(this, v);
 
-           if (this.__onFinishChange) {
 
-             this.__onFinishChange.call(this, this.getValue());
 
-           }
 
-           return toReturn;
 
-         }
 
-       }, {
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           if (dom.isActive(this.__select)) return this;
 
-           this.__select.value = this.getValue();
 
-           return get(OptionController.prototype.__proto__ || Object.getPrototypeOf(OptionController.prototype), 'updateDisplay', this).call(this);
 
-         }
 
-       }]);
 
-       return OptionController;
 
-     }(Controller);
 
-     var StringController = function (_Controller) {
 
-       inherits(StringController, _Controller);
 
-       function StringController(object, property) {
 
-         classCallCheck(this, StringController);
 
-         var _this2 = possibleConstructorReturn(this, (StringController.__proto__ || Object.getPrototypeOf(StringController)).call(this, object, property));
 
-         var _this = _this2;
 
-         function onChange() {
 
-           _this.setValue(_this.__input.value);
 
-         }
 
-         function onBlur() {
 
-           if (_this.__onFinishChange) {
 
-             _this.__onFinishChange.call(_this, _this.getValue());
 
-           }
 
-         }
 
-         _this2.__input = document.createElement('input');
 
-         _this2.__input.setAttribute('type', 'text');
 
-         dom.bind(_this2.__input, 'keyup', onChange);
 
-         dom.bind(_this2.__input, 'change', onChange);
 
-         dom.bind(_this2.__input, 'blur', onBlur);
 
-         dom.bind(_this2.__input, 'keydown', function (e) {
 
-           if (e.keyCode === 13) {
 
-             this.blur();
 
-           }
 
-         });
 
-         _this2.updateDisplay();
 
-         _this2.domElement.appendChild(_this2.__input);
 
-         return _this2;
 
-       }
 
-       createClass(StringController, [{
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           if (!dom.isActive(this.__input)) {
 
-             this.__input.value = this.getValue();
 
-           }
 
-           return get(StringController.prototype.__proto__ || Object.getPrototypeOf(StringController.prototype), 'updateDisplay', this).call(this);
 
-         }
 
-       }]);
 
-       return StringController;
 
-     }(Controller);
 
-     function numDecimals(x) {
 
-       var _x = x.toString();
 
-       if (_x.indexOf('.') > -1) {
 
-         return _x.length - _x.indexOf('.') - 1;
 
-       }
 
-       return 0;
 
-     }
 
-     var NumberController = function (_Controller) {
 
-       inherits(NumberController, _Controller);
 
-       function NumberController(object, property, params) {
 
-         classCallCheck(this, NumberController);
 
-         var _this = possibleConstructorReturn(this, (NumberController.__proto__ || Object.getPrototypeOf(NumberController)).call(this, object, property));
 
-         var _params = params || {};
 
-         _this.__min = _params.min;
 
-         _this.__max = _params.max;
 
-         _this.__step = _params.step;
 
-         if (Common.isUndefined(_this.__step)) {
 
-           if (_this.initialValue === 0) {
 
-             _this.__impliedStep = 1;
 
-           } else {
 
-             _this.__impliedStep = Math.pow(10, Math.floor(Math.log(Math.abs(_this.initialValue)) / Math.LN10)) / 10;
 
-           }
 
-         } else {
 
-           _this.__impliedStep = _this.__step;
 
-         }
 
-         _this.__precision = numDecimals(_this.__impliedStep);
 
-         return _this;
 
-       }
 
-       createClass(NumberController, [{
 
-         key: 'setValue',
 
-         value: function setValue(v) {
 
-           var _v = v;
 
-           if (this.__min !== undefined && _v < this.__min) {
 
-             _v = this.__min;
 
-           } else if (this.__max !== undefined && _v > this.__max) {
 
-             _v = this.__max;
 
-           }
 
-           if (this.__step !== undefined && _v % this.__step !== 0) {
 
-             _v = Math.round(_v / this.__step) * this.__step;
 
-           }
 
-           return get(NumberController.prototype.__proto__ || Object.getPrototypeOf(NumberController.prototype), 'setValue', this).call(this, _v);
 
-         }
 
-       }, {
 
-         key: 'min',
 
-         value: function min(minValue) {
 
-           this.__min = minValue;
 
-           return this;
 
-         }
 
-       }, {
 
-         key: 'max',
 
-         value: function max(maxValue) {
 
-           this.__max = maxValue;
 
-           return this;
 
-         }
 
-       }, {
 
-         key: 'step',
 
-         value: function step(stepValue) {
 
-           this.__step = stepValue;
 
-           this.__impliedStep = stepValue;
 
-           this.__precision = numDecimals(stepValue);
 
-           return this;
 
-         }
 
-       }]);
 
-       return NumberController;
 
-     }(Controller);
 
-     function roundToDecimal(value, decimals) {
 
-       var tenTo = Math.pow(10, decimals);
 
-       return Math.round(value * tenTo) / tenTo;
 
-     }
 
-     var NumberControllerBox = function (_NumberController) {
 
-       inherits(NumberControllerBox, _NumberController);
 
-       function NumberControllerBox(object, property, params) {
 
-         classCallCheck(this, NumberControllerBox);
 
-         var _this2 = possibleConstructorReturn(this, (NumberControllerBox.__proto__ || Object.getPrototypeOf(NumberControllerBox)).call(this, object, property, params));
 
-         _this2.__truncationSuspended = false;
 
-         var _this = _this2;
 
-         var prevY = void 0;
 
-         function onChange() {
 
-           var attempted = parseFloat(_this.__input.value);
 
-           if (!Common.isNaN(attempted)) {
 
-             _this.setValue(attempted);
 
-           }
 
-         }
 
-         function onFinish() {
 
-           if (_this.__onFinishChange) {
 
-             _this.__onFinishChange.call(_this, _this.getValue());
 
-           }
 
-         }
 
-         function onBlur() {
 
-           onFinish();
 
-         }
 
-         function onMouseDrag(e) {
 
-           var diff = prevY - e.clientY;
 
-           _this.setValue(_this.getValue() + diff * _this.__impliedStep);
 
-           prevY = e.clientY;
 
-         }
 
-         function onMouseUp() {
 
-           dom.unbind(window, 'mousemove', onMouseDrag);
 
-           dom.unbind(window, 'mouseup', onMouseUp);
 
-           onFinish();
 
-         }
 
-         function onMouseDown(e) {
 
-           dom.bind(window, 'mousemove', onMouseDrag);
 
-           dom.bind(window, 'mouseup', onMouseUp);
 
-           prevY = e.clientY;
 
-         }
 
-         _this2.__input = document.createElement('input');
 
-         _this2.__input.setAttribute('type', 'text');
 
-         dom.bind(_this2.__input, 'change', onChange);
 
-         dom.bind(_this2.__input, 'blur', onBlur);
 
-         dom.bind(_this2.__input, 'mousedown', onMouseDown);
 
-         dom.bind(_this2.__input, 'keydown', function (e) {
 
-           if (e.keyCode === 13) {
 
-             _this.__truncationSuspended = true;
 
-             this.blur();
 
-             _this.__truncationSuspended = false;
 
-             onFinish();
 
-           }
 
-         });
 
-         _this2.updateDisplay();
 
-         _this2.domElement.appendChild(_this2.__input);
 
-         return _this2;
 
-       }
 
-       createClass(NumberControllerBox, [{
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           this.__input.value = this.__truncationSuspended ? this.getValue() : roundToDecimal(this.getValue(), this.__precision);
 
-           return get(NumberControllerBox.prototype.__proto__ || Object.getPrototypeOf(NumberControllerBox.prototype), 'updateDisplay', this).call(this);
 
-         }
 
-       }]);
 
-       return NumberControllerBox;
 
-     }(NumberController);
 
-     function map(v, i1, i2, o1, o2) {
 
-       return o1 + (o2 - o1) * ((v - i1) / (i2 - i1));
 
-     }
 
-     var NumberControllerSlider = function (_NumberController) {
 
-       inherits(NumberControllerSlider, _NumberController);
 
-       function NumberControllerSlider(object, property, min, max, step) {
 
-         classCallCheck(this, NumberControllerSlider);
 
-         var _this2 = possibleConstructorReturn(this, (NumberControllerSlider.__proto__ || Object.getPrototypeOf(NumberControllerSlider)).call(this, object, property, {
 
-           min: min,
 
-           max: max,
 
-           step: step
 
-         }));
 
-         var _this = _this2;
 
-         _this2.__background = document.createElement('div');
 
-         _this2.__foreground = document.createElement('div');
 
-         dom.bind(_this2.__background, 'mousedown', onMouseDown);
 
-         dom.bind(_this2.__background, 'touchstart', onTouchStart);
 
-         dom.addClass(_this2.__background, 'slider');
 
-         dom.addClass(_this2.__foreground, 'slider-fg');
 
-         function onMouseDown(e) {
 
-           document.activeElement.blur();
 
-           dom.bind(window, 'mousemove', onMouseDrag);
 
-           dom.bind(window, 'mouseup', onMouseUp);
 
-           onMouseDrag(e);
 
-         }
 
-         function onMouseDrag(e) {
 
-           e.preventDefault();
 
-           var bgRect = _this.__background.getBoundingClientRect();
 
-           _this.setValue(map(e.clientX, bgRect.left, bgRect.right, _this.__min, _this.__max));
 
-           return false;
 
-         }
 
-         function onMouseUp() {
 
-           dom.unbind(window, 'mousemove', onMouseDrag);
 
-           dom.unbind(window, 'mouseup', onMouseUp);
 
-           if (_this.__onFinishChange) {
 
-             _this.__onFinishChange.call(_this, _this.getValue());
 
-           }
 
-         }
 
-         function onTouchStart(e) {
 
-           if (e.touches.length !== 1) {
 
-             return;
 
-           }
 
-           dom.bind(window, 'touchmove', onTouchMove);
 
-           dom.bind(window, 'touchend', onTouchEnd);
 
-           onTouchMove(e);
 
-         }
 
-         function onTouchMove(e) {
 
-           var clientX = e.touches[0].clientX;
 
-           var bgRect = _this.__background.getBoundingClientRect();
 
-           _this.setValue(map(clientX, bgRect.left, bgRect.right, _this.__min, _this.__max));
 
-         }
 
-         function onTouchEnd() {
 
-           dom.unbind(window, 'touchmove', onTouchMove);
 
-           dom.unbind(window, 'touchend', onTouchEnd);
 
-           if (_this.__onFinishChange) {
 
-             _this.__onFinishChange.call(_this, _this.getValue());
 
-           }
 
-         }
 
-         _this2.updateDisplay();
 
-         _this2.__background.appendChild(_this2.__foreground);
 
-         _this2.domElement.appendChild(_this2.__background);
 
-         return _this2;
 
-       }
 
-       createClass(NumberControllerSlider, [{
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           var pct = (this.getValue() - this.__min) / (this.__max - this.__min);
 
-           this.__foreground.style.width = pct * 100 + '%';
 
-           return get(NumberControllerSlider.prototype.__proto__ || Object.getPrototypeOf(NumberControllerSlider.prototype), 'updateDisplay', this).call(this);
 
-         }
 
-       }]);
 
-       return NumberControllerSlider;
 
-     }(NumberController);
 
-     var FunctionController = function (_Controller) {
 
-       inherits(FunctionController, _Controller);
 
-       function FunctionController(object, property, text) {
 
-         classCallCheck(this, FunctionController);
 
-         var _this2 = possibleConstructorReturn(this, (FunctionController.__proto__ || Object.getPrototypeOf(FunctionController)).call(this, object, property));
 
-         var _this = _this2;
 
-         _this2.__button = document.createElement('div');
 
-         _this2.__button.innerHTML = text === undefined ? 'Fire' : text;
 
-         dom.bind(_this2.__button, 'click', function (e) {
 
-           e.preventDefault();
 
-           _this.fire();
 
-           return false;
 
-         });
 
-         dom.addClass(_this2.__button, 'button');
 
-         _this2.domElement.appendChild(_this2.__button);
 
-         return _this2;
 
-       }
 
-       createClass(FunctionController, [{
 
-         key: 'fire',
 
-         value: function fire() {
 
-           if (this.__onChange) {
 
-             this.__onChange.call(this);
 
-           }
 
-           this.getValue().call(this.object);
 
-           if (this.__onFinishChange) {
 
-             this.__onFinishChange.call(this, this.getValue());
 
-           }
 
-         }
 
-       }]);
 
-       return FunctionController;
 
-     }(Controller);
 
-     var ColorController = function (_Controller) {
 
-       inherits(ColorController, _Controller);
 
-       function ColorController(object, property) {
 
-         classCallCheck(this, ColorController);
 
-         var _this2 = possibleConstructorReturn(this, (ColorController.__proto__ || Object.getPrototypeOf(ColorController)).call(this, object, property));
 
-         _this2.__color = new Color(_this2.getValue());
 
-         _this2.__temp = new Color(0);
 
-         var _this = _this2;
 
-         _this2.domElement = document.createElement('div');
 
-         dom.makeSelectable(_this2.domElement, false);
 
-         _this2.__selector = document.createElement('div');
 
-         _this2.__selector.className = 'selector';
 
-         _this2.__saturation_field = document.createElement('div');
 
-         _this2.__saturation_field.className = 'saturation-field';
 
-         _this2.__field_knob = document.createElement('div');
 
-         _this2.__field_knob.className = 'field-knob';
 
-         _this2.__field_knob_border = '2px solid ';
 
-         _this2.__hue_knob = document.createElement('div');
 
-         _this2.__hue_knob.className = 'hue-knob';
 
-         _this2.__hue_field = document.createElement('div');
 
-         _this2.__hue_field.className = 'hue-field';
 
-         _this2.__input = document.createElement('input');
 
-         _this2.__input.type = 'text';
 
-         _this2.__input_textShadow = '0 1px 1px ';
 
-         dom.bind(_this2.__input, 'keydown', function (e) {
 
-           if (e.keyCode === 13) {
 
-             onBlur.call(this);
 
-           }
 
-         });
 
-         dom.bind(_this2.__input, 'blur', onBlur);
 
-         dom.bind(_this2.__selector, 'mousedown', function () {
 
-           dom.addClass(this, 'drag').bind(window, 'mouseup', function () {
 
-             dom.removeClass(_this.__selector, 'drag');
 
-           });
 
-         });
 
-         dom.bind(_this2.__selector, 'touchstart', function () {
 
-           dom.addClass(this, 'drag').bind(window, 'touchend', function () {
 
-             dom.removeClass(_this.__selector, 'drag');
 
-           });
 
-         });
 
-         var valueField = document.createElement('div');
 
-         Common.extend(_this2.__selector.style, {
 
-           width: '122px',
 
-           height: '102px',
 
-           padding: '3px',
 
-           backgroundColor: '#222',
 
-           boxShadow: '0px 1px 3px rgba(0,0,0,0.3)'
 
-         });
 
-         Common.extend(_this2.__field_knob.style, {
 
-           position: 'absolute',
 
-           width: '12px',
 
-           height: '12px',
 
-           border: _this2.__field_knob_border + (_this2.__color.v < 0.5 ? '#fff' : '#000'),
 
-           boxShadow: '0px 1px 3px rgba(0,0,0,0.5)',
 
-           borderRadius: '12px',
 
-           zIndex: 1
 
-         });
 
-         Common.extend(_this2.__hue_knob.style, {
 
-           position: 'absolute',
 
-           width: '15px',
 
-           height: '2px',
 
-           borderRight: '4px solid #fff',
 
-           zIndex: 1
 
-         });
 
-         Common.extend(_this2.__saturation_field.style, {
 
-           width: '100px',
 
-           height: '100px',
 
-           border: '1px solid #555',
 
-           marginRight: '3px',
 
-           display: 'inline-block',
 
-           cursor: 'pointer'
 
-         });
 
-         Common.extend(valueField.style, {
 
-           width: '100%',
 
-           height: '100%',
 
-           background: 'none'
 
-         });
 
-         linearGradient(valueField, 'top', 'rgba(0,0,0,0)', '#000');
 
-         Common.extend(_this2.__hue_field.style, {
 
-           width: '15px',
 
-           height: '100px',
 
-           border: '1px solid #555',
 
-           cursor: 'ns-resize',
 
-           position: 'absolute',
 
-           top: '3px',
 
-           right: '3px'
 
-         });
 
-         hueGradient(_this2.__hue_field);
 
-         Common.extend(_this2.__input.style, {
 
-           outline: 'none',
 
-           textAlign: 'center',
 
-           color: '#fff',
 
-           border: 0,
 
-           fontWeight: 'bold',
 
-           textShadow: _this2.__input_textShadow + 'rgba(0,0,0,0.7)'
 
-         });
 
-         dom.bind(_this2.__saturation_field, 'mousedown', fieldDown);
 
-         dom.bind(_this2.__saturation_field, 'touchstart', fieldDown);
 
-         dom.bind(_this2.__field_knob, 'mousedown', fieldDown);
 
-         dom.bind(_this2.__field_knob, 'touchstart', fieldDown);
 
-         dom.bind(_this2.__hue_field, 'mousedown', fieldDownH);
 
-         dom.bind(_this2.__hue_field, 'touchstart', fieldDownH);
 
-         function fieldDown(e) {
 
-           setSV(e);
 
-           dom.bind(window, 'mousemove', setSV);
 
-           dom.bind(window, 'touchmove', setSV);
 
-           dom.bind(window, 'mouseup', fieldUpSV);
 
-           dom.bind(window, 'touchend', fieldUpSV);
 
-         }
 
-         function fieldDownH(e) {
 
-           setH(e);
 
-           dom.bind(window, 'mousemove', setH);
 
-           dom.bind(window, 'touchmove', setH);
 
-           dom.bind(window, 'mouseup', fieldUpH);
 
-           dom.bind(window, 'touchend', fieldUpH);
 
-         }
 
-         function fieldUpSV() {
 
-           dom.unbind(window, 'mousemove', setSV);
 
-           dom.unbind(window, 'touchmove', setSV);
 
-           dom.unbind(window, 'mouseup', fieldUpSV);
 
-           dom.unbind(window, 'touchend', fieldUpSV);
 
-           onFinish();
 
-         }
 
-         function fieldUpH() {
 
-           dom.unbind(window, 'mousemove', setH);
 
-           dom.unbind(window, 'touchmove', setH);
 
-           dom.unbind(window, 'mouseup', fieldUpH);
 
-           dom.unbind(window, 'touchend', fieldUpH);
 
-           onFinish();
 
-         }
 
-         function onBlur() {
 
-           var i = interpret(this.value);
 
-           if (i !== false) {
 
-             _this.__color.__state = i;
 
-             _this.setValue(_this.__color.toOriginal());
 
-           } else {
 
-             this.value = _this.__color.toString();
 
-           }
 
-         }
 
-         function onFinish() {
 
-           if (_this.__onFinishChange) {
 
-             _this.__onFinishChange.call(_this, _this.__color.toOriginal());
 
-           }
 
-         }
 
-         _this2.__saturation_field.appendChild(valueField);
 
-         _this2.__selector.appendChild(_this2.__field_knob);
 
-         _this2.__selector.appendChild(_this2.__saturation_field);
 
-         _this2.__selector.appendChild(_this2.__hue_field);
 
-         _this2.__hue_field.appendChild(_this2.__hue_knob);
 
-         _this2.domElement.appendChild(_this2.__input);
 
-         _this2.domElement.appendChild(_this2.__selector);
 
-         _this2.updateDisplay();
 
-         function setSV(e) {
 
-           if (e.type.indexOf('touch') === -1) {
 
-             e.preventDefault();
 
-           }
 
-           var fieldRect = _this.__saturation_field.getBoundingClientRect();
 
-           var _ref = e.touches && e.touches[0] || e,
 
-             clientX = _ref.clientX,
 
-             clientY = _ref.clientY;
 
-           var s = (clientX - fieldRect.left) / (fieldRect.right - fieldRect.left);
 
-           var v = 1 - (clientY - fieldRect.top) / (fieldRect.bottom - fieldRect.top);
 
-           if (v > 1) {
 
-             v = 1;
 
-           } else if (v < 0) {
 
-             v = 0;
 
-           }
 
-           if (s > 1) {
 
-             s = 1;
 
-           } else if (s < 0) {
 
-             s = 0;
 
-           }
 
-           _this.__color.v = v;
 
-           _this.__color.s = s;
 
-           _this.setValue(_this.__color.toOriginal());
 
-           return false;
 
-         }
 
-         function setH(e) {
 
-           if (e.type.indexOf('touch') === -1) {
 
-             e.preventDefault();
 
-           }
 
-           var fieldRect = _this.__hue_field.getBoundingClientRect();
 
-           var _ref2 = e.touches && e.touches[0] || e,
 
-             clientY = _ref2.clientY;
 
-           var h = 1 - (clientY - fieldRect.top) / (fieldRect.bottom - fieldRect.top);
 
-           if (h > 1) {
 
-             h = 1;
 
-           } else if (h < 0) {
 
-             h = 0;
 
-           }
 
-           _this.__color.h = h * 360;
 
-           _this.setValue(_this.__color.toOriginal());
 
-           return false;
 
-         }
 
-         return _this2;
 
-       }
 
-       createClass(ColorController, [{
 
-         key: 'updateDisplay',
 
-         value: function updateDisplay() {
 
-           var i = interpret(this.getValue());
 
-           if (i !== false) {
 
-             var mismatch = false;
 
-             Common.each(Color.COMPONENTS, function (component) {
 
-               if (!Common.isUndefined(i[component]) && !Common.isUndefined(this.__color.__state[component]) && i[component] !== this.__color.__state[component]) {
 
-                 mismatch = true;
 
-                 return {};
 
-               }
 
-             }, this);
 
-             if (mismatch) {
 
-               Common.extend(this.__color.__state, i);
 
-             }
 
-           }
 
-           Common.extend(this.__temp.__state, this.__color.__state);
 
-           this.__temp.a = 1;
 
-           var flip = this.__color.v < 0.5 || this.__color.s > 0.5 ? 255 : 0;
 
-           var _flip = 255 - flip;
 
-           Common.extend(this.__field_knob.style, {
 
-             marginLeft: 100 * this.__color.s - 7 + 'px',
 
-             marginTop: 100 * (1 - this.__color.v) - 7 + 'px',
 
-             backgroundColor: this.__temp.toHexString(),
 
-             border: this.__field_knob_border + 'rgb(' + flip + ',' + flip + ',' + flip + ')'
 
-           });
 
-           this.__hue_knob.style.marginTop = (1 - this.__color.h / 360) * 100 + 'px';
 
-           this.__temp.s = 1;
 
-           this.__temp.v = 1;
 
-           linearGradient(this.__saturation_field, 'left', '#fff', this.__temp.toHexString());
 
-           this.__input.value = this.__color.toString();
 
-           Common.extend(this.__input.style, {
 
-             backgroundColor: this.__color.toHexString(),
 
-             color: 'rgb(' + flip + ',' + flip + ',' + flip + ')',
 
-             textShadow: this.__input_textShadow + 'rgba(' + _flip + ',' + _flip + ',' + _flip + ',.7)'
 
-           });
 
-         }
 
-       }]);
 
-       return ColorController;
 
-     }(Controller);
 
-     var vendors = ['-moz-', '-o-', '-webkit-', '-ms-', ''];
 
-     function linearGradient(elem, x, a, b) {
 
-       elem.style.background = '';
 
-       Common.each(vendors, function (vendor) {
 
-         elem.style.cssText += 'background: ' + vendor + 'linear-gradient(' + x + ', ' + a + ' 0%, ' + b + ' 100%); ';
 
-       });
 
-     }
 
-     function hueGradient(elem) {
 
-       elem.style.background = '';
 
-       elem.style.cssText += 'background: -moz-linear-gradient(top,  #ff0000 0%, #ff00ff 17%, #0000ff 34%, #00ffff 50%, #00ff00 67%, #ffff00 84%, #ff0000 100%);';
 
-       elem.style.cssText += 'background: -webkit-linear-gradient(top,  #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);';
 
-       elem.style.cssText += 'background: -o-linear-gradient(top,  #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);';
 
-       elem.style.cssText += 'background: -ms-linear-gradient(top,  #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);';
 
-       elem.style.cssText += 'background: linear-gradient(top,  #ff0000 0%,#ff00ff 17%,#0000ff 34%,#00ffff 50%,#00ff00 67%,#ffff00 84%,#ff0000 100%);';
 
-     }
 
-     var css = {
 
-       load: function load(url, indoc) {
 
-         var doc = indoc || document;
 
-         var link = doc.createElement('link');
 
-         link.type = 'text/css';
 
-         link.rel = 'stylesheet';
 
-         link.href = url;
 
-         doc.getElementsByTagName('head')[0].appendChild(link);
 
-       },
 
-       inject: function inject(cssContent, indoc) {
 
-         var doc = indoc || document;
 
-         var injected = document.createElement('style');
 
-         injected.type = 'text/css';
 
-         injected.innerHTML = cssContent;
 
-         var head = doc.getElementsByTagName('head')[0];
 
-         try {
 
-           head.appendChild(injected);
 
-         } catch (e) { }
 
-       }
 
-     };
 
-     var saveDialogContents = "<div id=\"dg-save\" class=\"dg dialogue\">\n\n  Here's the new load parameter for your <code>GUI</code>'s constructor:\n\n  <textarea id=\"dg-new-constructor\"></textarea>\n\n  <div id=\"dg-save-locally\">\n\n    <input id=\"dg-local-storage\" type=\"checkbox\"/> Automatically save\n    values to <code>localStorage</code> on exit.\n\n    <div id=\"dg-local-explain\">The values saved to <code>localStorage</code> will\n      override those passed to <code>dat.GUI</code>'s constructor. This makes it\n      easier to work incrementally, but <code>localStorage</code> is fragile,\n      and your friends may not see the same values you do.\n\n    </div>\n\n  </div>\n\n</div>";
 
-     var ControllerFactory = function ControllerFactory(object, property) {
 
-       var initialValue = object[property];
 
-       if (Common.isArray(arguments[2]) || Common.isObject(arguments[2])) {
 
-         return new OptionController(object, property, arguments[2]);
 
-       }
 
-       if (Common.isNumber(initialValue)) {
 
-         if (Common.isNumber(arguments[2]) && Common.isNumber(arguments[3])) {
 
-           if (Common.isNumber(arguments[4])) {
 
-             return new NumberControllerSlider(object, property, arguments[2], arguments[3], arguments[4]);
 
-           }
 
-           return new NumberControllerSlider(object, property, arguments[2], arguments[3]);
 
-         }
 
-         if (Common.isNumber(arguments[4])) {
 
-           return new NumberControllerBox(object, property, {
 
-             min: arguments[2],
 
-             max: arguments[3],
 
-             step: arguments[4]
 
-           });
 
-         }
 
-         return new NumberControllerBox(object, property, {
 
-           min: arguments[2],
 
-           max: arguments[3]
 
-         });
 
-       }
 
-       if (Common.isString(initialValue)) {
 
-         return new StringController(object, property);
 
-       }
 
-       if (Common.isFunction(initialValue)) {
 
-         return new FunctionController(object, property, '');
 
-       }
 
-       if (Common.isBoolean(initialValue)) {
 
-         return new BooleanController(object, property);
 
-       }
 
-       return null;
 
-     };
 
-     function requestAnimationFrame(callback) {
 
-       setTimeout(callback, 1000 / 60);
 
-     }
 
-     var requestAnimationFrame$1 = window.requestAnimationFrame || window.webkitRequestAnimationFrame || window.mozRequestAnimationFrame || window.oRequestAnimationFrame || window.msRequestAnimationFrame || requestAnimationFrame;
 
-     var CenteredDiv = function () {
 
-       function CenteredDiv() {
 
-         classCallCheck(this, CenteredDiv);
 
-         this.backgroundElement = document.createElement('div');
 
-         Common.extend(this.backgroundElement.style, {
 
-           backgroundColor: 'rgba(0,0,0,0.8)',
 
-           top: 0,
 
-           left: 0,
 
-           display: 'none',
 
-           zIndex: '1000',
 
-           opacity: 0,
 
-           WebkitTransition: 'opacity 0.2s linear',
 
-           transition: 'opacity 0.2s linear'
 
-         });
 
-         dom.makeFullscreen(this.backgroundElement);
 
-         this.backgroundElement.style.position = 'fixed';
 
-         this.domElement = document.createElement('div');
 
-         Common.extend(this.domElement.style, {
 
-           position: 'fixed',
 
-           display: 'none',
 
-           zIndex: '1001',
 
-           opacity: 0,
 
-           WebkitTransition: '-webkit-transform 0.2s ease-out, opacity 0.2s linear',
 
-           transition: 'transform 0.2s ease-out, opacity 0.2s linear'
 
-         });
 
-         document.body.appendChild(this.backgroundElement);
 
-         document.body.appendChild(this.domElement);
 
-         var _this = this;
 
-         dom.bind(this.backgroundElement, 'click', function () {
 
-           _this.hide();
 
-         });
 
-       }
 
-       createClass(CenteredDiv, [{
 
-         key: 'show',
 
-         value: function show() {
 
-           var _this = this;
 
-           this.backgroundElement.style.display = 'block';
 
-           this.domElement.style.display = 'block';
 
-           this.domElement.style.opacity = 0;
 
-           this.domElement.style.webkitTransform = 'scale(1.1)';
 
-           this.layout();
 
-           Common.defer(function () {
 
-             _this.backgroundElement.style.opacity = 1;
 
-             _this.domElement.style.opacity = 1;
 
-             _this.domElement.style.webkitTransform = 'scale(1)';
 
-           });
 
-         }
 
-       }, {
 
-         key: 'hide',
 
-         value: function hide() {
 
-           var _this = this;
 
-           var hide = function hide() {
 
-             _this.domElement.style.display = 'none';
 
-             _this.backgroundElement.style.display = 'none';
 
-             dom.unbind(_this.domElement, 'webkitTransitionEnd', hide);
 
-             dom.unbind(_this.domElement, 'transitionend', hide);
 
-             dom.unbind(_this.domElement, 'oTransitionEnd', hide);
 
-           };
 
-           dom.bind(this.domElement, 'webkitTransitionEnd', hide);
 
-           dom.bind(this.domElement, 'transitionend', hide);
 
-           dom.bind(this.domElement, 'oTransitionEnd', hide);
 
-           this.backgroundElement.style.opacity = 0;
 
-           this.domElement.style.opacity = 0;
 
-           this.domElement.style.webkitTransform = 'scale(1.1)';
 
-         }
 
-       }, {
 
-         key: 'layout',
 
-         value: function layout() {
 
-           this.domElement.style.left = window.innerWidth / 2 - dom.getWidth(this.domElement) / 2 + 'px';
 
-           this.domElement.style.top = window.innerHeight / 2 - dom.getHeight(this.domElement) / 2 + 'px';
 
-         }
 
-       }]);
 
-       return CenteredDiv;
 
-     }();
 
-     var styleSheet = ___$insertStyle(".dg ul{list-style:none;margin:0;padding:0;width:100%;clear:both}.dg.ac{position:fixed;top:0;left:0;right:0;height:0;z-index:0}.dg:not(.ac) .main{overflow:hidden}.dg.main{-webkit-transition:opacity .1s linear;-o-transition:opacity .1s linear;-moz-transition:opacity .1s linear;transition:opacity .1s linear}.dg.main.taller-than-window{overflow-y:auto}.dg.main.taller-than-window .close-button{opacity:1;margin-top:-1px;border-top:1px solid #2c2c2c}.dg.main ul.closed .close-button{opacity:1 !important}.dg.main:hover .close-button,.dg.main .close-button.drag{opacity:1}.dg.main .close-button{-webkit-transition:opacity .1s linear;-o-transition:opacity .1s linear;-moz-transition:opacity .1s linear;transition:opacity .1s linear;border:0;line-height:19px;height:20px;cursor:pointer;text-align:center;background-color:#000}.dg.main .close-button.close-top{position:relative}.dg.main .close-button.close-bottom{position:absolute}.dg.main .close-button:hover{background-color:#111}.dg.a{float:right;margin-right:15px;overflow-y:visible}.dg.a.has-save>ul.close-top{margin-top:0}.dg.a.has-save>ul.close-bottom{margin-top:27px}.dg.a.has-save>ul.closed{margin-top:0}.dg.a .save-row{top:0;z-index:1002}.dg.a .save-row.close-top{position:relative}.dg.a .save-row.close-bottom{position:fixed}.dg li{-webkit-transition:height .1s ease-out;-o-transition:height .1s ease-out;-moz-transition:height .1s ease-out;transition:height .1s ease-out;-webkit-transition:overflow .1s linear;-o-transition:overflow .1s linear;-moz-transition:overflow .1s linear;transition:overflow .1s linear}.dg li:not(.folder){cursor:auto;height:27px;line-height:27px;padding:0 4px 0 5px}.dg li.folder{padding:0;border-left:4px solid rgba(0,0,0,0)}.dg li.title{cursor:pointer;margin-left:-4px}.dg .closed li:not(.title),.dg .closed ul li,.dg .closed ul li>*{height:0;overflow:hidden;border:0}.dg .cr{clear:both;padding-left:3px;height:27px;overflow:hidden}.dg .property-name{cursor:default;float:left;clear:left;width:40%;overflow:hidden;text-overflow:ellipsis}.dg .c{float:left;width:60%;position:relative}.dg .c input[type=text]{border:0;margin-top:4px;padding:3px;width:100%;float:right}.dg .has-slider input[type=text]{width:30%;margin-left:0}.dg .slider{float:left;width:66%;margin-left:-5px;margin-right:0;height:19px;margin-top:4px}.dg .slider-fg{height:100%}.dg .c input[type=checkbox]{margin-top:7px}.dg .c select{margin-top:5px}.dg .cr.function,.dg .cr.function .property-name,.dg .cr.function *,.dg .cr.boolean,.dg .cr.boolean *{cursor:pointer}.dg .cr.color{overflow:visible}.dg .selector{display:none;position:absolute;margin-left:-9px;margin-top:23px;z-index:10}.dg .c:hover .selector,.dg .selector.drag{display:block}.dg li.save-row{padding:0}.dg li.save-row .button{display:inline-block;padding:0px 6px}.dg.dialogue{background-color:#222;width:460px;padding:15px;font-size:13px;line-height:15px}#dg-new-constructor{padding:10px;color:#222;font-family:Monaco, monospace;font-size:10px;border:0;resize:none;box-shadow:inset 1px 1px 1px #888;word-wrap:break-word;margin:12px 0;display:block;width:440px;overflow-y:scroll;height:100px;position:relative}#dg-local-explain{display:none;font-size:11px;line-height:17px;border-radius:3px;background-color:#333;padding:8px;margin-top:10px}#dg-local-explain code{font-size:10px}#dat-gui-save-locally{display:none}.dg{color:#eee;font:11px 'Lucida Grande', sans-serif;text-shadow:0 -1px 0 #111}.dg.main::-webkit-scrollbar{width:5px;background:#1a1a1a}.dg.main::-webkit-scrollbar-corner{height:0;display:none}.dg.main::-webkit-scrollbar-thumb{border-radius:5px;background:#676767}.dg li:not(.folder){background:#1a1a1a;border-bottom:1px solid #2c2c2c}.dg li.save-row{line-height:25px;background:#dad5cb;border:0}.dg li.save-row select{margin-left:5px;width:108px}.dg li.save-row .button{margin-left:5px;margin-top:1px;border-radius:2px;font-size:9px;line-height:7px;padding:4px 4px 5px 4px;background:#c5bdad;color:#fff;text-shadow:0 1px 0 #b0a58f;box-shadow:0 -1px 0 #b0a58f;cursor:pointer}.dg li.save-row .button.gears{background:#c5bdad url() 2px 1px no-repeat;height:7px;width:8px}.dg li.save-row .button:hover{background-color:#bab19e;box-shadow:0 -1px 0 #b0a58f}.dg li.folder{border-bottom:0}.dg li.title{padding-left:16px;background:#000 url() 6px 10px no-repeat;cursor:pointer;border-bottom:1px solid rgba(255,255,255,0.2)}.dg .closed li.title{background-image:url()}.dg .cr.boolean{border-left:3px solid #806787}.dg .cr.color{border-left:3px solid}.dg .cr.function{border-left:3px solid #e61d5f}.dg .cr.number{border-left:3px solid #2FA1D6}.dg .cr.number input[type=text]{color:#2FA1D6}.dg .cr.string{border-left:3px solid #1ed36f}.dg .cr.string input[type=text]{color:#1ed36f}.dg .cr.function:hover,.dg .cr.boolean:hover{background:#111}.dg .c input[type=text]{background:#303030;outline:none}.dg .c input[type=text]:hover{background:#3c3c3c}.dg .c input[type=text]:focus{background:#494949;color:#fff}.dg .c .slider{background:#303030;cursor:ew-resize}.dg .c .slider-fg{background:#2FA1D6;max-width:100%}.dg .c .slider:hover{background:#3c3c3c}.dg .c .slider:hover .slider-fg{background:#44abda}\n");
 
-     css.inject(styleSheet);
 
-     var CSS_NAMESPACE = 'dg';
 
-     var HIDE_KEY_CODE = 72;
 
-     var CLOSE_BUTTON_HEIGHT = 20;
 
-     var DEFAULT_DEFAULT_PRESET_NAME = 'Default';
 
-     var SUPPORTS_LOCAL_STORAGE = function () {
 
-       try {
 
-         return !!window.localStorage;
 
-       } catch (e) {
 
-         return false;
 
-       }
 
-     }();
 
-     var SAVE_DIALOGUE = void 0;
 
-     var autoPlaceVirgin = true;
 
-     var autoPlaceContainer = void 0;
 
-     var hide = false;
 
-     var hideableGuis = [];
 
-     var GUI = function GUI(pars) {
 
-       var _this = this;
 
-       var params = pars || {};
 
-       this.domElement = document.createElement('div');
 
-       this.__ul = document.createElement('ul');
 
-       this.domElement.appendChild(this.__ul);
 
-       dom.addClass(this.domElement, CSS_NAMESPACE);
 
-       this.__folders = {};
 
-       this.__controllers = [];
 
-       this.__rememberedObjects = [];
 
-       this.__rememberedObjectIndecesToControllers = [];
 
-       this.__listening = [];
 
-       params = Common.defaults(params, {
 
-         closeOnTop: false,
 
-         autoPlace: true,
 
-         width: GUI.DEFAULT_WIDTH
 
-       });
 
-       params = Common.defaults(params, {
 
-         resizable: params.autoPlace,
 
-         hideable: params.autoPlace
 
-       });
 
-       if (!Common.isUndefined(params.load)) {
 
-         if (params.preset) {
 
-           params.load.preset = params.preset;
 
-         }
 
-       } else {
 
-         params.load = {
 
-           preset: DEFAULT_DEFAULT_PRESET_NAME
 
-         };
 
-       }
 
-       if (Common.isUndefined(params.parent) && params.hideable) {
 
-         hideableGuis.push(this);
 
-       }
 
-       params.resizable = Common.isUndefined(params.parent) && params.resizable;
 
-       if (params.autoPlace && Common.isUndefined(params.scrollable)) {
 
-         params.scrollable = true;
 
-       }
 
-       var useLocalStorage = SUPPORTS_LOCAL_STORAGE && localStorage.getItem(getLocalStorageHash(this, 'isLocal')) === 'true';
 
-       var saveToLocalStorage = void 0;
 
-       var titleRow = void 0;
 
-       Object.defineProperties(this, {
 
-         parent: {
 
-           get: function get$$1() {
 
-             return params.parent;
 
-           }
 
-         },
 
-         scrollable: {
 
-           get: function get$$1() {
 
-             return params.scrollable;
 
-           }
 
-         },
 
-         autoPlace: {
 
-           get: function get$$1() {
 
-             return params.autoPlace;
 
-           }
 
-         },
 
-         closeOnTop: {
 
-           get: function get$$1() {
 
-             return params.closeOnTop;
 
-           }
 
-         },
 
-         preset: {
 
-           get: function get$$1() {
 
-             if (_this.parent) {
 
-               return _this.getRoot().preset;
 
-             }
 
-             return params.load.preset;
 
-           },
 
-           set: function set$$1(v) {
 
-             if (_this.parent) {
 
-               _this.getRoot().preset = v;
 
-             } else {
 
-               params.load.preset = v;
 
-             }
 
-             setPresetSelectIndex(this);
 
-             _this.revert();
 
-           }
 
-         },
 
-         width: {
 
-           get: function get$$1() {
 
-             return params.width;
 
-           },
 
-           set: function set$$1(v) {
 
-             params.width = v;
 
-             setWidth(_this, v);
 
-           }
 
-         },
 
-         name: {
 
-           get: function get$$1() {
 
-             return params.name;
 
-           },
 
-           set: function set$$1(v) {
 
-             params.name = v;
 
-             if (titleRow) {
 
-               titleRow.innerHTML = params.name;
 
-             }
 
-           }
 
-         },
 
-         closed: {
 
-           get: function get$$1() {
 
-             return params.closed;
 
-           },
 
-           set: function set$$1(v) {
 
-             params.closed = v;
 
-             if (params.closed) {
 
-               dom.addClass(_this.__ul, GUI.CLASS_CLOSED);
 
-             } else {
 
-               dom.removeClass(_this.__ul, GUI.CLASS_CLOSED);
 
-             }
 
-             this.onResize();
 
-             if (_this.__closeButton) {
 
-               _this.__closeButton.innerHTML = v ? GUI.TEXT_OPEN : GUI.TEXT_CLOSED;
 
-             }
 
-           }
 
-         },
 
-         load: {
 
-           get: function get$$1() {
 
-             return params.load;
 
-           }
 
-         },
 
-         useLocalStorage: {
 
-           get: function get$$1() {
 
-             return useLocalStorage;
 
-           },
 
-           set: function set$$1(bool) {
 
-             if (SUPPORTS_LOCAL_STORAGE) {
 
-               useLocalStorage = bool;
 
-               if (bool) {
 
-                 dom.bind(window, 'unload', saveToLocalStorage);
 
-               } else {
 
-                 dom.unbind(window, 'unload', saveToLocalStorage);
 
-               }
 
-               localStorage.setItem(getLocalStorageHash(_this, 'isLocal'), bool);
 
-             }
 
-           }
 
-         }
 
-       });
 
-       if (Common.isUndefined(params.parent)) {
 
-         this.closed = params.closed || false;
 
-         dom.addClass(this.domElement, GUI.CLASS_MAIN);
 
-         dom.makeSelectable(this.domElement, false);
 
-         if (SUPPORTS_LOCAL_STORAGE) {
 
-           if (useLocalStorage) {
 
-             _this.useLocalStorage = true;
 
-             var savedGui = localStorage.getItem(getLocalStorageHash(this, 'gui'));
 
-             if (savedGui) {
 
-               params.load = JSON.parse(savedGui);
 
-             }
 
-           }
 
-         }
 
-         this.__closeButton = document.createElement('div');
 
-         this.__closeButton.innerHTML = GUI.TEXT_CLOSED;
 
-         dom.addClass(this.__closeButton, GUI.CLASS_CLOSE_BUTTON);
 
-         if (params.closeOnTop) {
 
-           dom.addClass(this.__closeButton, GUI.CLASS_CLOSE_TOP);
 
-           this.domElement.insertBefore(this.__closeButton, this.domElement.childNodes[0]);
 
-         } else {
 
-           dom.addClass(this.__closeButton, GUI.CLASS_CLOSE_BOTTOM);
 
-           this.domElement.appendChild(this.__closeButton);
 
-         }
 
-         dom.bind(this.__closeButton, 'click', function () {
 
-           _this.closed = !_this.closed;
 
-         });
 
-       } else {
 
-         if (params.closed === undefined) {
 
-           params.closed = true;
 
-         }
 
-         var titleRowName = document.createTextNode(params.name);
 
-         dom.addClass(titleRowName, 'controller-name');
 
-         titleRow = addRow(_this, titleRowName);
 
-         var onClickTitle = function onClickTitle(e) {
 
-           e.preventDefault();
 
-           _this.closed = !_this.closed;
 
-           return false;
 
-         };
 
-         dom.addClass(this.__ul, GUI.CLASS_CLOSED);
 
-         dom.addClass(titleRow, 'title');
 
-         dom.bind(titleRow, 'click', onClickTitle);
 
-         if (!params.closed) {
 
-           this.closed = false;
 
-         }
 
-       }
 
-       if (params.autoPlace) {
 
-         if (Common.isUndefined(params.parent)) {
 
-           if (autoPlaceVirgin) {
 
-             autoPlaceContainer = document.createElement('div');
 
-             dom.addClass(autoPlaceContainer, CSS_NAMESPACE);
 
-             dom.addClass(autoPlaceContainer, GUI.CLASS_AUTO_PLACE_CONTAINER);
 
-             document.body.appendChild(autoPlaceContainer);
 
-             autoPlaceVirgin = false;
 
-           }
 
-           autoPlaceContainer.appendChild(this.domElement);
 
-           dom.addClass(this.domElement, GUI.CLASS_AUTO_PLACE);
 
-         }
 
-         if (!this.parent) {
 
-           setWidth(_this, params.width);
 
-         }
 
-       }
 
-       this.__resizeHandler = function () {
 
-         _this.onResizeDebounced();
 
-       };
 
-       dom.bind(window, 'resize', this.__resizeHandler);
 
-       dom.bind(this.__ul, 'webkitTransitionEnd', this.__resizeHandler);
 
-       dom.bind(this.__ul, 'transitionend', this.__resizeHandler);
 
-       dom.bind(this.__ul, 'oTransitionEnd', this.__resizeHandler);
 
-       this.onResize();
 
-       if (params.resizable) {
 
-         addResizeHandle(this);
 
-       }
 
-       saveToLocalStorage = function saveToLocalStorage() {
 
-         if (SUPPORTS_LOCAL_STORAGE && localStorage.getItem(getLocalStorageHash(_this, 'isLocal')) === 'true') {
 
-           localStorage.setItem(getLocalStorageHash(_this, 'gui'), JSON.stringify(_this.getSaveObject()));
 
-         }
 
-       };
 
-       this.saveToLocalStorageIfPossible = saveToLocalStorage;
 
-       function resetWidth() {
 
-         var root = _this.getRoot();
 
-         root.width += 1;
 
-         Common.defer(function () {
 
-           root.width -= 1;
 
-         });
 
-       }
 
-       if (!params.parent) {
 
-         resetWidth();
 
-       }
 
-     };
 
-     GUI.toggleHide = function () {
 
-       hide = !hide;
 
-       Common.each(hideableGuis, function (gui) {
 
-         gui.domElement.style.display = hide ? 'none' : '';
 
-       });
 
-     };
 
-     GUI.CLASS_AUTO_PLACE = 'a';
 
-     GUI.CLASS_AUTO_PLACE_CONTAINER = 'ac';
 
-     GUI.CLASS_MAIN = 'main';
 
-     GUI.CLASS_CONTROLLER_ROW = 'cr';
 
-     GUI.CLASS_TOO_TALL = 'taller-than-window';
 
-     GUI.CLASS_CLOSED = 'closed';
 
-     GUI.CLASS_CLOSE_BUTTON = 'close-button';
 
-     GUI.CLASS_CLOSE_TOP = 'close-top';
 
-     GUI.CLASS_CLOSE_BOTTOM = 'close-bottom';
 
-     GUI.CLASS_DRAG = 'drag';
 
-     GUI.DEFAULT_WIDTH = 245;
 
-     GUI.TEXT_CLOSED = 'Close Controls';
 
-     GUI.TEXT_OPEN = 'Open Controls';
 
-     GUI._keydownHandler = function (e) {
 
-       if (document.activeElement.type !== 'text' && (e.which === HIDE_KEY_CODE || e.keyCode === HIDE_KEY_CODE)) {
 
-         GUI.toggleHide();
 
-       }
 
-     };
 
-     dom.bind(window, 'keydown', GUI._keydownHandler, false);
 
-     Common.extend(GUI.prototype, {
 
-       add: function add(object, property) {
 
-         return _add(this, object, property, {
 
-           factoryArgs: Array.prototype.slice.call(arguments, 2)
 
-         });
 
-       },
 
-       addColor: function addColor(object, property) {
 
-         return _add(this, object, property, {
 
-           color: true
 
-         });
 
-       },
 
-       remove: function remove(controller) {
 
-         this.__ul.removeChild(controller.__li);
 
-         this.__controllers.splice(this.__controllers.indexOf(controller), 1);
 
-         var _this = this;
 
-         Common.defer(function () {
 
-           _this.onResize();
 
-         });
 
-       },
 
-       destroy: function destroy() {
 
-         if (this.parent) {
 
-           throw new Error('Only the root GUI should be removed with .destroy(). ' + 'For subfolders, use gui.removeFolder(folder) instead.');
 
-         }
 
-         if (this.autoPlace) {
 
-           autoPlaceContainer.removeChild(this.domElement);
 
-         }
 
-         var _this = this;
 
-         Common.each(this.__folders, function (subfolder) {
 
-           _this.removeFolder(subfolder);
 
-         });
 
-         dom.unbind(window, 'keydown', GUI._keydownHandler, false);
 
-         removeListeners(this);
 
-       },
 
-       addFolder: function addFolder(name) {
 
-         if (this.__folders[name] !== undefined) {
 
-           throw new Error('You already have a folder in this GUI by the' + ' name "' + name + '"');
 
-         }
 
-         var newGuiParams = {
 
-           name: name,
 
-           parent: this
 
-         };
 
-         newGuiParams.autoPlace = this.autoPlace;
 
-         if (this.load && this.load.folders && this.load.folders[name]) {
 
-           newGuiParams.closed = this.load.folders[name].closed;
 
-           newGuiParams.load = this.load.folders[name];
 
-         }
 
-         var gui = new GUI(newGuiParams);
 
-         this.__folders[name] = gui;
 
-         var li = addRow(this, gui.domElement);
 
-         dom.addClass(li, 'folder');
 
-         return gui;
 
-       },
 
-       removeFolder: function removeFolder(folder) {
 
-         this.__ul.removeChild(folder.domElement.parentElement);
 
-         delete this.__folders[folder.name];
 
-         if (this.load && this.load.folders && this.load.folders[folder.name]) {
 
-           delete this.load.folders[folder.name];
 
-         }
 
-         removeListeners(folder);
 
-         var _this = this;
 
-         Common.each(folder.__folders, function (subfolder) {
 
-           folder.removeFolder(subfolder);
 
-         });
 
-         Common.defer(function () {
 
-           _this.onResize();
 
-         });
 
-       },
 
-       open: function open() {
 
-         this.closed = false;
 
-       },
 
-       close: function close() {
 
-         this.closed = true;
 
-       },
 
-       onResize: function onResize() {
 
-         var root = this.getRoot();
 
-         if (root.scrollable) {
 
-           var top = dom.getOffset(root.__ul).top;
 
-           var h = 0;
 
-           Common.each(root.__ul.childNodes, function (node) {
 
-             if (!(root.autoPlace && node === root.__save_row)) {
 
-               h += dom.getHeight(node);
 
-             }
 
-           });
 
-           if (window.innerHeight - top - CLOSE_BUTTON_HEIGHT < h) {
 
-             dom.addClass(root.domElement, GUI.CLASS_TOO_TALL);
 
-             root.__ul.style.height = window.innerHeight - top - CLOSE_BUTTON_HEIGHT + 'px';
 
-           } else {
 
-             dom.removeClass(root.domElement, GUI.CLASS_TOO_TALL);
 
-             root.__ul.style.height = 'auto';
 
-           }
 
-         }
 
-         if (root.__resize_handle) {
 
-           Common.defer(function () {
 
-             root.__resize_handle.style.height = root.__ul.offsetHeight + 'px';
 
-           });
 
-         }
 
-         if (root.__closeButton) {
 
-           root.__closeButton.style.width = root.width + 'px';
 
-         }
 
-       },
 
-       onResizeDebounced: Common.debounce(function () {
 
-         this.onResize();
 
-       }, 50),
 
-       remember: function remember() {
 
-         if (Common.isUndefined(SAVE_DIALOGUE)) {
 
-           SAVE_DIALOGUE = new CenteredDiv();
 
-           SAVE_DIALOGUE.domElement.innerHTML = saveDialogContents;
 
-         }
 
-         if (this.parent) {
 
-           throw new Error('You can only call remember on a top level GUI.');
 
-         }
 
-         var _this = this;
 
-         Common.each(Array.prototype.slice.call(arguments), function (object) {
 
-           if (_this.__rememberedObjects.length === 0) {
 
-             addSaveMenu(_this);
 
-           }
 
-           if (_this.__rememberedObjects.indexOf(object) === -1) {
 
-             _this.__rememberedObjects.push(object);
 
-           }
 
-         });
 
-         if (this.autoPlace) {
 
-           setWidth(this, this.width);
 
-         }
 
-       },
 
-       getRoot: function getRoot() {
 
-         var gui = this;
 
-         while (gui.parent) {
 
-           gui = gui.parent;
 
-         }
 
-         return gui;
 
-       },
 
-       getSaveObject: function getSaveObject() {
 
-         var toReturn = this.load;
 
-         toReturn.closed = this.closed;
 
-         if (this.__rememberedObjects.length > 0) {
 
-           toReturn.preset = this.preset;
 
-           if (!toReturn.remembered) {
 
-             toReturn.remembered = {};
 
-           }
 
-           toReturn.remembered[this.preset] = getCurrentPreset(this);
 
-         }
 
-         toReturn.folders = {};
 
-         Common.each(this.__folders, function (element, key) {
 
-           toReturn.folders[key] = element.getSaveObject();
 
-         });
 
-         return toReturn;
 
-       },
 
-       save: function save() {
 
-         if (!this.load.remembered) {
 
-           this.load.remembered = {};
 
-         }
 
-         this.load.remembered[this.preset] = getCurrentPreset(this);
 
-         markPresetModified(this, false);
 
-         this.saveToLocalStorageIfPossible();
 
-       },
 
-       saveAs: function saveAs(presetName) {
 
-         if (!this.load.remembered) {
 
-           this.load.remembered = {};
 
-           this.load.remembered[DEFAULT_DEFAULT_PRESET_NAME] = getCurrentPreset(this, true);
 
-         }
 
-         this.load.remembered[presetName] = getCurrentPreset(this);
 
-         this.preset = presetName;
 
-         addPresetOption(this, presetName, true);
 
-         this.saveToLocalStorageIfPossible();
 
-       },
 
-       revert: function revert(gui) {
 
-         Common.each(this.__controllers, function (controller) {
 
-           if (!this.getRoot().load.remembered) {
 
-             controller.setValue(controller.initialValue);
 
-           } else {
 
-             recallSavedValue(gui || this.getRoot(), controller);
 
-           }
 
-           if (controller.__onFinishChange) {
 
-             controller.__onFinishChange.call(controller, controller.getValue());
 
-           }
 
-         }, this);
 
-         Common.each(this.__folders, function (folder) {
 
-           folder.revert(folder);
 
-         });
 
-         if (!gui) {
 
-           markPresetModified(this.getRoot(), false);
 
-         }
 
-       },
 
-       listen: function listen(controller) {
 
-         var init = this.__listening.length === 0;
 
-         this.__listening.push(controller);
 
-         if (init) {
 
-           updateDisplays(this.__listening);
 
-         }
 
-       },
 
-       updateDisplay: function updateDisplay() {
 
-         Common.each(this.__controllers, function (controller) {
 
-           controller.updateDisplay();
 
-         });
 
-         Common.each(this.__folders, function (folder) {
 
-           folder.updateDisplay();
 
-         });
 
-       }
 
-     });
 
-     function addRow(gui, newDom, liBefore) {
 
-       var li = document.createElement('li');
 
-       if (newDom) {
 
-         li.appendChild(newDom);
 
-       }
 
-       if (liBefore) {
 
-         gui.__ul.insertBefore(li, liBefore);
 
-       } else {
 
-         gui.__ul.appendChild(li);
 
-       }
 
-       gui.onResize();
 
-       return li;
 
-     }
 
-     function removeListeners(gui) {
 
-       dom.unbind(window, 'resize', gui.__resizeHandler);
 
-       if (gui.saveToLocalStorageIfPossible) {
 
-         dom.unbind(window, 'unload', gui.saveToLocalStorageIfPossible);
 
-       }
 
-     }
 
-     function markPresetModified(gui, modified) {
 
-       var opt = gui.__preset_select[gui.__preset_select.selectedIndex];
 
-       if (modified) {
 
-         opt.innerHTML = opt.value + '*';
 
-       } else {
 
-         opt.innerHTML = opt.value;
 
-       }
 
-     }
 
-     function augmentController(gui, li, controller) {
 
-       controller.__li = li;
 
-       controller.__gui = gui;
 
-       Common.extend(controller, {
 
-         options: function options(_options) {
 
-           if (arguments.length > 1) {
 
-             var nextSibling = controller.__li.nextElementSibling;
 
-             controller.remove();
 
-             return _add(gui, controller.object, controller.property, {
 
-               before: nextSibling,
 
-               factoryArgs: [Common.toArray(arguments)]
 
-             });
 
-           }
 
-           if (Common.isArray(_options) || Common.isObject(_options)) {
 
-             var _nextSibling = controller.__li.nextElementSibling;
 
-             controller.remove();
 
-             return _add(gui, controller.object, controller.property, {
 
-               before: _nextSibling,
 
-               factoryArgs: [_options]
 
-             });
 
-           }
 
-         },
 
-         name: function name(_name) {
 
-           controller.__li.firstElementChild.firstElementChild.innerHTML = _name;
 
-           return controller;
 
-         },
 
-         listen: function listen() {
 
-           controller.__gui.listen(controller);
 
-           return controller;
 
-         },
 
-         remove: function remove() {
 
-           controller.__gui.remove(controller);
 
-           return controller;
 
-         }
 
-       });
 
-       if (controller instanceof NumberControllerSlider) {
 
-         var box = new NumberControllerBox(controller.object, controller.property, {
 
-           min: controller.__min,
 
-           max: controller.__max,
 
-           step: controller.__step
 
-         });
 
-         Common.each(['updateDisplay', 'onChange', 'onFinishChange', 'step', 'min', 'max'], function (method) {
 
-           var pc = controller[method];
 
-           var pb = box[method];
 
-           controller[method] = box[method] = function () {
 
-             var args = Array.prototype.slice.call(arguments);
 
-             pb.apply(box, args);
 
-             return pc.apply(controller, args);
 
-           };
 
-         });
 
-         dom.addClass(li, 'has-slider');
 
-         controller.domElement.insertBefore(box.domElement, controller.domElement.firstElementChild);
 
-       } else if (controller instanceof NumberControllerBox) {
 
-         var r = function r(returned) {
 
-           if (Common.isNumber(controller.__min) && Common.isNumber(controller.__max)) {
 
-             var oldName = controller.__li.firstElementChild.firstElementChild.innerHTML;
 
-             var wasListening = controller.__gui.__listening.indexOf(controller) > -1;
 
-             controller.remove();
 
-             var newController = _add(gui, controller.object, controller.property, {
 
-               before: controller.__li.nextElementSibling,
 
-               factoryArgs: [controller.__min, controller.__max, controller.__step]
 
-             });
 
-             newController.name(oldName);
 
-             if (wasListening) newController.listen();
 
-             return newController;
 
-           }
 
-           return returned;
 
-         };
 
-         controller.min = Common.compose(r, controller.min);
 
-         controller.max = Common.compose(r, controller.max);
 
-       } else if (controller instanceof BooleanController) {
 
-         dom.bind(li, 'click', function () {
 
-           dom.fakeEvent(controller.__checkbox, 'click');
 
-         });
 
-         dom.bind(controller.__checkbox, 'click', function (e) {
 
-           e.stopPropagation();
 
-         });
 
-       } else if (controller instanceof FunctionController) {
 
-         dom.bind(li, 'click', function () {
 
-           dom.fakeEvent(controller.__button, 'click');
 
-         });
 
-         dom.bind(li, 'mouseover', function () {
 
-           dom.addClass(controller.__button, 'hover');
 
-         });
 
-         dom.bind(li, 'mouseout', function () {
 
-           dom.removeClass(controller.__button, 'hover');
 
-         });
 
-       } else if (controller instanceof ColorController) {
 
-         dom.addClass(li, 'color');
 
-         controller.updateDisplay = Common.compose(function (val) {
 
-           li.style.borderLeftColor = controller.__color.toString();
 
-           return val;
 
-         }, controller.updateDisplay);
 
-         controller.updateDisplay();
 
-       }
 
-       controller.setValue = Common.compose(function (val) {
 
-         if (gui.getRoot().__preset_select && controller.isModified()) {
 
-           markPresetModified(gui.getRoot(), true);
 
-         }
 
-         return val;
 
-       }, controller.setValue);
 
-     }
 
-     function recallSavedValue(gui, controller) {
 
-       var root = gui.getRoot();
 
-       var matchedIndex = root.__rememberedObjects.indexOf(controller.object);
 
-       if (matchedIndex !== -1) {
 
-         var controllerMap = root.__rememberedObjectIndecesToControllers[matchedIndex];
 
-         if (controllerMap === undefined) {
 
-           controllerMap = {};
 
-           root.__rememberedObjectIndecesToControllers[matchedIndex] = controllerMap;
 
-         }
 
-         controllerMap[controller.property] = controller;
 
-         if (root.load && root.load.remembered) {
 
-           var presetMap = root.load.remembered;
 
-           var preset = void 0;
 
-           if (presetMap[gui.preset]) {
 
-             preset = presetMap[gui.preset];
 
-           } else if (presetMap[DEFAULT_DEFAULT_PRESET_NAME]) {
 
-             preset = presetMap[DEFAULT_DEFAULT_PRESET_NAME];
 
-           } else {
 
-             return;
 
-           }
 
-           if (preset[matchedIndex] && preset[matchedIndex][controller.property] !== undefined) {
 
-             var value = preset[matchedIndex][controller.property];
 
-             controller.initialValue = value;
 
-             controller.setValue(value);
 
-           }
 
-         }
 
-       }
 
-     }
 
-     function _add(gui, object, property, params) {
 
-       if (object[property] === undefined) {
 
-         throw new Error('Object "' + object + '" has no property "' + property + '"');
 
-       }
 
-       var controller = void 0;
 
-       if (params.color) {
 
-         controller = new ColorController(object, property);
 
-       } else {
 
-         var factoryArgs = [object, property].concat(params.factoryArgs);
 
-         controller = ControllerFactory.apply(gui, factoryArgs);
 
-       }
 
-       if (params.before instanceof Controller) {
 
-         params.before = params.before.__li;
 
-       }
 
-       recallSavedValue(gui, controller);
 
-       dom.addClass(controller.domElement, 'c');
 
-       var name = document.createElement('span');
 
-       dom.addClass(name, 'property-name');
 
-       name.innerHTML = controller.property;
 
-       var container = document.createElement('div');
 
-       container.appendChild(name);
 
-       container.appendChild(controller.domElement);
 
-       var li = addRow(gui, container, params.before);
 
-       dom.addClass(li, GUI.CLASS_CONTROLLER_ROW);
 
-       if (controller instanceof ColorController) {
 
-         dom.addClass(li, 'color');
 
-       } else {
 
-         dom.addClass(li, _typeof(controller.getValue()));
 
-       }
 
-       augmentController(gui, li, controller);
 
-       gui.__controllers.push(controller);
 
-       return controller;
 
-     }
 
-     function getLocalStorageHash(gui, key) {
 
-       return document.location.href + '.' + key;
 
-     }
 
-     function addPresetOption(gui, name, setSelected) {
 
-       var opt = document.createElement('option');
 
-       opt.innerHTML = name;
 
-       opt.value = name;
 
-       gui.__preset_select.appendChild(opt);
 
-       if (setSelected) {
 
-         gui.__preset_select.selectedIndex = gui.__preset_select.length - 1;
 
-       }
 
-     }
 
-     function showHideExplain(gui, explain) {
 
-       explain.style.display = gui.useLocalStorage ? 'block' : 'none';
 
-     }
 
-     function addSaveMenu(gui) {
 
-       var div = gui.__save_row = document.createElement('li');
 
-       dom.addClass(gui.domElement, 'has-save');
 
-       gui.__ul.insertBefore(div, gui.__ul.firstChild);
 
-       dom.addClass(div, 'save-row');
 
-       var gears = document.createElement('span');
 
-       gears.innerHTML = ' ';
 
-       dom.addClass(gears, 'button gears');
 
-       var button = document.createElement('span');
 
-       button.innerHTML = 'Save';
 
-       dom.addClass(button, 'button');
 
-       dom.addClass(button, 'save');
 
-       var button2 = document.createElement('span');
 
-       button2.innerHTML = 'New';
 
-       dom.addClass(button2, 'button');
 
-       dom.addClass(button2, 'save-as');
 
-       var button3 = document.createElement('span');
 
-       button3.innerHTML = 'Revert';
 
-       dom.addClass(button3, 'button');
 
-       dom.addClass(button3, 'revert');
 
-       var select = gui.__preset_select = document.createElement('select');
 
-       if (gui.load && gui.load.remembered) {
 
-         Common.each(gui.load.remembered, function (value, key) {
 
-           addPresetOption(gui, key, key === gui.preset);
 
-         });
 
-       } else {
 
-         addPresetOption(gui, DEFAULT_DEFAULT_PRESET_NAME, false);
 
-       }
 
-       dom.bind(select, 'change', function () {
 
-         for (var index = 0; index < gui.__preset_select.length; index++) {
 
-           gui.__preset_select[index].innerHTML = gui.__preset_select[index].value;
 
-         }
 
-         gui.preset = this.value;
 
-       });
 
-       div.appendChild(select);
 
-       div.appendChild(gears);
 
-       div.appendChild(button);
 
-       div.appendChild(button2);
 
-       div.appendChild(button3);
 
-       if (SUPPORTS_LOCAL_STORAGE) {
 
-         var explain = document.getElementById('dg-local-explain');
 
-         var localStorageCheckBox = document.getElementById('dg-local-storage');
 
-         var saveLocally = document.getElementById('dg-save-locally');
 
-         saveLocally.style.display = 'block';
 
-         if (localStorage.getItem(getLocalStorageHash(gui, 'isLocal')) === 'true') {
 
-           localStorageCheckBox.setAttribute('checked', 'checked');
 
-         }
 
-         showHideExplain(gui, explain);
 
-         dom.bind(localStorageCheckBox, 'change', function () {
 
-           gui.useLocalStorage = !gui.useLocalStorage;
 
-           showHideExplain(gui, explain);
 
-         });
 
-       }
 
-       var newConstructorTextArea = document.getElementById('dg-new-constructor');
 
-       dom.bind(newConstructorTextArea, 'keydown', function (e) {
 
-         if (e.metaKey && (e.which === 67 || e.keyCode === 67)) {
 
-           SAVE_DIALOGUE.hide();
 
-         }
 
-       });
 
-       dom.bind(gears, 'click', function () {
 
-         newConstructorTextArea.innerHTML = JSON.stringify(gui.getSaveObject(), undefined, 2);
 
-         SAVE_DIALOGUE.show();
 
-         newConstructorTextArea.focus();
 
-         newConstructorTextArea.select();
 
-       });
 
-       dom.bind(button, 'click', function () {
 
-         gui.save();
 
-       });
 
-       dom.bind(button2, 'click', function () {
 
-         var presetName = prompt('Enter a new preset name.');
 
-         if (presetName) {
 
-           gui.saveAs(presetName);
 
-         }
 
-       });
 
-       dom.bind(button3, 'click', function () {
 
-         gui.revert();
 
-       });
 
-     }
 
-     function addResizeHandle(gui) {
 
-       var pmouseX = void 0;
 
-       gui.__resize_handle = document.createElement('div');
 
-       Common.extend(gui.__resize_handle.style, {
 
-         width: '6px',
 
-         marginLeft: '-3px',
 
-         height: '200px',
 
-         cursor: 'ew-resize',
 
-         position: 'absolute'
 
-       });
 
-       function drag(e) {
 
-         e.preventDefault();
 
-         gui.width += pmouseX - e.clientX;
 
-         gui.onResize();
 
-         pmouseX = e.clientX;
 
-         return false;
 
-       }
 
-       function dragStop() {
 
-         dom.removeClass(gui.__closeButton, GUI.CLASS_DRAG);
 
-         dom.unbind(window, 'mousemove', drag);
 
-         dom.unbind(window, 'mouseup', dragStop);
 
-       }
 
-       function dragStart(e) {
 
-         e.preventDefault();
 
-         pmouseX = e.clientX;
 
-         dom.addClass(gui.__closeButton, GUI.CLASS_DRAG);
 
-         dom.bind(window, 'mousemove', drag);
 
-         dom.bind(window, 'mouseup', dragStop);
 
-         return false;
 
-       }
 
-       dom.bind(gui.__resize_handle, 'mousedown', dragStart);
 
-       dom.bind(gui.__closeButton, 'mousedown', dragStart);
 
-       gui.domElement.insertBefore(gui.__resize_handle, gui.domElement.firstElementChild);
 
-     }
 
-     function setWidth(gui, w) {
 
-       gui.domElement.style.width = w + 'px';
 
-       if (gui.__save_row && gui.autoPlace) {
 
-         gui.__save_row.style.width = w + 'px';
 
-       }
 
-       if (gui.__closeButton) {
 
-         gui.__closeButton.style.width = w + 'px';
 
-       }
 
-     }
 
-     function getCurrentPreset(gui, useInitialValues) {
 
-       var toReturn = {};
 
-       Common.each(gui.__rememberedObjects, function (val, index) {
 
-         var savedValues = {};
 
-         var controllerMap = gui.__rememberedObjectIndecesToControllers[index];
 
-         Common.each(controllerMap, function (controller, property) {
 
-           savedValues[property] = useInitialValues ? controller.initialValue : controller.getValue();
 
-         });
 
-         toReturn[index] = savedValues;
 
-       });
 
-       return toReturn;
 
-     }
 
-     function setPresetSelectIndex(gui) {
 
-       for (var index = 0; index < gui.__preset_select.length; index++) {
 
-         if (gui.__preset_select[index].value === gui.preset) {
 
-           gui.__preset_select.selectedIndex = index;
 
-         }
 
-       }
 
-     }
 
-     function updateDisplays(controllerArray) {
 
-       if (controllerArray.length !== 0) {
 
-         requestAnimationFrame$1.call(window, function () {
 
-           updateDisplays(controllerArray);
 
-         });
 
-       }
 
-       Common.each(controllerArray, function (c) {
 
-         c.updateDisplay();
 
-       });
 
-     }
 
-     var color = {
 
-       Color: Color,
 
-       math: ColorMath,
 
-       interpret: interpret
 
-     };
 
-     exports.color = color;
 
-     var controllers = {
 
-       Controller: Controller,
 
-       BooleanController: BooleanController,
 
-       OptionController: OptionController,
 
-       StringController: StringController,
 
-       NumberController: NumberController,
 
-       NumberControllerBox: NumberControllerBox,
 
-       NumberControllerSlider: NumberControllerSlider,
 
-       FunctionController: FunctionController,
 
-       ColorController: ColorController
 
-     };
 
-     exports.controllers = controllers;
 
-     var dom$1 = {
 
-       dom: dom
 
-     };
 
-     exports.dom = dom$1;
 
-     var gui = {
 
-       GUI: GUI
 
-     };
 
-     exports.gui = gui;
 
-     var GUI$1 = GUI;
 
-     exports.GUI = GUI$1;
 
-     var index = {
 
-       color: color,
 
-       controllers: controllers,
 
-       dom: dom$1,
 
-       gui: gui,
 
-       GUI: GUI$1
 
-     };
 
-     var _default = index;
 
-     exports.default = _default;
 
-   }, {}], "node_modules/stats.js/build/stats.min.js": [function (require, module, exports) {
 
-     var define;
 
-     // stats.js - http://github.com/mrdoob/stats.js
 
-     (function (f, e) { "object" === typeof exports && "undefined" !== typeof module ? module.exports = e() : "function" === typeof define && define.amd ? define(e) : f.Stats = e() })(this, function () {
 
-       var f = function () {
 
-         function e(a) { c.appendChild(a.dom); return a } function u(a) { for (var d = 0; d < c.children.length; d++)c.children[d].style.display = d === a ? "block" : "none"; l = a } var l = 0, c = document.createElement("div"); c.style.cssText = "position:fixed;top:0;left:0;cursor:pointer;opacity:0.9;z-index:10000"; c.addEventListener("click", function (a) {
 
-           a.preventDefault();
 
-           u(++l % c.children.length)
 
-         }, !1); var k = (performance || Date).now(), g = k, a = 0, r = e(new f.Panel("FPS", "#0ff", "#002")), h = e(new f.Panel("MS", "#0f0", "#020")); if (self.performance && self.performance.memory) var t = e(new f.Panel("MB", "#f08", "#201")); u(0); return {
 
-           REVISION: 16, dom: c, addPanel: e, showPanel: u, begin: function () { k = (performance || Date).now() }, end: function () {
 
-             a++; var c = (performance || Date).now(); h.update(c - k, 200); if (c > g + 1E3 && (r.update(1E3 * a / (c - g), 100), g = c, a = 0, t)) {
 
-               var d = performance.memory; t.update(d.usedJSHeapSize /
 
-                 1048576, d.jsHeapSizeLimit / 1048576)
 
-             } return c
 
-           }, update: function () { k = this.end() }, domElement: c, setMode: u
 
-         }
 
-       }; f.Panel = function (e, f, l) {
 
-         var c = Infinity, k = 0, g = Math.round, a = g(window.devicePixelRatio || 1), r = 80 * a, h = 48 * a, t = 3 * a, v = 2 * a, d = 3 * a, m = 15 * a, n = 74 * a, p = 30 * a, q = document.createElement("canvas"); q.width = r; q.height = h; q.style.cssText = "width:80px;height:48px"; var b = q.getContext("2d"); b.font = "bold " + 9 * a + "px Helvetica,Arial,sans-serif"; b.textBaseline = "top"; b.fillStyle = l; b.fillRect(0, 0, r, h); b.fillStyle = f; b.fillText(e, t, v);
 
-         b.fillRect(d, m, n, p); b.fillStyle = l; b.globalAlpha = .9; b.fillRect(d, m, n, p); return { dom: q, update: function (h, w) { c = Math.min(c, h); k = Math.max(k, h); b.fillStyle = l; b.globalAlpha = 1; b.fillRect(0, 0, r, m); b.fillStyle = f; b.fillText(g(h) + " " + e + " (" + g(c) + "-" + g(k) + ")", t, v); b.drawImage(q, d + a, m, n - a, p, d, m, n - a, p); b.fillRect(d + n - a, m, a, p); b.fillStyle = l; b.globalAlpha = .9; b.fillRect(d + n - a, m, a, g((1 - h / w) * p)) } }
 
-       }; return f
 
-     });
 
-   }, {}], "node_modules/@tensorflow/tfjs-layers/dist/tf-layers.esm.js": [function (require, module, exports) {
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.input = input;
 
-     exports.loadLayersModel = loadLayersModel;
 
-     exports.model = model;
 
-     exports.registerCallbackConstructor = registerCallbackConstructor;
 
-     exports.sequential = sequential;
 
-     exports.version_layers = exports.LayerVariable = exports.Sequential = exports.RNN = exports.LayersModel = exports.SymbolicTensor = exports.InputSpec = exports.EarlyStopping = exports.callbacks = exports.Callback = exports.History = exports.CustomCallback = exports.CallbackList = exports.regularizers = exports.models = exports.metrics = exports.layers = exports.initializers = exports.constraints = void 0;
 
-     var _tfjsCore = require("@tensorflow/tfjs-core");
 
-     /**
 
-      * @license
 
-      * Copyright 2019 Google LLC. All Rights Reserved.
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * http://www.apache.org/licenses/LICENSE-2.0
 
-      *
 
-      * Unless required by applicable law or agreed to in writing, software
 
-      * distributed under the License is distributed on an "AS IS" BASIS,
 
-      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-      * See the License for the specific language governing permissions and
 
-      * limitations under the License.
 
-      * =============================================================================
 
-      */
 
-     var extendStatics = function (e, t) {
 
-       return (extendStatics = Object.setPrototypeOf || {
 
-         __proto__: []
 
-       } instanceof Array && function (e, t) {
 
-         e.__proto__ = t;
 
-       } || function (e, t) {
 
-         for (var n in t) t.hasOwnProperty(n) && (e[n] = t[n]);
 
-       })(e, t);
 
-     };
 
-     function __extends(e, t) {
 
-       function n() {
 
-         this.constructor = e;
 
-       }
 
-       extendStatics(e, t), e.prototype = null === t ? Object.create(t) : (n.prototype = t.prototype, new n());
 
-     }
 
-     var _epsilon,
 
-       __assign = function () {
 
-         return (__assign = Object.assign || function (e) {
 
-           for (var t, n = 1, r = arguments.length; n < r; n++) for (var i in t = arguments[n]) Object.prototype.hasOwnProperty.call(t, i) && (e[i] = t[i]);
 
-           return e;
 
-         }).apply(this, arguments);
 
-       };
 
-     function __awaiter(e, t, n, r) {
 
-       return new (n || (n = Promise))(function (i, a) {
 
-         function o(e) {
 
-           try {
 
-             l(r.next(e));
 
-           } catch (e) {
 
-             a(e);
 
-           }
 
-         }
 
-         function s(e) {
 
-           try {
 
-             l(r.throw(e));
 
-           } catch (e) {
 
-             a(e);
 
-           }
 
-         }
 
-         function l(e) {
 
-           e.done ? i(e.value) : new n(function (t) {
 
-             t(e.value);
 
-           }).then(o, s);
 
-         }
 
-         l((r = r.apply(e, t || [])).next());
 
-       });
 
-     }
 
-     function __generator(e, t) {
 
-       var n,
 
-         r,
 
-         i,
 
-         a,
 
-         o = {
 
-           label: 0,
 
-           sent: function () {
 
-             if (1 & i[0]) throw i[1];
 
-             return i[1];
 
-           },
 
-           trys: [],
 
-           ops: []
 
-         };
 
-       return a = {
 
-         next: s(0),
 
-         throw: s(1),
 
-         return: s(2)
 
-       }, "function" == typeof Symbol && (a[Symbol.iterator] = function () {
 
-         return this;
 
-       }), a;
 
-       function s(a) {
 
-         return function (s) {
 
-           return function (a) {
 
-             if (n) throw new TypeError("Generator is already executing.");
 
-             for (; o;) try {
 
-               if (n = 1, r && (i = 2 & a[0] ? r.return : a[0] ? r.throw || ((i = r.return) && i.call(r), 0) : r.next) && !(i = i.call(r, a[1])).done) return i;
 
-               switch (r = 0, i && (a = [2 & a[0], i.value]), a[0]) {
 
-                 case 0:
 
-                 case 1:
 
-                   i = a;
 
-                   break;
 
-                 case 4:
 
-                   return o.label++, {
 
-                     value: a[1],
 
-                     done: !1
 
-                   };
 
-                 case 5:
 
-                   o.label++, r = a[1], a = [0];
 
-                   continue;
 
-                 case 7:
 
-                   a = o.ops.pop(), o.trys.pop();
 
-                   continue;
 
-                 default:
 
-                   if (!(i = (i = o.trys).length > 0 && i[i.length - 1]) && (6 === a[0] || 2 === a[0])) {
 
-                     o = 0;
 
-                     continue;
 
-                   }
 
-                   if (3 === a[0] && (!i || a[1] > i[0] && a[1] < i[3])) {
 
-                     o.label = a[1];
 
-                     break;
 
-                   }
 
-                   if (6 === a[0] && o.label < i[1]) {
 
-                     o.label = i[1], i = a;
 
-                     break;
 
-                   }
 
-                   if (i && o.label < i[2]) {
 
-                     o.label = i[2], o.ops.push(a);
 
-                     break;
 
-                   }
 
-                   i[2] && o.ops.pop(), o.trys.pop();
 
-                   continue;
 
-               }
 
-               a = t.call(e, o);
 
-             } catch (e) {
 
-               a = [6, e], r = 0;
 
-             } finally {
 
-                 n = i = 0;
 
-               }
 
-             if (5 & a[0]) throw a[1];
 
-             return {
 
-               value: a[0] ? a[1] : void 0,
 
-               done: !0
 
-             };
 
-           }([a, s]);
 
-         };
 
-       }
 
-     }
 
-     function epsilon() {
 
-       return null == _epsilon && (_epsilon = (0, _tfjsCore.backend)().epsilon()), _epsilon;
 
-     }
 
-     function imageDataFormat() {
 
-       return "channelsLast";
 
-     }
 
-     var AttributeError = function (e) {
 
-       function t(n) {
 
-         var r = e.call(this, n) || this;
 
-         return Object.setPrototypeOf(r, t.prototype), r;
 
-       }
 
-       return __extends(t, e), t;
 
-     }(Error),
 
-       RuntimeError = function (e) {
 
-         function t(n) {
 
-           var r = e.call(this, n) || this;
 
-           return Object.setPrototypeOf(r, t.prototype), r;
 
-         }
 
-         return __extends(t, e), t;
 
-       }(Error),
 
-       ValueError = function (e) {
 
-         function t(n) {
 
-           var r = e.call(this, n) || this;
 
-           return Object.setPrototypeOf(r, t.prototype), r;
 
-         }
 
-         return __extends(t, e), t;
 
-       }(Error),
 
-       NotImplementedError = function (e) {
 
-         function t(n) {
 
-           var r = e.call(this, n) || this;
 
-           return Object.setPrototypeOf(r, t.prototype), r;
 
-         }
 
-         return __extends(t, e), t;
 
-       }(Error),
 
-       AssertionError = function (e) {
 
-         function t(n) {
 
-           var r = e.call(this, n) || this;
 
-           return Object.setPrototypeOf(r, t.prototype), r;
 
-         }
 
-         return __extends(t, e), t;
 
-       }(Error),
 
-       IndexError = function (e) {
 
-         function t(n) {
 
-           var r = e.call(this, n) || this;
 
-           return Object.setPrototypeOf(r, t.prototype), r;
 
-         }
 
-         return __extends(t, e), t;
 
-       }(Error);
 
-     function pyListRepeat(e, t) {
 
-       if (Array.isArray(e)) {
 
-         for (var n = [], r = 0; r < t; r++) n = n.concat(e);
 
-         return n;
 
-       }
 
-       return (n = new Array(t)).fill(e), n;
 
-     }
 
-     function assert(e, t) {
 
-       if (!e) throw new AssertionError(t);
 
-     }
 
-     function count(e, t) {
 
-       for (var n = 0, r = 0, i = e; r < i.length; r++) {
 
-         i[r] === t && n++;
 
-       }
 
-       return n;
 
-     }
 
-     function singletonOrArray(e) {
 
-       return 1 === e.length ? e[0] : e;
 
-     }
 
-     function toList(e) {
 
-       return Array.isArray(e) ? e : [e];
 
-     }
 
-     function toSnakeCase(e) {
 
-       var t = e.replace(/(.)([A-Z][a-z0-9]+)/g, "$1_$2").replace(/([a-z])([A-Z])/g, "$1_$2").toLowerCase();
 
-       return "_" !== t[0] ? t : "private" + t;
 
-     }
 
-     function toCamelCase(e) {
 
-       return e.length <= 1 ? e : -1 === e.indexOf("_") ? e : e.replace(/[_]+(\w|$)/g, function (e, t) {
 
-         return t.toUpperCase();
 
-       });
 
-     }
 
-     var _GLOBAL_CUSTOM_OBJECTS = {};
 
-     function serializeKerasObject(e) {
 
-       if (null === e || void 0 === e) return null;
 
-       var t = {};
 
-       return t.className = e.getClassName(), t.config = e.getConfig(), t;
 
-     }
 
-     function convertNDArrayScalarsInConfig(e) {
 
-       if (null != e && "object" == typeof e) if (Array.isArray(e)) e.forEach(function (e) {
 
-         return convertNDArrayScalarsInConfig(e);
 
-       }); else for (var t = 0, n = Object.keys(e); t < n.length; t++) {
 
-         var r = n[t],
 
-           i = e[r];
 
-         null != i && "object" == typeof i && (Array.isArray(i) || "ndarray" !== i.type || "number" != typeof i.value ? convertNDArrayScalarsInConfig(i) : e[r] = i.value);
 
-       }
 
-     }
 
-     function deserializeKerasObject(e, t, n, r, i) {
 
-       var a, o, s;
 
-       if (void 0 === t && (t = {}), void 0 === n && (n = {}), void 0 === r && (r = "object"), void 0 === i && (i = !1), "string" == typeof e) {
 
-         var l = e,
 
-           u = void 0;
 
-         if (l in n) u = n[l]; else if (l in _GLOBAL_CUSTOM_OBJECTS) u = _GLOBAL_CUSTOM_OBJECTS[l]; else if (null == (u = t[l])) throw new ValueError("Unknown " + r + ": " + e + ". This may be due to one of the following reasons:\n1. The " + r + " is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom " + r + " is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().");
 
-         return u;
 
-       }
 
-       var c = e;
 
-       if (null == c.className || null == c.config) throw new ValueError(r + ": Improper config format: " + JSON.stringify(c) + ".\n'className' and 'config' must set.");
 
-       var p = c.className,
 
-         h = void 0,
 
-         d = void 0;
 
-       if (p in n ? (h = (a = n[p])[0], d = a[1]) : p in _GLOBAL_CUSTOM_OBJECTS ? (h = (o = _GLOBAL_CUSTOM_OBJECTS.className)[0], d = o[1]) : p in t && (h = (s = t[p])[0], d = s[1]), null == h) throw new ValueError("Unknown " + r + ": " + p + ". This may be due to one of the following reasons:\n1. The " + r + " is defined in Python, in which case it needs to be ported to TensorFlow.js or your JavaScript code.\n2. The custom " + r + " is defined in JavaScript, but is not registered properly with tf.serialization.registerClass().");
 
-       if (null != d) {
 
-         for (var f = {}, g = 0, m = Object.keys(_GLOBAL_CUSTOM_OBJECTS); g < m.length; g++) {
 
-           f[S = m[g]] = _GLOBAL_CUSTOM_OBJECTS[S];
 
-         }
 
-         for (var y = 0, v = Object.keys(n); y < v.length; y++) {
 
-           f[S = v[y]] = n[S];
 
-         }
 
-         c.config.customObjects = f;
 
-         for (var b = __assign({}, _GLOBAL_CUSTOM_OBJECTS), w = 0, z = Object.keys(n); w < z.length; w++) {
 
-           var S = z[w];
 
-           _GLOBAL_CUSTOM_OBJECTS[S] = n[S];
 
-         }
 
-         convertNDArrayScalarsInConfig(c.config);
 
-         var A = d(h, c.config, n, i);
 
-         return _GLOBAL_CUSTOM_OBJECTS = __assign({}, b), A;
 
-       }
 
-       b = __assign({}, _GLOBAL_CUSTOM_OBJECTS);
 
-       for (var _ = 0, I = Object.keys(n); _ < I.length; _++) {
 
-         S = I[_];
 
-         _GLOBAL_CUSTOM_OBJECTS[S] = n[S];
 
-       }
 
-       A = new h(c.config);
 
-       return _GLOBAL_CUSTOM_OBJECTS = __assign({}, b), A;
 
-     }
 
-     function numberCompare(e, t) {
 
-       return e < t ? -1 : e > t ? 1 : 0;
 
-     }
 
-     function reverseNumberCompare(e, t) {
 
-       return -1 * numberCompare(e, t);
 
-     }
 
-     function unique(e) {
 
-       if (null == e) return e;
 
-       for (var t = [], n = 0, r = e; n < r.length; n++) {
 
-         var i = r[n];
 
-         -1 === t.indexOf(i) && t.push(i);
 
-       }
 
-       return t;
 
-     }
 
-     function isObjectEmpty(e) {
 
-       if (null == e) throw new ValueError("Invalid value in obj: " + JSON.stringify(e));
 
-       for (var t in e) if (e.hasOwnProperty(t)) return !1;
 
-       return !0;
 
-     }
 
-     function checkStringTypeUnionValue(e, t, n) {
 
-       if (null != n && e.indexOf(n) < 0) throw new ValueError(n + " is not a valid " + t + ".  Valid values are " + e + " or null/undefined.");
 
-     }
 
-     function checkArrayTypeAndLength(e, t, n, r) {
 
-       return void 0 === n && (n = 0), void 0 === r && (r = 1 / 0), assert(n >= 0), assert(r >= n), Array.isArray(e) && e.length >= n && e.length <= r && e.every(function (e) {
 
-         return typeof e === t;
 
-       });
 
-     }
 
-     function assertPositiveInteger(e, t) {
 
-       Array.isArray(e) ? (_tfjsCore.util.assert(e.length > 0, function () {
 
-         return t + " is unexpectedly an empty array.";
 
-       }), e.forEach(function (e, n) {
 
-         return assertPositiveInteger(e, "element " + (n + 1) + " of " + t);
 
-       })) : _tfjsCore.util.assert(Number.isInteger(e) && e > 0, function () {
 
-         return "Expected " + t + " to be a positive integer, but got " + formatAsFriendlyString(e) + ".";
 
-       });
 
-     }
 
-     function formatAsFriendlyString(e) {
 
-       return null === e ? "null" : Array.isArray(e) ? "[" + e.map(function (e) {
 
-         return formatAsFriendlyString(e);
 
-       }).join(",") + "]" : "string" == typeof e ? '"' + e + '"' : "" + e;
 
-     }
 
-     function debounce(e, t) {
 
-       var n,
 
-         r = _tfjsCore.util.now();
 
-       return function () {
 
-         for (var i = [], a = 0; a < arguments.length; a++) i[a] = arguments[a];
 
-         var o = _tfjsCore.util.now();
 
-         return o - r < t ? n : (r = o, n = e.apply(void 0, i));
 
-       };
 
-     }
 
-     function mapActivationToFusedKernel(e) {
 
-       return "relu" === e ? "relu" : "linear" === e ? "linear" : "elu" === e ? "elu" : null;
 
-     }
 
-     function calcL2Norms(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.sqrt)((0, _tfjsCore.sum)((0, _tfjsCore.mulStrict)(e, e), t, !0));
 
-       });
 
-     }
 
-     var Constraint = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getConfig = function () {
 
-         return {};
 
-       }, t;
 
-     }(_tfjsCore.serialization.Serializable),
 
-       MaxNorm = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this) || this;
 
-           return n.defaultMaxValue = 2, n.defaultAxis = 0, n.maxValue = null != t.maxValue ? t.maxValue : n.defaultMaxValue, n.axis = null != t.axis ? t.axis : n.defaultAxis, n;
 
-         }
 
-         return __extends(t, e), t.prototype.apply = function (e) {
 
-           var t = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             var n = calcL2Norms(e, t.axis),
 
-               r = (0, _tfjsCore.clipByValue)(n, 0, t.maxValue);
 
-             return (0, _tfjsCore.mul)(e, (0, _tfjsCore.div)(r, (0, _tfjsCore.add)(epsilon(), n)));
 
-           });
 
-         }, t.prototype.getConfig = function () {
 
-           return {
 
-             maxValue: this.maxValue,
 
-             axis: this.axis
 
-           };
 
-         }, t.className = "MaxNorm", t;
 
-       }(Constraint);
 
-     _tfjsCore.serialization.registerClass(MaxNorm);
 
-     var UnitNorm = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         return n.defaultAxis = 0, n.axis = null != t.axis ? t.axis : n.defaultAxis, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         var t = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return (0, _tfjsCore.div)(e, (0, _tfjsCore.add)(epsilon(), calcL2Norms(e, t.axis)));
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           axis: this.axis
 
-         };
 
-       }, t.className = "UnitNorm", t;
 
-     }(Constraint);
 
-     _tfjsCore.serialization.registerClass(UnitNorm);
 
-     var NonNeg = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.relu)(e);
 
-       }, t.className = "NonNeg", t;
 
-     }(Constraint);
 
-     _tfjsCore.serialization.registerClass(NonNeg);
 
-     var MinMaxNorm = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         return n.defaultMinValue = 0, n.defaultMaxValue = 1, n.defaultRate = 1, n.defaultAxis = 0, n.minValue = null != t.minValue ? t.minValue : n.defaultMinValue, n.maxValue = null != t.maxValue ? t.maxValue : n.defaultMaxValue, n.rate = null != t.rate ? t.rate : n.defaultRate, n.axis = null != t.axis ? t.axis : n.defaultAxis, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         var t = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var n = calcL2Norms(e, t.axis),
 
-             r = (0, _tfjsCore.add)((0, _tfjsCore.mul)(t.rate, (0, _tfjsCore.clipByValue)(n, t.minValue, t.maxValue)), (0, _tfjsCore.mul)(1 - t.rate, n));
 
-           return (0, _tfjsCore.mul)(e, (0, _tfjsCore.div)(r, (0, _tfjsCore.add)(epsilon(), n)));
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           minValue: this.minValue,
 
-           maxValue: this.maxValue,
 
-           rate: this.rate,
 
-           axis: this.axis
 
-         };
 
-       }, t.className = "MinMaxNorm", t;
 
-     }(Constraint);
 
-     _tfjsCore.serialization.registerClass(MinMaxNorm);
 
-     var CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP = {
 
-       maxNorm: "MaxNorm",
 
-       minMaxNorm: "MinMaxNorm",
 
-       nonNeg: "NonNeg",
 
-       unitNorm: "UnitNorm"
 
-     };
 
-     function serializeConstraint(e) {
 
-       return serializeKerasObject(e);
 
-     }
 
-     function deserializeConstraint(e, t) {
 
-       return void 0 === t && (t = {}), deserializeKerasObject(e, _tfjsCore.serialization.SerializationMap.getMap().classNameMap, t, "constraint");
 
-     }
 
-     function getConstraint(e) {
 
-       return null == e ? null : "string" == typeof e ? deserializeConstraint({
 
-         className: e in CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP ? CONSTRAINT_IDENTIFIER_REGISTRY_SYMBOL_MAP[e] : e,
 
-         config: {}
 
-       }) : e instanceof Constraint ? e : deserializeConstraint(e);
 
-     }
 
-     function maxNorm(e) {
 
-       return new MaxNorm(e);
 
-     }
 
-     function unitNorm(e) {
 
-       return new UnitNorm(e);
 
-     }
 
-     function nonNeg() {
 
-       return new NonNeg();
 
-     }
 
-     function minMaxNorm(e) {
 
-       return new MinMaxNorm(e);
 
-     }
 
-     var exports_constraints = Object.freeze({
 
-       maxNorm: maxNorm,
 
-       unitNorm: unitNorm,
 
-       nonNeg: nonNeg,
 
-       minMaxNorm: minMaxNorm
 
-     }),
 
-       VALID_DATA_FORMAT_VALUES = ["channelsFirst", "channelsLast"],
 
-       VALID_PADDING_MODE_VALUES = ["valid", "same", "causal"],
 
-       VALID_POOL_MODE_VALUES = ["max", "avg"],
 
-       VALID_BIDIRECTIONAL_MERGE_MODES = ["sum", "mul", "concat", "ave"],
 
-       nameMap = new Map();
 
-     exports.constraints = exports_constraints;
 
-     function checkDataFormat(e) {
 
-       checkStringTypeUnionValue(VALID_DATA_FORMAT_VALUES, "DataFormat", e);
 
-     }
 
-     function checkPaddingMode(e) {
 
-       checkStringTypeUnionValue(VALID_PADDING_MODE_VALUES, "PaddingMode", e);
 
-     }
 
-     function checkPoolMode(e) {
 
-       checkStringTypeUnionValue(VALID_POOL_MODE_VALUES, "PoolMode", e);
 
-     }
 
-     var _nameScopeStack = [],
 
-       _nameScopeDivider = "/";
 
-     function nameScope(e, t) {
 
-       _nameScopeStack.push(e);
 
-       try {
 
-         var n = t();
 
-         return _nameScopeStack.pop(), n;
 
-       } catch (e) {
 
-         throw _nameScopeStack.pop(), e;
 
-       }
 
-     }
 
-     function currentNameScopePrefix() {
 
-       return 0 === _nameScopeStack.length ? "" : _nameScopeStack.join(_nameScopeDivider) + _nameScopeDivider;
 
-     }
 
-     function getScopedTensorName(e) {
 
-       if (!isValidTensorName(e)) throw new Error("Not a valid tensor name: '" + e + "'");
 
-       return currentNameScopePrefix() + e;
 
-     }
 
-     function getUniqueTensorName(e) {
 
-       if (!isValidTensorName(e)) throw new Error("Not a valid tensor name: '" + e + "'");
 
-       nameMap.has(e) || nameMap.set(e, 0);
 
-       var t = nameMap.get(e);
 
-       if (nameMap.set(e, nameMap.get(e) + 1), t > 0) {
 
-         var n = e + "_" + t;
 
-         return nameMap.set(n, 1), n;
 
-       }
 
-       return e;
 
-     }
 
-     var tensorNameRegex = new RegExp(/^[A-Za-z0-9][-A-Za-z0-9\._\/]*$/);
 
-     function isValidTensorName(e) {
 
-       return !!e.match(tensorNameRegex);
 
-     }
 
-     function isInteger(e) {
 
-       return e === parseInt(e.toString(), 10);
 
-     }
 
-     function arrayProd(e, t, n) {
 
-       null == t && (t = 0), null == n && (n = e.length);
 
-       for (var r = 1, i = t; i < n; ++i) r *= e[i];
 
-       return r;
 
-     }
 
-     function toArray1D(e) {
 
-       return e = Array.isArray(e) ? new Float32Array(e) : e, (0, _tfjsCore.tensor1d)(e);
 
-     }
 
-     function min$1(e) {
 
-       return (0, _tfjsCore.min)(toArray1D(e)).dataSync()[0];
 
-     }
 
-     function max$1(e) {
 
-       return (0, _tfjsCore.max)(toArray1D(e)).dataSync()[0];
 
-     }
 
-     function range(e, t) {
 
-       if (t < e) throw new ValueError("end (" + t + ") < begin (" + e + ") is forbidden.");
 
-       for (var n = [], r = e; r < t; ++r) n.push(r);
 
-       return n;
 
-     }
 
-     function cast$1(e, t) {
 
-       return e.asType(t);
 
-     }
 
-     function expandDims$1(e, t) {
 
-       void 0 === t && (t = -1);
 
-       var n = e.shape.slice();
 
-       return t < 0 && (t = n.length + t + 1), n.splice(t, 0, 1), e.reshape(n);
 
-     }
 
-     function repeat(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         if (2 !== e.shape.length) throw new ValueError("repeat() expects a rank-2 tensor, but received a rank-" + e.shape.length + " tensor.");
 
-         return tile$1(expandDims$1(e, 1), [1, t, 1]);
 
-       });
 
-     }
 
-     function flatten(e) {
 
-       var t = [arrayProd(e.shape)];
 
-       return e.reshape(t);
 
-     }
 
-     function batchFlatten(e) {
 
-       if (e.rank <= 1) throw new ValueError("batchFlatten requires a minimum rank of 2. Got rank: " + e.rank + ".");
 
-       var t = [e.shape[0], arrayProd(e.shape, 1)];
 
-       return e.reshape(t);
 
-     }
 
-     function sliceAlongFirstAxis(e, t, n) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         switch (e.rank) {
 
-           case 1:
 
-             return (0, _tfjsCore.slice1d)(e, t, n);
 
-           case 2:
 
-             return (0, _tfjsCore.slice2d)(e, [t, 0], [n, e.shape[1]]);
 
-           case 3:
 
-             return (0, _tfjsCore.slice3d)(e, [t, 0, 0], [n, e.shape[1], e.shape[2]]);
 
-           case 4:
 
-             return (0, _tfjsCore.slice4d)(e, [t, 0, 0, 0], [n, e.shape[1], e.shape[2], e.shape[3]]);
 
-           case 5:
 
-             return (0, _tfjsCore.slice)(e, [t, 0, 0, 0, 0], [n, e.shape[1], e.shape[2], e.shape[3], e.shape[4]]);
 
-           case 6:
 
-             return (0, _tfjsCore.slice)(e, [t, 0, 0, 0, 0, 0], [n, e.shape[1], e.shape[2], e.shape[3], e.shape[4], e.shape[5]]);
 
-           default:
 
-             throw new ValueError("sliceAlongFirstAxis() received an unsupported tensor rank: " + e.rank);
 
-         }
 
-       });
 
-     }
 
-     function sliceAlongLastAxis(e, t, n) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         switch (e.rank) {
 
-           case 1:
 
-             return (0, _tfjsCore.slice1d)(e, t, n);
 
-           case 2:
 
-             return (0, _tfjsCore.slice2d)(e, [0, t], [e.shape[0], n]);
 
-           case 3:
 
-             return (0, _tfjsCore.slice3d)(e, [0, 0, t], [e.shape[0], e.shape[1], n]);
 
-           case 4:
 
-             return (0, _tfjsCore.slice4d)(e, [0, 0, 0, t], [e.shape[0], e.shape[1], e.shape[2], n]);
 
-           default:
 
-             throw new ValueError("sliceAlongLastAxis() received an unsupported tensor rank: " + e.rank);
 
-         }
 
-       });
 
-     }
 
-     function sliceAlongAxis(e, t, n, r) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         switch (e.rank) {
 
-           case 1:
 
-             return (0, _tfjsCore.slice1d)(e, t, n);
 
-           case 2:
 
-             switch (r) {
 
-               case 1:
 
-                 return sliceAlongFirstAxis(e, t, n);
 
-               case 2:
 
-                 return sliceAlongLastAxis(e, t, n);
 
-               default:
 
-                 throw new ValueError("The axis is not within the rank of the tensor " + r);
 
-             }
 
-           case 3:
 
-             switch (r) {
 
-               case 1:
 
-                 return sliceAlongFirstAxis(e, t, n);
 
-               case 2:
 
-                 return (0, _tfjsCore.slice3d)(e, [0, t, 0], [e.shape[0], n, e.shape[2]]);
 
-               case 3:
 
-                 return sliceAlongLastAxis(e, t, n);
 
-               default:
 
-                 throw new ValueError("The axis is not within the rank of the tensor " + r);
 
-             }
 
-           case 4:
 
-             switch (r) {
 
-               case 1:
 
-                 return sliceAlongFirstAxis(e, t, n);
 
-               case 2:
 
-                 return (0, _tfjsCore.slice4d)(e, [0, t, 0, 0], [e.shape[0], n, e.shape[2], e.shape[3]]);
 
-               case 3:
 
-                 return (0, _tfjsCore.slice4d)(e, [0, 0, t, 0], [e.shape[0], e.shape[1], n, e.shape[3]]);
 
-               case 4:
 
-                 return sliceAlongLastAxis(e, t, n);
 
-               default:
 
-                 throw new ValueError("The axis is not within the rank of the tensor " + r);
 
-             }
 
-           default:
 
-             throw new ValueError("sliceAlongLastAxis() received an unsupported tensor rank: " + e.rank);
 
-         }
 
-       });
 
-     }
 
-     function concatenate(e, t) {
 
-       var n;
 
-       return void 0 === t && (t = -1), t < 0 && (t = 0 !== (n = e[0].rank) ? n : 0), t === e[0].rank && (t = -1), (0, _tfjsCore.concat)(e, t);
 
-     }
 
-     function concatAlongFirstAxis(e, t) {
 
-       switch (e.rank) {
 
-         case 1:
 
-           return (0, _tfjsCore.concat1d)([e, t]);
 
-         case 2:
 
-           return (0, _tfjsCore.concat2d)([e, t], 0);
 
-         case 3:
 
-           return (0, _tfjsCore.concat3d)([e, t], 0);
 
-         case 4:
 
-           return (0, _tfjsCore.concat4d)([e, t], 0);
 
-         default:
 
-           throw new ValueError("concatAlongFirstAxis() received an unsupported tensor rank: " + e.rank);
 
-       }
 
-     }
 
-     function tile$1(e, t) {
 
-       if (Array.isArray(t) || (t = [t]), e.rank !== t.length) throw new ValueError("The length of input n (" + t.length + ") does not match the number of dimensions in input x (" + e.rank + ")");
 
-       return (0, _tfjsCore.tile)(e, t);
 
-     }
 
-     function randomNormal$1(e, t, n, r, i) {
 
-       return void 0 === t && (t = 0), void 0 === n && (n = 1), (0, _tfjsCore.randomNormal)(e, t, n, r, i);
 
-     }
 
-     function dot(e, t, n, r) {
 
-       if (e.rank < 2 || t.rank < 2) throw new NotImplementedError("dot requires both inputs to be rank >= 2 but got x shape = " + e.shape + " and y shape = " + t.shape);
 
-       if (t.rank >= 3 && e.shape.slice(-1)[0] !== (c = t.shape.slice(-2)[0])) throw new NotImplementedError("If rank y >= 3, then the second last dim of y must equal the last dim of x but got x shape = " + e.shape + " and  y shape = " + t.shape);
 
-       if (2 === e.rank && 2 === t.rank) {
 
-         var i = !1,
 
-           a = !1;
 
-         return _tfjsCore.fused.matMul({
 
-           a: e,
 
-           b: t,
 
-           transposeA: i,
 
-           transposeB: a,
 
-           bias: r ? reshapeBias(e.rank, r, imageDataFormat()) : null,
 
-           activation: n
 
-         });
 
-       }
 
-       var o = e.shape.slice(),
 
-         s = o.pop();
 
-       e = e.reshape([-1, s]);
 
-       var l = t.shape.slice(),
 
-         u = l.pop(),
 
-         c = l.pop(),
 
-         p = l.concat([u]),
 
-         h = Array.from({
 
-           length: t.rank
 
-         }, function (e, n) {
 
-           return 0 === n ? t.rank - 2 : n <= t.rank - 2 ? n - 1 : n;
 
-         });
 
-       t = t.transpose(h).reshape([c, -1]);
 
-       var d = o.concat(p);
 
-       i = !1, a = !1;
 
-       return _tfjsCore.fused.matMul({
 
-         a: e,
 
-         b: t,
 
-         transposeA: i,
 
-         transposeB: a,
 
-         bias: r ? reshapeBias(e.rank, r, imageDataFormat()) : null,
 
-         activation: n
 
-       }).reshape(d);
 
-     }
 
-     function gather$1(e, t, n) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return t = Array.isArray(t) ? (0, _tfjsCore.tensor1d)(t, "int32") : t.toInt(), (0, _tfjsCore.gather)(e, t, n);
 
-       });
 
-     }
 
-     function square(e) {
 
-       return (0, _tfjsCore.mulStrict)(e, e);
 
-     }
 
-     function reshapeBias(e, t, n) {
 
-       var r = t.shape;
 
-       if (1 !== t.rank && t.rank !== e) throw new ValueError("Unexpected bias dimensions: " + t.rank + "; expected it to be 1 or " + e);
 
-       if (5 === e) {
 
-         if ("channelsFirst" === n) return 1 === r.length ? t.reshape([1, r[0], 1, 1, 1]) : t.reshape([1, r[3], r[0], r[1], r[2]]);
 
-         if ("channelsLast" === n) return 1 === r.length ? t.reshape([1, 1, 1, 1, r[0]]) : t.reshape([1].concat(r));
 
-       } else if (4 === e) {
 
-         if ("channelsFirst" === n) return 1 === r.length ? t.reshape([1, r[0], 1, 1]) : t.reshape([1, r[2], r[0], r[1]]);
 
-         if ("channelsLast" === n) return 1 === r.length ? t.reshape([1, 1, 1, r[0]]) : t.reshape([1].concat(r));
 
-       } else if (3 === e) {
 
-         if ("channelsFirst" === n) return 1 === r.length ? t.reshape([1, r[0], 1]) : t.reshape([1, r[1], r[0]]);
 
-         if ("channelsLast" === n) return 1 === r.length ? t.reshape([1, 1, r[0]]) : t.reshape([1].concat(r));
 
-       } else if (e < 3) return t;
 
-       throw new ValueError("Unsupported input rank by biasAdd: " + t.rank);
 
-     }
 
-     function biasAdd(e, t, n) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return null == n && (n = imageDataFormat()), checkDataFormat(n), e.add(reshapeBias(e.rank, t, n));
 
-       });
 
-     }
 
-     function elu$1(e, t) {
 
-       if (void 0 === t && (t = 1), 1 !== t) throw new NotImplementedError("Support for alpha values other than 1 (" + t + ") is not implemented yet.");
 
-       return (0, _tfjsCore.elu)(e);
 
-     }
 
-     function softsign(e) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.div)(e, (0, _tfjsCore.abs)(e).add(1));
 
-       });
 
-     }
 
-     function dropout$1(e, t, n, r) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.dropout)(e, t, n, r);
 
-       });
 
-     }
 
-     function hardSigmoid(e) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var t = (0, _tfjsCore.add)(.5, (0, _tfjsCore.mul)(.2, e));
 
-         return (0, _tfjsCore.clipByValue)(t, 0, 1);
 
-       });
 
-     }
 
-     function inTrainPhase(e, t, n) {
 
-       return void 0 === n && (n = !1), n ? e() : t();
 
-     }
 
-     var VALID_FAN_MODE_VALUES = ["fanIn", "fanOut", "fanAvg"],
 
-       VALID_DISTRIBUTION_VALUES = ["normal", "uniform", "truncatedNormal"];
 
-     function checkFanMode(e) {
 
-       checkStringTypeUnionValue(VALID_FAN_MODE_VALUES, "FanMode", e);
 
-     }
 
-     function checkDistribution(e) {
 
-       checkStringTypeUnionValue(VALID_DISTRIBUTION_VALUES, "Distribution", e);
 
-     }
 
-     var Initializer = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.fromConfigUsesCustomObjects = function () {
 
-         return !1;
 
-       }, t.prototype.getConfig = function () {
 
-         return {};
 
-       }, t;
 
-     }(_tfjsCore.serialization.Serializable),
 
-       Zeros = function (e) {
 
-         function t() {
 
-           return null !== e && e.apply(this, arguments) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.apply = function (e, t) {
 
-           return (0, _tfjsCore.zeros)(e, t);
 
-         }, t.className = "Zeros", t;
 
-       }(Initializer);
 
-     _tfjsCore.serialization.registerClass(Zeros);
 
-     var Ones = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         return (0, _tfjsCore.ones)(e, t);
 
-       }, t.className = "Ones", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(Ones);
 
-     var Constant = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         if ("object" != typeof t) throw new ValueError("Expected argument of type ConstantConfig but got " + t);
 
-         if (void 0 === t.value) throw new ValueError("config must have value set but got " + t);
 
-         return n.value = t.value, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return (0, _tfjsCore.mul)((0, _tfjsCore.scalar)(n.value), (0, _tfjsCore.ones)(e, t));
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           value: this.value
 
-         };
 
-       }, t.className = "Constant", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(Constant);
 
-     var RandomUniform = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         return n.DEFAULT_MINVAL = -.05, n.DEFAULT_MAXVAL = .05, n.minval = t.minval || n.DEFAULT_MINVAL, n.maxval = t.maxval || n.DEFAULT_MAXVAL, n.seed = t.seed, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         return (0, _tfjsCore.randomUniform)(e, this.minval, this.maxval, t);
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           minval: this.minval,
 
-           maxval: this.maxval,
 
-           seed: this.seed
 
-         };
 
-       }, t.className = "RandomUniform", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(RandomUniform);
 
-     var RandomNormal = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         return n.DEFAULT_MEAN = 0, n.DEFAULT_STDDEV = .05, n.mean = t.mean || n.DEFAULT_MEAN, n.stddev = t.stddev || n.DEFAULT_STDDEV, n.seed = t.seed, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         if ("float32" !== (t = t || "float32") && "int32" !== t) throw new NotImplementedError("randomNormal does not support dType " + t + ".");
 
-         return randomNormal$1(e, this.mean, this.stddev, t, this.seed);
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           mean: this.mean,
 
-           stddev: this.stddev,
 
-           seed: this.seed
 
-         };
 
-       }, t.className = "RandomNormal", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(RandomNormal);
 
-     var TruncatedNormal = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         return n.DEFAULT_MEAN = 0, n.DEFAULT_STDDEV = .05, n.mean = t.mean || n.DEFAULT_MEAN, n.stddev = t.stddev || n.DEFAULT_STDDEV, n.seed = t.seed, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         if ("float32" !== (t = t || "float32") && "int32" !== t) throw new NotImplementedError("truncatedNormal does not support dType " + t + ".");
 
-         return (0, _tfjsCore.truncatedNormal)(e, this.mean, this.stddev, t, this.seed);
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           mean: this.mean,
 
-           stddev: this.stddev,
 
-           seed: this.seed
 
-         };
 
-       }, t.className = "TruncatedNormal", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(TruncatedNormal);
 
-     var Identity = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         return n.gain = null != t.gain ? t.gain : 1, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           if (2 !== e.length || e[0] !== e[1]) throw new ValueError("Identity matrix initializer can only be used for 2D square matrices.");
 
-           return (0, _tfjsCore.mul)(n.gain, (0, _tfjsCore.eye)(e[0]));
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           gain: this.gain
 
-         };
 
-       }, t.className = "Identity", t;
 
-     }(Initializer);
 
-     function computeFans(e, t) {
 
-       var n, r;
 
-       if (void 0 === t && (t = "channelsLast"), checkDataFormat(t), 2 === e.length) n = e[0], r = e[1]; else if (-1 !== [3, 4, 5].indexOf(e.length)) {
 
-         if ("channelsFirst" === t) {
 
-           var i = arrayProd(e, 2);
 
-           n = e[1] * i, r = e[0] * i;
 
-         } else if ("channelsLast" === t) {
 
-           i = arrayProd(e, 0, e.length - 2);
 
-           n = e[e.length - 2] * i, r = e[e.length - 1] * i;
 
-         }
 
-       } else {
 
-         var a = arrayProd(e);
 
-         n = Math.sqrt(a), r = Math.sqrt(a);
 
-       }
 
-       return [n, r];
 
-     }
 
-     _tfjsCore.serialization.registerClass(Identity);
 
-     var VarianceScaling = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         if (t.scale < 0) throw new ValueError("scale must be a positive float. Got: " + t.scale);
 
-         return n.scale = null == t.scale ? 1 : t.scale, n.mode = null == t.mode ? "fanIn" : t.mode, checkFanMode(n.mode), n.distribution = null == t.distribution ? "normal" : t.distribution, checkDistribution(n.distribution), n.seed = t.seed, n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         var n = computeFans(e),
 
-           r = n[0],
 
-           i = n[1],
 
-           a = this.scale;
 
-         if ("fanIn" === this.mode ? a /= Math.max(1, r) : "fanOut" === this.mode ? a /= Math.max(1, i) : a /= Math.max(1, (r + i) / 2), "normal" === this.distribution) {
 
-           var o = Math.sqrt(a);
 
-           if ("float32" !== (t = t || "float32") && "int32" !== t) throw new NotImplementedError(this.getClassName() + " does not support dType " + t + ".");
 
-           return (0, _tfjsCore.truncatedNormal)(e, 0, o, t, this.seed);
 
-         }
 
-         var s = Math.sqrt(3 * a);
 
-         return (0, _tfjsCore.randomUniform)(e, -s, s, t);
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           scale: this.scale,
 
-           mode: this.mode,
 
-           distribution: this.distribution,
 
-           seed: this.seed
 
-         };
 
-       }, t.className = "VarianceScaling", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(VarianceScaling);
 
-     var GlorotUniform = function (e) {
 
-       function t(t) {
 
-         return e.call(this, {
 
-           scale: 1,
 
-           mode: "fanAvg",
 
-           distribution: "uniform",
 
-           seed: null == t ? null : t.seed
 
-         }) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getClassName = function () {
 
-         return VarianceScaling.className;
 
-       }, t.className = "GlorotUniform", t;
 
-     }(VarianceScaling);
 
-     _tfjsCore.serialization.registerClass(GlorotUniform);
 
-     var GlorotNormal = function (e) {
 
-       function t(t) {
 
-         return e.call(this, {
 
-           scale: 1,
 
-           mode: "fanAvg",
 
-           distribution: "normal",
 
-           seed: null == t ? null : t.seed
 
-         }) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getClassName = function () {
 
-         return VarianceScaling.className;
 
-       }, t.className = "GlorotNormal", t;
 
-     }(VarianceScaling);
 
-     _tfjsCore.serialization.registerClass(GlorotNormal);
 
-     var HeNormal = function (e) {
 
-       function t(t) {
 
-         return e.call(this, {
 
-           scale: 2,
 
-           mode: "fanIn",
 
-           distribution: "normal",
 
-           seed: null == t ? null : t.seed
 
-         }) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getClassName = function () {
 
-         return VarianceScaling.className;
 
-       }, t.className = "HeNormal", t;
 
-     }(VarianceScaling);
 
-     _tfjsCore.serialization.registerClass(HeNormal);
 
-     var HeUniform = function (e) {
 
-       function t(t) {
 
-         return e.call(this, {
 
-           scale: 2,
 
-           mode: "fanIn",
 
-           distribution: "uniform",
 
-           seed: null == t ? null : t.seed
 
-         }) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getClassName = function () {
 
-         return VarianceScaling.className;
 
-       }, t.className = "HeUniform", t;
 
-     }(VarianceScaling);
 
-     _tfjsCore.serialization.registerClass(HeUniform);
 
-     var LeCunNormal = function (e) {
 
-       function t(t) {
 
-         return e.call(this, {
 
-           scale: 1,
 
-           mode: "fanIn",
 
-           distribution: "normal",
 
-           seed: null == t ? null : t.seed
 
-         }) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getClassName = function () {
 
-         return VarianceScaling.className;
 
-       }, t.className = "LeCunNormal", t;
 
-     }(VarianceScaling);
 
-     _tfjsCore.serialization.registerClass(LeCunNormal);
 
-     var LeCunUniform = function (e) {
 
-       function t(t) {
 
-         return e.call(this, {
 
-           scale: 1,
 
-           mode: "fanIn",
 
-           distribution: "uniform",
 
-           seed: null == t ? null : t.seed
 
-         }) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getClassName = function () {
 
-         return VarianceScaling.className;
 
-       }, t.className = "LeCunNormal", t;
 
-     }(VarianceScaling);
 
-     _tfjsCore.serialization.registerClass(LeCunUniform);
 
-     var Orthogonal = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         if (n.DEFAULT_GAIN = 1, n.gain = null == t.gain ? n.DEFAULT_GAIN : t.gain, n.seed = t.seed, null != n.seed) throw new NotImplementedError("Random seed is not implemented for Orthogonal Initializer yet.");
 
-         return n;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           if (2 !== e.length) throw new NotImplementedError("The Orthogonal Initializer does not support non-2D shapes yet.");
 
-           e[0] * e[1] > 2e3 && console.warn("Orthogonal initializer is being called on a matrix with more than 2000 (" + e[0] * e[1] + ") elements: Slowness may result.");
 
-           var t = randomNormal$1(e[0] > e[1] ? [e[1], e[0]] : e, 0, 1, "float32"),
 
-             r = _tfjsCore.linalg.gramSchmidt(t);
 
-           return e[0] > e[1] && (r = r.transpose()), (0, _tfjsCore.mul)(n.gain, r);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         return {
 
-           gain: this.gain,
 
-           seed: this.seed
 
-         };
 
-       }, t.className = "Orthogonal", t;
 
-     }(Initializer);
 
-     _tfjsCore.serialization.registerClass(Orthogonal);
 
-     var INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP = {
 
-       constant: "Constant",
 
-       glorotNormal: "GlorotNormal",
 
-       glorotUniform: "GlorotUniform",
 
-       heNormal: "HeNormal",
 
-       heUniform: "HeUniform",
 
-       identity: "Identity",
 
-       leCunNormal: "LeCunNormal",
 
-       leCunUniform: "LeCunUniform",
 
-       ones: "Ones",
 
-       orthogonal: "Orthogonal",
 
-       randomNormal: "RandomNormal",
 
-       randomUniform: "RandomUniform",
 
-       truncatedNormal: "TruncatedNormal",
 
-       varianceScaling: "VarianceScaling",
 
-       zeros: "Zeros"
 
-     };
 
-     function deserializeInitializer(e, t) {
 
-       return void 0 === t && (t = {}), deserializeKerasObject(e, _tfjsCore.serialization.SerializationMap.getMap().classNameMap, t, "initializer");
 
-     }
 
-     function serializeInitializer(e) {
 
-       return serializeKerasObject(e);
 
-     }
 
-     function getInitializer(e) {
 
-       if ("string" == typeof e) {
 
-         var t = e in INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP ? INITIALIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[e] : e;
 
-         if ("GlorotNormal" === t) return new GlorotNormal();
 
-         if ("GlorotUniform" === t) return new GlorotUniform();
 
-         if ("HeNormal" === t) return new HeNormal();
 
-         if ("HeUniform" === t) return new HeUniform();
 
-         if ("LeCunNormal" === t) return new LeCunNormal();
 
-         if ("LeCunUniform" === t) return new LeCunUniform();
 
-         var n = {};
 
-         return n.className = t, n.config = {}, deserializeInitializer(n);
 
-       }
 
-       return e instanceof Initializer ? e : deserializeInitializer(e);
 
-     }
 
-     function zeros$1() {
 
-       return new Zeros();
 
-     }
 
-     function ones$1() {
 
-       return new Ones();
 
-     }
 
-     function constant(e) {
 
-       return new Constant(e);
 
-     }
 
-     function randomUniform$1(e) {
 
-       return new RandomUniform(e);
 
-     }
 
-     function randomNormal$2(e) {
 
-       return new RandomNormal(e);
 
-     }
 
-     function truncatedNormal$1(e) {
 
-       return new TruncatedNormal(e);
 
-     }
 
-     function identity(e) {
 
-       return new Identity(e);
 
-     }
 
-     function varianceScaling(e) {
 
-       return new VarianceScaling(e);
 
-     }
 
-     function glorotUniform(e) {
 
-       return new GlorotUniform(e);
 
-     }
 
-     function glorotNormal(e) {
 
-       return new GlorotNormal(e);
 
-     }
 
-     function heNormal(e) {
 
-       return new HeNormal(e);
 
-     }
 
-     function heUniform(e) {
 
-       return new HeUniform(e);
 
-     }
 
-     function leCunNormal(e) {
 
-       return new LeCunNormal(e);
 
-     }
 
-     function leCunUniform(e) {
 
-       return new LeCunUniform(e);
 
-     }
 
-     function orthogonal(e) {
 
-       return new Orthogonal(e);
 
-     }
 
-     var exports_initializers = Object.freeze({
 
-       zeros: zeros$1,
 
-       ones: ones$1,
 
-       constant: constant,
 
-       randomUniform: randomUniform$1,
 
-       randomNormal: randomNormal$2,
 
-       truncatedNormal: truncatedNormal$1,
 
-       identity: identity,
 
-       varianceScaling: varianceScaling,
 
-       glorotUniform: glorotUniform,
 
-       glorotNormal: glorotNormal,
 
-       heNormal: heNormal,
 
-       heUniform: heUniform,
 
-       leCunNormal: leCunNormal,
 
-       leCunUniform: leCunUniform,
 
-       orthogonal: orthogonal
 
-     }),
 
-       _nextUniqueTensorId = 0;
 
-     exports.initializers = exports_initializers;
 
-     function getNextUniqueTensorId() {
 
-       return _nextUniqueTensorId++;
 
-     }
 
-     var _uidPrefixes = {};
 
-     function getUid(e) {
 
-       return void 0 === e && (e = ""), e in _uidPrefixes || (_uidPrefixes[e] = 0), _uidPrefixes[e] += 1, e + _uidPrefixes[e].toString();
 
-     }
 
-     function isArrayOfShapes(e) {
 
-       return Array.isArray(e) && Array.isArray(e[0]);
 
-     }
 
-     function normalizeShapeList(e) {
 
-       return 0 === e.length ? [] : Array.isArray(e[0]) ? e : [e];
 
-     }
 
-     function getExactlyOneTensor(e) {
 
-       var t;
 
-       if (Array.isArray(e)) {
 
-         if (1 !== e.length) throw new ValueError("Expected Tensor length to be 1; got " + e.length);
 
-         t = e[0];
 
-       } else t = e;
 
-       return t;
 
-     }
 
-     function getExactlyOneShape(e) {
 
-       if (Array.isArray(e) && Array.isArray(e[0])) {
 
-         if (1 === e.length) return (e = e)[0];
 
-         throw new ValueError("Expected exactly 1 Shape; got " + e.length);
 
-       }
 
-       return e;
 
-     }
 
-     function countParamsInWeights(e) {
 
-       for (var t = 0, n = 0, r = e; n < r.length; n++) {
 
-         var i = r[n];
 
-         0 === i.shape.length ? t += 1 : t += i.shape.reduce(function (e, t) {
 
-           return e * t;
 
-         });
 
-       }
 
-       return t;
 
-     }
 
-     var DEFAULT_VARIABLE_NAME_PREFIX = "Variable",
 
-       LayerVariable = function () {
 
-         function e(e, t, n, r, i) {
 
-           void 0 === t && (t = "float32"), void 0 === n && (n = DEFAULT_VARIABLE_NAME_PREFIX), void 0 === r && (r = !0), void 0 === i && (i = null), this.dtype = null == t ? "float32" : t, this.shape = e.shape, this.id = getNextUniqueTensorId(), n = null == n ? DEFAULT_VARIABLE_NAME_PREFIX : n, this.originalName = getScopedTensorName(n), this.name = getUniqueTensorName(this.originalName), this.trainable_ = r, this.constraint = i, this.val = (0, _tfjsCore.variable)(e, this.trainable_, this.name, this.dtype);
 
-         }
 
-         return e.prototype.read = function () {
 
-           return this.assertNotDisposed(), this.val;
 
-         }, e.prototype.write = function (e) {
 
-           return this.assertNotDisposed(), checkShapesMatch(this.val, e), this.val.id !== e.id && (this.val.assign(e), null != this.constraint && this.val.assign(this.constraint.apply(this.val))), this;
 
-         }, e.prototype.dispose = function () {
 
-           this.assertNotDisposed(), this.val.dispose();
 
-         }, e.prototype.assertNotDisposed = function () {
 
-           if (this.val.isDisposed) throw new Error("LayersVariable " + this.name + " is already disposed.");
 
-         }, Object.defineProperty(e.prototype, "trainable", {
 
-           get: function () {
 
-             return this.trainable_;
 
-           },
 
-           set: function (e) {
 
-             this.trainable_ = e, this.val.trainable = e;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), e;
 
-       }();
 
-     exports.LayerVariable = LayerVariable;
 
-     function checkShapesMatch(e, t) {
 
-       if (e.shape.toString() !== t.shape.toString()) throw new Error("Shape mismatch: " + JSON.stringify(e.shape) + " vs. " + JSON.stringify(t.shape));
 
-     }
 
-     function batchGetValue(e) {
 
-       return e.map(function (e) {
 
-         return e.read();
 
-       });
 
-     }
 
-     function batchSetValue(e) {
 
-       e.forEach(function (e) {
 
-         e[0].write(e[1]);
 
-       });
 
-     }
 
-     var InputSpec = function () {
 
-       return function (e) {
 
-         this.dtype = e.dtype, this.shape = e.shape, null != e.shape ? this.ndim = e.shape.length : this.ndim = e.ndim, this.maxNDim = e.maxNDim, this.minNDim = e.minNDim, this.axes = e.axes || {};
 
-       };
 
-     }(),
 
-       SymbolicTensor = function () {
 
-         return function (e, t, n, r, i, a, o) {
 
-           this.dtype = e, this.shape = t, this.sourceLayer = n, this.inputs = r, this.callArgs = i, this.outputTensorIndex = o, this.id = getNextUniqueTensorId(), null != a && (this.originalName = getScopedTensorName(a), this.name = getUniqueTensorName(this.originalName)), this.rank = t.length;
 
-         };
 
-       }(),
 
-       _nextNodeID = 0,
 
-       Node = function () {
 
-         function e(e, t) {
 
-           this.callArgs = t, this.id = _nextNodeID++, this.outboundLayer = e.outboundLayer, this.inboundLayers = e.inboundLayers, this.nodeIndices = e.nodeIndices, this.tensorIndices = e.tensorIndices, this.inputTensors = e.inputTensors, this.outputTensors = e.outputTensors, this.inputMasks = e.inputMasks, this.outputMasks = e.outputMasks, this.inputShapes = e.inputShapes, this.outputShapes = e.outputShapes;
 
-           for (var n = 0, r = e.inboundLayers; n < r.length; n++) {
 
-             var i = r[n];
 
-             null != i && i.outboundNodes.push(this);
 
-           }
 
-           e.outboundLayer.inboundNodes.push(this);
 
-         }
 
-         return e.prototype.getConfig = function () {
 
-           for (var e = [], t = 0, n = this.inboundLayers; t < n.length; t++) {
 
-             var r = n[t];
 
-             null != r ? e.push(r.name) : e.push(null);
 
-           }
 
-           return {
 
-             outboundLayer: this.outboundLayer ? this.outboundLayer.name : null,
 
-             inboundLayers: e,
 
-             nodeIndices: this.nodeIndices,
 
-             tensorIndices: this.tensorIndices
 
-           };
 
-         }, e;
 
-       }(),
 
-       _nextLayerID = 0,
 
-       Layer = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this) || this;
 
-           n._callHook = null, n._addedWeightNames = [], n._stateful = !1, n.id = _nextLayerID++, n.activityRegularizer = null, n.inputSpec = null, n.supportsMasking = !1, n._trainableWeights = [], n._nonTrainableWeights = [], n._losses = [], n._updates = [], n._built = !1, n.inboundNodes = [], n.outboundNodes = [];
 
-           var r = t.name;
 
-           if (!r) {
 
-             var i = n.getClassName();
 
-             r = toSnakeCase(i) + "_" + getUid(i);
 
-           }
 
-           if (n.name = r, n.trainable_ = null == t.trainable || t.trainable, null != t.inputShape || null != t.batchInputShape) {
 
-             var a = void 0;
 
-             if (null != t.batchInputShape) a = t.batchInputShape; else if (null != t.inputShape) {
 
-               var o = null;
 
-               null != t.batchSize && (o = t.batchSize), a = [o].concat(t.inputShape);
 
-             }
 
-             n.batchInputShape = a;
 
-             var s = t.dtype;
 
-             null == s && (s = t.inputDType), null == s && (s = "float32"), n.dtype = s;
 
-           }
 
-           return null != t.weights ? n.initialWeights = t.weights : n.initialWeights = null, n._refCount = null, n.fastWeightInitDuringBuild = !1, n;
 
-         }
 
-         return __extends(t, e), t.nodeKey = function (e, t) {
 
-           return e.name + "_ib-" + t.toString();
 
-         }, t.prototype.getNodeAtIndex = function (e, t) {
 
-           if (0 === this.inboundNodes.length) throw new RuntimeError("The layer has never been called and thus has no defined " + t + ".");
 
-           if (this.inboundNodes.length <= e) throw new ValueError("Asked to get " + t + " at node " + e + ", but the layer has only " + this.inboundNodes.length + " inbound nodes.");
 
-           return this.inboundNodes[e];
 
-         }, t.prototype.getInputAt = function (e) {
 
-           return singletonOrArray(this.getNodeAtIndex(e, "input").inputTensors);
 
-         }, t.prototype.getOutputAt = function (e) {
 
-           return singletonOrArray(this.getNodeAtIndex(e, "output").outputTensors);
 
-         }, Object.defineProperty(t.prototype, "input", {
 
-           get: function () {
 
-             if (this.inboundNodes.length > 1) throw new AttributeError("Layer " + this.name + ' has multiple inbound nodes, hence the notion of "layer input" is ill-defined. Use `getInputAt(nodeIndex)` instead.');
 
-             if (0 === this.inboundNodes.length) throw new AttributeError("Layer " + this.name + " is not connected, no input to return.");
 
-             return singletonOrArray(this.getNodeAtIndex(0, "input").inputTensors);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "output", {
 
-           get: function () {
 
-             if (0 === this.inboundNodes.length) throw new AttributeError("Layer " + this.name + " has no inbound nodes.");
 
-             if (this.inboundNodes.length > 1) throw new AttributeError("Layer " + this.name + ' has multiple inbound nodes, hence the notion of "layer output" is ill-defined. Use `getOutputAt(nodeIndex)` instead.');
 
-             return singletonOrArray(this.getNodeAtIndex(0, "output").outputTensors);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "losses", {
 
-           get: function () {
 
-             return this._losses;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.calculateLosses = function () {
 
-           return this.losses.map(function (e) {
 
-             return e();
 
-           });
 
-         }, Object.defineProperty(t.prototype, "updates", {
 
-           get: function () {
 
-             return this._updates;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "built", {
 
-           get: function () {
 
-             return this._built;
 
-           },
 
-           set: function (e) {
 
-             this._built = e;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "trainable", {
 
-           get: function () {
 
-             return this.trainable_;
 
-           },
 
-           set: function (e) {
 
-             this._trainableWeights.forEach(function (t) {
 
-               return t.trainable = e;
 
-             }), this.trainable_ = e;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "trainableWeights", {
 
-           get: function () {
 
-             return this.trainable_ ? this._trainableWeights.filter(function (e) {
 
-               return e.trainable;
 
-             }) : [];
 
-           },
 
-           set: function (e) {
 
-             this._trainableWeights = e;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "nonTrainableWeights", {
 
-           get: function () {
 
-             return this.trainable ? this._trainableWeights.filter(function (e) {
 
-               return !e.trainable;
 
-             }).concat(this._nonTrainableWeights) : this._trainableWeights.concat(this._nonTrainableWeights);
 
-           },
 
-           set: function (e) {
 
-             this._nonTrainableWeights = e;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "weights", {
 
-           get: function () {
 
-             return this.trainableWeights.concat(this.nonTrainableWeights);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "stateful", {
 
-           get: function () {
 
-             return this._stateful;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.resetStates = function () {
 
-           if (!this.stateful) throw new Error("Cannot call the resetStates() method of a non-stateful Layer object.");
 
-         }, t.prototype.assertInputCompatibility = function (e) {
 
-           if (e = toList(e), null != this.inputSpec && 0 !== this.inputSpec.length) {
 
-             var t = toList(this.inputSpec);
 
-             if (e.length !== t.length) throw new ValueError("Layer " + this.name + " expects " + t.length + " inputs, but it received " + e.length + " input tensors. Input received: " + e);
 
-             for (var n = 0; n < e.length; n++) {
 
-               var r = e[n],
 
-                 i = t[n];
 
-               if (null != i) {
 
-                 var a = r.rank;
 
-                 if (null != i.ndim && a !== i.ndim) throw new ValueError("Input " + n + " is incompatible with layer " + this.name + ": expected ndim=" + i.ndim + ", found ndim=" + a);
 
-                 if (null != i.maxNDim && a > i.maxNDim) throw new ValueError("Input " + n + " is incompatible with layer " + this.name + ": expected max_ndim=" + i.maxNDim + ", found ndim=" + a);
 
-                 if (null != i.minNDim && a < i.minNDim) throw new ValueError("Input " + n + " is incompatible with layer " + this.name + ": expected min_ndim=" + i.minNDim + ", found ndim=" + a + ".");
 
-                 if (null != i.dtype && r.dtype !== i.dtype) throw new ValueError("Input " + n + " is incompatible with layer " + this.name + " : expected dtype=" + i.dtype + ", found dtype=" + r.dtype + ".");
 
-                 if (i.axes) {
 
-                   var o = r.shape;
 
-                   for (var s in i.axes) {
 
-                     var l = Number(s),
 
-                       u = i.axes[s],
 
-                       c = l >= 0 ? o[l] : o[o.length + l];
 
-                     if (null != u && -1 === [u, null].indexOf(c)) throw new ValueError("Input " + n + " is incompatible with layer " + this.name + ": expected axis " + l + " of input shape to have value " + u + " but got shape " + o + ".");
 
-                   }
 
-                 }
 
-                 if (null != i.shape) for (var p = 0; p < i.shape.length; ++p) {
 
-                   var h = i.shape[p],
 
-                     d = r.shape[p];
 
-                   if (null != h && null != d && h !== d) throw new ValueError("Input " + n + " is incompatible with layer " + this.name + ": expected shape=" + i.shape + ", found shape=" + r.shape + ".");
 
-                 }
 
-               }
 
-             }
 
-           }
 
-         }, t.prototype.call = function (e, t) {
 
-           return e;
 
-         }, t.prototype.invokeCallHook = function (e, t) {
 
-           null != this._callHook && this._callHook(e, t);
 
-         }, t.prototype.setCallHook = function (e) {
 
-           this._callHook = e;
 
-         }, t.prototype.clearCallHook = function () {
 
-           this._callHook = null;
 
-         }, t.prototype.apply = function (e, t) {
 
-           var n = this;
 
-           t = t || {}, this.assertNotDisposed();
 
-           for (var r = toList(e), i = !0, a = 0, o = r; a < o.length; a++) {
 
-             if (!(o[a] instanceof SymbolicTensor)) {
 
-               i = !1;
 
-               break;
 
-             }
 
-           }
 
-           for (var s = !0, l = 0, u = r; l < u.length; l++) {
 
-             if (u[l] instanceof SymbolicTensor) {
 
-               s = !1;
 
-               break;
 
-             }
 
-           }
 
-           if (i === s) throw new ValueError("Arguments to apply() must be all SymbolicTensors or all Tensors");
 
-           return nameScope(this.name, function () {
 
-             if (!n.built) {
 
-               n.assertInputCompatibility(e);
 
-               for (var i = [], a = 0, o = toList(e); a < o.length; a++) {
 
-                 var l = o[a];
 
-                 i.push(l.shape);
 
-               }
 
-               n.build(singletonOrArray(i)), n.built = !0, n.initialWeights && n.setWeights(n.initialWeights), null === n._refCount && s && (n._refCount = 1);
 
-             }
 
-             if (n.assertInputCompatibility(e), s) {
 
-               for (var u = [], c = 0, p = toList(g = n.call(e, t)); c < p.length; c++) {
 
-                 var h = p[c];
 
-                 -1 !== r.indexOf(h) && (h = h.clone()), u.push(h);
 
-               }
 
-               if (g = singletonOrArray(u), null != n.activityRegularizer) throw new NotImplementedError("Layer invocation in the presence of activity regularizer(s) is not supported yet.");
 
-               return g;
 
-             }
 
-             var d = collectInputShape(e),
 
-               f = n.computeOutputShape(d),
 
-               g = void 0,
 
-               m = guessOutputDType(e);
 
-             if (n.warnOnIncompatibleInputShape(Array.isArray(e) ? d[0] : d), g = null != f && f.length > 0 && Array.isArray(f[0]) ? f.map(function (r, i) {
 
-               return new SymbolicTensor(m, r, n, toList(e), t, n.name, i);
 
-             }) : new SymbolicTensor(m, f, n, toList(e), t, n.name), n.addInboundNode(e, g, null, null, d, f, t), n._refCount++, null != n.activityRegularizer) throw new NotImplementedError("Layer invocation in the presence of activity regularizer(s) is not supported yet.");
 
-             return g;
 
-           });
 
-         }, t.prototype.warnOnIncompatibleInputShape = function (e) {
 
-           if (null != this.batchInputShape) if (e.length !== this.batchInputShape.length) console.warn("The rank of the input tensor provided (shape: " + JSON.stringify(e) + ") does not match that of the batchInputShape (" + JSON.stringify(this.batchInputShape) + ") of the layer " + this.name); else {
 
-             var t = !1;
 
-             this.batchInputShape.forEach(function (n, r) {
 
-               null != n && null != e[r] && e[r] !== n && (t = !0);
 
-             }), t && console.warn("The shape of the input tensor (" + JSON.stringify(e) + ") does not match the expectation of layer " + this.name + ": " + JSON.stringify(this.batchInputShape));
 
-           }
 
-         }, Object.defineProperty(t.prototype, "outputShape", {
 
-           get: function () {
 
-             if (null == this.inboundNodes || 0 === this.inboundNodes.length) throw new AttributeError("The layer " + this.name + " has never been called and thus has no defined output shape.");
 
-             for (var e = [], t = 0, n = this.inboundNodes; t < n.length; t++) {
 
-               var r = n[t],
 
-                 i = JSON.stringify(r.outputShapes);
 
-               -1 === e.indexOf(i) && e.push(i);
 
-             }
 
-             if (1 === e.length) {
 
-               var a = this.inboundNodes[0].outputShapes;
 
-               return Array.isArray(a) && Array.isArray(a[0]) && 1 === a.length ? a[0] : a;
 
-             }
 
-             throw new AttributeError("The layer " + this.name + ' has multiple inbound nodes with different output shapes. Hence the notion of "outut shape" is ill-defined for the layer.');
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.countParams = function () {
 
-           if (!this.built) throw new RuntimeError("You tried to call countParams() on " + this.name + ", but the layer is not built yet. Build it first by calling build(batchInputShape).");
 
-           return countParamsInWeights(this.weights);
 
-         }, t.prototype.build = function (e) {
 
-           this.built = !0;
 
-         }, t.prototype.getWeights = function (e) {
 
-           return void 0 === e && (e = !1), batchGetValue(e ? this.trainableWeights : this.weights);
 
-         }, t.prototype.setWeights = function (e) {
 
-           var t = this;
 
-           (0, _tfjsCore.tidy)(function () {
 
-             var n = t.weights;
 
-             if (n.length !== e.length) throw new ValueError('You called setWeights(weights) on layer "' + t.name + '" with a weight list of length ' + e.length + ", but the layer was expecting " + n.length + " weights. Provided weights: " + e + "...");
 
-             if (0 !== n.length) {
 
-               for (var r = [], i = batchGetValue(n), a = 0; a < i.length; ++a) {
 
-                 var o = i[a],
 
-                   s = n[a],
 
-                   l = e[a];
 
-                 if (!_tfjsCore.util.arraysEqual(o.shape, l.shape)) throw new ValueError("Layer weight shape " + o.shape + " not compatible with provided weight shape " + l.shape);
 
-                 r.push([s, l]);
 
-               }
 
-               batchSetValue(r);
 
-             }
 
-           });
 
-         }, t.prototype.addWeight = function (e, t, n, r, i, a, o) {
 
-           if (-1 !== this._addedWeightNames.indexOf(e)) throw new ValueError("Duplicate weight name " + e + " for layer " + this.name);
 
-           this._addedWeightNames.push(e), null == n && (n = "float32"), this.fastWeightInitDuringBuild && (r = getInitializer("zeros"));
 
-           var s = r.apply(t, n),
 
-             l = new LayerVariable(s, n, e, a, o);
 
-           return s.dispose(), null != i && this.addLoss(function () {
 
-             return i.apply(l.read());
 
-           }), null == a && (a = !0), a ? this._trainableWeights.push(l) : this._nonTrainableWeights.push(l), l;
 
-         }, t.prototype.setFastWeightInitDuringBuild = function (e) {
 
-           this.fastWeightInitDuringBuild = e;
 
-         }, t.prototype.addLoss = function (e) {
 
-           var t;
 
-           null == e || Array.isArray(e) && 0 === e.length || (e = toList(e), void 0 !== this._losses && null !== this._losses && (t = this.losses).push.apply(t, e));
 
-         }, t.prototype.computeOutputShape = function (e) {
 
-           return e;
 
-         }, t.prototype.computeMask = function (e, t) {
 
-           var n = this;
 
-           if (!this.supportsMasking) {
 
-             if (null != t) {
 
-               if (!Array.isArray(t)) throw new TypeError("Layer " + this.name + " does not support masking, but was passed an inputMask.");
 
-               t.forEach(function (e) {
 
-                 if (null != e) throw new TypeError("Layer " + n.name + " does not support masking, but was passed an inputMask.");
 
-               });
 
-             }
 
-             return null;
 
-           }
 
-           return t;
 
-         }, t.prototype.addInboundNode = function (e, t, n, r, i, a, o) {
 
-           void 0 === o && (o = null);
 
-           var s = toList(e);
 
-           t = toList(t), n = toList(n), r = toList(r), i = normalizeShapeList(i), a = normalizeShapeList(a);
 
-           for (var l = [], u = [], c = [], p = 0, h = s; p < h.length; p++) {
 
-             var d = h[p];
 
-             l.push(d.sourceLayer), u.push(d.nodeIndex), c.push(d.tensorIndex);
 
-           }
 
-           new Node({
 
-             outboundLayer: this,
 
-             inboundLayers: l,
 
-             nodeIndices: u,
 
-             tensorIndices: c,
 
-             inputTensors: s,
 
-             outputTensors: t,
 
-             inputMasks: n,
 
-             outputMasks: r,
 
-             inputShapes: i,
 
-             outputShapes: a
 
-           }, o);
 
-           for (var f = 0; f < t.length; f++) t[f].sourceLayer = this, t[f].nodeIndex = this.inboundNodes.length - 1, t[f].tensorIndex = f;
 
-         }, t.prototype.getConfig = function () {
 
-           var e = {
 
-             name: this.name,
 
-             trainable: this.trainable
 
-           };
 
-           return null != this.batchInputShape && (e.batchInputShape = this.batchInputShape), null != this.dtype && (e.dtype = this.dtype), e;
 
-         }, t.prototype.disposeWeights = function () {
 
-           return this.weights.forEach(function (e) {
 
-             return e.dispose();
 
-           }), this.weights.length;
 
-         }, t.prototype.assertNotDisposed = function () {
 
-           if (0 === this._refCount) throw new Error("Layer '" + this.name + "' is already disposed.");
 
-         }, t.prototype.dispose = function () {
 
-           if (!this.built) throw new Error("Cannot dispose Layer " + this.name + " because it has not been built yet.");
 
-           if (null === this._refCount) throw new Error("Cannot dispose Layer " + this.name + " because it has not been used yet.");
 
-           this.assertNotDisposed();
 
-           var e = 0;
 
-           return 0 == --this._refCount && (e = this.disposeWeights()), {
 
-             refCountAfterDispose: this._refCount,
 
-             numDisposedVariables: e
 
-           };
 
-         }, t;
 
-       }(_tfjsCore.serialization.Serializable);
 
-     exports.SymbolicTensor = SymbolicTensor;
 
-     exports.InputSpec = InputSpec;
 
-     function collectInputShape(e) {
 
-       for (var t = [], n = 0, r = e = toList(e); n < r.length; n++) {
 
-         var i = r[n];
 
-         t.push(i.shape);
 
-       }
 
-       return singletonOrArray(t);
 
-     }
 
-     function guessOutputDType(e) {
 
-       return "float32";
 
-     }
 
-     function getSourceInputs(e, t, n) {
 
-       if ((null == t || null != n && n > 0) && (t = e.sourceLayer, n = e.nodeIndex), 0 === t.inboundNodes.length) return [e];
 
-       var r = t.inboundNodes[n];
 
-       if (0 === r.inboundLayers.length) return r.inputTensors;
 
-       for (var i = [], a = 0; a < r.inboundLayers.length; a++) for (var o = 0, s = getSourceInputs(r.inputTensors[a], r.inboundLayers[a], r.nodeIndices[a]); o < s.length; o++) {
 
-         var l = s[o];
 
-         -1 === i.indexOf(l) && i.push(l);
 
-       }
 
-       return i;
 
-     }
 
-     var ModelLoggingVerbosity,
 
-       InputLayer = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this, {
 
-             dtype: t.dtype,
 
-             name: null != t.name ? t.name : getUid("input").toString()
 
-           }) || this;
 
-           if (null == t.batchSize && (t.batchSize = null), null == t.sparse && (t.sparse = !1), n.trainable = !1, n.built = !0, n.sparse = t.sparse, null != t.inputShape && null != t.batchInputShape) throw new ValueError("Only provide the inputShape OR batchInputShape argument to inputLayer, not both at the same time.");
 
-           var r = t.batchInputShape;
 
-           if (null == r) {
 
-             if (null == t.inputShape) throw new ValueError("An InputLayer should be passed either a `batchInputShape` or an `inputShape`.");
 
-             r = [t.batchSize].concat(t.inputShape);
 
-           } else if (null != t.batchSize) throw new ValueError("Cannot specify batchSize if batchInputShape is specified when creating an InputLayer.");
 
-           var i = t.dtype || "float32";
 
-           n.batchInputShape = r, n.dtype = i, n.inputSpec = [{
 
-             shape: r
 
-           }];
 
-           var a = new SymbolicTensor(n.dtype, n.batchInputShape, n, [], {}, n.name);
 
-           return a.nodeIndex = 0, a.tensorIndex = 0, new Node({
 
-             outboundLayer: n,
 
-             inboundLayers: [],
 
-             nodeIndices: [],
 
-             tensorIndices: [],
 
-             inputTensors: [a],
 
-             outputTensors: [a],
 
-             inputMasks: [null],
 
-             outputMasks: [null],
 
-             inputShapes: [r],
 
-             outputShapes: [r]
 
-           }), n;
 
-         }
 
-         return __extends(t, e), t.prototype.apply = function (e, t) {
 
-           throw new ValueError("Cannot pass any input to an InputLayer's apply() method. InputLayer name: " + this.name);
 
-         }, t.prototype.dispose = function () {
 
-           return {
 
-             refCountAfterDispose: this._refCount,
 
-             numDisposedVariables: 0
 
-           };
 
-         }, t.prototype.getConfig = function () {
 
-           return {
 
-             batchInputShape: this.batchInputShape,
 
-             dtype: this.dtype,
 
-             sparse: this.sparse,
 
-             name: this.name
 
-           };
 
-         }, t.className = "InputLayer", t;
 
-       }(Layer);
 
-     function Input(e) {
 
-       if (null == e.batchShape && null == e.shape) throw new Error("Please provide to Input either a `shape` or a `batchShape` argument. Note that `shape` does not include the batch dimension.");
 
-       if (null != e.batchShape && null != e.shape) throw new ValueError("Please provide either a `shape` or `batchShape` argument to Input, but not both.");
 
-       var t = e.batchShape;
 
-       null != e.shape && null == t && (t = [null].concat(e.shape));
 
-       var n = e.dtype;
 
-       return null == n && (n = "float32"), new InputLayer({
 
-         batchInputShape: t,
 
-         name: e.name,
 
-         dtype: n,
 
-         sparse: e.sparse
 
-       }).inboundNodes[0].outputTensors[0];
 
-     }
 
-     function resolveScalarsInLogs(e) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var t, n, r, i, a, o, s, l;
 
-         return __generator(this, function (u) {
 
-           switch (u.label) {
 
-             case 0:
 
-               if (null == e) return [2];
 
-               for (i in t = [], n = [], r = [], e) "number" != typeof (a = e[i]) && (o = a, t.push(o.data()), n.push(i), r.push(o));
 
-               return t.length > 0 ? [4, Promise.all(t)] : [3, 2];
 
-             case 1:
 
-               for (s = u.sent(), l = 0; l < s.length; ++l) e[n[l]] = s[l][0];
 
-               (0, _tfjsCore.dispose)(r), u.label = 2;
 
-             case 2:
 
-               return [2];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function disposeTensorsInLogs(e) {
 
-       if (null != e) for (var t in e) {
 
-         var n = e[t];
 
-         "number" != typeof n && n.dispose();
 
-       }
 
-     }
 
-     _tfjsCore.serialization.registerClass(InputLayer), function (e) {
 
-       e[e.SILENT = 0] = "SILENT", e[e.VERBOSE = 1] = "VERBOSE";
 
-     }(ModelLoggingVerbosity || (ModelLoggingVerbosity = {}));
 
-     var DEFAULT_YIELD_EVERY_MS = 125,
 
-       BaseCallback = function () {
 
-         function e() {
 
-           this.validationData = null;
 
-         }
 
-         return e.prototype.setParams = function (e) {
 
-           this.params = e;
 
-         }, e.prototype.onEpochBegin = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.onEpochEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.onBatchBegin = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.onBatchEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.onTrainBegin = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.onTrainEnd = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.setModel = function (e) { }, e;
 
-       }(),
 
-       CallbackList = function () {
 
-         function e(e, t) {
 
-           void 0 === t && (t = 10), null == e && (e = []), this.callbacks = e, this.queueLength = t;
 
-         }
 
-         return e.prototype.append = function (e) {
 
-           this.callbacks.push(e);
 
-         }, e.prototype.setParams = function (e) {
 
-           for (var t = 0, n = this.callbacks; t < n.length; t++) {
 
-             n[t].setParams(e);
 
-           }
 
-         }, e.prototype.setModel = function (e) {
 
-           for (var t = 0, n = this.callbacks; t < n.length; t++) {
 
-             n[t].setModel(e);
 
-           }
 
-         }, e.prototype.onEpochBegin = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n, r;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   null == t && (t = {}), n = 0, r = this.callbacks, i.label = 1;
 
-                 case 1:
 
-                   return n < r.length ? [4, r[n].onEpochBegin(e, t)] : [3, 4];
 
-                 case 2:
 
-                   i.sent(), i.label = 3;
 
-                 case 3:
 
-                   return n++, [3, 1];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.onEpochEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n, r;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   null == t && (t = {}), n = 0, r = this.callbacks, i.label = 1;
 
-                 case 1:
 
-                   return n < r.length ? [4, r[n].onEpochEnd(e, t)] : [3, 4];
 
-                 case 2:
 
-                   i.sent(), i.label = 3;
 
-                 case 3:
 
-                   return n++, [3, 1];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.onBatchBegin = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n, r;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   null == t && (t = {}), n = 0, r = this.callbacks, i.label = 1;
 
-                 case 1:
 
-                   return n < r.length ? [4, r[n].onBatchBegin(e, t)] : [3, 4];
 
-                 case 2:
 
-                   i.sent(), i.label = 3;
 
-                 case 3:
 
-                   return n++, [3, 1];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.onBatchEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n, r;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   null == t && (t = {}), n = 0, r = this.callbacks, i.label = 1;
 
-                 case 1:
 
-                   return n < r.length ? [4, r[n].onBatchEnd(e, t)] : [3, 4];
 
-                 case 2:
 
-                   i.sent(), i.label = 3;
 
-                 case 3:
 
-                   return n++, [3, 1];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.onTrainBegin = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, n;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   null == e && (e = {}), t = 0, n = this.callbacks, r.label = 1;
 
-                 case 1:
 
-                   return t < n.length ? [4, n[t].onTrainBegin(e)] : [3, 4];
 
-                 case 2:
 
-                   r.sent(), r.label = 3;
 
-                 case 3:
 
-                   return t++, [3, 1];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.onTrainEnd = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, n;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   null == e && (e = {}), t = 0, n = this.callbacks, r.label = 1;
 
-                 case 1:
 
-                   return t < n.length ? [4, n[t].onTrainEnd(e)] : [3, 4];
 
-                 case 2:
 
-                   r.sent(), r.label = 3;
 
-                 case 3:
 
-                   return t++, [3, 1];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(),
 
-       BaseLogger = function (e) {
 
-         function t() {
 
-           return e.call(this) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.onEpochBegin = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return this.seen = 0, this.totals = {}, [2];
 
-             });
 
-           });
 
-         }, t.prototype.onBatchEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var e,
 
-               n,
 
-               r,
 
-               i,
 
-               a = this;
 
-             return __generator(this, function (o) {
 
-               for (i in null == t && (t = {}), e = null == t.size ? 0 : t.size, this.seen += e, n = function (n) {
 
-                 var i = t[n];
 
-                 if ("number" == typeof i) r.totals.hasOwnProperty(n) || (r.totals[n] = 0), r.totals[n] = r.totals[n] + i * e; else {
 
-                   var o = void 0;
 
-                   n in r.totals ? o = r.totals[n] : r.totals[n] = 0;
 
-                   var s = (0, _tfjsCore.tidy)(function () {
 
-                     return (0, _tfjsCore.add)(a.totals[n], (0, _tfjsCore.mul)(i, e));
 
-                   });
 
-                   r.totals[n] = s, null != o && o.dispose();
 
-                 }
 
-               }, r = this, t) n(i);
 
-               return [2];
 
-             });
 
-           });
 
-         }, t.prototype.onEpochEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var e,
 
-               n,
 
-               r,
 
-               i,
 
-               a,
 
-               o = this;
 
-             return __generator(this, function (s) {
 
-               if (null != t) for (e = function (e) {
 
-                 if (null == n.totals[e]) return "continue";
 
-                 "number" == typeof n.totals[e] ? t[e] = n.totals[e] / n.seen : (0, _tfjsCore.tidy)(function () {
 
-                   var n = (0, _tfjsCore.mul)((0, _tfjsCore.div)(1, o.seen), o.totals[e]);
 
-                   t[e] = n, o.totals[e].dispose(), (0, _tfjsCore.keep)(t[e]);
 
-                 });
 
-               }, n = this, r = 0, i = this.params.metrics; r < i.length; r++) a = i[r], e(a);
 
-               return [2];
 
-             });
 
-           });
 
-         }, t;
 
-       }(BaseCallback),
 
-       History = function (e) {
 
-         function t() {
 
-           return null !== e && e.apply(this, arguments) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.onTrainBegin = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return this.epoch = [], this.history = {}, [2];
 
-             });
 
-           });
 
-         }, t.prototype.onEpochEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n;
 
-             return __generator(this, function (r) {
 
-               for (n in null == t && (t = {}), this.epoch.push(e), t) null == this.history[n] && (this.history[n] = []), this.history[n].push(t[n]);
 
-               return [2];
 
-             });
 
-           });
 
-         }, t.prototype.syncData = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var e, t, n, r, i, a, o, s, l;
 
-             return __generator(this, function (u) {
 
-               switch (u.label) {
 
-                 case 0:
 
-                   for (r in e = [], t = [], n = [], this.history) for (i = this.history[r], a = 0; a < i.length; ++a) "number" != typeof i[a] && (o = i[a], e.push(o.data()), t.push(r), n.push(a));
 
-                   return [4, Promise.all(e)];
 
-                 case 1:
 
-                   for (s = u.sent(), l = 0; l < s.length; ++l) this.history[t[l]][n[l]].dispose(), this.history[t[l]][n[l]] = s[l][0];
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t;
 
-       }(BaseCallback),
 
-       CustomCallback = function (e) {
 
-         function t(t, n) {
 
-           var r = e.call(this) || this;
 
-           if (r.currentEpoch = 0, r.yieldEvery = n || "auto", "auto" === r.yieldEvery && (r.yieldEvery = DEFAULT_YIELD_EVERY_MS), "never" === r.yieldEvery && null != t.onYield) throw new Error("yieldEvery is `never` but you provided an `onYield` callback. Either change `yieldEvery` or remove the callback");
 
-           return _tfjsCore.util.isNumber(r.yieldEvery) && (r.maybeWait = debounce(r.maybeWait.bind(r), r.yieldEvery)), r.trainBegin = t.onTrainBegin, r.trainEnd = t.onTrainEnd, r.epochBegin = t.onEpochBegin, r.epochEnd = t.onEpochEnd, r.batchBegin = t.onBatchBegin, r.batchEnd = t.onBatchEnd, r.yield = t.onYield, r;
 
-         }
 
-         return __extends(t, e), t.prototype.maybeWait = function (e, t, n) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var r;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   return r = [], null == this.yield ? [3, 2] : [4, resolveScalarsInLogs(n)];
 
-                 case 1:
 
-                   i.sent(), r.push(this.yield(e, t, n)), i.label = 2;
 
-                 case 2:
 
-                   return r.push((0, _tfjsCore.nextFrame)()), [4, Promise.all(r)];
 
-                 case 3:
 
-                   return i.sent(), [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.onEpochBegin = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return this.currentEpoch = e, null == this.epochBegin ? [3, 3] : [4, resolveScalarsInLogs(t)];
 
-                 case 1:
 
-                   return n.sent(), [4, this.epochBegin(e, t)];
 
-                 case 2:
 
-                   n.sent(), n.label = 3;
 
-                 case 3:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.onEpochEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return n = [], null == this.epochEnd ? [3, 2] : [4, resolveScalarsInLogs(t)];
 
-                 case 1:
 
-                   r.sent(), n.push(this.epochEnd(e, t)), r.label = 2;
 
-                 case 2:
 
-                   return "epoch" === this.yieldEvery && n.push((0, _tfjsCore.nextFrame)()), [4, Promise.all(n)];
 
-                 case 3:
 
-                   return r.sent(), [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.onBatchBegin = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return null == this.batchBegin ? [3, 3] : [4, resolveScalarsInLogs(t)];
 
-                 case 1:
 
-                   return n.sent(), [4, this.batchBegin(e, t)];
 
-                 case 2:
 
-                   n.sent(), n.label = 3;
 
-                 case 3:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.onBatchEnd = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return n = [], null == this.batchEnd ? [3, 2] : [4, resolveScalarsInLogs(t)];
 
-                 case 1:
 
-                   r.sent(), n.push(this.batchEnd(e, t)), r.label = 2;
 
-                 case 2:
 
-                   return "batch" === this.yieldEvery ? n.push((0, _tfjsCore.nextFrame)()) : _tfjsCore.util.isNumber(this.yieldEvery) && n.push(this.maybeWait(this.currentEpoch, e, t)), [4, Promise.all(n)];
 
-                 case 3:
 
-                   return r.sent(), [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.onTrainBegin = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   return null == this.trainBegin ? [3, 3] : [4, resolveScalarsInLogs(e)];
 
-                 case 1:
 
-                   return t.sent(), [4, this.trainBegin(e)];
 
-                 case 2:
 
-                   t.sent(), t.label = 3;
 
-                 case 3:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.onTrainEnd = function (e) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   return null == this.trainEnd ? [3, 3] : [4, resolveScalarsInLogs(e)];
 
-                 case 1:
 
-                   return t.sent(), [4, this.trainEnd(e)];
 
-                 case 2:
 
-                   t.sent(), t.label = 3;
 
-                 case 3:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t;
 
-       }(BaseCallback);
 
-     exports.CustomCallback = CustomCallback;
 
-     exports.History = History;
 
-     exports.CallbackList = CallbackList;
 
-     function standardizeCallbacks(e, t) {
 
-       return null == e && (e = {}), e instanceof BaseCallback ? [e] : Array.isArray(e) && e[0] instanceof BaseCallback ? e : toList(e).map(function (e) {
 
-         return new CustomCallback(e, t);
 
-       });
 
-     }
 
-     var CallbackConstructorRegistry = function () {
 
-       function e() { }
 
-       return e.registerCallbackConstructor = function (t, n) {
 
-         _tfjsCore.util.assert(t >= 0 && Number.isInteger(t), function () {
 
-           return "Verbosity level is expected to be an integer >= 0, but got " + t;
 
-         }), e.checkForDuplicate(n), null == e.constructors[t] && (e.constructors[t] = []), e.constructors[t].push(n);
 
-       }, e.checkForDuplicate = function (t) {
 
-         for (var n in e.constructors) {
 
-           e.constructors[+n].forEach(function (e) {
 
-             if (e === t) throw new ValueError("Duplicate callback constructor.");
 
-           });
 
-         }
 
-       }, e.clear = function () {
 
-         e.constructors = {};
 
-       }, e.createCallbacks = function (t) {
 
-         var n = [];
 
-         for (var r in e.constructors) {
 
-           var i = +r;
 
-           t >= i && n.push.apply(n, e.constructors[i]);
 
-         }
 
-         return n.map(function (e) {
 
-           return new e();
 
-         });
 
-       }, e.constructors = {}, e;
 
-     }();
 
-     function configureCallbacks(e, t, n, r, i, a, o, s, l) {
 
-       var u = new History(),
 
-         c = [new BaseLogger()].concat(CallbackConstructorRegistry.createCallbacks(t));
 
-       null != e && c.push.apply(c, e), c.push(u);
 
-       var p = new CallbackList(c);
 
-       return p.setParams({
 
-         epochs: n,
 
-         initialEpoch: r,
 
-         samples: i,
 
-         steps: a,
 
-         batchSize: o,
 
-         verbose: t,
 
-         doValidation: s,
 
-         metrics: l
 
-       }), {
 
-         callbackList: p,
 
-         history: u
 
-       };
 
-     }
 
-     function deserialize(e, t, n) {
 
-       return void 0 === t && (t = {}), void 0 === n && (n = !1), deserializeKerasObject(e, _tfjsCore.serialization.SerializationMap.getMap().classNameMap, t, "layer", n);
 
-     }
 
-     function l2Normalize(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         "float32" !== e.dtype && (e = e.asType("float32"));
 
-         var n = (0, _tfjsCore.sum)(square(e), t, !0),
 
-           r = (0, _tfjsCore.fill)(n.shape, epsilon()),
 
-           i = (0, _tfjsCore.sqrt)((0, _tfjsCore.maximum)(n, r));
 
-         return (0, _tfjsCore.div)(e, i);
 
-       });
 
-     }
 
-     function meanSquaredError(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.mean)(square((0, _tfjsCore.sub)(t, e)), -1);
 
-       });
 
-     }
 
-     function meanAbsoluteError(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.mean)((0, _tfjsCore.abs)((0, _tfjsCore.sub)(t, e)), -1);
 
-       });
 
-     }
 
-     function meanAbsolutePercentageError(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.sub)(e, t),
 
-           r = (0, _tfjsCore.clipByValue)((0, _tfjsCore.abs)(e), epsilon(), Number.MAX_VALUE),
 
-           i = (0, _tfjsCore.abs)((0, _tfjsCore.div)(n, r));
 
-         return (0, _tfjsCore.mul)(100, (0, _tfjsCore.mean)(i, -1));
 
-       });
 
-     }
 
-     function meanSquaredLogarithmicError(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.clipByValue)(t, epsilon(), Number.MAX_VALUE),
 
-           r = (0, _tfjsCore.log)((0, _tfjsCore.add)(1, n)),
 
-           i = (0, _tfjsCore.clipByValue)(e, epsilon(), Number.MAX_VALUE),
 
-           a = (0, _tfjsCore.log)((0, _tfjsCore.add)(1, i));
 
-         return (0, _tfjsCore.mean)(square((0, _tfjsCore.sub)(r, a)), -1);
 
-       });
 
-     }
 
-     function squaredHinge(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.maximum)(0, (0, _tfjsCore.sub)(1, (0, _tfjsCore.mul)(e, t)));
 
-         return (0, _tfjsCore.mean)(square(n), -1);
 
-       });
 
-     }
 
-     function hinge(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.maximum)(0, (0, _tfjsCore.sub)(1, (0, _tfjsCore.mul)(e, t)));
 
-         return (0, _tfjsCore.mean)(n, -1);
 
-       });
 
-     }
 
-     function categoricalHinge(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.sum)((0, _tfjsCore.mul)(e, t), -1),
 
-           r = (0, _tfjsCore.max)((0, _tfjsCore.mul)((0, _tfjsCore.sub)(1, e), t), -1);
 
-         return (0, _tfjsCore.maximum)(0, (0, _tfjsCore.add)(1, (0, _tfjsCore.sub)(r, n)));
 
-       });
 
-     }
 
-     function logcosh(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = Math.log(2),
 
-           r = (0, _tfjsCore.sub)(t, e),
 
-           i = (0, _tfjsCore.sub)((0, _tfjsCore.add)(r, (0, _tfjsCore.softplus)((0, _tfjsCore.mul)(-2, r))), n);
 
-         return (0, _tfjsCore.mean)(i, -1);
 
-       });
 
-     }
 
-     function categoricalCrossentropy(e, t, n) {
 
-       return void 0 === n && (n = !1), (0, _tfjsCore.tidy)(function () {
 
-         if (n) t = (0, _tfjsCore.softmax)(t); else {
 
-           var r = (0, _tfjsCore.sum)(t, t.shape.length - 1, !0);
 
-           t = (0, _tfjsCore.div)(t, r);
 
-         }
 
-         return t = (0, _tfjsCore.clipByValue)(t, epsilon(), 1 - epsilon()), (0, _tfjsCore.neg)((0, _tfjsCore.sum)((0, _tfjsCore.mul)(e.toFloat(), (0, _tfjsCore.log)(t)), t.shape.length - 1));
 
-       });
 
-     }
 
-     function sparseCategoricalCrossentropy(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.floor)(flatten(e)).toInt(),
 
-           r = (t = (0, _tfjsCore.clipByValue)(t, epsilon(), 1 - epsilon())).shape;
 
-         return categoricalCrossentropy((0, _tfjsCore.oneHot)(n, r[r.length - 1]).reshape(r), t, !1);
 
-       });
 
-     }
 
-     function sigmoidCrossEntropyWithLogits(e, t) {
 
-       if (!_tfjsCore.util.arraysEqual(e.shape, t.shape)) throw new ValueError("logits and labels must have the same shape, but got shapes " + JSON.stringify(e.shape) + " and " + JSON.stringify(t.shape));
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = t.relu(),
 
-           r = t.abs().neg();
 
-         return n.sub(t.mul(e)).add(r.exp().log1p());
 
-       });
 
-     }
 
-     function binaryCrossentropy(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n;
 
-         return n = (0, _tfjsCore.clipByValue)(t, epsilon(), 1 - epsilon()), n = (0, _tfjsCore.log)((0, _tfjsCore.div)(n, (0, _tfjsCore.sub)(1, n))), (0, _tfjsCore.mean)(sigmoidCrossEntropyWithLogits(e, n), -1);
 
-       });
 
-     }
 
-     function kullbackLeiblerDivergence(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.clipByValue)(e, epsilon(), 1),
 
-           r = (0, _tfjsCore.clipByValue)(t, epsilon(), 1);
 
-         return (0, _tfjsCore.sum)((0, _tfjsCore.mul)(e, (0, _tfjsCore.log)((0, _tfjsCore.div)(n, r))), -1);
 
-       });
 
-     }
 
-     function poisson(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.log)((0, _tfjsCore.add)(epsilon(), t));
 
-         return (0, _tfjsCore.mean)((0, _tfjsCore.sub)(t, (0, _tfjsCore.mul)(e, n)), -1);
 
-       });
 
-     }
 
-     function cosineProximity(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = l2Normalize(e, -1),
 
-           r = l2Normalize(t, -1),
 
-           i = (0, _tfjsCore.mul)(n, r);
 
-         return (0, _tfjsCore.neg)((0, _tfjsCore.sum)(i, -1));
 
-       });
 
-     }
 
-     var lossesMap = {
 
-       meanSquaredError: meanSquaredError,
 
-       meanAbsoluteError: meanAbsoluteError,
 
-       meanAbsolutePercentageError: meanAbsolutePercentageError,
 
-       meanSquaredLogarithmicError: meanSquaredLogarithmicError,
 
-       squaredHinge: squaredHinge,
 
-       hinge: hinge,
 
-       categoricalHinge: categoricalHinge,
 
-       logcosh: logcosh,
 
-       categoricalCrossentropy: categoricalCrossentropy,
 
-       sparseCategoricalCrossentropy: sparseCategoricalCrossentropy,
 
-       binaryCrossentropy: binaryCrossentropy,
 
-       kullbackLeiblerDivergence: kullbackLeiblerDivergence,
 
-       poisson: poisson,
 
-       cosineProximity: cosineProximity
 
-     };
 
-     function get(e) {
 
-       if ("string" == typeof e) {
 
-         if (e in lossesMap) return lossesMap[e];
 
-         var t = "Unknown loss " + e;
 
-         throw e.toLowerCase().includes("softmaxcrossentropy") && (t = "Unknown loss " + e + '. Use "categoricalCrossentropy" as the string name for tf.losses.softmaxCrossEntropy'), new ValueError(t);
 
-       }
 
-       return e;
 
-     }
 
-     function binaryAccuracy(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = (0, _tfjsCore.mul)(.5, (0, _tfjsCore.onesLike)(t)),
 
-           r = cast$1((0, _tfjsCore.greater)(t, n), e.dtype);
 
-         return (0, _tfjsCore.mean)((0, _tfjsCore.equal)(e, r), -1);
 
-       });
 
-     }
 
-     function categoricalAccuracy(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return cast$1((0, _tfjsCore.equal)((0, _tfjsCore.argMax)(e, -1), (0, _tfjsCore.argMax)(t, -1)), "float32");
 
-       });
 
-     }
 
-     function truePositives(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.logicalAnd)(e.equal(1), t.equal(1)).sum().cast("float32");
 
-       });
 
-     }
 
-     function falseNegatives(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.logicalAnd)(e.equal(1), t.equal(0)).sum().cast("float32");
 
-       });
 
-     }
 
-     function falsePositives(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return (0, _tfjsCore.logicalAnd)(e.equal(0), t.equal(1)).sum().cast("float32");
 
-       });
 
-     }
 
-     function precision(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = truePositives(e, t),
 
-           r = falsePositives(e, t),
 
-           i = n.add(r);
 
-         return (0, _tfjsCore.where)((0, _tfjsCore.greater)(i, 0), n.div(i), 0).cast("float32");
 
-       });
 
-     }
 
-     function recall(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n = truePositives(e, t),
 
-           r = falseNegatives(e, t),
 
-           i = n.add(r);
 
-         return (0, _tfjsCore.where)((0, _tfjsCore.greater)(i, 0), n.div(i), 0).cast("float32");
 
-       });
 
-     }
 
-     function binaryCrossentropy$1(e, t) {
 
-       return binaryCrossentropy(e, t);
 
-     }
 
-     function sparseCategoricalAccuracy(e, t) {
 
-       return e.rank === t.rank && (e = e.squeeze([e.rank - 1])), (t = t.argMax(-1)).dtype !== e.dtype && (t = t.asType(e.dtype)), (0, _tfjsCore.equal)(e, t).asType("float32");
 
-     }
 
-     var mse$1 = meanSquaredError,
 
-       MSE$1 = meanSquaredError,
 
-       mae$1 = meanAbsoluteError,
 
-       MAE$1 = meanAbsoluteError,
 
-       mape$1 = meanAbsolutePercentageError,
 
-       MAPE$1 = meanAbsolutePercentageError,
 
-       categoricalCrossentropy$1 = categoricalCrossentropy,
 
-       cosine$1 = cosineProximity,
 
-       sparseCategoricalCrossentropy$1 = sparseCategoricalCrossentropy,
 
-       metricsMap = {
 
-         binaryAccuracy: binaryAccuracy,
 
-         categoricalAccuracy: categoricalAccuracy,
 
-         precision: precision,
 
-         categoricalCrossentropy: categoricalCrossentropy$1,
 
-         sparseCategoricalCrossentropy: sparseCategoricalCrossentropy$1,
 
-         mse: mse$1,
 
-         MSE: MSE$1,
 
-         mae: mae$1,
 
-         MAE: MAE$1,
 
-         mape: mape$1,
 
-         MAPE: MAPE$1,
 
-         cosine: cosine$1
 
-       };
 
-     function get$1(e) {
 
-       if ("string" == typeof e && e in metricsMap) return metricsMap[e];
 
-       if ("string" != typeof e && null != e) return e;
 
-       throw new ValueError("Unknown metric " + e);
 
-     }
 
-     function getLossOrMetricName(e) {
 
-       if (assert(null !== e, "Unknown LossOrMetricFn " + e), "string" == typeof e) return e;
 
-       for (var t = void 0, n = 0, r = Object.keys(lossesMap); n < r.length; n++) {
 
-         var i = r[n];
 
-         if (lossesMap[i] === e) {
 
-           t = i;
 
-           break;
 
-         }
 
-       }
 
-       if (void 0 !== t) return t;
 
-       for (var a = 0, o = Object.keys(metricsMap); a < o.length; a++) {
 
-         i = o[a];
 
-         if (metricsMap[i] === e) {
 
-           t = i;
 
-           break;
 
-         }
 
-       }
 
-       return void 0 !== t ? t : e.name;
 
-     }
 
-     function getOptimizer(e) {
 
-       var t = {
 
-         Adagrad: function () {
 
-           return _tfjsCore.train.adagrad(.01);
 
-         },
 
-         Adadelta: function () {
 
-           return _tfjsCore.train.adadelta(1, .95, epsilon());
 
-         },
 
-         Adam: function () {
 
-           return _tfjsCore.train.adam(.001, .9, .999, epsilon());
 
-         },
 
-         Adamax: function () {
 
-           return _tfjsCore.train.adamax(.002, .9, .999, epsilon(), 0);
 
-         },
 
-         RMSProp: function () {
 
-           return _tfjsCore.train.rmsprop(.001, .9, 0, epsilon());
 
-         },
 
-         SGD: function () {
 
-           return _tfjsCore.train.sgd(.01);
 
-         }
 
-       };
 
-       if (t.adagrad = t.Adagrad, t.adadelta = t.Adadelta, t.adam = t.Adam, t.adamax = t.Adamax, t.rmsprop = t.RMSProp, t.sgd = t.SGD, e in t) return t[e]();
 
-       throw new ValueError("Unknown Optimizer " + e);
 
-     }
 
-     var MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH = 1048576;
 
-     function checkUserDefinedMetadata(e, t, n) {
 
-       if (void 0 === n && (n = !1), null == e || "object" != typeof e || Object.getPrototypeOf(e) !== Object.prototype || !plainObjectCheck(e)) throw new Error("User-defined metadata is expected to be a JSON object, but is not.");
 
-       if (n) {
 
-         var r = JSON.stringify(e);
 
-         r.length > MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH && console.warn('User-defined metadata of model "' + t + '" is too large in size (length=' + r.length + " when serialized). It is not recommended to store such large objects in user-defined metadata. Please make sure its serialized length is <= " + MAX_USER_DEFINED_METADATA_SERIALIZED_LENGTH + ".");
 
-       }
 
-     }
 
-     function plainObjectCheck(e) {
 
-       if (null === e) return !0;
 
-       if ("object" == typeof e) {
 
-         if (Object.getPrototypeOf(e) === Object.prototype) {
 
-           for (var t = 0, n = Object.keys(e); t < n.length; t++) {
 
-             var r = n[t];
 
-             if ("string" != typeof r) return !1;
 
-             if (!plainObjectCheck(e[r])) return !1;
 
-           }
 
-           return !0;
 
-         }
 
-         if (Array.isArray(e)) {
 
-           for (var i = 0, a = e; i < a.length; i++) {
 
-             if (!plainObjectCheck(a[i])) return !1;
 
-           }
 
-           return !0;
 
-         }
 
-         return !1;
 
-       }
 
-       var o = typeof e;
 
-       return "string" === o || "number" === o || "boolean" === o;
 
-     }
 
-     function printSummary(e, t, n, r) {
 
-       void 0 === r && (r = console.log);
 
-       var i,
 
-         a = isModelSequentialLike(e),
 
-         o = ["Layer (type)", "Output shape", "Param #"];
 
-       if (a ? (t = t || 65, n = n || [.45, .85, 1]) : (t = t || 98, n = n || [.33, .55, .67, 1]), n[n.length - 1] <= 1 && (n = n.map(function (e) {
 
-         return Math.floor(t * e);
 
-       })), !a) for (var s in o.push("Receives inputs"), i = [], e.nodesByDepth) i.push.apply(i, e.nodesByDepth[s]);
 
-       r("_".repeat(t)), printRow(o, n, r), r("=".repeat(t));
 
-       for (var l = e.layers, u = 0; u < l.length; ++u) a ? printLayerSummary(l[u], n, r) : printLayerSummaryWithConnections(l[u], n, i, r), r((u === l.length - 1 ? "=" : "_").repeat(t));
 
-       e.checkTrainableWeightsConsistency();
 
-       var c = countTrainableParams(e),
 
-         p = countParamsInWeights(e.nonTrainableWeights);
 
-       r("Total params: " + (c + p)), r("Trainable params: " + c), r("Non-trainable params: " + p), r("_".repeat(t));
 
-     }
 
-     function countTrainableParams(e) {
 
-       return null != e.collectedTrainableWeights ? countParamsInWeights(e.collectedTrainableWeights) : countParamsInWeights(e.trainableWeights);
 
-     }
 
-     function isModelSequentialLike(e) {
 
-       var t = !0,
 
-         n = [],
 
-         r = [];
 
-       for (var i in e.nodesByDepth) n.push(e.nodesByDepth[i]);
 
-       for (var a = 0, o = n; a < o.length; a++) {
 
-         var s = o[a];
 
-         if (s.length > 1 || 1 === s.length && s[0].inboundLayers.length > 1) {
 
-           t = !1;
 
-           break;
 
-         }
 
-         r.push.apply(r, s);
 
-       }
 
-       if (t) for (var l = 0, u = e.layers; l < u.length; l++) {
 
-         for (var c = !1, p = 0, h = u[l].inboundNodes; p < h.length; p++) {
 
-           var d = h[p];
 
-           if (-1 !== r.indexOf(d)) {
 
-             if (c) {
 
-               t = !1;
 
-               break;
 
-             }
 
-             c = !0;
 
-           }
 
-         }
 
-         if (!t) break;
 
-       }
 
-       return t;
 
-     }
 
-     function printRow(e, t, n) {
 
-       void 0 === n && (n = console.log);
 
-       for (var r = "", i = 0; i < e.length; ++i) i > 0 && (r = r.slice(0, r.length - 1) + " "), r = (r += e[i]).slice(0, t[i]), r += " ".repeat(t[i] - r.length);
 
-       n(r);
 
-     }
 
-     function printLayerSummary(e, t, n) {
 
-       var r;
 
-       try {
 
-         r = JSON.stringify(e.outputShape);
 
-       } catch (e) {
 
-         r = "multiple";
 
-       }
 
-       printRow([e.name + " (" + e.getClassName() + ")", r, e.countParams().toString()], t, n);
 
-     }
 
-     function printLayerSummaryWithConnections(e, t, n, r) {
 
-       var i;
 
-       try {
 
-         i = JSON.stringify(e.outputShape);
 
-       } catch (e) {
 
-         i = "multiple";
 
-       }
 
-       for (var a = [], o = 0, s = e.inboundNodes; o < s.length; o++) {
 
-         var l = s[o];
 
-         if (!(null != n && n.length > 0 && -1 === n.indexOf(l))) for (var u = 0; u < l.inboundLayers.length; ++u) {
 
-           var c = l.inboundLayers[u].name,
 
-             p = l.nodeIndices[u],
 
-             h = l.tensorIndices[u];
 
-           a.push(c + "[" + p + "][" + h + "]");
 
-         }
 
-       }
 
-       var d = e.name,
 
-         f = e.getClassName(),
 
-         g = 0 === a.length ? "" : a[0];
 
-       printRow([d + " (" + f + ")", i, e.countParams().toString(), g], t, r);
 
-       for (u = 1; u < a.length; ++u) printRow(["", "", "", a[u]], t, r);
 
-     }
 
-     function isArrayItemInputOrOutputName(e, t, n) {
 
-       return ("inboundNodes" === e || "outputLayers" === e || "inputLayers" === e) && 0 === t && "string" == typeof n;
 
-     }
 
-     function convertPythonicToTs(e, t) {
 
-       if (null === e) return null;
 
-       if ("string" == typeof e) return toCamelCase(e);
 
-       if ("number" == typeof e || "boolean" == typeof e) return e;
 
-       if (e instanceof Array) {
 
-         for (var n = [], r = e.length, i = 0; i < r; ++i) {
 
-           var a = e[i];
 
-           isArrayItemInputOrOutputName(t, i, a) ? n.push(a) : n.push(convertPythonicToTs(a, t));
 
-         }
 
-         return n;
 
-       }
 
-       for (var o = {}, s = 0, l = Object.keys(e); s < l.length; s++) {
 
-         var u = l[s],
 
-           c = e[u];
 
-         if ("name" === u && "string" == typeof c) o[u] = c; else {
 
-           var p = toCamelCase(u);
 
-           o[p] = convertPythonicToTs(c, p);
 
-         }
 
-       }
 
-       return o;
 
-     }
 
-     function convertTsToPythonic(e, t) {
 
-       if (null === e || void 0 === e) return null;
 
-       if ("string" == typeof e) return toSnakeCase(e);
 
-       if ("number" == typeof e || "boolean" == typeof e) return e;
 
-       if (e instanceof Array) {
 
-         for (var n = [], r = e.length, i = 0; i < r; ++i) {
 
-           var a = e[i];
 
-           isArrayItemInputOrOutputName(t, i, a) ? n.push(a) : n.push(convertTsToPythonic(a, t));
 
-         }
 
-         return n;
 
-       }
 
-       for (var o = {}, s = 0, l = Object.keys(e); s < l.length; s++) {
 
-         var u = l[s],
 
-           c = e[u],
 
-           p = toSnakeCase(u);
 
-         o[p] = "name" !== u && "className" !== u || "string" != typeof c ? convertTsToPythonic(c, u) : c;
 
-       }
 
-       return o;
 
-     }
 
-     var version = "1.3.1";
 
-     exports.version_layers = version;
 
-     function assertFeedCompatibility(e, t) {
 
-       if (null == e.dtype || e.dtype === t.dtype) return t;
 
-       try {
 
-         return (0, _tfjsCore.cast)(t, e.dtype);
 
-       } catch (n) {
 
-         throw new ValueError("The dtype of the feed (" + t.dtype + ") can not be cast to the dtype of the key '" + e.name + "' (" + e.dtype + ").");
 
-       }
 
-     }
 
-     var FeedDict = function () {
 
-       function e(t) {
 
-         if (this.id2Value = {}, this.id2Mask = {}, this.name2Id = {}, t instanceof e) for (var n in t.id2Value) this.id2Value[n] = t.id2Value[n], n in t.id2Mask && (this.id2Mask[n] = t.id2Mask[n]); else {
 
-           if (null == t) return;
 
-           for (var r = 0, i = t; r < i.length; r++) {
 
-             var a = i[r];
 
-             this.add(a.key, a.value);
 
-           }
 
-         }
 
-       }
 
-       return e.prototype.add = function (e, t, n) {
 
-         if (null != this.id2Value[e.id]) throw new ValueError("Duplicate key: name=" + e.name + ", id=" + e.id);
 
-         return this.id2Value[e.id] = assertFeedCompatibility(e, t), this.name2Id[e.name] = e.id, null != n && (this.id2Mask[e.id] = n), this;
 
-       }, e.prototype.addFeed = function (e) {
 
-         this.add(e.key, e.value);
 
-       }, e.prototype.hasKey = function (e) {
 
-         return null != this.id2Value[e.id];
 
-       }, e.prototype.names = function () {
 
-         return Object.keys(this.name2Id);
 
-       }, e.prototype.getValue = function (e) {
 
-         if (e instanceof SymbolicTensor) {
 
-           if (null == this.id2Value[e.id]) throw new ValueError("Nonexistent key: " + e.name);
 
-           return this.id2Value[e.id];
 
-         }
 
-         var t = this.name2Id[e];
 
-         if (null == t) throw new ValueError("Feed dict has no SymbolicTensor name: " + e);
 
-         return this.id2Value[t];
 
-       }, e.prototype.getMask = function (e) {
 
-         if (e instanceof SymbolicTensor) {
 
-           if (null == this.id2Value[e.id]) throw new ValueError("Nonexistent key: " + e.name);
 
-           return this.id2Mask[e.id];
 
-         }
 
-         var t = this.name2Id[e];
 
-         if (null == t) throw new ValueError("Feed dict has no SymbolicTensor name: " + e);
 
-         return this.id2Mask[t];
 
-       }, e.prototype.disposeMasks = function () {
 
-         null != this.id2Mask && (0, _tfjsCore.dispose)(this.id2Mask);
 
-       }, e;
 
-     }(),
 
-       cachedSorted = {},
 
-       cachedRecipientCounts = {};
 
-     function execute(e, t, n, r) {
 
-       for (var i = null != n && n.training, a = Array.isArray(e), o = a ? e : [e], s = o.map(function (e) {
 
-         return e.name;
 
-       }), l = [], u = t.names(), c = 0, p = s; c < p.length; c++) {
 
-         var h = p[c];
 
-         -1 !== u.indexOf(h) ? l.push(t.getValue(h)) : l.push(null);
 
-       }
 
-       null != r && (r.maxNumTensors = -1 / 0, r.minNumTensors = 1 / 0);
 
-       var d,
 
-         f,
 
-         g = s.join(",") + "|" + t.names().join(",");
 
-       if (null == cachedSorted[g]) {
 
-         var m = getTopologicalSortAndRecipientCounts(o, t);
 
-         d = m.sorted, f = m.recipientCounts, cachedSorted[g] = d, cachedRecipientCounts[g] = f;
 
-       }
 
-       d = cachedSorted[g], f = {}, i || Object.assign(f, cachedRecipientCounts[g]);
 
-       for (var y = new FeedDict(t), v = 0; v < d.length; ++v) {
 
-         if (null != r) {
 
-           var b = (0, _tfjsCore.memory)().numTensors;
 
-           b > r.maxNumTensors && (r.maxNumTensors = b), b < r.minNumTensors && (r.minNumTensors = b);
 
-         }
 
-         var w = d[v],
 
-           z = w.sourceLayer;
 
-         if (!(z instanceof InputLayer)) {
 
-           for (var S = [], A = [], _ = [], I = !1, C = 0, E = w.inputs; C < E.length; C++) {
 
-             var N = E[C],
 
-               k = y.getValue(N),
 
-               x = y.getMask(N);
 
-             S.push(k), A.push(x), null != x && (I = !0), i || (f[N.name]--, 0 !== f[N.name] || t.hasKey(N) || -1 !== s.indexOf(N.name) || k.isDisposed || !0 === N.sourceLayer.stateful || _.push(k));
 
-           }
 
-           I && ((n = n || {}).mask = A[0]);
 
-           var L = toList(z.apply(S, n)),
 
-             T = null;
 
-           z.supportsMasking && (T = z.computeMask(S, A));
 
-           for (var D = getNodeOutputs(w), O = Array.isArray(D) ? D : [D], R = 0; R < O.length; ++R) {
 
-             y.hasKey(O[R]) || y.add(O[R], L[R], Array.isArray(T) ? T[0] : T);
 
-             var M = s.indexOf(O[R].name);
 
-             -1 !== M && (l[M] = L[R]);
 
-           }
 
-           i || (0, _tfjsCore.dispose)(_);
 
-         }
 
-       }
 
-       return y.disposeMasks(), a ? l : l[0];
 
-     }
 
-     function getTopologicalSortAndRecipientCounts(e, t) {
 
-       _tfjsCore.util.assert(null != e && e.length > 0, function () {
 
-         return "Expected at least one fetch, got none";
 
-       });
 
-       var n = [],
 
-         r = {};
 
-       if (1 === e.length) {
 
-         var i = getTopologicalSortAndRecipientCountsForOneFetch(e[0], t);
 
-         n = i.sorted, r = i.recipientMap;
 
-       } else for (var a = new Set(), o = 0, s = e; o < s.length; o++) {
 
-         for (var l = getTopologicalSortAndRecipientCountsForOneFetch(s[o], t), u = l.sorted, c = l.recipientMap, p = 0, h = u; p < h.length; p++) {
 
-           var d = h[p];
 
-           a.has(d.name) || (n.push(d), a.add(d.name));
 
-         }
 
-         var f = function (e) {
 
-           null == r[e] && (r[e] = new Set()), c[e].forEach(function (t) {
 
-             return r[e].add(t);
 
-           });
 
-         };
 
-         for (var g in c) f(g);
 
-       }
 
-       return {
 
-         sorted: n,
 
-         recipientCounts: recipientMap2Counts(r)
 
-       };
 
-     }
 
-     function recipientMap2Counts(e) {
 
-       var t = {};
 
-       for (var n in e) t[n] = e[n].size;
 
-       return t;
 
-     }
 
-     function getTopologicalSortAndRecipientCountsForOneFetch(e, t) {
 
-       for (var n = new Set(), r = [], i = {}, a = 0, o = t.names(); a < o.length; a++) {
 
-         var s = o[a];
 
-         n.add(s);
 
-       }
 
-       var l = [],
 
-         u = [];
 
-       for (l.push(e); l.length > 0;) {
 
-         var c = l[l.length - 1];
 
-         if (n.has(c.name)) l.pop(); else {
 
-           var p = u[u.length - 1] === l.length - 1;
 
-           if (0 === c.inputs.length || p) l.pop(), r.push(c), n.add(c.name), p && u.pop(); else {
 
-             u.push(l.length - 1);
 
-             for (var h = 0, d = c.inputs; h < d.length; h++) {
 
-               var f = d[h];
 
-               null == i[f.name] && (i[f.name] = new Set()), i[f.name].add(c.name), n.has(f.name) || l.push(f);
 
-             }
 
-           }
 
-         }
 
-       }
 
-       return {
 
-         sorted: r,
 
-         recipientMap: i
 
-       };
 
-     }
 
-     function getNodeOutputs(e) {
 
-       var t;
 
-       if (1 === e.sourceLayer.inboundNodes.length) t = e.sourceLayer.output; else {
 
-         for (var n = null, r = 0; r < e.sourceLayer.inboundNodes.length; ++r) for (var i = 0, a = e.sourceLayer.inboundNodes[r].outputTensors; i < a.length; i++) {
 
-           if (a[i].id === e.id) {
 
-             n = r;
 
-             break;
 
-           }
 
-         }
 
-         t = e.sourceLayer.getOutputAt(n);
 
-       }
 
-       return t;
 
-     }
 
-     var Container = function (e) {
 
-       function t(n) {
 
-         var r = e.call(this, {}) || this;
 
-         if (r.containerNodes = new Set(), r.name = n.name, null == r.name) {
 
-           var i = r.getClassName().toLowerCase();
 
-           r.name = getUid(i);
 
-         }
 
-         if (r.supportsMasking = !1, r.trainable_ = !0, Array.isArray(n.inputs) ? r.inputs = n.inputs.slice() : r.inputs = [n.inputs], Array.isArray(n.outputs) ? r.outputs = n.outputs.slice() : r.outputs = [n.outputs], unique(r.inputs).length !== r.inputs.length) throw new ValueError("The list of inputs passed to the model is redundant. All inputs should only appear once. Found: " + r.inputs.map(function (e) {
 
-           return e.name;
 
-         }));
 
-         unique(r.outputs).length !== r.outputs.length && console.warn("The list of outputs passed to the model is redundant. All outputs should only appear once. Found: " + r.outputs.map(function (e) {
 
-           return e.name;
 
-         })), r.inputLayers = [], r.inputLayersNodeIndices = [], r.inputLayersTensorIndices = [], r.outputLayers = [], r.outputLayersNodeIndices = [], r.outputLayersTensorIndices = [], r.layers = [], r.internalContainerRefs = [];
 
-         for (var a = 0, o = r.outputs; a < o.length; a++) {
 
-           var s = (C = o[a]).sourceLayer,
 
-             l = C.nodeIndex,
 
-             u = C.tensorIndex;
 
-           r.outputLayers.push(s), r.outputLayersNodeIndices.push(l), r.outputLayersTensorIndices.push(u);
 
-         }
 
-         for (var c = 0, p = r.inputs; c < p.length; c++) {
 
-           s = (C = p[c]).sourceLayer, l = C.nodeIndex, u = C.tensorIndex;
 
-           assert(0 === l, "input layer has >1 nodes"), assert(0 === u, "input layer has >1 tensors"), r.inputLayers.push(s), r.inputLayersNodeIndices.push(l), r.inputLayersTensorIndices.push(u);
 
-         }
 
-         r.inputNames = [], r.outputNames = [], r.feedInputShapes = [], r.feedInputNames = [], r.feedOutputNames = [];
 
-         for (var h = 0; h < r.inputLayers.length; h++) {
 
-           if (!((s = r.inputLayers[h]) instanceof InputLayer)) throw new TypeError("Input layers to a LayersModel must be InputLayer objects. Received inputs: " + n.inputs + ". Input " + h + " (0-based) originates from layer type " + s.getClassName() + ".");
 
-           r.inputNames.push(s.name), r.feedInputShapes.push(s.batchInputShape), r.feedInputNames.push(s.name);
 
-         }
 
-         for (var d = 0, f = r.outputLayers; d < f.length; d++) {
 
-           s = f[d];
 
-           r.outputNames.push(s.name);
 
-         }
 
-         r.internalInputShapes = r.inputs.map(function (e) {
 
-           return e.shape;
 
-         }), r.internalOutputShapes = r.outputs.map(function (e) {
 
-           return e.shape;
 
-         });
 
-         for (var g = {}, m = {}, y = {}, v = {}, b = {}, w = [], z = function (e, n, i, a, o, s) {
 
-           null != a && null != o && null != s || (a = e.sourceLayer, o = e.nodeIndex, s = e.tensorIndex);
 
-           var l = a.inboundNodes[o];
 
-           if (-1 !== i.indexOf(l)) throw new RuntimeError("The tensor " + e.name + ' at layer "' + a.name + '" is part of a cycle.');
 
-           if (-1 === n.indexOf(l)) {
 
-             r.containerNodes.add(t.nodeKey(a, o)), (a.id in b) || (b[a.id] = Object.keys(b).length), -1 === i.indexOf(l) && i.push(l);
 
-             for (var u = l.inboundLayers.length, c = 0; c < u; c++) {
 
-               var p = l.inputTensors[c],
 
-                 h = l.inboundLayers[c],
 
-                 d = l.nodeIndices[c],
 
-                 f = l.tensorIndices[c];
 
-               z(p, n, i, h, d, f);
 
-             }
 
-             for (n.push(l); i.indexOf(l) >= 0;) i.splice(i.indexOf(l), 1);
 
-             w.push(l);
 
-           }
 
-         }, S = [], A = [], _ = 0, I = r.outputs; _ < I.length; _++) {
 
-           var C = I[_];
 
-           z(C, S, A);
 
-         }
 
-         for (var E = 0, N = w.slice().reverse(); E < N.length; E++) {
 
-           m[(K = N[E]).id] = K, K.id in g || (g[K.id] = 0);
 
-           var k = g[K.id],
 
-             x = null == y[K.outboundLayer.id] ? 0 : y[K.outboundLayer.id];
 
-           k = Math.max(k, x), y[K.outboundLayer.id] = k, v[K.outboundLayer.id] = K.outboundLayer, g[K.id] = k;
 
-           for (h = 0; h < K.inboundLayers.length; h++) {
 
-             var L = K.inboundLayers[h],
 
-               T = (l = K.nodeIndices[h], L.inboundNodes[l]),
 
-               D = null == g[T.id] ? 0 : g[T.id];
 
-             g[T.id] = Math.max(k + 1, D), m[T.id] = T;
 
-           }
 
-         }
 
-         var O = {};
 
-         for (var R in g) {
 
-           (k = g[R]) in O || (O[k] = []), O[k].push(m[R]);
 
-         }
 
-         var M = {};
 
-         for (var P in y) {
 
-           (k = y[P]) in M || (M[k] = []), M[k].push(v[P]);
 
-         }
 
-         var F = Object.keys(M).map(function (e) {
 
-           return parseInt(e, 10);
 
-         }).sort(reverseNumberCompare);
 
-         r.layers = [];
 
-         for (var V = 0, B = F; V < B.length; V++) {
 
-           var U = M[k = B[V]];
 
-           U.sort(function (e, t) {
 
-             var n = b[e.id],
 
-               r = b[t.id];
 
-             return n < r ? -1 : n > r ? 1 : 0;
 
-           });
 
-           for (var j = 0, W = U; j < W.length; j++) {
 
-             (s = W[j]) instanceof t && r.internalContainerRefs.push(s), r.layers.push(s);
 
-           }
 
-         }
 
-         r.layersByDepth = M, F = Object.keys(O).map(function (e) {
 
-           return parseInt(e, 10);
 
-         }).sort(reverseNumberCompare);
 
-         for (var $ = r.inputs.slice(), q = [], G = 0, H = F; G < H.length; G++) for (var J = 0, Z = O[k = H[G]]; J < Z.length; J++) {
 
-           var K;
 
-           if (null != (s = (K = Z[J]).outboundLayer)) {
 
-             for (var Y = 0, X = K.inputTensors; Y < X.length; Y++) {
 
-               C = X[Y];
 
-               if (-1 === $.indexOf(C)) throw new RuntimeError("Graph disconnected: cannot obtain value for tensor " + C + ' at layer "' + s.name + '". The following previous layers were accessed without issue: ' + q);
 
-             }
 
-             for (var Q = 0, ee = K.outputTensors; Q < ee.length; Q++) {
 
-               C = ee[Q];
 
-               $.push(C);
 
-             }
 
-             q.push(s.name);
 
-           }
 
-         }
 
-         r.nodesByDepth = O;
 
-         for (var te = r.layers.map(function (e) {
 
-           return e.name;
 
-         }), ne = function (e) {
 
-           var t = te.filter(function (t) {
 
-             return t === e;
 
-           }).length;
 
-           if (1 !== t) throw new RuntimeError('The name "' + e + '" is used ' + t + " times in the model. All layer names should be unique. Layer names: " + JSON.stringify(te));
 
-         }, re = 0, ie = te; re < ie.length; re++) {
 
-           ne(ie[re]);
 
-         }
 
-         return r.outboundNodes = [], r.inboundNodes = [], new Node({
 
-           outboundLayer: r,
 
-           inboundLayers: [],
 
-           nodeIndices: [],
 
-           tensorIndices: [],
 
-           inputTensors: r.inputs,
 
-           outputTensors: r.outputs,
 
-           inputMasks: r.inputs.map(function (e) {
 
-             return null;
 
-           }),
 
-           outputMasks: r.outputs.map(function (e) {
 
-             return null;
 
-           }),
 
-           inputShapes: r.inputs.map(function (e) {
 
-             return e.shape;
 
-           }),
 
-           outputShapes: r.outputs.map(function (e) {
 
-             return e.shape;
 
-           })
 
-         }), r.built = !0, r._refCount = 1, r;
 
-       }
 
-       return __extends(t, e), t.prototype.assertNotDisposed = function () {
 
-         if (0 === this._refCount) throw new Error("Container '" + this.name + "' is already disposed.");
 
-       }, t.prototype.dispose = function () {
 
-         this.assertNotDisposed();
 
-         var e = {
 
-           refCountAfterDispose: null,
 
-           numDisposedVariables: 0
 
-         };
 
-         if (0 == --this._refCount) {
 
-           for (var t = 0, n = this.layers; t < n.length; t++) {
 
-             var r = n[t];
 
-             e.numDisposedVariables += r.dispose().numDisposedVariables;
 
-           }
 
-           for (var i = 0, a = this.internalContainerRefs; i < a.length; i++) {
 
-             var o = a[i];
 
-             e.numDisposedVariables += o.dispose().numDisposedVariables;
 
-           }
 
-         }
 
-         return e.refCountAfterDispose = this._refCount, e;
 
-       }, Object.defineProperty(t.prototype, "trainable", {
 
-         get: function () {
 
-           return this.trainable_;
 
-         },
 
-         set: function (e) {
 
-           this.layers.forEach(function (t) {
 
-             t._trainableWeights.forEach(function (t) {
 
-               return t.trainable = e;
 
-             });
 
-           }), this.trainable_ = e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "trainableWeights", {
 
-         get: function () {
 
-           if (this._trainableWeights.length > 0) throw new ValueError("Container instance unexpectedly contains _trainableWeights.The trainable weights of a Container are a union of the trainable weights of its consituent Layers. Its own _trainableWeights must remain an empty Array.");
 
-           if (!this.trainable) return [];
 
-           for (var e = [], t = 0, n = this.layers; t < n.length; t++) {
 
-             var r = n[t];
 
-             e = e.concat(r.trainableWeights);
 
-           }
 
-           return e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "nonTrainableWeights", {
 
-         get: function () {
 
-           for (var e = [], t = 0, n = this.layers; t < n.length; t++) {
 
-             var r = n[t];
 
-             e.push.apply(e, r.nonTrainableWeights);
 
-           }
 
-           if (!this.trainable) {
 
-             for (var i = [], a = 0, o = this.layers; a < o.length; a++) {
 
-               r = o[a];
 
-               i.push.apply(i, r.trainableWeights);
 
-             }
 
-             return i.concat(e);
 
-           }
 
-           return e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "weights", {
 
-         get: function () {
 
-           return this.trainableWeights.concat(this.nonTrainableWeights);
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.loadWeights = function (e, t) {
 
-         void 0 === t && (t = !0);
 
-         for (var n = {}, r = 0, i = 0, a = this.layers; i < a.length; i++) for (var o = 0, s = a[i].weights; o < s.length; o++) {
 
-           var l = s[o];
 
-           if (null != n[l.originalName]) throw new ValueError("Duplicate weight name: " + l.originalName);
 
-           n[l.originalName] = l, r++;
 
-         }
 
-         var u = [];
 
-         for (var c in e) {
 
-           if (null != n[c]) u.push([n[c], e[c]]); else if (t) throw new ValueError("Provided weight data has no target variable: " + c);
 
-           delete n[c];
 
-         }
 
-         if (t) {
 
-           var p = [];
 
-           for (var h in n) p.push(h);
 
-           if (p.length > 0) throw new ValueError(p.length + " of " + r + " weights are not set: " + p);
 
-         }
 
-         batchSetValue(u);
 
-       }, t.prototype.updatedConfig = function () {
 
-         var e = this.getConfig(),
 
-           t = {};
 
-         return t.className = this.getClassName(), t.config = e, t.kerasVersion = "tfjs-layers " + version, t.backend = "TensorFlow.js", t;
 
-       }, t.prototype.toJSON = function (e, t) {
 
-         void 0 === t && (t = !0);
 
-         var n = convertTsToPythonic(this.updatedConfig());
 
-         return t ? JSON.stringify(n) : n;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           e = toList(e);
 
-           for (var r = new FeedDict(), i = 0; i < n.inputs.length; ++i) r.add(n.inputs[i], e[i]);
 
-           return execute(n.outputs, r, t);
 
-         });
 
-       }, t.prototype.computeMask = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var r;
 
-           return e = toList(e), r = null == t ? pyListRepeat(null, e.length) : toList(t), n.runInternalGraph(e, r)[1];
 
-         });
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         var t = normalizeShapeList(e);
 
-         if (t.length !== this.inputLayers.length) throw new ValueError("Invalid inputShape argument " + e + ": model has " + this.inputLayers.length + " tensor inputs.");
 
-         for (var n = {}, r = 0; r < t.length; r++) {
 
-           var i = this.inputLayers[r],
 
-             a = t[r];
 
-           n[A = i.name + "_0_0"] = a;
 
-         }
 
-         var o = Object.keys(this.nodesByDepth).map(function (e) {
 
-           return parseInt(e, 10);
 
-         }).sort(reverseNumberCompare);
 
-         if (o.length > 1) for (var s = 0, l = o; s < l.length; s++) for (var u = l[s], c = 0, p = this.nodesByDepth[u]; c < p.length; c++) {
 
-           var h = p[c];
 
-           i = h.outboundLayer;
 
-           if (-1 === this.inputLayers.map(function (e) {
 
-             return e.id;
 
-           }).indexOf(i.id)) {
 
-             for (var d = [], f = 0; f < h.inboundLayers.length; f++) {
 
-               var g = h.inboundLayers[f],
 
-                 m = h.nodeIndices[f],
 
-                 y = h.tensorIndices[f],
 
-                 v = n[A = g.name + "_" + m + "_" + y];
 
-               d.push(v);
 
-             }
 
-             var b = normalizeShapeList(i.computeOutputShape(singletonOrArray(d))),
 
-               w = i.inboundNodes.indexOf(h);
 
-             for (f = 0; f < b.length; f++) {
 
-               n[A = i.name + "_" + w + "_" + f] = b[f];
 
-             }
 
-           }
 
-         }
 
-         var z = [],
 
-           S = [];
 
-         for (r = 0; r < this.outputLayers.length; r++) {
 
-           i = this.outputLayers[r], w = this.outputLayersNodeIndices[r], y = this.outputLayersTensorIndices[r];
 
-           var A = i.name + "_" + w + "_" + y;
 
-           S.push(A);
 
-         }
 
-         for (r = 0; r < S.length; r++) {
 
-           var _ = S[r];
 
-           assert(_ in n), z.push(n[_]);
 
-         }
 
-         return singletonOrArray(z);
 
-       }, t.prototype.runInternalGraph = function (e, t) {
 
-         null == t && (t = pyListRepeat(null, e.length));
 
-         for (var n = {}, r = 0; r < this.inputs.length; ++r) {
 
-           var i = this.inputs[r],
 
-             a = e[r],
 
-             o = t[r];
 
-           n[i.id] = [a, o];
 
-         }
 
-         for (var s = 0, l = Object.keys(this.nodesByDepth).map(function (e) {
 
-           return parseInt(e, 10);
 
-         }).sort(reverseNumberCompare); s < l.length; s++) for (var u = l[s], c = 0, p = this.nodesByDepth[u]; c < p.length; c++) {
 
-           for (var h = p[c], d = h.outboundLayer, f = h.inputTensors, g = h.outputTensors, m = new Array(), y = 0, v = f; y < v.length; y++) {
 
-             (i = v[y]).id in n && m.push(n[i.id]);
 
-           }
 
-           if (m.length === f.length) {
 
-             var b = {},
 
-               w = void 0,
 
-               z = void 0,
 
-               S = void 0,
 
-               A = void 0;
 
-             if (null != h.callArgs && (b = h.callArgs), 1 === m.length) {
 
-               var _ = m[0],
 
-                 I = _[0],
 
-                 C = _[1];
 
-               null == b.mask && (b.mask = C), S = toList(d.call(I, b)), A = toList(d.computeMask(I, C)), w = [I], z = [C];
 
-             } else w = m.map(function (e) {
 
-               return e[0];
 
-             }), z = m.map(function (e) {
 
-               return e[1];
 
-             }), null == b.mask && (b.mask = z), S = toList(d.call(w, b)), A = toList(d.computeMask(w, z));
 
-             if (d.activityRegularizer) throw new NotImplementedError("LayersModel invocation with concrete Tensor value(s) in the presence of activity regularizer(s) is not supported yet.");
 
-             for (r = 0; r < g.length; ++r) {
 
-               i = g[r], a = S[r], o = A[r];
 
-               n[i.id] = [a, o];
 
-             }
 
-           }
 
-         }
 
-         for (var E = [], N = [], k = [], x = 0, L = this.outputs; x < L.length; x++) {
 
-           assert((i = L[x]).id in n, "Could not compute output " + i.name + " : " + i.id);
 
-           var T = n[i.id],
 
-             D = T[0];
 
-           o = T[1];
 
-           k.push(D.shape), E.push(D), N.push(o);
 
-         }
 
-         return [E, N, k];
 
-       }, t.prototype.buildNodeConversionMap = function (e) {
 
-         for (var n, r = {}, i = 0, a = this.layers; i < a.length; i++) {
 
-           var o = a[i];
 
-           n = o instanceof t ? 1 : 0;
 
-           for (var s = 0; s < o.inboundNodes.length; s++) {
 
-             var l = t.nodeKey(o, s);
 
-             this.containerNodes.has(l) && (r[l] = n, n += 1);
 
-           }
 
-         }
 
-         return r;
 
-       }, t.prototype.getLayer = function (e, t) {
 
-         if (null != t) {
 
-           if (this.layers.length <= t) throw new ValueError("Was asked to retrieve layer at index " + t + ", but model only has " + this.layers.length + " layer(s).");
 
-           return this.layers[t];
 
-         }
 
-         if (null == e) throw new ValueError("Provide either a layer name or layer index");
 
-         for (var n = 0, r = this.layers; n < r.length; n++) {
 
-           var i = r[n];
 
-           if (i.name === e) return i;
 
-         }
 
-         throw new ValueError("No such layer: " + e);
 
-       }, t.prototype.calculateLosses = function () {
 
-         var e = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var n = [], r = 0, i = e.layers; r < i.length; r++) for (var a = i[r], o = 0; o < a.inboundNodes.length; ++o) {
 
-             var s = t.nodeKey(a, o);
 
-             e.containerNodes.has(s) && n.push.apply(n, a.calculateLosses());
 
-           }
 
-           return n;
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         for (var e = {
 
-           name: this.name
 
-         }, n = this.buildNodeConversionMap(this.layers), r = [], i = 0, a = this.layers; i < a.length; i++) {
 
-           for (var o = (w = a[i]).getClassName(), s = w.getConfig(), l = [], u = 0; u < w.inboundNodes.length; u++) {
 
-             var c = w.inboundNodes[u],
 
-               p = t.nodeKey(w, u),
 
-               h = {};
 
-             if (this.containerNodes.has(p)) {
 
-               if (c.callArgs) try {
 
-                 JSON.stringify(c.callArgs), h = c.callArgs;
 
-               } catch (e) {
 
-                 console.warn("Layer " + w.name + " was passed non-serializable keyword arguments: " + c.callArgs + ". They will not be included in the serialized model (and thus will be missing at deserialization time)."), h = {};
 
-               }
 
-               if (c.inboundLayers.length > 0) {
 
-                 for (var d = [], f = 0; f < c.inboundLayers.length; f++) {
 
-                   var g = c.inboundLayers[f],
 
-                     m = c.nodeIndices[f],
 
-                     y = c.tensorIndices[f];
 
-                   null == (S = n[t.nodeKey(g, m)]) && (S = 0), d.push([g.name, S, y, h]);
 
-                 }
 
-                 l.push(d);
 
-               }
 
-             }
 
-           }
 
-           var v = {};
 
-           v.name = w.name, v.className = o, v.config = s, v.inboundNodes = l, r.push(v);
 
-         }
 
-         e.layers = r;
 
-         var b = [];
 
-         for (f = 0; f < this.inputLayers.length; f++) {
 
-           var w = this.inputLayers[f];
 
-           m = this.inputLayersNodeIndices[f], p = t.nodeKey(w, m);
 
-           if (this.containerNodes.has(p)) {
 
-             null !== (S = n[p]) && void 0 !== S || (S = 0);
 
-             y = this.inputLayersTensorIndices[f];
 
-             b.push([w.name, S, y]);
 
-           }
 
-         }
 
-         e.inputLayers = b;
 
-         var z = [];
 
-         for (f = 0; f < this.outputLayers.length; f++) {
 
-           w = this.outputLayers[f], m = this.outputLayersNodeIndices[f], p = t.nodeKey(w, m);
 
-           if (this.containerNodes.has(p)) {
 
-             var S;
 
-             null !== (S = n[p]) && void 0 !== S || (S = 0);
 
-             y = this.outputLayersTensorIndices[f];
 
-             z.push([w.name, S, y]);
 
-           }
 
-         }
 
-         return e.outputLayers = z, e;
 
-       }, t.fromConfig = function (e, t, n, r) {
 
-         void 0 === n && (n = {}), void 0 === r && (r = !1);
 
-         var i = {},
 
-           a = {};
 
-         function o(e, t) {
 
-           e.name in a ? a[e.name].push(t) : a[e.name] = [t];
 
-         }
 
-         function s(e, t) {
 
-           for (var n, r = [], a = 0, s = t; a < s.length; a++) {
 
-             var l = s[a],
 
-               u = l[0],
 
-               c = l[1],
 
-               p = l[2];
 
-             if (n = null == l[3] ? {} : l[3], !(u in i)) return void o(e, t);
 
-             var h = i[u];
 
-             if (h.inboundNodes.length <= c) return void o(e, t);
 
-             var d = h.inboundNodes[c];
 
-             r.push(d.outputTensors[p]);
 
-           }
 
-           r.length > 0 && e.apply(singletonOrArray(r), n);
 
-         }
 
-         function l(e) {
 
-           var n = e.name,
 
-             a = deserialize(e, null != t.customObjects ? t.customObjects : {});
 
-           a.setFastWeightInitDuringBuild(r), i[n] = a, e.inboundNodes.forEach(function (e) {
 
-             if (!(e instanceof Array)) throw new ValueError("Corrupted configuration, expected array for nodeData: " + e);
 
-             o(a, e);
 
-           });
 
-         }
 
-         for (var u = t.name, c = t.layers, p = 0, h = c; p < h.length; p++) {
 
-           l(g = h[p]);
 
-         }
 
-         for (; !isObjectEmpty(a);) for (var d = 0, f = c; d < f.length; d++) {
 
-           var g = f[d];
 
-           if ((k = i[g.name]).name in a) {
 
-             var m = a[k.name];
 
-             delete a[k.name];
 
-             for (var y = 0, v = m; y < v.length; y++) {
 
-               s(k, v[y]);
 
-             }
 
-           }
 
-         }
 
-         for (var b = [], w = [], z = 0, S = t.inputLayers; z < S.length; z++) {
 
-           var A = (g = S[z])[0],
 
-             _ = g[1],
 
-             I = g[2];
 
-           assert(A in i);
 
-           var C = (k = i[A]).inboundNodes[_].outputTensors;
 
-           b.push(C[I]);
 
-         }
 
-         for (var E = 0, N = t.outputLayers; E < N.length; E++) {
 
-           A = (g = N[E])[0], _ = g[1], I = g[2];
 
-           assert(A in i);
 
-           var k;
 
-           C = (k = i[A]).inboundNodes[_].outputTensors;
 
-           w.push(C[I]);
 
-         }
 
-         return new e({
 
-           inputs: b,
 
-           outputs: w,
 
-           name: u
 
-         });
 
-       }, Object.defineProperty(t.prototype, "stateful", {
 
-         get: function () {
 
-           if (this._stateful) throw new ValueError("Container instance unexpectedly has _stateful = true. The statefulness of a Container is determined by the Layers it contains. Its _stateful property must remain the default false.");
 
-           for (var e = 0, t = this.layers; e < t.length; e++) {
 
-             if (t[e].stateful) return !0;
 
-           }
 
-           return !1;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.resetStates = function () {
 
-         var e = this;
 
-         (0, _tfjsCore.tidy)(function () {
 
-           e.layers.forEach(function (e) {
 
-             e.stateful && e.resetStates();
 
-           });
 
-         });
 
-       }, t;
 
-     }(Layer);
 
-     function standardizeSampleOrClassWeights(e, t, n) {
 
-       var r = t.length;
 
-       if (null == e || Array.isArray(e) && 0 === e.length) return t.map(function (e) {
 
-         return null;
 
-       });
 
-       if (1 === r) return Array.isArray(e) && 1 === e.length ? e : "object" == typeof e && t[0] in e ? [e[t[0]]] : [e];
 
-       if (Array.isArray(e)) {
 
-         if (e.length !== r) throw new Error("Provided " + n + " is an array of " + e.length + " element(s), but the model has " + r + " outputs. Make sure a set of weights is provided for each model output.");
 
-         return e;
 
-       }
 
-       if ("object" == typeof e && Object.keys(e).length > 0 && "object" == typeof e[Object.keys(e)[0]]) {
 
-         var i = [];
 
-         return t.forEach(function (t) {
 
-           t in e ? i.push(e[t]) : i.push(null);
 
-         }), i;
 
-       }
 
-       throw new Error("The model has multiple (" + r + ") outputs, so " + n + " must be either an array with " + r + " elements or an object with " + t + " keys. Provided " + n + " not understood: " + JSON.stringify(e));
 
-     }
 
-     function standardizeClassWeights(e, t) {
 
-       return standardizeSampleOrClassWeights(e, t, "classWeight");
 
-     }
 
-     function standardizeWeights(e, t, n, r) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var i, a, o, s, l;
 
-         return __generator(this, function (u) {
 
-           switch (u.label) {
 
-             case 0:
 
-               if (null != t || null != r) throw new Error("Support sampleWeight is not implemented yet");
 
-               return null == n ? [3, 2] : (i = (0, _tfjsCore.tidy)(function () {
 
-                 if (1 === e.shape.length) return e.clone();
 
-                 if (2 === e.shape.length) {
 
-                   if (e.shape[1] > 1) {
 
-                     return e.argMax(1);
 
-                   }
 
-                   if (1 === e.shape[1]) return e.reshape([e.shape[0]]);
 
-                   throw new Error("Encountered unexpected last-dimension size (" + e.shape[1] + ") during handling of class weights. The size is expected to be >= 1.");
 
-                 }
 
-                 throw new Error("Unexpected rank of target (y) tensor (" + e.rank + ") during handling of class weights. The rank is expected to be 1 or 2.");
 
-               }), s = (o = Array).from, [4, i.data()]);
 
-             case 1:
 
-               return a = s.apply(o, [u.sent()]), (0, _tfjsCore.dispose)(i), l = [], a.forEach(function (e) {
 
-                 if (null == n[e]) throw new Error("classWeight must contain all classes in the training data. The class " + e + " exists in the data but not in classWeight");
 
-                 l.push(n[e]);
 
-               }), [2, (0, _tfjsCore.tensor1d)(l, "float32")];
 
-             case 2:
 
-               return [2, null];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function computeWeightedLoss(e, t) {
 
-       return (0, _tfjsCore.mul)(e, t);
 
-     }
 
-     var DEFAULT_VALIDATION_BATCH_SIZE = 32;
 
-     function standardizeDataIteratorOutput(e, t) {
 
-       var n,
 
-         r,
 
-         i = t;
 
-       n = i.xs, r = i.ys, _tfjsCore.util.assert(null != n && null != r, function () {
 
-         return "A Dataset iterator for fitDataset() is expected to generate objects of the form `{xs: xVal, ys: yVal}`, where the two values may be `tf.Tensor`, an array of Tensors, or a map of string to Tensor.  The provided Dataset instead generates " + t;
 
-       });
 
-       var a = flattenTensorOrArrayOrMap("input", e.inputNames, n),
 
-         o = flattenTensorOrArrayOrMap("output", e.outputNames, r),
 
-         s = a[0].shape[0];
 
-       _tfjsCore.util.assert(a.length === e.inputs.length, function () {
 
-         return "LayersModel has " + e.inputs.length + " inputs, but the dataset provides " + a.length + " inputs.  (Expected input keys: " + JSON.stringify(e.inputNames) + ")";
 
-       }), _tfjsCore.util.assert(o.length === e.outputs.length, function () {
 
-         return "LayersModel has " + e.outputs.length + " outputs, but the dataset provides " + o.length + " outputs.  (Expected output keys: " + JSON.stringify(e.outputNames) + ")";
 
-       });
 
-       var l = function (t) {
 
-         _tfjsCore.util.assert(a[t].shape[0] === s, function () {
 
-           return "Batch size mismatch: input " + e.inputNames[t] + " has " + a[t].shape[0] + "; expected  " + s + " based on input " + e.inputNames[0] + ".";
 
-         });
 
-       };
 
-       for (var u in a) l(u);
 
-       var c = function (t) {
 
-         _tfjsCore.util.assert(o[t].shape[0] === s, function () {
 
-           return "Batch size mismatch: output " + e.outputNames[t] + " has " + o[t].shape[0] + "; expected  " + s + " based on input " + e.inputNames[0] + ".";
 
-         });
 
-       };
 
-       for (var p in o) c(p);
 
-       return {
 
-         xs: a,
 
-         ys: o
 
-       };
 
-     }
 
-     function flattenTensorOrArrayOrMap(e, t, n) {
 
-       if (n instanceof _tfjsCore.Tensor) return [n];
 
-       if (Array.isArray(n)) return _tfjsCore.util.assert(n.length === t.length, function () {
 
-         return "Received an array of " + n.length + " Tensors, but expected " + t.length + " to match the " + e + " keys " + t + ".";
 
-       }), n;
 
-       for (var r = [], i = 0, a = t; i < a.length; i++) {
 
-         var o = a[i];
 
-         if (null == n[o]) throw new ValueError("The feature data generated by the dataset lacks the required " + e + " key '" + o + "'.");
 
-         r.push(n[o]);
 
-       }
 
-       return r;
 
-     }
 
-     function standardizeTensorValidationData(e) {
 
-       if (3 === e.length) throw new NotImplementedError("Validation with sample weights is not implemented yet.");
 
-       return {
 
-         xs: e[0],
 
-         ys: e[1]
 
-       };
 
-     }
 
-     function fitDataset(e, t, n) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, i, a, o, s, l, u, c, p, h, d, f, g, m, y, v, b, w, z, S, A, _, I, C, E, N, k, x, L, T, D, O, R, M;
 
-         return __generator(this, function (P) {
 
-           switch (P.label) {
 
-             case 0:
 
-               if (r = null != n.batchesPerEpoch, _tfjsCore.util.assert(null != e.optimizer, function () {
 
-                 return "You must compile a model before training/testing. Use LayersModel.compile(modelCompileConfig).";
 
-               }), _tfjsCore.util.assert(null != n, function () {
 
-                 return "For fitDataset(), the 2nd argument (config) is required, but it is not provided in this call.";
 
-               }), _tfjsCore.util.assert(null != n.epochs && n.epochs > 0 && Number.isInteger(n.epochs), function () {
 
-                 return "For fitDataset(), config.epochs is expected to be a positive integer, but got " + n.epochs;
 
-               }), _tfjsCore.util.assert(!r || n.batchesPerEpoch > 0 && Number.isInteger(n.batchesPerEpoch), function () {
 
-                 return "For fitDataset(), config.batchesPerEpoch is expected to be a positive integer if specified, but got " + n.batchesPerEpoch;
 
-               }), _tfjsCore.util.assert(null == n.validationSplit, function () {
 
-                 return "`validationSplit` is not supported by `fitDataset()`. Use validationData instead.";
 
-               }), e.isTraining) throw new Error("Cannot start training because another fit() call is ongoing.");
 
-               e.isTraining = !0, P.label = 1;
 
-             case 1:
 
-               return P.trys.push([1, , 26, 27]), i = null != n.validationData, a = void 0, o = void 0, i && (isDatasetObject(n.validationData) ? _tfjsCore.util.assert(null == n.validationBatches || n.validationBatches > 0 && Number.isInteger(n.validationBatches), function () {
 
-                 return "For fitDataset() with dataset-based validation, config.validationBatches is expected not to be provided, or to be a positive integer, but got " + n.validationBatches;
 
-               }) : (s = standardizeTensorValidationData(n.validationData), a = s.xs, o = s.ys)), l = e.makeTrainFunction(), u = e.getDedupedMetricsNames(), c = void 0, c = i ? u.slice().concat(u.map(function (e) {
 
-                 return "val_" + e;
 
-               })) : u.slice(), p = standardizeCallbacks(n.callbacks, n.yieldEvery), h = null == n.verbose ? 1 : n.verbose, d = configureCallbacks(p, h, n.epochs, null, null, getStepsPerEpoch(t, n), null, i, c), f = d.callbackList, g = d.history, f.setModel(e), e.history = g, [4, f.onTrainBegin()];
 
-             case 2:
 
-               return P.sent(), e.stopTraining_ = !1, m = null == n.initialEpoch ? 0 : n.initialEpoch, [4, t.iterator()];
 
-             case 3:
 
-               y = P.sent(), P.label = 4;
 
-             case 4:
 
-               return m < n.epochs ? (v = {}, [4, f.onEpochBegin(m)]) : [3, 23];
 
-             case 5:
 
-               return P.sent(), b = 0, w = 0, r ? [3, 7] : [4, t.iterator()];
 
-             case 6:
 
-               y = P.sent(), P.label = 7;
 
-             case 7:
 
-               return !r || b < n.batchesPerEpoch ? [4, y.next()] : [3, 21];
 
-             case 8:
 
-               return z = P.sent(), r && z.done ? (console.warn("You provided `batchesPerEpoch` as " + n.batchesPerEpoch + ", but your dataset iterator ran out of data after " + b + " batches; interrupting training. Make sure that your dataset can generate at least `batchesPerEpoch * epochs` batches (in this case, " + n.batchesPerEpoch * n.epochs + " batches). You may need to use the repeat() function when building your dataset."), [3, 21]) : null == z.value ? [3, 15] : (S = standardizeDataIteratorOutput(e, z.value), A = S.xs, _ = S.ys, (I = {}).batch = w, I.size = A[0].shape[0], [4, f.onBatchBegin(w, I)]);
 
-             case 9:
 
-               if (P.sent(), C = [], null == n.classWeight) return [3, 13];
 
-               E = standardizeClassWeights(n.classWeight, e.outputNames), M = 0, P.label = 10;
 
-             case 10:
 
-               return M < E.length ? (k = (N = C).push, [4, standardizeWeights(_[M], null, E[M])]) : [3, 13];
 
-             case 11:
 
-               k.apply(N, [P.sent()]), P.label = 12;
 
-             case 12:
 
-               return ++M, [3, 10];
 
-             case 13:
 
-               for (x = A.concat(_).concat(C), L = l(x), (0, _tfjsCore.dispose)(x), M = 0; M < u.length; ++M) T = u[M], D = L[M], I[T] = D, (0, _tfjsCore.keep)(D);
 
-               return [4, f.onBatchEnd(w, I)];
 
-             case 14:
 
-               P.sent(), disposeTensorsInLogs(I), w++, b++, P.label = 15;
 
-             case 15:
 
-               return (r ? b >= n.batchesPerEpoch : z.done) ? i ? (O = void 0, isDatasetObject(n.validationData) ? (R = toList, [4, e.evaluateDataset(n.validationData, {
 
-                 batches: n.validationBatches
 
-               })]) : [3, 17]) : [3, 19] : [3, 20];
 
-             case 16:
 
-               return O = R.apply(void 0, [P.sent()]), [3, 18];
 
-             case 17:
 
-               O = toList(e.evaluate(a, o, {
 
-                 batchSize: null == n.validationBatchSize ? DEFAULT_VALIDATION_BATCH_SIZE : n.validationBatchSize,
 
-                 verbose: 0
 
-               })), P.label = 18;
 
-             case 18:
 
-               for (M = 0; M < e.metricsNames.length; ++M) v["val_" + e.metricsNames[M]] = O[M];
 
-               P.label = 19;
 
-             case 19:
 
-               return [3, 21];
 
-             case 20:
 
-               return e.stopTraining_ ? [3, 21] : [3, 7];
 
-             case 21:
 
-               return [4, f.onEpochEnd(m, v)];
 
-             case 22:
 
-               return P.sent(), m++, e.stopTraining_ ? [3, 23] : [3, 4];
 
-             case 23:
 
-               return [4, f.onTrainEnd()];
 
-             case 24:
 
-               return P.sent(), [4, e.history.syncData()];
 
-             case 25:
 
-               return P.sent(), [2, e.history];
 
-             case 26:
 
-               return e.isTraining = !1, [7];
 
-             case 27:
 
-               return [2];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function getStepsPerEpoch(e, t) {
 
-       var n = null;
 
-       return null != t.batchesPerEpoch ? n = t.batchesPerEpoch : Number.isFinite(e.size) && (n = e.size), n;
 
-     }
 
-     function isDatasetObject(e) {
 
-       return "function" == typeof e.iterator;
 
-     }
 
-     function isLazyIteratorObject(e) {
 
-       return "function" == typeof e.next;
 
-     }
 
-     function evaluateDataset(e, t, n) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, i, a, o, s, l, u, c, p, h;
 
-         return __generator(this, function (d) {
 
-           switch (d.label) {
 
-             case 0:
 
-               if (r = null != (n = n || {}).batches, i = e.testFunction, a = [], n.verbose > 0) throw new NotImplementedError("Verbose mode is not implemented yet.");
 
-               return _tfjsCore.util.assert(!r || n.batches > 0 && Number.isInteger(n.batches), function () {
 
-                 return "Test loop expects `batches` to be a positive integer, but received " + JSON.stringify(n.batches);
 
-               }), isLazyIteratorObject(t) ? (s = t, [3, 3]) : [3, 1];
 
-             case 1:
 
-               return [4, t.iterator()];
 
-             case 2:
 
-               s = d.sent(), d.label = 3;
 
-             case 3:
 
-               o = s, l = 0, u = 0, c = function () {
 
-                 var t;
 
-                 return __generator(this, function (s) {
 
-                   switch (s.label) {
 
-                     case 0:
 
-                       return [4, o.next()];
 
-                     case 1:
 
-                       return t = s.sent(), a = (0, _tfjsCore.tidy)(function () {
 
-                         if (t.value) {
 
-                           var n = standardizeDataIteratorOutput(e, t.value),
 
-                             r = n.xs,
 
-                             o = n.ys,
 
-                             s = r.concat(o),
 
-                             c = (0, _tfjsCore.tidy)(function () {
 
-                               return i(s);
 
-                             });
 
-                           if ((0, _tfjsCore.dispose)(s), 0 === u) for (var p = 0; p < c.length; ++p) a.push((0, _tfjsCore.scalar)(0));
 
-                           var h = s[0].shape[0],
 
-                             d = function (e) {
 
-                               var t = c[e],
 
-                                 n = a[e];
 
-                               a[e] = (0, _tfjsCore.tidy)(function () {
 
-                                 return (0, _tfjsCore.add)(a[e], (0, _tfjsCore.mul)(h, t));
 
-                               }), u > 0 && (0, _tfjsCore.dispose)(n);
 
-                             };
 
-                           for (p = 0; p < c.length; ++p) d(p);
 
-                           (0, _tfjsCore.dispose)(c), l += h, ++u;
 
-                         }
 
-                         return a;
 
-                       }), t.done ? (r && console.warn("Your dataset iterator ran out of data during evaluateDataset(). Interrupting evalution. Make sure that your dataset can generate at least `batches` batches (in this case, " + n.batches + " batches). You may need to use the repeat() function when building your dataset."), [2, "break"]) : [2];
 
-                   }
 
-                 });
 
-               }, d.label = 4;
 
-             case 4:
 
-               return !r || u < n.batches ? [5, c()] : [3, 6];
 
-             case 5:
 
-               return "break" === d.sent() ? [3, 6] : [3, 4];
 
-             case 6:
 
-               for (p = 0; p < a.length; ++p) h = a[p], a[p] = (0, _tfjsCore.div)(a[p], l), (0, _tfjsCore.dispose)(h);
 
-               return [2, singletonOrArray(a)];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function checkBatchSize(e) {
 
-       _tfjsCore.util.assert(e > 0 && Number.isInteger(e), function () {
 
-         return "batchSize is required to be a positive integer, but got " + e;
 
-       });
 
-     }
 
-     function sliceArrays(e, t, n) {
 
-       return null == e ? [null] : Array.isArray(e) ? e.map(function (e) {
 
-         return sliceAlongFirstAxis(e, t, n - t);
 
-       }) : sliceAlongFirstAxis(e, t, n - t);
 
-     }
 
-     function sliceArraysByIndices(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return null == e ? null : Array.isArray(e) ? e.map(function (e) {
 
-           return sliceArraysByIndices(e, t);
 
-         }) : gather$1(e, "int32" === t.dtype ? t : t.toInt());
 
-       });
 
-     }
 
-     function makeBatches(e, t) {
 
-       for (var n = [], r = 0, i = null; r < e;) (i = r + t) >= e && (i = e), n.push([r, i]), r = i;
 
-       return n;
 
-     }
 
-     function fitLoop(e, t, n, r, i, a, o, s, l, u, c, p, h, d, f) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var g, m, y, v, b, w, z, S;
 
-         return __generator(this, function (A) {
 
-           switch (A.label) {
 
-             case 0:
 
-               if (null == i && (i = 32), null == a && (a = 1), null == c && (c = !0), null == h && (h = 0), g = !1, null != l && null != u && (g = !0), null != f && (g = !0, null == d)) throw new ValueError("Can only use `validationSteps` when doing step-wise training, i.e., `stepsPerEpoch` must be set.");
 
-               return null != (m = e.checkNumSamples(n, i, d, "steps_per_epoch")) && (y = range(0, m)), null == o && (o = 1), v = configureCallbacks(s, o, a, h, m, d, i, g, p), b = v.callbackList, w = v.history, b.setModel(e), e.history = w, [4, b.onTrainBegin()];
 
-             case 1:
 
-               A.sent(), e.stopTraining_ = !1, z = function (a) {
 
-                 var o, s, p, h, f;
 
-                 return __generator(this, function (v) {
 
-                   switch (v.label) {
 
-                     case 0:
 
-                       return [4, b.onEpochBegin(a)];
 
-                     case 1:
 
-                       if (v.sent(), o = {}, null == d) return [3, 2];
 
-                       throw new NotImplementedError("stepsPerEpoch mode is not implemented yet.");
 
-                     case 2:
 
-                       if ("batch" === c) throw new NotImplementedError("batch shuffling is not implemneted yet");
 
-                       c && _tfjsCore.util.shuffle(y), s = (0, _tfjsCore.tensor1d)(y), p = makeBatches(m, i), h = function (a) {
 
-                         var c;
 
-                         return __generator(this, function (h) {
 
-                           switch (h.label) {
 
-                             case 0:
 
-                               return c = {}, [4, b.onBatchBegin(a, c)];
 
-                             case 1:
 
-                               return h.sent(), (0, _tfjsCore.tidy)(function () {
 
-                                 var h = p[a][0],
 
-                                   d = p[a][1],
 
-                                   f = sliceAlongFirstAxis(s, h, d - h);
 
-                                 c.batch = a, c.size = d - h;
 
-                                 for (var m = sliceArraysByIndices(n, f), y = t(m), v = 0; v < r.length; ++v) {
 
-                                   var b = r[v],
 
-                                     w = y[v];
 
-                                   c[b] = w, (0, _tfjsCore.keep)(w);
 
-                                 }
 
-                                 if (a === p.length - 1 && g) {
 
-                                   var z = e.testLoop(l, u, i);
 
-                                   for (v = 0; v < r.length; ++v) {
 
-                                     b = r[v], w = z[v];
 
-                                     (0, _tfjsCore.keep)(w), o["val_" + b] = w;
 
-                                   }
 
-                                 }
 
-                               }), [4, b.onBatchEnd(a, c)];
 
-                             case 2:
 
-                               return h.sent(), disposeTensorsInLogs(c), e.stopTraining_ ? [2, "break"] : [2];
 
-                           }
 
-                         });
 
-                       }, f = 0, v.label = 3;
 
-                     case 3:
 
-                       return f < p.length ? [5, h(f)] : [3, 6];
 
-                     case 4:
 
-                       if ("break" === v.sent()) return [3, 6];
 
-                       v.label = 5;
 
-                     case 5:
 
-                       return ++f, [3, 3];
 
-                     case 6:
 
-                       s.dispose(), v.label = 7;
 
-                     case 7:
 
-                       return [4, b.onEpochEnd(a, o)];
 
-                     case 8:
 
-                       return v.sent(), e.stopTraining_ ? [2, "break"] : [2];
 
-                   }
 
-                 });
 
-               }, S = h, A.label = 2;
 
-             case 2:
 
-               return S < a ? [5, z(S)] : [3, 5];
 
-             case 3:
 
-               if ("break" === A.sent()) return [3, 5];
 
-               A.label = 4;
 
-             case 4:
 
-               return ++S, [3, 2];
 
-             case 5:
 
-               return [4, b.onTrainEnd()];
 
-             case 6:
 
-               return A.sent(), [4, e.history.syncData()];
 
-             case 7:
 
-               return A.sent(), [2, e.history];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function fitTensors(e, t, n, r) {
 
-       return void 0 === r && (r = {}), __awaiter(this, void 0, void 0, function () {
 
-         var i, a, o, s, l, u, c, p, h, d, f, g, m, y, v, b, w, z, S, A, _, I;
 
-         return __generator(this, function (C) {
 
-           switch (C.label) {
 
-             case 0:
 
-               if (e.isTraining) throw new Error("Cannot start training because another fit() call is ongoing.");
 
-               e.isTraining = !0, C.label = 1;
 
-             case 1:
 
-               return C.trys.push([1, , 7, 8]), checkBatchSize(p = null == r.batchSize ? 32 : r.batchSize), h = !1, [4, e.standardizeUserData(t, n, r.sampleWeight, r.classWeight, h, p)];
 
-             case 2:
 
-               if (d = C.sent(), i = d[0], a = d[1], c = d[2], f = !1, g = void 0, !(null != r.validationData && r.validationData.length > 0)) return [3, 4];
 
-               if (f = !0, 2 !== r.validationData.length) throw 3 === r.validationData.length ? new NotImplementedError("validationData including sample weights is not supported yet.") : new ValueError("When passing validation data, it must contain 2 (valX, valY) or 3 (valX, valY, valSampleWeight) items; " + r.validationData + " is invalid.");
 
-               return o = r.validationData[0], s = r.validationData[1], m = !0, [4, e.standardizeUserData(o, s, null, null, m, p)];
 
-             case 3:
 
-               return y = C.sent(), l = y[0], u = y[1], g = l.concat(u), [3, 5];
 
-             case 4:
 
-               null != r.validationSplit && r.validationSplit > 0 && r.validationSplit < 1 ? (f = !0, v = Math.floor(i[0].shape[0] * (1 - r.validationSplit)), b = i[0].shape[0], l = sliceArrays(i, v, b), i = sliceArrays(i, 0, v), u = sliceArrays(a, v, b), a = sliceArrays(a, 0, v), g = l.concat(u)) : null != r.validationSteps && (f = !0), C.label = 5;
 
-             case 5:
 
-               return w = i.concat(a).concat(c), e.checkTrainableWeightsConsistency(), z = e.makeTrainFunction(), S = e.getDedupedMetricsNames(), A = void 0, _ = void 0, f ? (e.makeTestFunction(), A = e.testFunction, _ = S.slice().concat(S.map(function (e) {
 
-                 return "val_" + e;
 
-               }))) : (A = null, g = [], _ = S.slice()), I = standardizeCallbacks(r.callbacks, r.yieldEvery), [4, fitLoop(e, z, w, S, p, r.epochs, r.verbose, I, A, g, r.shuffle, _, r.initialEpoch, null, null)];
 
-             case 6:
 
-               return [2, C.sent()];
 
-             case 7:
 
-               return e.isTraining = !1, disposeNewTensors(i, t), disposeNewTensors(a, n), disposeNewTensors(l, o), disposeNewTensors(u, s), null != c && (0, _tfjsCore.dispose)(c), [7];
 
-             case 8:
 
-               return [2];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function ensureTensorsRank2OrHigher(e) {
 
-       var t = [];
 
-       e instanceof _tfjsCore.Tensor && (e = [e]);
 
-       for (var n = 0; n < e.length; ++n) {
 
-         var r = e[n];
 
-         if (1 === r.rank) t.push(expandDims$1(r, 1)); else {
 
-           if (0 === r.rank) throw new Error("Expected tensor to be at least 1D, but received a 0D tensor (scalar).");
 
-           t.push(r);
 
-         }
 
-       }
 
-       return t;
 
-     }
 
-     function disposeNewTensors(e, t) {
 
-       if (null != e) {
 
-         var n = [];
 
-         if (t instanceof _tfjsCore.Tensor) n.push(t.id); else if (Array.isArray(t)) t.forEach(function (e) {
 
-           return n.push(e.id);
 
-         }); else if (null != t) for (var r in t) {
 
-           var i = t[r];
 
-           n.push(i.id);
 
-         }
 
-         var a = [];
 
-         if (e instanceof _tfjsCore.Tensor) -1 === n.indexOf(e.id) && a.push(e); else if (Array.isArray(e)) e.forEach(function (e) {
 
-           -1 === n.indexOf(e.id) && a.push(e);
 
-         }); else if (null != e) for (var o in e) {
 
-           var s = e[o];
 
-           -1 === n.indexOf(s.id) && a.push(s);
 
-         }
 
-         a.forEach(function (e) {
 
-           e.isDisposed || e.dispose();
 
-         });
 
-       }
 
-     }
 
-     function isDataTensor(e) {
 
-       return e instanceof _tfjsCore.Tensor;
 
-     }
 
-     function isDataArray(e) {
 
-       return Array.isArray(e);
 
-     }
 
-     function isDataDict(e) {
 
-       return !isDataTensor(e) && !isDataArray(e);
 
-     }
 
-     function standardizeInputData(e, t, n, r, i) {
 
-       if (void 0 === r && (r = !0), void 0 === i && (i = ""), null == t || 0 === t.length) {
 
-         if (null != e) {
 
-           var a = !1;
 
-           if (isDataArray(e) && e.length > 0) a = !0; else if (isDataDict(e)) {
 
-             for (var o in e) if (e.hasOwnProperty(o)) {
 
-               a = !0;
 
-               break;
 
-             }
 
-           } else a = !0;
 
-           if (a) throw new ValueError("Error when checking model " + i + " expected no data, but got " + e);
 
-         }
 
-         return [];
 
-       }
 
-       if (null == e) return t.map(function (e) {
 
-         return null;
 
-       });
 
-       var s;
 
-       if (isDataDict(e)) {
 
-         e = e, s = [];
 
-         for (var l = 0, u = t; l < u.length; l++) {
 
-           var c = u[l];
 
-           if (null == e[c]) throw new ValueError('No data provided for "' + c + '". Need data for each key in: ' + t);
 
-           s.push(e[c]);
 
-         }
 
-       } else if (isDataArray(e)) {
 
-         if ((e = e).length !== t.length) throw new ValueError("Error when checking model " + i + ": the Array of Tensors that you are passing to your model is not the size the model expected. Expected to see " + t.length + " Tensor(s), but instead got the following list of Tensor(s): " + e);
 
-         s = e;
 
-       } else {
 
-         if (e = e, t.length > 1) throw new ValueError("The model " + i + " expects " + t.length + " Tensor(s), but only received one Tensor. Found: Tensor with shape " + e.shape);
 
-         s = [e];
 
-       }
 
-       if (s = ensureTensorsRank2OrHigher(s), null != n) for (var p = 0; p < t.length; ++p) if (null != n[p]) {
 
-         var h = s[p];
 
-         if (h.shape.length !== n[p].length) throw new ValueError("Error when checking " + i + ": expected " + t[p] + " to have " + n[p].length + " dimension(s). but got array with shape " + h.shape);
 
-         for (var d = 0; d < n[p].length; ++d) if (0 !== d || r) {
 
-           var f = h.shape[d],
 
-             g = n[p][d];
 
-           if (null != g && g >= 0 && f !== g) throw new ValueError("Error when checking " + i + ": expected " + t[p] + " to have shape [" + n[p] + "], but got array with shape [" + h.shape + "].");
 
-         }
 
-       }
 
-       return s;
 
-     }
 
-     function checkArrayLengths(e, t, n) {
 
-       var r = unique(e.map(function (e) {
 
-         return e.shape[0];
 
-       }));
 
-       r.sort();
 
-       var i = unique(t.map(function (e) {
 
-         return e.shape[0];
 
-       }));
 
-       if (i.sort(), r.length > 1) throw new ValueError("All input Tensors (x) should have the same number of samples. Got array shapes: " + JSON.stringify(e.map(function (e) {
 
-         return e.shape;
 
-       })));
 
-       if (i.length > 1) throw new ValueError("All target Tensors (y) should have the same number of samples. Got array shapes: " + JSON.stringify(t.map(function (e) {
 
-         return e.shape;
 
-       })));
 
-       if (r.length > 0 && i.length > 0 && !_tfjsCore.util.arraysEqual(r, i)) throw new ValueError("Input Tensors should have the same number of samples as target Tensors. Found " + r[0] + " input sample(s) and " + i[0] + " target sample(s).");
 
-     }
 
-     function checkLossAndTargetCompatibility(e, t, n) {
 
-       for (var r = [meanSquaredError, binaryCrossentropy, categoricalCrossentropy], i = 0; i < e.length; ++i) {
 
-         var a = e[i],
 
-           o = t[i],
 
-           s = n[i];
 
-         if (null != o) {
 
-           if (o === categoricalCrossentropy && 1 === a.shape[a.shape.length - 1]) throw new ValueError("You are passing a target array of shape " + a.shape + " while using a loss 'categorical_crossentropy'. 'categorical_crossentropy'expects targets to be binary matrices (1s and 0s) of shape [samples, classes].");
 
-           if (-1 !== r.indexOf(o)) for (var l = a.shape.slice(1), u = s.slice(1), c = 0; c < l.length; ++c) {
 
-             var p = l[c],
 
-               h = u[c];
 
-             if (null != h && p !== h) throw new ValueError("A target Tensor with shape " + a.shape + " was passed for an output of shape " + s + ", while using a loss function that expects targets to have the same shape as the output.");
 
-           }
 
-         }
 
-       }
 
-     }
 
-     function checkInputData(e, t, n, r, i) {
 
-       var a;
 
-       if (void 0 === r && (r = !0), void 0 === i && (i = ""), Array.isArray(e)) {
 
-         if (e.length !== t.length) throw new ValueError("Error when checking model " + i + ": the Array of Tensors that you are passing to your model is not the size the the model expected. Expected to see " + t.length + " Tensor(s), but instead got " + e.length + " Tensors(s).");
 
-         a = e;
 
-       } else {
 
-         if (t.length > 1) throw new ValueError("The model expects " + t.length + " " + i + " Tensors, but only received one Tensor. Found: array with shape " + JSON.stringify(e.shape) + ".");
 
-         a = [e];
 
-       }
 
-       if (null != n) for (var o = 0; o < t.length; ++o) if (null != n[o]) {
 
-         var s = a[o];
 
-         if (s.shape.length !== n[o].length) throw new ValueError("Error when checking " + i + ": expected " + t[o] + " to have " + n[o].length + " dimension(s), but got array with shape " + JSON.stringify(s.shape));
 
-         for (var l = 0; l < n[o].length; ++l) if (0 !== l || r) {
 
-           var u = s.shape[l],
 
-             c = n[o][l];
 
-           if (null != c && c !== u) throw new ValueError("Error when checking " + i + ": expected " + t[o] + " to have shape " + JSON.stringify(n[o]) + " but got array with shape " + JSON.stringify(s.shape) + ".");
 
-         }
 
-       }
 
-     }
 
-     function collectMetrics(e, t) {
 
-       if (null == e || Array.isArray(e) && 0 === e.length) return t.map(function (e) {
 
-         return [];
 
-       });
 
-       var n;
 
-       if ("string" == typeof e || "function" == typeof e) n = [e]; else {
 
-         if (!Array.isArray(e) && "object" != typeof e) throw new TypeError("Type of metrics argument not understood. Expected an string,function, Array, or Object, found: " + e);
 
-         n = e;
 
-       }
 
-       if (Array.isArray(n)) return t.map(function (e) {
 
-         return n;
 
-       });
 
-       for (var r = [], i = 0, a = t; i < a.length; i++) {
 
-         var o = a[i],
 
-           s = n.hasOwnProperty(o) ? n[o] : [];
 
-         Array.isArray(s) || (s = [s]), r.push(s);
 
-       }
 
-       return r;
 
-     }
 
-     var LAYERS_MODEL_FORMAT_NAME = "layers-model",
 
-       LayersModel = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this, t) || this;
 
-           return n.isTraining = !1, n;
 
-         }
 
-         return __extends(t, e), t.prototype.summary = function (e, t, n) {
 
-           if (void 0 === n && (n = console.log), !this.built) throw new ValueError("This model has never been called, thus its weights have not been created yet. So no summary can be displayed. Build the model first (e.g., by calling it on some test data).");
 
-           printSummary(this, e, t, n);
 
-         }, t.prototype.compile = function (e) {
 
-           var t = this;
 
-           if (null == e.loss && (e.loss = []), this.loss = e.loss, "string" == typeof e.optimizer) this.optimizer_ = getOptimizer(e.optimizer), this.isOptimizerOwned = !0; else {
 
-             if (!(e.optimizer instanceof _tfjsCore.Optimizer)) throw new ValueError("User-defined optimizer must be an instance of tf.Optimizer.");
 
-             this.optimizer_ = e.optimizer, this.isOptimizerOwned = !1;
 
-           }
 
-           var n = [];
 
-           if (Array.isArray(e.loss) || "string" == typeof e.loss || "function" == typeof e.loss) {
 
-             if (Array.isArray(e.loss)) {
 
-               if (e.loss.length !== this.outputs.length) throw new ValueError("When passing an Array as loss, it should have one entry per model output. The model has " + this.outputs.length + " output(s), but you passed loss=" + e.loss + ".");
 
-               var r = e.loss;
 
-               n = r.map(function (e) {
 
-                 return get(e);
 
-               });
 
-             } else {
 
-               var i = get(e.loss);
 
-               this.outputs.forEach(function (e) {
 
-                 n.push(i);
 
-               });
 
-             }
 
-           } else {
 
-             for (var a in e.loss = e.loss, e.loss) if (-1 === this.outputNames.indexOf(a)) throw new ValueError('Unknown entry in loss dictionary: "' + a + '". Only expected the following keys: ' + this.outputNames);
 
-             for (var o = 0, s = this.outputNames; o < s.length; o++) {
 
-               var l = s[o];
 
-               null == e.loss[l] && console.warn('Output "' + l + '" is missing from loss dictionary. We assume this was done on purpose, and we will not be expecting data to be passed to ' + l + " during training"), n.push(get(e.loss[l]));
 
-             }
 
-           }
 
-           this.lossFunctions = n, this.feedOutputNames = [], this.feedOutputShapes = [], this.feedLossFns = [];
 
-           for (var u = 0; u < this.outputs.length; ++u) {
 
-             var c = this.internalOutputShapes[u],
 
-               p = this.outputNames[u];
 
-             this.feedOutputNames.push(p), this.feedOutputShapes.push(c), this.feedLossFns.push(this.lossFunctions[u]);
 
-           }
 
-           var h = [];
 
-           this.metrics = e.metrics, this.metricsNames = ["loss"], this.metricsTensors = [], nameScope("loss", function () {
 
-             for (var e = 0; e < t.outputs.length; ++e) if (-1 === h.indexOf(e)) {
 
-               var n = t.lossFunctions[e];
 
-               t.outputs.length > 1 && (t.metricsTensors.push([n, e]), t.metricsNames.push(t.outputNames[e] + "_loss"));
 
-             }
 
-           });
 
-           var d = collectMetrics(e.metrics, this.outputNames);
 
-           nameScope("metric", function () {
 
-             for (var e = function (e) {
 
-               if (-1 !== h.indexOf(e)) return "continue";
 
-               !function (n) {
 
-                 for (var r, i, a, o = function (n) {
 
-                   if ("string" == typeof n && -1 !== ["accuracy", "acc", "crossentropy", "ce"].indexOf(n)) {
 
-                     var o = t.internalOutputShapes[e];
 
-                     1 === o[o.length - 1] || t.lossFunctions[e] === binaryCrossentropy ? -1 !== ["accuracy", "acc"].indexOf(n) ? i = binaryAccuracy : -1 !== ["crossentropy", "ce"].indexOf(n) && (i = binaryCrossentropy$1) : t.lossFunctions[e] === sparseCategoricalCrossentropy ? -1 !== ["accuracy", "acc"].indexOf(n) ? i = sparseCategoricalAccuracy : -1 !== ["crossentropy", "ce"].indexOf(n) && (i = sparseCategoricalCrossentropy$1) : -1 !== ["accuracy", "acc"].indexOf(n) ? i = categoricalAccuracy : -1 !== ["crossentropy", "ce"].indexOf(n) && (i = categoricalCrossentropy$1);
 
-                     var s = void 0;
 
-                     -1 !== ["accuracy", "acc"].indexOf(n) ? s = "acc" : -1 !== ["crossentropy", "ce"].indexOf(n) && (s = "ce"), a = i, r = "" + s;
 
-                   } else {
 
-                     var l = get$1(n);
 
-                     a = l, r = "" + getLossOrMetricName(n);
 
-                   }
 
-                   var u;
 
-                   nameScope(r, function () {
 
-                     u = a;
 
-                   }), function (e, n, r) {
 
-                     t.outputNames.length > 1 && (n = t.outputNames[e] + "_" + n), t.metricsNames.push(n), t.metricsTensors.push([r, e]);
 
-                   }(e, r, u);
 
-                 }, s = 0, l = n; s < l.length; s++) o(l[s]);
 
-               }(d[e]);
 
-             }, n = 0; n < t.outputs.length; ++n) e(n);
 
-           }), this.collectedTrainableWeights = this.trainableWeights;
 
-         }, t.prototype.checkTrainableWeightsConsistency = function () {
 
-           null != this.collectedTrainableWeights && this.trainableWeights.length !== this.collectedTrainableWeights.length && console.warn("Discrepancy between trainableweights and collected trainable weights. Did you set `model.trainable` without calling `model.compile()` afterwards?");
 
-         }, t.prototype.evaluate = function (e, t, n) {
 
-           void 0 === n && (n = {});
 
-           var r = null == n.batchSize ? 32 : n.batchSize;
 
-           checkBatchSize(r);
 
-           var i = this.standardizeUserDataXY(e, t, !0, r);
 
-           try {
 
-             var a = i[0].concat(i[1]);
 
-             this.makeTestFunction();
 
-             var o = this.testFunction;
 
-             return singletonOrArray(this.testLoop(o, a, r, n.verbose, n.steps));
 
-           } finally {
 
-             disposeNewTensors(i[0], e), disposeNewTensors(i[1], t);
 
-           }
 
-         }, t.prototype.evaluateDataset = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (n) {
 
-               return this.makeTestFunction(), [2, evaluateDataset(this, e, t)];
 
-             });
 
-           });
 
-         }, t.prototype.checkNumSamples = function (e, t, n, r) {
 
-           var i;
 
-           if (void 0 === r && (r = "steps"), null != n) {
 
-             if (i = null, null != t) throw new ValueError("If " + r + " is set, batchSize must be null or undefined.Got batchSize = " + t);
 
-           } else {
 
-             if (null == e) throw new ValueError("Either the input data should have a defined shape, or " + r + " shoud be specified.");
 
-             i = Array.isArray(e) ? e[0].shape[0] : e.shape[0];
 
-           }
 
-           return i;
 
-         }, t.prototype.execute = function (e, t) {
 
-           if (Array.isArray(t) && 0 === t.length) throw new ValueError("`outputs` is an empty Array, which is not allowed.");
 
-           var n = Array.isArray(t),
 
-             r = n ? t : [t],
 
-             i = this.retrieveSymbolicTensors(r),
 
-             a = new FeedDict();
 
-           if (e instanceof _tfjsCore.Tensor && (e = [e]), Array.isArray(e)) {
 
-             if (e.length !== this.inputs.length) throw new ValueError("The number of inputs provided (" + e.length + ") does not match the number of inputs of this model (" + this.inputs.length + ").");
 
-             for (var o = 0; o < this.inputs.length; ++o) a.add(this.inputs[o], e[o]);
 
-           } else for (var s = 0, l = this.inputs; s < l.length; s++) {
 
-             var u = l[s],
 
-               c = e[u.name];
 
-             if (null == c) throw new ValueError("No value is provided for the model's input " + u.name);
 
-             a.add(u, c);
 
-           }
 
-           var p = execute(i, a);
 
-           return n ? p : p[0];
 
-         }, t.prototype.retrieveSymbolicTensors = function (e) {
 
-           for (var t = pyListRepeat(null, e.length), n = e.length, r = 0, i = this.layers; r < i.length; r++) {
 
-             for (var a = i[r], o = Array.isArray(a.output) ? a.output : [a.output], s = o.map(function (e) {
 
-               return e.name;
 
-             }), l = 0; l < e.length; ++l) {
 
-               var u = s.indexOf(e[l]);
 
-               if (-1 !== u && (t[l] = o[u], n--), 0 === n) break;
 
-             }
 
-             if (0 === n) break;
 
-           }
 
-           if (n > 0) {
 
-             var c = [];
 
-             throw t.forEach(function (t, n) {
 
-               null == t && c.push(e[n]);
 
-             }), new ValueError("Cannot find SymbolicTensors for output name(s): " + JSON.stringify(c));
 
-           }
 
-           return t;
 
-         }, t.prototype.predictLoop = function (e, t, n) {
 
-           var r = this;
 
-           return void 0 === t && (t = 32), void 0 === n && (n = !1), (0, _tfjsCore.tidy)(function () {
 
-             var i = r.checkNumSamples(e);
 
-             if (n) throw new NotImplementedError("Verbose predictLoop() is not implemented yet.");
 
-             for (var a = makeBatches(i, t), o = r.outputs.map(function (e) {
 
-               return [];
 
-             }), s = function (t) {
 
-               (0, _tfjsCore.tidy)(function () {
 
-                 var n = a[t][0],
 
-                   i = a[t][1],
 
-                   o = sliceArrays(e, n, i),
 
-                   s = [];
 
-                 if (Array.isArray(o)) for (var l = 0; l < o.length; ++l) s.push({
 
-                   key: r.inputs[l],
 
-                   value: o[l]
 
-                 }); else s.push({
 
-                   key: r.inputs[0],
 
-                   value: o
 
-                 });
 
-                 var u = new FeedDict(s);
 
-                 return execute(r.outputs, u);
 
-               }).forEach(function (e, t) {
 
-                 return o[t].push(e);
 
-               });
 
-             }, l = 0; l < a.length; ++l) s(l);
 
-             return singletonOrArray(o.map(function (e) {
 
-               return (0, _tfjsCore.concat)(e, 0);
 
-             }));
 
-           });
 
-         }, t.prototype.predict = function (e, t) {
 
-           void 0 === t && (t = {});
 
-           var n = ensureTensorsRank2OrHigher(e);
 
-           checkInputData(n, this.inputNames, this.feedInputShapes, !1);
 
-           try {
 
-             var r = null == t.batchSize ? 32 : t.batchSize;
 
-             return checkBatchSize(r), this.predictLoop(n, r);
 
-           } finally {
 
-             disposeNewTensors(n, e);
 
-           }
 
-         }, t.prototype.predictOnBatch = function (e) {
 
-           checkInputData(e, this.inputNames, this.feedInputShapes, !0);
 
-           var t = (Array.isArray(e) ? e[0] : e).shape[0];
 
-           return this.predictLoop(e, t);
 
-         }, t.prototype.standardizeUserDataXY = function (e, t, n, r) {
 
-           if (void 0 === n && (n = !0), null == this.optimizer_) throw new RuntimeError("You must compile a model before training/testing. Use LayersModel.compile(modelCompileArgs).");
 
-           for (var i = [], a = 0; a < this.feedOutputShapes.length; ++a) {
 
-             var o = this.feedOutputShapes[a];
 
-             this.feedLossFns[a] === sparseCategoricalCrossentropy ? i.push(o.slice(0, o.length - 1).concat([1])) : i.push(o);
 
-           }
 
-           if (checkArrayLengths(e = standardizeInputData(e, this.feedInputNames, this.feedInputShapes, !1, "input"), t = standardizeInputData(t, this.feedOutputNames, i, !1, "target"), null), checkLossAndTargetCompatibility(t, this.feedLossFns, this.feedOutputShapes), this.stateful && null != r && r > 0 && e[0].shape[0] % r != 0) throw new ValueError("In a stateful network, you should only pass inputs with a number of samples that is divisible by the batch size " + r + ". Found: " + e[0].shape[0] + " sample(s).");
 
-           return [e, t];
 
-         }, t.prototype.standardizeUserData = function (e, t, n, r, i, a) {
 
-           return void 0 === i && (i = !0), __awaiter(this, void 0, void 0, function () {
 
-             var o, s, l, u, c, p, h, d;
 
-             return __generator(this, function (f) {
 
-               switch (f.label) {
 
-                 case 0:
 
-                   if (o = this.standardizeUserDataXY(e, t, i, a), s = o[0], l = o[1], null != n) throw new Error("sample weight is not supported yet.");
 
-                   if (u = null, null == r) return [3, 4];
 
-                   c = standardizeClassWeights(r, this.outputNames), u = [], p = 0, f.label = 1;
 
-                 case 1:
 
-                   return p < c.length ? (d = (h = u).push, [4, standardizeWeights(l[p], null, c[p])]) : [3, 4];
 
-                 case 2:
 
-                   d.apply(h, [f.sent()]), f.label = 3;
 
-                 case 3:
 
-                   return ++p, [3, 1];
 
-                 case 4:
 
-                   return [2, [s, l, u]];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.testLoop = function (e, t, n, r, i) {
 
-           var a = this;
 
-           return void 0 === r && (r = 0), (0, _tfjsCore.tidy)(function () {
 
-             var o = a.checkNumSamples(t, n, i, "steps"),
 
-               s = [];
 
-             if (r > 0) throw new NotImplementedError("Verbose mode is not implemented yet.");
 
-             if (null != i) throw new NotImplementedError("steps mode in testLoop() is not implemented yet");
 
-             for (var l = makeBatches(o, n), u = (0, _tfjsCore.tensor1d)(range(0, o)), c = 0; c < l.length; ++c) {
 
-               var p = l[c][0],
 
-                 h = l[c][1],
 
-                 d = sliceAlongFirstAxis(u, p, h - p),
 
-                 f = sliceArraysByIndices(t, d),
 
-                 g = e(f);
 
-               if (0 === c) for (var m = 0; m < g.length; ++m) s.push((0, _tfjsCore.scalar)(0));
 
-               for (m = 0; m < g.length; ++m) {
 
-                 var y = g[m];
 
-                 s[m] = (0, _tfjsCore.add)(s[m], (0, _tfjsCore.mul)(h - p, y));
 
-               }
 
-             }
 
-             for (m = 0; m < s.length; ++m) s[m] = (0, _tfjsCore.div)(s[m], o);
 
-             return s;
 
-           });
 
-         }, t.prototype.getDedupedMetricsNames = function () {
 
-           for (var e = this.metricsNames, t = [], n = 0; n < e.length; ++n) {
 
-             var r = e[n],
 
-               i = r;
 
-             if (count(e, r) > 1) i += "_" + count(e.slice(0, n), r);
 
-             t.push(i);
 
-           }
 
-           return t;
 
-         }, t.prototype.makeTrainFunction = function () {
 
-           var e = this;
 
-           return function (t) {
 
-             var n = [],
 
-               r = t.slice(0, e.inputs.length),
 
-               i = t.slice(e.inputs.length, e.inputs.length + e.outputs.length),
 
-               a = t.slice(e.inputs.length + e.outputs.length, e.inputs.length + 2 * e.outputs.length),
 
-               o = [],
 
-               s = e.collectedTrainableWeights.map(function (e) {
 
-                 return e.read();
 
-               });
 
-             return [e.optimizer_.minimize(function () {
 
-               for (var t = [], s = 0; s < e.inputs.length; ++s) t.push({
 
-                 key: e.inputs[s],
 
-                 value: r[s]
 
-               });
 
-               var l,
 
-                 u = new FeedDict(t),
 
-                 c = execute(e.outputs, u, {
 
-                   training: !0
 
-                 });
 
-               for (s = 0; s < e.lossFunctions.length; ++s) {
 
-                 var p = (0, e.lossFunctions[s])(i[s], c[s]);
 
-                 null != a[s] && (p = computeWeightedLoss(p, a[s]));
 
-                 var h = (0, _tfjsCore.mean)(p);
 
-                 n.push(h), l = 0 === s ? p : (0, _tfjsCore.add)(l, p);
 
-               }
 
-               for (s = 0; s < e.metricsTensors.length; ++s) {
 
-                 var d = void 0;
 
-                 if (e.outputs.length > 1 && s < e.outputs.length) d = n[s]; else {
 
-                   var f = e.metricsTensors[s][0],
 
-                     g = e.metricsTensors[s][1];
 
-                   d = (0, _tfjsCore.mean)(f(i[g], c[g]));
 
-                 }
 
-                 (0, _tfjsCore.keep)(d), o.push(d);
 
-               }
 
-               return l = (0, _tfjsCore.mean)(l), e.calculateLosses().forEach(function (e) {
 
-                 l = (0, _tfjsCore.add)(l, e);
 
-               }), l;
 
-             }, !0, s)].concat(o);
 
-           };
 
-         }, t.prototype.makeTestFunction = function () {
 
-           var e = this;
 
-           this.testFunction = function (t) {
 
-             return (0, _tfjsCore.tidy)(function () {
 
-               for (var n, r = [], i = t.slice(0, e.inputs.length), a = t.slice(e.inputs.length, e.inputs.length + e.outputs.length), o = [], s = 0; s < e.inputs.length; ++s) o.push({
 
-                 key: e.inputs[s],
 
-                 value: i[s]
 
-               });
 
-               var l = new FeedDict(o),
 
-                 u = execute(e.outputs, l);
 
-               for (s = 0; s < e.lossFunctions.length; ++s) {
 
-                 var c = e.lossFunctions[s],
 
-                   p = (0, _tfjsCore.mean)(c(a[s], u[s]));
 
-                 n = 0 === s ? p : (0, _tfjsCore.add)(n, p), r.push(n);
 
-               }
 
-               for (s = 0; s < e.metricsTensors.length; ++s) {
 
-                 var h = e.metricsTensors[s][0],
 
-                   d = e.metricsTensors[s][1],
 
-                   f = (0, _tfjsCore.mean)(h(a[d], u[d]));
 
-                 r.push(f);
 
-               }
 
-               return r;
 
-             });
 
-           };
 
-         }, t.prototype.fit = function (e, t, n) {
 
-           return void 0 === n && (n = {}), __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (r) {
 
-               return [2, fitTensors(this, e, t, n)];
 
-             });
 
-           });
 
-         }, t.prototype.fitDataset = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (n) {
 
-               return [2, fitDataset(this, e, t)];
 
-             });
 
-           });
 
-         }, t.prototype.trainOnBatch = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n, r, i, a, o, s, l, u, c;
 
-             return __generator(this, function (p) {
 
-               switch (p.label) {
 
-                 case 0:
 
-                   return [4, this.standardizeUserData(e, t)];
 
-                 case 1:
 
-                   n = p.sent(), r = n[0], i = n[1], a = this.makeTrainFunction(), o = a(r.concat(i)), s = [], l = 0, u = o, p.label = 2;
 
-                 case 2:
 
-                   return l < u.length ? [4, u[l].data()] : [3, 5];
 
-                 case 3:
 
-                   c = p.sent(), s.push(c[0]), p.label = 4;
 
-                 case 4:
 
-                   return l++, [3, 2];
 
-                 case 5:
 
-                   return (0, _tfjsCore.dispose)(o), [2, singletonOrArray(s)];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.getNamedWeights = function (e) {
 
-           for (var t = [], n = null != e && e.trainableOnly, r = n ? this.trainableWeights : this.weights, i = this.getWeights(n), a = 0; a < r.length; ++a) n && !r[a].trainable || t.push({
 
-             name: r[a].originalName,
 
-             tensor: i[a]
 
-           });
 
-           return t;
 
-         }, Object.defineProperty(t.prototype, "stopTraining", {
 
-           get: function () {
 
-             return this.stopTraining_;
 
-           },
 
-           set: function (e) {
 
-             this.stopTraining_ = e;
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "optimizer", {
 
-           get: function () {
 
-             return this.optimizer_;
 
-           },
 
-           set: function (e) {
 
-             this.optimizer_ !== e && (this.optimizer_ = e, this.isOptimizerOwned = !1);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.dispose = function () {
 
-           var t = e.prototype.dispose.call(this);
 
-           if (0 === t.refCountAfterDispose && null != this.optimizer && this.isOptimizerOwned) {
 
-             var n = (0, _tfjsCore.memory)().numTensors;
 
-             this.optimizer_.dispose(), t.numDisposedVariables += n - (0, _tfjsCore.memory)().numTensors;
 
-           }
 
-           return t;
 
-         }, t.prototype.getLossIdentifiers = function () {
 
-           var e;
 
-           if ("string" == typeof this.loss) e = toSnakeCase(this.loss); else if (Array.isArray(this.loss)) {
 
-             for (var t = 0, n = this.loss; t < n.length; t++) {
 
-               if ("string" != typeof n[t]) throw new Error("Serialization of non-string loss is not supported.");
 
-             }
 
-             e = this.loss.map(function (e) {
 
-               return toSnakeCase(e);
 
-             });
 
-           } else {
 
-             var r = Object.keys(this.loss);
 
-             e = {};
 
-             for (var i = this.loss, a = 0, o = r; a < o.length; a++) {
 
-               var s = o[a];
 
-               if ("string" != typeof i[s]) throw new Error("Serialization of non-string loss is not supported.");
 
-               e[s] = toSnakeCase(i[s]);
 
-             }
 
-           }
 
-           return e;
 
-         }, t.prototype.getMetricIdentifiers = function () {
 
-           if ("string" == typeof this.metrics || "function" == typeof this.metrics) return [toSnakeCase(getLossOrMetricName(this.metrics))];
 
-           if (Array.isArray(this.metrics)) return this.metrics.map(function (e) {
 
-             return toSnakeCase(getLossOrMetricName(e));
 
-           });
 
-           var e = {};
 
-           for (var t in this.metrics) e[t] = toSnakeCase(getLossOrMetricName(this.metrics[t]));
 
-           return e;
 
-         }, t.prototype.getTrainingConfig = function () {
 
-           return {
 
-             loss: this.getLossIdentifiers(),
 
-             metrics: this.getMetricIdentifiers(),
 
-             optimizer_config: {
 
-               class_name: this.optimizer.getClassName(),
 
-               config: this.optimizer.getConfig()
 
-             }
 
-           };
 
-         }, t.prototype.loadTrainingConfig = function (e) {
 
-           if (null != e.weighted_metrics) throw new Error("Loading weight_metrics is not supported yet.");
 
-           if (null != e.loss_weights) throw new Error("Loading loss_weights is not supported yet.");
 
-           if (null != e.sample_weight_mode) throw new Error("Loading sample_weight_mode is not supported yet.");
 
-           var t,
 
-             n,
 
-             r = deserialize(convertPythonicToTs(e.optimizer_config));
 
-           if ("string" == typeof e.loss) t = toCamelCase(e.loss); else if (Array.isArray(e.loss)) t = e.loss.map(function (e) {
 
-             return toCamelCase(e);
 
-           }); else if (null != e.loss) for (var i in t = {}, e.loss) t[i] = toCamelCase(e.loss[i]);
 
-           if (Array.isArray(e.metrics)) n = e.metrics.map(function (e) {
 
-             return toCamelCase(e);
 
-           }); else if (null != e.metrics) for (var i in n = {}, e.metrics) n[i] = toCamelCase(e.metrics[i]);
 
-           this.compile({
 
-             loss: t,
 
-             metrics: n,
 
-             optimizer: r
 
-           });
 
-         }, t.prototype.save = function (e, t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var n, r, i, a, o, s, l, u, c, p, h, d, f, g;
 
-             return __generator(this, function (m) {
 
-               switch (m.label) {
 
-                 case 0:
 
-                   if ("string" == typeof e) {
 
-                     if (0 === (n = _tfjsCore.io.getSaveHandlers(e)).length) throw new ValueError("Cannot find any save handlers for URL '" + e + "'");
 
-                     if (n.length > 1) throw new ValueError("Found more than one (" + n.length + ") save handlers for URL '" + e + "'");
 
-                     e = n[0];
 
-                   }
 
-                   if (null == e.save) throw new ValueError("LayersModel.save() cannot proceed because the IOHandler provided does not have the `save` attribute defined.");
 
-                   return [4, _tfjsCore.io.encodeWeights(this.getNamedWeights(t))];
 
-                 case 1:
 
-                   return r = m.sent(), i = !1, a = null, o = this.toJSON(a, i), s = {
 
-                     modelTopology: o,
 
-                     format: LAYERS_MODEL_FORMAT_NAME,
 
-                     generatedBy: "TensorFlow.js tfjs-layers v" + version,
 
-                     convertedBy: null
 
-                   }, null != t && t.includeOptimizer && null != this.optimizer ? (s.trainingConfig = this.getTrainingConfig(), l = "optimizer", d = (h = _tfjsCore.io).encodeWeights, [4, this.optimizer.getWeights()]) : [3, 4];
 
-                 case 2:
 
-                   return [4, d.apply(h, [m.sent(), l])];
 
-                 case 3:
 
-                   u = m.sent(), c = u.data, p = u.specs, (g = r.specs).push.apply(g, p), r.data = _tfjsCore.io.concatenateArrayBuffers([r.data, c]), m.label = 4;
 
-                 case 4:
 
-                   return null != this.userDefinedMetadata && (f = !0, checkUserDefinedMetadata(this.userDefinedMetadata, this.name, f), s.userDefinedMetadata = this.userDefinedMetadata), s.weightData = r.data, s.weightSpecs = r.specs, [2, e.save(s)];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.setUserDefinedMetadata = function (e) {
 
-           checkUserDefinedMetadata(e, this.name), this.userDefinedMetadata = e;
 
-         }, t.prototype.getUserDefinedMetadata = function () {
 
-           return this.userDefinedMetadata;
 
-         }, t.className = "Model", t;
 
-       }(Container);
 
-     exports.LayersModel = LayersModel;
 
-     function modelFromJSON(e, t) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var n, r, i, a, o, s, l, u;
 
-         return __generator(this, function (c) {
 
-           switch (c.label) {
 
-             case 0:
 
-               return "modelTopology" in e || (e = {
 
-                 modelTopology: e
 
-               }), null != (n = (e = e).modelTopology).model_config && (n = n.model_config), r = convertPythonicToTs(n), i = deserialize(r, t), null == e.weightsManifest ? [3, 2] : [4, _tfjsCore.io.loadWeights(e.weightsManifest, e.pathPrefix, i.weights.map(function (e) {
 
-                 return e.originalName;
 
-               }))];
 
-             case 1:
 
-               for (a = c.sent(), o = {}, s = 0, l = i.weights; s < l.length; s++) u = l[s], o[u.originalName] = a[u.originalName];
 
-               i.loadWeights(o), (0, _tfjsCore.dispose)(a), c.label = 2;
 
-             case 2:
 
-               return [2, i];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function loadLayersModelInternal(e, t) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var n;
 
-         return __generator(this, function (r) {
 
-           if (null == t && (t = {}), "string" == typeof e) {
 
-             if (0 === (n = _tfjsCore.io.getLoadHandlers(e, t.onProgress)).length) n.push(_tfjsCore.io.browserHTTPRequest(e, t)); else if (n.length > 1) throw new ValueError("Found more than one (" + n.length + ") load handlers for URL '" + e + "'");
 
-             e = n[0];
 
-           }
 
-           return [2, loadLayersModelFromIOHandler(e, void 0, t)];
 
-         });
 
-       });
 
-     }
 
-     function loadLayersModelFromIOHandler(e, t, n) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, i, a, o, s, l, u, c, p;
 
-         return __generator(this, function (h) {
 
-           switch (h.label) {
 
-             case 0:
 
-               if (null == n && (n = {}), null == e.load) throw new ValueError("Cannot proceed with model loading because the IOHandler provided does not have the `load` method implemented.");
 
-               return [4, e.load()];
 
-             case 1:
 
-               if (r = h.sent(), null != (i = r.modelTopology).model_config && (i = i.model_config), a = null == n.strict || n.strict, o = null != r.weightData && null != r.weightSpecs && a, s = deserialize(convertPythonicToTs(i), t, o), null != (l = r.trainingConfig) && s.loadTrainingConfig(l), null != r.userDefinedMetadata && s.setUserDefinedMetadata(r.userDefinedMetadata), null == r.weightData) return [3, 4];
 
-               if (null == r.weightSpecs) throw new ValueError("LayersModel artifacts contains weight data, but not weight specs. Therefore loading of weights cannot proceed.");
 
-               return u = decodeModelAndOptimizerWeights(r.weightData, r.weightSpecs), c = u.modelWeights, p = u.optimizerWeights, s.loadWeights(c, a), null != s.optimizer && p.length > 0 ? [4, s.optimizer.setWeights(p)] : [3, 3];
 
-             case 2:
 
-               h.sent(), h.label = 3;
 
-             case 3:
 
-               (0, _tfjsCore.dispose)(c), (0, _tfjsCore.dispose)(p.map(function (e) {
 
-                 return e.tensor;
 
-               })), h.label = 4;
 
-             case 4:
 
-               return [2, s];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function decodeModelAndOptimizerWeights(e, t) {
 
-       var n = _tfjsCore.io.decodeWeights(e, t),
 
-         r = {},
 
-         i = [];
 
-       return t.forEach(function (e) {
 
-         "optimizer" === e.group ? i.push({
 
-           name: e.name,
 
-           tensor: n[e.name]
 
-         }) : r[e.name] = n[e.name];
 
-       }), {
 
-         modelWeights: r,
 
-         optimizerWeights: i
 
-       };
 
-     }
 
-     _tfjsCore.serialization.registerClass(LayersModel);
 
-     var Sequential = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, {
 
-           inputs: [],
 
-           outputs: []
 
-         }) || this;
 
-         if (t = t || {}, n.trainable = !0, n.built = !1, n.name = null != t.name ? t.name : getUid("sequential_"), null != t.layers) for (var r = 0, i = t.layers; r < i.length; r++) {
 
-           var a = i[r];
 
-           n.add(a);
 
-         }
 
-         return n;
 
-       }
 
-       return __extends(t, e), t.prototype.checkShape = function (e) {
 
-         if (e.inboundNodes[0].outputTensors[0].shape.some(function (e) {
 
-           return e < 0;
 
-         })) throw new ValueError("Negative dimension size caused by adding layer " + e.name + " with input shape [" + e.inboundNodes[0].inputTensors[0].shape + "]");
 
-       }, t.prototype.add = function (e) {
 
-         var n,
 
-           r = e instanceof t || e instanceof LayersModel;
 
-         if (r) {
 
-           if (1 !== (n = e).outputs.length) throw new ValueError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");
 
-           if (1 !== n.inputs.length) throw new ValueError("All layers in a Sequential model should have a single input tensor. For multi-input layers, use the functional API.");
 
-         }
 
-         if (0 === this.outputs.length) {
 
-           if (0 === e.inboundNodes.length) {
 
-             if (null == e.batchInputShape) throw new ValueError("The first layer in a Sequential model must get an `inputShape` or `batchInputShape` argument.");
 
-             var i = Input({
 
-               batchShape: e.batchInputShape,
 
-               dtype: e.dtype,
 
-               name: e.name + "_input"
 
-             });
 
-             e.apply(i);
 
-           }
 
-           if (r) this.outputs = n.outputs, this.inputs = n.inputs; else {
 
-             if (1 !== e.inboundNodes.length) throw new ValueError("A layer added to a Sequential model must not already be connected somewhere else. LayersModel received layer " + e.name + " which has " + e.inboundNodes.length + " pre-existing inbound connections.");
 
-             if (1 !== e.inboundNodes[0].outputTensors.length) throw new ValueError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");
 
-             this.checkShape(e), this.outputs = [e.inboundNodes[0].outputTensors[0]], this.inputs = getSourceInputs(this.outputs[0]);
 
-           }
 
-           this.inboundNodes = [], new Node({
 
-             outboundLayer: this,
 
-             inboundLayers: [],
 
-             nodeIndices: [],
 
-             tensorIndices: [],
 
-             inputTensors: this.inputs,
 
-             outputTensors: this.outputs,
 
-             inputMasks: pyListRepeat(null, this.inputs.length),
 
-             outputMasks: [null],
 
-             inputShapes: this.inputs.map(function (e) {
 
-               return e.shape;
 
-             }),
 
-             outputShapes: this.outputs[0].shape
 
-           });
 
-         } else {
 
-           var a = e.apply(this.outputs[0]);
 
-           if (Array.isArray(a)) throw new TypeError("All layers in a Sequential model should have a single output tensor. For multi-output layers, use the functional API.");
 
-           this.checkShape(e), this.outputs = [a], this.inboundNodes[0].outputTensors = this.outputs, this.inboundNodes[0].outputShapes = [this.outputs[0].shape];
 
-         }
 
-         this.layers.push(e), this.built = !1;
 
-       }, t.prototype.pop = function () {
 
-         if (0 === this.layers.length) throw new TypeError("There are no layers in the model.");
 
-         if (this.layers.pop(), 0 === this.layers.length) this.outputs = [], this.inboundNodes = [], this.outboundNodes = []; else {
 
-           var e = this.layers.length - 1;
 
-           this.layers[e].outboundNodes = [], this.outputs = [this.layers[e].output], this.inboundNodes[0].outputTensors = this.outputs, this.inboundNodes[0].outputShapes = [this.outputs[0].shape];
 
-         }
 
-       }, t.prototype.call = function (e, t) {
 
-         return null == this.model && this.build(), this.model.call(e, t);
 
-       }, t.prototype.build = function (e) {
 
-         if (getExactlyOneShape(e), 0 === this.inputs.length || 0 === this.outputs.length) throw new TypeError("Sequential model cannot be built: model is empty. Add some layers first.");
 
-         this.model = new LayersModel({
 
-           inputs: this.inputs,
 
-           outputs: this.outputs[0],
 
-           name: this.name + "_model"
 
-         }), this.model.trainable = this.trainable, this.supportsMasking = this.model.supportsMasking, this.inputLayers = this.model.inputLayers, this.inputLayersNodeIndices = this.model.inputLayersNodeIndices, this.inputLayersTensorIndices = this.model.inputLayersTensorIndices, this.outputLayers = this.model.outputLayers, this.outputLayersNodeIndices = this.model.outputLayersNodeIndices, this.outputLayersTensorIndices = this.model.outputLayersTensorIndices, this.nodesByDepth = this.model.nodesByDepth, this.containerNodes = this.model.containerNodes, this.outputNames = this.model.outputNames, this.inputNames = this.model.inputNames, this.built = !0;
 
-       }, t.prototype.countParams = function () {
 
-         return this.built || this.build(), e.prototype.countParams.call(this);
 
-       }, t.prototype.summary = function (t, n, r) {
 
-         void 0 === r && (r = console.log), this.built || this.build(), e.prototype.summary.call(this, t, n, r);
 
-       }, t.prototype.setWeights = function (e) {
 
-         null == this.model && this.build(), this.model.setWeights(e);
 
-       }, t.prototype.evaluate = function (e, t, n) {
 
-         if (void 0 === n && (n = {}), !this.built) throw new RuntimeError("The model needs to be compiled before being used.");
 
-         return this.model.evaluate(e, t, n);
 
-       }, t.prototype.evaluateDataset = function (e, t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (n) {
 
-             if (!this.built) throw new RuntimeError("The model needs to be compiled before being used.");
 
-             return [2, this.model.evaluateDataset(e, t)];
 
-           });
 
-         });
 
-       }, t.prototype.predict = function (e, t) {
 
-         return void 0 === t && (t = {}), null == this.model && this.build(), this.model.predict(e, t);
 
-       }, t.prototype.predictOnBatch = function (e) {
 
-         return null == this.model && this.build(), this.model.predictOnBatch(e);
 
-       }, t.prototype.compile = function (e) {
 
-         this.build(), this.model.compile(e), this.optimizer_ = this.model.optimizer, this.isOptimizerOwned = this.model.isOptimizerOwned, this.loss = this.model.loss, this.metrics = this.model.metrics, this.metricsTensors = this.model.metricsTensors, this.metricsNames = this.model.metricsNames;
 
-       }, Object.defineProperty(t.prototype, "optimizer", {
 
-         get: function () {
 
-           return null == this.model ? void 0 : this.model.optimizer;
 
-         },
 
-         set: function (e) {
 
-           this.model.optimizer = e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.fit = function (e, t, n) {
 
-         return void 0 === n && (n = {}), __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (r) {
 
-             if (!this.built) throw new RuntimeError("The model needs to be compiled before being used.");
 
-             return [2, this.model.fit(e, t, n)];
 
-           });
 
-         });
 
-       }, t.prototype.fitDataset = function (e, t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (n) {
 
-             if (!this.built) throw new RuntimeError("The model needs to be compiled before being used.");
 
-             return [2, this.model.fitDataset(e, t)];
 
-           });
 
-         });
 
-       }, t.prototype.trainOnBatch = function (e, t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (n) {
 
-             return [2, this.model.trainOnBatch(e, t)];
 
-           });
 
-         });
 
-       }, t.fromConfig = function (e, n, r, i) {
 
-         var a;
 
-         void 0 === r && (r = {}), void 0 === i && (i = !1);
 
-         var o = {};
 
-         if (n instanceof Array) {
 
-           if (null == n[0].className || "Merge" === n[0].className) throw new ValueError("Legacy serialization format not supported yet.");
 
-           a = n;
 
-         } else _tfjsCore.util.assert(null != n.layers, function () {
 
-           return "When the config data for a Sequential model is not an Array, it must be an Object that contains the 'layers' field.";
 
-         }), a = n.layers, delete n.layers, o = n;
 
-         var s = new e(o);
 
-         if (!(s instanceof t)) throw new NotImplementedError("Sequential.fromConfig called on non-Sequential input: " + s);
 
-         for (var l = 0, u = a; l < u.length; l++) {
 
-           var c = deserialize(u[l], void 0, i);
 
-           i && c.setFastWeightInitDuringBuild(!0), s.add(c);
 
-         }
 
-         return s;
 
-       }, Object.defineProperty(t.prototype, "stopTraining", {
 
-         get: function () {
 
-           if (null == this.model) throw new ValueError("Cannot get the stopTraining property of a sequential model before it is compiled.");
 
-           return this.model.stopTraining;
 
-         },
 
-         set: function (e) {
 
-           if (null == this.model) throw new ValueError("Cannot set the stopTraining property of a sequential model before it is compiled.");
 
-           this.model.stopTraining = e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.getConfig = function () {
 
-         for (var e = [], t = 0, n = this.layers; t < n.length; t++) {
 
-           var r = n[t],
 
-             i = {};
 
-           i.className = r.getClassName(), i.config = r.getConfig(), e.push(i);
 
-         }
 
-         return {
 
-           name: this.name,
 
-           layers: e
 
-         };
 
-       }, t.className = "Sequential", t;
 
-     }(LayersModel);
 
-     exports.Sequential = Sequential;
 
-     function model(e) {
 
-       return new LayersModel(e);
 
-     }
 
-     function sequential(e) {
 
-       return new Sequential(e);
 
-     }
 
-     function loadLayersModel(e, t) {
 
-       return null == t && (t = {}), loadLayersModelInternal(e, t);
 
-     }
 
-     function input(e) {
 
-       return Input(e);
 
-     }
 
-     function registerCallbackConstructor(e, t) {
 
-       CallbackConstructorRegistry.registerCallbackConstructor(e, t);
 
-     }
 
-     _tfjsCore.serialization.registerClass(Sequential);
 
-     var Activation = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.getConfig = function () {
 
-         return {};
 
-       }, t;
 
-     }(_tfjsCore.serialization.Serializable),
 
-       Elu = function (e) {
 
-         function t() {
 
-           return null !== e && e.apply(this, arguments) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.apply = function (e, t) {
 
-           return void 0 === t && (t = 1), elu$1(e, t);
 
-         }, t.className = "elu", t;
 
-       }(Activation);
 
-     _tfjsCore.serialization.registerClass(Elu);
 
-     var Selu = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.selu)(e);
 
-       }, t.className = "selu", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Selu);
 
-     var Relu = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.relu)(e);
 
-       }, t.className = "relu", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Relu);
 
-     var Relu6 = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return (0, _tfjsCore.minimum)(6, (0, _tfjsCore.relu)(e));
 
-         });
 
-       }, t.className = "relu6", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Relu6);
 
-     var Linear = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return e;
 
-       }, t.className = "linear", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Linear);
 
-     var Sigmoid = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.sigmoid)(e);
 
-       }, t.className = "sigmoid", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Sigmoid);
 
-     var HardSigmoid = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return hardSigmoid(e);
 
-       }, t.className = "hardSigmoid", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(HardSigmoid);
 
-     var Softplus = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.softplus)(e);
 
-       }, t.className = "softplus", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Softplus);
 
-     var Softsign = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return softsign(e);
 
-       }, t.className = "softsign", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Softsign);
 
-     var Tanh = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e) {
 
-         return (0, _tfjsCore.tanh)(e);
 
-       }, t.className = "tanh", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Tanh);
 
-     var Softmax = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         return void 0 === t && (t = -1), (0, _tfjsCore.softmax)(e, t);
 
-       }, t.className = "softmax", t;
 
-     }(Activation);
 
-     _tfjsCore.serialization.registerClass(Softmax);
 
-     var LogSoftmax = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.apply = function (e, t) {
 
-         return void 0 === t && (t = -1), (0, _tfjsCore.logSoftmax)(e, t);
 
-       }, t.className = "logSoftmax", t;
 
-     }(Activation);
 
-     function serializeActivation(e) {
 
-       return e.getClassName();
 
-     }
 
-     function deserializeActivation(e, t) {
 
-       return void 0 === t && (t = {}), deserializeKerasObject(e, _tfjsCore.serialization.SerializationMap.getMap().classNameMap, t, "activation");
 
-     }
 
-     function getActivation(e) {
 
-       var t;
 
-       return null == e ? deserializeActivation(t = {
 
-         className: "linear",
 
-         config: {}
 
-       }) : "string" == typeof e ? ((t = {}).className = e, t.config = {}, deserializeActivation(t)) : e instanceof Activation ? e : deserializeActivation(e);
 
-     }
 
-     function assertObjectArgs(e) {
 
-       if (null != e && "object" != typeof e) throw new Error("Argument to L1L2 regularizer's constructor is expected to be an object, but received: " + e);
 
-     }
 
-     _tfjsCore.serialization.registerClass(LogSoftmax);
 
-     var Regularizer = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t;
 
-     }(_tfjsCore.serialization.Serializable),
 
-       L1L2 = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this) || this;
 
-           return assertObjectArgs(t), n.l1 = null == t || null == t.l1 ? .01 : t.l1, n.l2 = null == t || null == t.l2 ? .01 : t.l2, n.hasL1 = 0 !== n.l1, n.hasL2 = 0 !== n.l2, n;
 
-         }
 
-         return __extends(t, e), t.prototype.apply = function (e) {
 
-           var t = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             var n = (0, _tfjsCore.zeros)([1]);
 
-             return t.hasL1 && (n = (0, _tfjsCore.add)(n, (0, _tfjsCore.sum)((0, _tfjsCore.mul)(t.l1, (0, _tfjsCore.abs)(e))))), t.hasL2 && (n = (0, _tfjsCore.add)(n, (0, _tfjsCore.sum)((0, _tfjsCore.mul)(t.l2, square(e))))), n.asScalar();
 
-           });
 
-         }, t.prototype.getConfig = function () {
 
-           return {
 
-             l1: this.l1,
 
-             l2: this.l2
 
-           };
 
-         }, t.fromConfig = function (e, t) {
 
-           return new e({
 
-             l1: t.l1,
 
-             l2: t.l2
 
-           });
 
-         }, t.className = "L1L2", t;
 
-       }(Regularizer);
 
-     function l1(e) {
 
-       return assertObjectArgs(e), new L1L2({
 
-         l1: null != e ? e.l1 : null,
 
-         l2: 0
 
-       });
 
-     }
 
-     function l2(e) {
 
-       return assertObjectArgs(e), new L1L2({
 
-         l2: null != e ? e.l2 : null,
 
-         l1: 0
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(L1L2);
 
-     var REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP = {
 
-       l1l2: "L1L2"
 
-     };
 
-     function serializeRegularizer(e) {
 
-       return serializeKerasObject(e);
 
-     }
 
-     function deserializeRegularizer(e, t) {
 
-       return void 0 === t && (t = {}), deserializeKerasObject(e, _tfjsCore.serialization.SerializationMap.getMap().classNameMap, t, "regularizer");
 
-     }
 
-     function getRegularizer(e) {
 
-       return null == e ? null : "string" == typeof e ? deserializeRegularizer({
 
-         className: e in REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP ? REGULARIZER_IDENTIFIER_REGISTRY_SYMBOL_MAP[e] : e,
 
-         config: {}
 
-       }) : e instanceof Regularizer ? e : deserializeRegularizer(e);
 
-     }
 
-     var ReLU = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         return n.supportsMasking = !0, null != t && (n.maxValue = t.maxValue), n;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         e = getExactlyOneTensor(e);
 
-         var n = (0, _tfjsCore.relu)(e);
 
-         return null != this.maxValue && (n = (0, _tfjsCore.clipByValue)(n, 0, this.maxValue)), n;
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           maxValue: this.maxValue
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "ReLU", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(ReLU);
 
-     var LeakyReLU = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         return n.DEFAULT_ALPHA = .3, null == t && (t = {}), n.alpha = null == t.alpha ? n.DEFAULT_ALPHA : t.alpha, n;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         var n = getExactlyOneTensor(e);
 
-         return (0, _tfjsCore.leakyRelu)(n, this.alpha);
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           alpha: this.alpha
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "LeakyReLU", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(LeakyReLU);
 
-     var PReLU = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         if (n.DEFAULT_ALPHA_INITIALIZER = "zeros", null == t && (t = {}), n.supportsMasking = !0, n.alphaInitializer = getInitializer(t.alphaInitializer || n.DEFAULT_ALPHA_INITIALIZER), n.alphaRegularizer = getRegularizer(t.alphaRegularizer), n.alphaConstraint = getConstraint(t.alphaConstraint), null == t.sharedAxes) n.sharedAxes = null; else if (Array.isArray(t.sharedAxes)) n.sharedAxes = t.sharedAxes; else {
 
-           if ("number" != typeof t.sharedAxes) throw new ValueError("Expected sharedAxes to be a number or an array of numbers, but got " + t.sharedAxes);
 
-           n.sharedAxes = [t.sharedAxes];
 
-         }
 
-         return n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t = (e = getExactlyOneShape(e)).slice(1);
 
-         if (null != this.sharedAxes) for (var n = 0, r = this.sharedAxes; n < r.length; n++) {
 
-           t[(a = r[n]) - 1] = 1;
 
-         }
 
-         this.alpha = this.addWeight("alpha", t, "float32", this.alphaInitializer, this.alphaRegularizer, !0, this.alphaConstraint);
 
-         var i = {};
 
-         if (null != this.sharedAxes) for (var a = 1; a < e.length; ++a) i[a] = e[a];
 
-         this.inputSpec = [new InputSpec({
 
-           ndim: e.length,
 
-           axes: i
 
-         })], this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         return e = getExactlyOneTensor(e), (0, _tfjsCore.prelu)(e, this.alpha.read());
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           alphaInitializer: serializeInitializer(this.alphaInitializer),
 
-           alphaRegularizer: serializeRegularizer(this.alphaRegularizer),
 
-           alphaConstraint: serializeConstraint(this.alphaConstraint),
 
-           sharedAxes: this.sharedAxes
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "PReLU", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(PReLU);
 
-     var ELU = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         if (n.DEFAULT_ALPHA = 1, null == t && (t = {}), null != t.alpha && t.alpha !== n.DEFAULT_ALPHA) throw new NotImplementedError("Non-default alpha value (" + t.alpha + ") is not supported by the ELU layer yet.");
 
-         return n.alpha = null == t.alpha ? n.DEFAULT_ALPHA : t.alpha, n;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         var n = getExactlyOneTensor(e);
 
-         return (0, _tfjsCore.elu)(n);
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           alpha: this.alpha
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "ELU", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(ELU);
 
-     var ThresholdedReLU = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         return n.DEFAULT_THETA = 1, null == t && (t = {}), n.theta = null == t.theta ? n.DEFAULT_THETA : t.theta, n;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         var n = getExactlyOneTensor(e);
 
-         return n.mul(cast$1(n.greater(this.theta), "float32"));
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           theta: this.theta
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "ThresholdedReLU", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(ThresholdedReLU);
 
-     var Softmax$1 = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         return n.DEFAULT_AXIS = 1, null == t && (t = {}), n.softmax = new Softmax().apply, n.axis = null == t.axis ? n.DEFAULT_AXIS : t.axis, n;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         var n = getExactlyOneTensor(e);
 
-         return this.softmax(n, this.axis);
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           axis: this.axis
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Softmax", t;
 
-     }(Layer);
 
-     function normalizeArray(e, t, n) {
 
-       if ("number" == typeof e) return pyListRepeat(e, t);
 
-       if (e.length !== t) throw new ValueError("The " + n + " argument must be an integer or tuple of " + t + " integers. Received: " + e.length + " elements.");
 
-       for (var r = 0; r < t; ++r) {
 
-         var i = e[r];
 
-         if (!isInteger(i)) throw new ValueError("The " + n + " argument must be an integer or tuple of " + t + " integers. Received: " + JSON.stringify(e) + " including a non-integer number " + i);
 
-       }
 
-       return e;
 
-     }
 
-     function convOutputLength(e, t, n, r, i) {
 
-       return void 0 === i && (i = 1), null == e ? e : (a = "same" === n ? e : e - (t + (t - 1) * (i - 1)) + 1, Math.floor((a + r - 1) / r));
 
-       var a;
 
-     }
 
-     function deconvLength(e, t, n, r) {
 
-       if (null == e) return null;
 
-       if ("valid" === r) e = e * t + max$1([n - t, 0]); else {
 
-         if ("same" !== r) throw new ValueError("Unsupport padding mode: " + r + ".");
 
-         e *= t;
 
-       }
 
-       return e;
 
-     }
 
-     function preprocessConv2DInput(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return checkDataFormat(t), "channelsFirst" === t ? (0, _tfjsCore.transpose)(e, [0, 2, 3, 1]) : e;
 
-       });
 
-     }
 
-     function preprocessConv3DInput(e, t) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         return checkDataFormat(t), "channelsFirst" === t ? (0, _tfjsCore.transpose)(e, [0, 2, 3, 4, 1]) : e;
 
-       });
 
-     }
 
-     function conv1dWithBias(e, t, n, r, i, a, o) {
 
-       return void 0 === r && (r = 1), void 0 === i && (i = "valid"), void 0 === o && (o = 1), (0, _tfjsCore.tidy)(function () {
 
-         if (null == a && (a = imageDataFormat()), checkDataFormat(a), 3 !== e.shape.length) throw new ValueError("The input of a conv1dWithBias operation should be 3, but is " + e.shape.length + " instead.");
 
-         if (3 !== t.shape.length) throw new ValueError("The kernel for a conv1dWithBias operation should be 3, but is " + t.shape.length + " instead");
 
-         if (null != n && 1 !== n.shape.length) throw new ValueError("The bias for a conv1dWithBias operation should be 1, but is " + t.shape.length + " instead");
 
-         if ("channelsFirst" === a && (e = (0, _tfjsCore.transpose)(e, [0, 2, 1])), "causal" === i) throw new NotImplementedError("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");
 
-         var s = (0, _tfjsCore.conv1d)(e, t, r, "same" === i ? "same" : "valid", "NWC", o);
 
-         return null != n && (s = biasAdd(s, n)), s;
 
-       });
 
-     }
 
-     function conv2dWithBiasActivation(e, t, n, r, i, a, o, s) {
 
-       return void 0 === r && (r = [1, 1]), void 0 === i && (i = "valid"), void 0 === s && (s = null), (0, _tfjsCore.tidy)(function () {
 
-         if (null == a && (a = imageDataFormat()), checkDataFormat(a), 3 !== e.rank && 4 !== e.rank) throw new ValueError("conv2dWithBiasActivation expects input to be of rank 3 or 4, but received " + e.rank + ".");
 
-         if (3 !== t.rank && 4 !== t.rank) throw new ValueError("conv2dWithBiasActivation expects kernel to be of rank 3 or 4, but received " + e.rank + ".");
 
-         var l = preprocessConv2DInput(e, a);
 
-         if ("causal" === i) throw new NotImplementedError("The support for CAUSAL padding mode in conv1dWithBias is not implemented yet.");
 
-         return l = _tfjsCore.fused.conv2d({
 
-           x: l,
 
-           filter: t,
 
-           strides: r,
 
-           pad: "same" === i ? "same" : "valid",
 
-           dilations: o,
 
-           dataFormat: "NHWC",
 
-           bias: n,
 
-           activation: s
 
-         }), "channelsFirst" === a && (l = (0, _tfjsCore.transpose)(l, [0, 3, 1, 2])), l;
 
-       });
 
-     }
 
-     function conv3dWithBias(e, t, n, r, i, a, o) {
 
-       return void 0 === r && (r = [1, 1, 1]), void 0 === i && (i = "valid"), (0, _tfjsCore.tidy)(function () {
 
-         if (null == a && (a = imageDataFormat()), checkDataFormat(a), 4 !== e.rank && 5 !== e.rank) throw new ValueError("conv3dWithBias expects input to be of rank 4 or 5, but received " + e.rank + ".");
 
-         if (4 !== t.rank && 5 !== t.rank) throw new ValueError("conv3dWithBias expects kernel to be of rank 4 or 5, but received " + e.rank + ".");
 
-         var s = preprocessConv3DInput(e, a);
 
-         if ("causal" === i) throw new NotImplementedError("The support for CAUSAL padding mode in conv3dWithBias is not implemented yet.");
 
-         return s = (0, _tfjsCore.conv3d)(s, t, r, "same" === i ? "same" : "valid", "NDHWC", o), null != n && (s = biasAdd(s, n)), "channelsFirst" === a && (s = (0, _tfjsCore.transpose)(s, [0, 4, 1, 2, 3])), s;
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(Softmax$1);
 
-     var BaseConv = function (e) {
 
-       function t(n, r) {
 
-         var i = e.call(this, r) || this;
 
-         if (i.bias = null, i.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", i.DEFAULT_BIAS_INITIALIZER = "zeros", t.verifyArgs(r), i.rank = n, assertPositiveInteger(i.rank, "rank"), 1 !== i.rank && 2 !== i.rank && 3 !== i.rank) throw new NotImplementedError("Convolution layer for rank other than 1, 2, or 3 (" + i.rank + ") is not implemented yet.");
 
-         if (i.kernelSize = normalizeArray(r.kernelSize, n, "kernelSize"), i.strides = normalizeArray(null == r.strides ? 1 : r.strides, n, "strides"), i.padding = null == r.padding ? "valid" : r.padding, checkPaddingMode(i.padding), i.dataFormat = null == r.dataFormat ? "channelsLast" : r.dataFormat, checkDataFormat(i.dataFormat), i.activation = getActivation(r.activation), i.useBias = null == r.useBias || r.useBias, i.biasInitializer = getInitializer(r.biasInitializer || i.DEFAULT_BIAS_INITIALIZER), i.biasConstraint = getConstraint(r.biasConstraint), i.biasRegularizer = getRegularizer(r.biasRegularizer), i.activityRegularizer = getRegularizer(r.activityRegularizer), i.dilationRate = normalizeArray(null == r.dilationRate ? 1 : r.dilationRate, n, "dilationRate"), 1 === i.rank && Array.isArray(i.dilationRate) && 1 !== i.dilationRate.length) throw new ValueError("dilationRate must be a number or an array of a single number for 1D convolution, but received " + JSON.stringify(i.dilationRate));
 
-         if (2 === i.rank) {
 
-           if ("number" == typeof i.dilationRate) i.dilationRate = [i.dilationRate, i.dilationRate]; else if (2 !== i.dilationRate.length) throw new ValueError("dilationRate must be a number or array of two numbers for 2D convolution, but received " + JSON.stringify(i.dilationRate));
 
-         } else if (3 === i.rank) if ("number" == typeof i.dilationRate) i.dilationRate = [i.dilationRate, i.dilationRate, i.dilationRate]; else if (3 !== i.dilationRate.length) throw new ValueError("dilationRate must be a number or array of three numbers for 3D convolution, but received " + JSON.stringify(i.dilationRate));
 
-         return i;
 
-       }
 
-       return __extends(t, e), t.verifyArgs = function (e) {
 
-         if (assert("kernelSize" in e, "required key 'kernelSize' not in config"), "number" != typeof e.kernelSize && !checkArrayTypeAndLength(e.kernelSize, "number", 1, 3)) throw new ValueError("BaseConv expects config.kernelSize to be number or number[] with length 1, 2, or 3, but received " + JSON.stringify(e.kernelSize) + ".");
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           kernelSize: this.kernelSize,
 
-           strides: this.strides,
 
-           padding: this.padding,
 
-           dataFormat: this.dataFormat,
 
-           dilationRate: this.dilationRate,
 
-           activation: serializeActivation(this.activation),
 
-           useBias: this.useBias,
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           biasConstraint: serializeConstraint(this.biasConstraint)
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t;
 
-     }(Layer),
 
-       Conv = function (e) {
 
-         function t(n, r) {
 
-           var i = e.call(this, n, r) || this;
 
-           return i.kernel = null, t.verifyArgs(r), i.filters = r.filters, assertPositiveInteger(i.filters, "filters"), i.kernelInitializer = getInitializer(r.kernelInitializer || i.DEFAULT_KERNEL_INITIALIZER), i.kernelConstraint = getConstraint(r.kernelConstraint), i.kernelRegularizer = getRegularizer(r.kernelRegularizer), i;
 
-         }
 
-         return __extends(t, e), t.prototype.build = function (e) {
 
-           var t;
 
-           e = getExactlyOneShape(e);
 
-           var n = "channelsFirst" === this.dataFormat ? 1 : e.length - 1;
 
-           if (null == e[n]) throw new ValueError("The channel dimension of the input should be defined. Found " + e[n]);
 
-           var r = e[n],
 
-             i = this.kernelSize.concat([r, this.filters]);
 
-           this.kernel = this.addWeight("kernel", i, null, this.kernelInitializer, this.kernelRegularizer, !0, this.kernelConstraint), this.useBias && (this.bias = this.addWeight("bias", [this.filters], null, this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint)), this.inputSpec = [{
 
-             ndim: this.rank + 2,
 
-             axes: (t = {}, t[n] = r, t)
 
-           }], this.built = !0;
 
-         }, t.prototype.call = function (e, t) {
 
-           var n = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             var t;
 
-             e = getExactlyOneTensor(e);
 
-             var r = null == n.bias ? null : n.bias.read(),
 
-               i = mapActivationToFusedKernel(n.activation.getClassName());
 
-             if (null != i && 2 === n.rank) t = conv2dWithBiasActivation(e, n.kernel.read(), r, n.strides, n.padding, n.dataFormat, n.dilationRate, i); else {
 
-               if (1 === n.rank) t = conv1dWithBias(e, n.kernel.read(), r, n.strides[0], n.padding, n.dataFormat, n.dilationRate[0]); else if (2 === n.rank) t = conv2dWithBiasActivation(e, n.kernel.read(), r, n.strides, n.padding, n.dataFormat, n.dilationRate); else {
 
-                 if (3 !== n.rank) throw new NotImplementedError("convolutions greater than 3D are not implemented yet.");
 
-                 t = conv3dWithBias(e, n.kernel.read(), r, n.strides, n.padding, n.dataFormat, n.dilationRate);
 
-               }
 
-               null != n.activation && (t = n.activation.apply(t));
 
-             }
 
-             return t;
 
-           });
 
-         }, t.prototype.computeOutputShape = function (e) {
 
-           e = getExactlyOneShape(e);
 
-           for (var t = [], n = "channelsLast" === this.dataFormat ? e.slice(1, e.length - 1) : e.slice(2), r = 0; r < n.length; ++r) {
 
-             var i = convOutputLength(n[r], this.kernelSize[r], this.padding, this.strides[r], "number" == typeof this.dilationRate ? this.dilationRate : this.dilationRate[r]);
 
-             t.push(i);
 
-           }
 
-           var a = [e[0]];
 
-           return "channelsLast" === this.dataFormat ? (a = a.concat(t)).push(this.filters) : (a.push(this.filters), a = a.concat(t)), a;
 
-         }, t.prototype.getConfig = function () {
 
-           var t = {
 
-             filters: this.filters,
 
-             kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-             kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-             kernelConstraint: serializeConstraint(this.kernelConstraint)
 
-           },
 
-             n = e.prototype.getConfig.call(this);
 
-           return Object.assign(t, n), t;
 
-         }, t.verifyArgs = function (e) {
 
-           if (!("filters" in e) || "number" != typeof e.filters || e.filters < 1) throw new ValueError("Convolution layer expected config.filters to be a 'number' > 0 but got " + JSON.stringify(e.filters));
 
-         }, t;
 
-       }(BaseConv),
 
-       Conv2D = function (e) {
 
-         function t(n) {
 
-           var r = e.call(this, 2, n) || this;
 
-           return t.verifyArgs(n), r;
 
-         }
 
-         return __extends(t, e), t.prototype.getConfig = function () {
 
-           var t = e.prototype.getConfig.call(this);
 
-           return delete t.rank, t;
 
-         }, t.verifyArgs = function (e) {
 
-           if ("number" != typeof e.kernelSize && !checkArrayTypeAndLength(e.kernelSize, "number", 1, 2)) throw new ValueError("Conv2D expects config.kernelSize to be number or number[] with length 1 or 2, but received " + JSON.stringify(e.kernelSize) + ".");
 
-         }, t.className = "Conv2D", t;
 
-       }(Conv);
 
-     _tfjsCore.serialization.registerClass(Conv2D);
 
-     var Conv3D = function (e) {
 
-       function t(n) {
 
-         var r = e.call(this, 3, n) || this;
 
-         return t.verifyArgs(n), r;
 
-       }
 
-       return __extends(t, e), t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this);
 
-         return delete t.rank, t;
 
-       }, t.verifyArgs = function (e) {
 
-         if ("number" != typeof e.kernelSize && (!Array.isArray(e.kernelSize) || 1 !== e.kernelSize.length && 3 !== e.kernelSize.length)) throw new ValueError("Conv3D expects config.kernelSize to be number or [number, number, number], but received " + JSON.stringify(e.kernelSize) + ".");
 
-       }, t.className = "Conv3D", t;
 
-     }(Conv);
 
-     _tfjsCore.serialization.registerClass(Conv3D);
 
-     var Conv2DTranspose = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         if (n.inputSpec = [new InputSpec({
 
-           ndim: 4
 
-         })], "same" !== n.padding && "valid" !== n.padding) throw new ValueError("Conv2DTranspose currently supports only padding modes 'same' and 'valid', but received padding mode " + n.padding);
 
-         return n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t;
 
-         if (4 !== (e = getExactlyOneShape(e)).length) throw new ValueError("Input should have rank 4; Received input shape: " + JSON.stringify(e));
 
-         var n = "channelsFirst" === this.dataFormat ? 1 : e.length - 1;
 
-         if (null == e[n]) throw new ValueError("The channel dimension of the inputs should be defined. Found `None`.");
 
-         var r = e[n],
 
-           i = this.kernelSize.concat([this.filters, r]);
 
-         this.kernel = this.addWeight("kernel", i, "float32", this.kernelInitializer, this.kernelRegularizer, !0, this.kernelConstraint), this.useBias && (this.bias = this.addWeight("bias", [this.filters], "float32", this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint)), this.inputSpec = [new InputSpec({
 
-           ndim: 4,
 
-           axes: (t = {}, t[n] = r, t)
 
-         })], this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var t = getExactlyOneTensor(e);
 
-           if (4 !== t.shape.length) throw new ValueError("Conv2DTranspose.call() expects input tensor to be rank-4, but received a tensor of rank-" + t.shape.length);
 
-           var r,
 
-             i,
 
-             a = t.shape,
 
-             o = a[0];
 
-           "channelsFirst" === n.dataFormat ? (r = 2, i = 3) : (r = 1, i = 2);
 
-           var s = a[r],
 
-             l = a[i],
 
-             u = n.kernelSize[0],
 
-             c = n.kernelSize[1],
 
-             p = n.strides[0],
 
-             h = n.strides[1],
 
-             d = [o, deconvLength(s, p, u, n.padding), deconvLength(l, h, c, n.padding), n.filters];
 
-           "channelsLast" !== n.dataFormat && (t = (0, _tfjsCore.transpose)(t, [0, 2, 3, 1]));
 
-           var f = (0, _tfjsCore.conv2dTranspose)(t, n.kernel.read(), d, n.strides, n.padding);
 
-           return "channelsLast" !== n.dataFormat && (f = (0, _tfjsCore.transpose)(f, [0, 3, 1, 2])), null != n.bias && (f = biasAdd(f, n.bias.read(), n.dataFormat)), null != n.activation && (f = n.activation.apply(f)), f;
 
-         });
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         var t,
 
-           n,
 
-           r,
 
-           i = (e = getExactlyOneShape(e)).slice();
 
-         "channelsFirst" === this.dataFormat ? (t = 1, n = 2, r = 3) : (t = 3, n = 1, r = 2);
 
-         var a = this.kernelSize[0],
 
-           o = this.kernelSize[1],
 
-           s = this.strides[0],
 
-           l = this.strides[1];
 
-         return i[t] = this.filters, i[n] = deconvLength(i[n], s, a, this.padding), i[r] = deconvLength(i[r], l, o, this.padding), i;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this);
 
-         return delete t.dilationRate, t;
 
-       }, t.className = "Conv2DTranspose", t;
 
-     }(Conv2D);
 
-     _tfjsCore.serialization.registerClass(Conv2DTranspose);
 
-     var SeparableConv = function (e) {
 
-       function t(t, n) {
 
-         var r = e.call(this, t, n) || this;
 
-         if (r.DEFAULT_DEPTHWISE_INITIALIZER = "glorotUniform", r.DEFAULT_POINTWISE_INITIALIZER = "glorotUniform", r.depthwiseKernel = null, r.pointwiseKernel = null, null == n.filters) throw new ValueError("The `filters` configuration field is required by SeparableConv, but is unspecified.");
 
-         if (null != n.kernelInitializer || null != n.kernelRegularizer || null != n.kernelConstraint) throw new ValueError("Fields kernelInitializer, kernelRegularizer and kernelConstraint are invalid for SeparableConv2D. Use depthwiseInitializer, depthwiseRegularizer, depthwiseConstraint, pointwiseInitializer, pointwiseRegularizer and pointwiseConstraint instead.");
 
-         if (null != n.padding && "same" !== n.padding && "valid" !== n.padding) throw new ValueError("SeparableConv" + r.rank + "D supports only padding modes: 'same' and 'valid', but received " + JSON.stringify(n.padding));
 
-         return r.depthMultiplier = null == n.depthMultiplier ? 1 : n.depthMultiplier, r.depthwiseInitializer = getInitializer(n.depthwiseInitializer || r.DEFAULT_DEPTHWISE_INITIALIZER), r.depthwiseRegularizer = getRegularizer(n.depthwiseRegularizer), r.depthwiseConstraint = getConstraint(n.depthwiseConstraint), r.pointwiseInitializer = getInitializer(n.depthwiseInitializer || r.DEFAULT_POINTWISE_INITIALIZER), r.pointwiseRegularizer = getRegularizer(n.pointwiseRegularizer), r.pointwiseConstraint = getConstraint(n.pointwiseConstraint), r;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t;
 
-         if ((e = getExactlyOneShape(e)).length < this.rank + 2) throw new ValueError("Inputs to SeparableConv" + this.rank + "D should have rank " + (this.rank + 2) + ", but received input shape: " + JSON.stringify(e));
 
-         var n = "channelsFirst" === this.dataFormat ? 1 : e.length - 1;
 
-         if (null == e[n] || e[n] < 0) throw new ValueError("The channel dimension of the inputs should be defined, but found " + JSON.stringify(e[n]));
 
-         for (var r = e[n], i = this.kernelSize.concat([r, this.depthMultiplier]), a = [], o = 0; o < this.rank; ++o) a.push(1);
 
-         a.push(r * this.depthMultiplier, this.filters);
 
-         this.depthwiseKernel = this.addWeight("depthwise_kernel", i, "float32", this.depthwiseInitializer, this.depthwiseRegularizer, !0, this.depthwiseConstraint), this.pointwiseKernel = this.addWeight("pointwise_kernel", a, "float32", this.pointwiseInitializer, this.pointwiseRegularizer, !0, this.pointwiseConstraint), this.useBias ? this.bias = this.addWeight("bias", [this.filters], "float32", this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint) : this.bias = null, this.inputSpec = [new InputSpec({
 
-           ndim: this.rank + 2,
 
-           axes: (t = {}, t[n] = r, t)
 
-         })], this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var t;
 
-           if (e = getExactlyOneTensor(e), 1 === n.rank) throw new NotImplementedError("1D separable convolution is not implemented yet.");
 
-           return 2 === n.rank && ("channelsFirst" === n.dataFormat && (e = (0, _tfjsCore.transpose)(e, [0, 2, 3, 1])), t = (0, _tfjsCore.separableConv2d)(e, n.depthwiseKernel.read(), n.pointwiseKernel.read(), n.strides, n.padding, n.dilationRate, "NHWC")), n.useBias && (t = biasAdd(t, n.bias.read(), n.dataFormat)), null != n.activation && (t = n.activation.apply(t)), "channelsFirst" === n.dataFormat && (t = (0, _tfjsCore.transpose)(t, [0, 3, 1, 2])), t;
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this);
 
-         return delete t.rank, delete t.kernelInitializer, delete t.kernelRegularizer, delete t.kernelConstraint, t.depthwiseInitializer = serializeInitializer(this.depthwiseInitializer), t.pointwiseInitializer = serializeInitializer(this.pointwiseInitializer), t.depthwiseRegularizer = serializeRegularizer(this.depthwiseRegularizer), t.pointwiseRegularizer = serializeRegularizer(this.pointwiseRegularizer), t.depthwiseConstraint = serializeConstraint(this.depthwiseConstraint), t.pointwiseConstraint = serializeConstraint(this.pointwiseConstraint), t;
 
-       }, t.className = "SeparableConv", t;
 
-     }(Conv),
 
-       SeparableConv2D = function (e) {
 
-         function t(t) {
 
-           return e.call(this, 2, t) || this;
 
-         }
 
-         return __extends(t, e), t.className = "SeparableConv2D", t;
 
-       }(SeparableConv);
 
-     _tfjsCore.serialization.registerClass(SeparableConv2D);
 
-     var Conv1D = function (e) {
 
-       function t(n) {
 
-         var r = e.call(this, 1, n) || this;
 
-         return t.verifyArgs(n), r.inputSpec = [{
 
-           ndim: 3
 
-         }], r;
 
-       }
 
-       return __extends(t, e), t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this);
 
-         return delete t.rank, delete t.dataFormat, t;
 
-       }, t.verifyArgs = function (e) {
 
-         if ("number" != typeof e.kernelSize && !checkArrayTypeAndLength(e.kernelSize, "number", 1, 1)) throw new ValueError("Conv1D expects config.kernelSize to be number or number[] with length 1, but received " + JSON.stringify(e.kernelSize) + ".");
 
-       }, t.className = "Conv1D", t;
 
-     }(Conv);
 
-     _tfjsCore.serialization.registerClass(Conv1D);
 
-     var Cropping2D = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return "number" == typeof t.cropping ? n.cropping = [[t.cropping, t.cropping], [t.cropping, t.cropping]] : "number" == typeof t.cropping[0] ? n.cropping = [[t.cropping[0], t.cropping[0]], [t.cropping[1], t.cropping[1]]] : n.cropping = t.cropping, n.dataFormat = void 0 === t.dataFormat ? "channelsLast" : t.dataFormat, n.inputSpec = [{
 
-           ndim: 4
 
-         }], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return "channelsFirst" === this.dataFormat ? [e[0], e[1], e[2] - this.cropping[0][0] - this.cropping[0][1], e[3] - this.cropping[1][0] - this.cropping[1][1]] : [e[0], e[1] - this.cropping[0][0] - this.cropping[0][1], e[2] - this.cropping[1][0] - this.cropping[1][1], e[3]];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return e = getExactlyOneTensor(e), "channelsLast" === n.dataFormat ? sliceAlongAxis(sliceAlongAxis(e, n.cropping[0][0], e.shape[1] - n.cropping[0][0] - n.cropping[0][1], 2), n.cropping[1][0], e.shape[2] - n.cropping[1][1] - n.cropping[1][0], 3) : sliceAlongAxis(sliceAlongAxis(e, n.cropping[0][0], e.shape[2] - n.cropping[0][0] - n.cropping[0][1], 3), n.cropping[1][0], e.shape[3] - n.cropping[1][1] - n.cropping[1][0], 4);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           cropping: this.cropping,
 
-           dataFormat: this.dataFormat
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Cropping2D", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Cropping2D);
 
-     var UpSampling2D = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.DEFAULT_SIZE = [2, 2], n.inputSpec = [{
 
-           ndim: 4
 
-         }], n.size = null == t.size ? n.DEFAULT_SIZE : t.size, n.dataFormat = null == t.dataFormat ? "channelsLast" : t.dataFormat, n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         if ("channelsFirst" === this.dataFormat) {
 
-           var t = null == e[2] ? null : this.size[0] * e[2],
 
-             n = null == e[3] ? null : this.size[1] * e[3];
 
-           return [e[0], e[1], t, n];
 
-         }
 
-         t = null == e[1] ? null : this.size[0] * e[1], n = null == e[2] ? null : this.size[1] * e[2];
 
-         return [e[0], t, n, e[3]];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var t = getExactlyOneTensor(e),
 
-             r = t.shape;
 
-           if ("channelsFirst" === n.dataFormat) {
 
-             t = (0, _tfjsCore.transpose)(t, [0, 2, 3, 1]);
 
-             var i = n.size[0] * r[2],
 
-               a = n.size[1] * r[3],
 
-               o = t.resizeNearestNeighbor([i, a]);
 
-             return (0, _tfjsCore.transpose)(o, [0, 3, 1, 2]);
 
-           }
 
-           i = n.size[0] * r[1], a = n.size[1] * r[2];
 
-           return t.resizeNearestNeighbor([i, a]);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           size: this.size,
 
-           dataFormat: this.dataFormat
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "UpSampling2D", t;
 
-     }(Layer);
 
-     function depthwiseConv2d$1(e, t, n, r, i, a) {
 
-       return void 0 === n && (n = [1, 1]), void 0 === r && (r = "valid"), (0, _tfjsCore.tidy)(function () {
 
-         null == i && (i = imageDataFormat()), checkDataFormat(i);
 
-         var o = preprocessConv2DInput(e, i);
 
-         if (4 !== e.rank) throw new ValueError("Input for depthwiseConv2d is required to be 4-D, but is instead " + e.rank + "-D");
 
-         if (4 !== t.rank) throw new ValueError("depthwiseKernel is required to be 4-D, but is instead " + t.rank + "-D");
 
-         return o = (0, _tfjsCore.depthwiseConv2d)(o, t, n, "same" === r ? "same" : "valid", "NHWC", a), "channelsFirst" === i && (o = (0, _tfjsCore.transpose)(o, [0, 3, 1, 2])), o;
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(UpSampling2D);
 
-     var DepthwiseConv2D = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, 2, t) || this;
 
-         return n.depthwiseKernel = null, n.depthMultiplier = null == t.depthMultiplier ? 1 : t.depthMultiplier, n.depthwiseInitializer = getInitializer(t.depthwiseInitializer || n.DEFAULT_KERNEL_INITIALIZER), n.depthwiseConstraint = getConstraint(t.depthwiseConstraint), n.depthwiseRegularizer = getRegularizer(t.depthwiseRegularizer), n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         if ((e = getExactlyOneShape(e)).length < 4) throw new ValueError("Inputs to DepthwiseConv2D should have rank 4. Received input shape: " + JSON.stringify(e) + ".");
 
-         var t = "channelsFirst" === this.dataFormat ? 1 : 3;
 
-         if (null == e[t] || e[t] < 0) throw new ValueError("The channel dimension of the inputs to DepthwiseConv2D should be defined, but is not (" + e[t] + ").");
 
-         var n = e[t],
 
-           r = [this.kernelSize[0], this.kernelSize[1], n, this.depthMultiplier];
 
-         this.depthwiseKernel = this.addWeight("depthwise_kernel", r, null, this.depthwiseInitializer, this.depthwiseRegularizer, !0, this.depthwiseConstraint), this.useBias ? this.bias = this.addWeight("bias", [n * this.depthMultiplier], null, this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint) : this.bias = null, this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var t = depthwiseConv2d$1(e = getExactlyOneTensor(e), n.depthwiseKernel.read(), n.strides, n.padding, n.dataFormat, null);
 
-           return n.useBias && (t = biasAdd(t, n.bias.read(), n.dataFormat)), null != n.activation && (t = n.activation.apply(t)), t;
 
-         });
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         e = getExactlyOneShape(e);
 
-         var t = "channelsFirst" === this.dataFormat ? e[2] : e[1],
 
-           n = "channelsFirst" === this.dataFormat ? e[3] : e[2],
 
-           r = "channelsFirst" === this.dataFormat ? e[1] * this.depthMultiplier : e[3] * this.depthMultiplier,
 
-           i = convOutputLength(t, this.kernelSize[0], this.padding, this.strides[0]),
 
-           a = convOutputLength(n, this.kernelSize[1], this.padding, this.strides[1]);
 
-         return "channelsFirst" === this.dataFormat ? [e[0], r, i, a] : [e[0], i, a, r];
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this);
 
-         return t.depthMultiplier = this.depthMultiplier, t.depthwiseInitializer = serializeInitializer(this.depthwiseInitializer), t.depthwiseRegularizer = serializeRegularizer(this.depthwiseRegularizer), t.depthwiseConstraint = serializeConstraint(this.depthwiseRegularizer), t;
 
-       }, t.className = "DepthwiseConv2D", t;
 
-     }(BaseConv);
 
-     _tfjsCore.serialization.registerClass(DepthwiseConv2D);
 
-     var Dropout = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.rate = Math.max(Math.min(t.rate, 1), 0), n.noiseShape = t.noiseShape, n.seed = t.seed, n.supportsMasking = !0, n;
 
-       }
 
-       return __extends(t, e), t.prototype.getNoiseShape = function (e) {
 
-         if (null == this.noiseShape) return this.noiseShape;
 
-         for (var t = e.shape, n = [], r = 0; r < this.noiseShape.length; ++r) n.push(null == this.noiseShape[r] ? t[r] : this.noiseShape[r]);
 
-         return n;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e);
 
-           if (0 < n.rate && n.rate < 1) {
 
-             var i = null != t.training && t.training,
 
-               a = n.getNoiseShape(r);
 
-             return inTrainPhase(function () {
 
-               return dropout$1(r, n.rate, a, n.seed);
 
-             }, function () {
 
-               return r;
 
-             }, i);
 
-           }
 
-           return e;
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           rate: this.rate,
 
-           noiseShape: this.noiseShape,
 
-           seed: this.seed
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.prototype.dispose = function () {
 
-         return e.prototype.dispose.call(this);
 
-       }, t.className = "Dropout", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Dropout);
 
-     var Dense = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         if (n.activation = null, n.useBias = !0, n.kernel = null, n.bias = null, n.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", n.DEFAULT_BIAS_INITIALIZER = "zeros", null == t.batchInputShape && null == t.inputShape && null != t.inputDim) {
 
-           var r = null;
 
-           null != t.batchSize && (r = t.batchSize), n.batchInputShape = [r, t.inputDim];
 
-         }
 
-         return n.units = t.units, assertPositiveInteger(n.units, "units"), n.activation = getActivation(t.activation), null != t.useBias && (n.useBias = t.useBias), n.kernelInitializer = getInitializer(t.kernelInitializer || n.DEFAULT_KERNEL_INITIALIZER), n.biasInitializer = getInitializer(t.biasInitializer || n.DEFAULT_BIAS_INITIALIZER), n.kernelConstraint = getConstraint(t.kernelConstraint), n.biasConstraint = getConstraint(t.biasConstraint), n.kernelRegularizer = getRegularizer(t.kernelRegularizer), n.biasRegularizer = getRegularizer(t.biasRegularizer), n.activityRegularizer = getRegularizer(t.activityRegularizer), n.supportsMasking = !0, n.inputSpec = [{
 
-           minNDim: 2
 
-         }], n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t,
 
-           n = (e = getExactlyOneShape(e))[e.length - 1];
 
-         null == this.kernel && (this.kernel = this.addWeight("kernel", [n, this.units], null, this.kernelInitializer, this.kernelRegularizer, !0, this.kernelConstraint), this.useBias && (this.bias = this.addWeight("bias", [this.units], null, this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint))), this.inputSpec = [{
 
-           minNDim: 2,
 
-           axes: (t = {}, t[-1] = n, t)
 
-         }], this.built = !0;
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         var t = (e = getExactlyOneShape(e)).slice();
 
-         return t[t.length - 1] = this.units, t;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r,
 
-             i = getExactlyOneTensor(e),
 
-             a = mapActivationToFusedKernel(n.activation.getClassName());
 
-           return null != a ? r = dot(i, n.kernel.read(), a, n.bias ? n.bias.read() : null) : (r = dot(i, n.kernel.read()), null != n.bias && (r = biasAdd(r, n.bias.read())), null != n.activation && (r = n.activation.apply(r))), r;
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           units: this.units,
 
-           activation: serializeActivation(this.activation),
 
-           useBias: this.useBias,
 
-           kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-           biasConstraint: serializeConstraint(this.biasConstraint)
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Dense", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Dense);
 
-     var Flatten = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t || {}) || this;
 
-         return n.inputSpec = [{
 
-           minNDim: 3
 
-         }], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         for (var t = 0, n = (e = getExactlyOneShape(e)).slice(1); t < n.length; t++) {
 
-           if (null == n[t]) throw new ValueError('The shape of the input to "Flatten" is not fully defined (got ' + e.slice(1) + '). Make sure to pass a complete "input_shape" or "batch_input_shape" argument to the first layer in your model.');
 
-         }
 
-         return [e[0], arrayProd(e, 1)];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return n.invokeCallHook(e, t), batchFlatten(getExactlyOneTensor(e));
 
-         });
 
-       }, t.className = "Flatten", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Flatten);
 
-     var Activation$1 = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.supportsMasking = !0, n.activation = getActivation(t.activation), n;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e);
 
-           return n.activation.apply(r);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           activation: serializeActivation(this.activation)
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Activation", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Activation$1);
 
-     var RepeatVector = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.n = t.n, n.inputSpec = [{
 
-           ndim: 2
 
-         }], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return [e[0], this.n, e[1]];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return repeat(e = getExactlyOneTensor(e), n.n);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           n: this.n
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "RepeatVector", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(RepeatVector);
 
-     var Reshape = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         n.targetShape = t.targetShape;
 
-         for (var r = 0; r < n.targetShape.length; ++r) n.isUnknown(n.targetShape[r]) && (n.targetShape[r] = null);
 
-         return n;
 
-       }
 
-       return __extends(t, e), t.prototype.isUnknown = function (e) {
 
-         return e < 0 || null == e;
 
-       }, t.prototype.fixUnknownDimension = function (e, t) {
 
-         for (var n = "Total size of new array must be unchanged.", r = t.slice(), i = 1, a = null, o = 0; o < r.length; ++o) {
 
-           var s = r[o];
 
-           if (this.isUnknown(s)) {
 
-             if (null !== a) throw new ValueError("Can only specifiy one unknown dimension.");
 
-             a = o;
 
-           } else i *= s;
 
-         }
 
-         var l = arrayProd(e);
 
-         if (null !== a) {
 
-           if (0 === i || l % i != 0) throw new ValueError(n);
 
-           r[a] = l / i;
 
-         } else if (l !== i) throw new ValueError(n);
 
-         return r;
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         for (var t = !1, n = 0; n < e.length; ++n) if (this.isUnknown(e[n])) {
 
-           t = !0;
 
-           break;
 
-         }
 
-         return t ? e.slice(0, 1).concat(this.targetShape) : e.slice(0, 1).concat(this.fixUnknownDimension(e.slice(1), this.targetShape));
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e),
 
-             i = r.shape,
 
-             a = i.slice(0, 1).concat(n.fixUnknownDimension(i.slice(1), n.targetShape));
 
-           return r.reshape(a);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           targetShape: this.targetShape
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Reshape", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Reshape);
 
-     var Permute = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         if (null == t.dims) throw new Error("Required configuration field `dims` is missing during Permute constructor call.");
 
-         if (!Array.isArray(t.dims)) throw new Error("Permute constructor requires `dims` to be an Array, but received " + t.dims + " instead.");
 
-         var r = range(1, t.dims.length + 1);
 
-         if (!_tfjsCore.util.arraysEqual(t.dims.slice().sort(), r)) throw new Error("Invalid permutation `dims`: " + JSON.stringify(t.dims) + " `dims` must contain consecutive integers starting from 1.");
 
-         return n.dims = t.dims, n.dimsIncludingBatch = [0].concat(n.dims), n.inputSpec = [new InputSpec({
 
-           ndim: n.dims.length + 1
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         var t = (e = getExactlyOneShape(e)).slice();
 
-         return this.dims.forEach(function (n, r) {
 
-           t[r + 1] = e[n];
 
-         }), t;
 
-       }, t.prototype.call = function (e, t) {
 
-         return (0, _tfjsCore.transpose)(getExactlyOneTensor(e), this.dimsIncludingBatch);
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           dims: this.dims
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Permute", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Permute);
 
-     var Masking = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, null == t ? {} : t) || this;
 
-         return n.supportsMasking = !0, n.maskValue = null != t ? null == t.maskValue ? 0 : t.maskValue : 0, n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this),
 
-           n = {
 
-             maskValue: this.maskValue
 
-           };
 
-         return Object.assign(n, t), n;
 
-       }, t.prototype.computeMask = function (e, t) {
 
-         var n = getExactlyOneTensor(e);
 
-         return (0, _tfjsCore.any)((0, _tfjsCore.notEqual)(n, this.maskValue), -1);
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e),
 
-             i = (0, _tfjsCore.any)((0, _tfjsCore.notEqual)(r, n.maskValue), -1, !0);
 
-           return r.mul(i.asType(r.dtype));
 
-         });
 
-       }, t.className = "Masking", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Masking);
 
-     var Embedding = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         if (n.embeddings = null, n.DEFAULT_EMBEDDINGS_INITIALIZER = "randomUniform", null == t.batchInputShape && null == t.inputShape) {
 
-           var r = null;
 
-           null != t.batchSize && (r = t.batchSize), null == t.inputLength ? n.batchInputShape = [r, null] : n.batchInputShape = [r].concat(toList(t.inputLength));
 
-         }
 
-         return n.inputDim = t.inputDim, assertPositiveInteger(n.inputDim, "inputDim"), n.outputDim = t.outputDim, assertPositiveInteger(n.outputDim, "outputDim"), n.embeddingsInitializer = getInitializer(t.embeddingsInitializer || n.DEFAULT_EMBEDDINGS_INITIALIZER), n.embeddingsRegularizer = getRegularizer(t.embeddingsRegularizer), n.activityRegularizer = getRegularizer(t.activityRegularizer), n.embeddingsConstraint = getConstraint(t.embeddingsConstraint), n.maskZero = t.maskZero, n.supportsMasking = t.maskZero, n.inputLength = t.inputLength, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         this.embeddings = this.addWeight("embeddings", [this.inputDim, this.outputDim], this.dtype, this.embeddingsInitializer, this.embeddingsRegularizer, !0, this.embeddingsConstraint), this.built = !0;
 
-       }, t.prototype.warnOnIncompatibleInputShape = function (e) { }, t.prototype.computeMask = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return n.maskZero ? (e = getExactlyOneTensor(e), (0, _tfjsCore.notEqual)(e, (0, _tfjsCore.zerosLike)(e))) : null;
 
-         });
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         if (e = getExactlyOneShape(e), null == this.inputLength) return e.concat([this.outputDim]);
 
-         var t = toList(this.inputLength);
 
-         if (t.length !== e.length - 1) throw new ValueError('"inputLength" is ' + this.inputLength + ", but received input shape has shape " + e);
 
-         for (var n = 0, r = 0; r < t.length; ++r) {
 
-           var i = t[r],
 
-             a = e[r + 1];
 
-           if (null != i && null != a && i !== a) throw new ValueError('"inputLength" is ' + this.inputLength + ", but received input shape has shape " + e);
 
-           null == i && (t[n] = a), n++;
 
-         }
 
-         return [e[0]].concat(t, [this.outputDim]);
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e);
 
-           return "int32" !== r.dtype && (r = cast$1(r, "int32")), gather$1(n.embeddings.read(), r.as1D()).reshape(getExactlyOneShape(n.computeOutputShape(r.shape)));
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           inputDim: this.inputDim,
 
-           outputDim: this.outputDim,
 
-           embeddingsInitializer: serializeInitializer(this.embeddingsInitializer),
 
-           embeddingsRegularizer: serializeRegularizer(this.embeddingsRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           embeddingsConstraint: serializeConstraint(this.embeddingsConstraint),
 
-           maskZero: this.maskZero,
 
-           inputLength: this.inputLength
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Embedding", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(Embedding);
 
-     var Merge = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t || {}) || this;
 
-         return n.supportsMasking = !0, n;
 
-       }
 
-       return __extends(t, e), t.prototype.mergeFunction = function (e) {
 
-         throw new NotImplementedError();
 
-       }, t.prototype.computeElementwiseOpOutputShape = function (e, t) {
 
-         if (null == e || null == t) return null;
 
-         if (e.length < t.length) return this.computeElementwiseOpOutputShape(t, e);
 
-         if (0 === t.length) return e;
 
-         for (var n = e.slice(0, e.length - t.length), r = 0; r < t.length; ++r) {
 
-           var i = e[e.length - t.length + r],
 
-             a = t[r];
 
-           if (null == i || null == a || i < 0 || a < 0) n.push(null); else if (1 === i) n.push(a); else if (1 === a) n.push(i); else {
 
-             if (i !== a) throw new ValueError("Operands could not be broadcast together with shapes " + JSON.stringify(e) + " " + JSON.stringify(t));
 
-             n.push(i);
 
-           }
 
-         }
 
-         return n;
 
-       }, t.prototype.build = function (e) {
 
-         if (Array.isArray(e) && !Array.isArray(e[0]) && (e = [getExactlyOneShape(e)]), (e = e).length < 2) throw new ValueError("A merge layer should be called on an Array of at least 2 inputs. Got " + e.length + " input(s).");
 
-         for (var t = [], n = 0, r = e; n < r.length; n++) {
 
-           null != (o = r[n]) && null !== o[0] && t.push(o[0]);
 
-         }
 
-         if ((t = unique(t)).length > 1) throw new ValueError("Can not merge tensors with different batch sizes. Got tensors with shapes: " + JSON.stringify(e) + ".");
 
-         for (var i = null == e[0] ? null : e[0].slice(1), a = 1; a < e.length; ++a) {
 
-           var o = null == e[a] ? null : e[a].slice(1);
 
-           i = this.computeElementwiseOpOutputShape(i, o);
 
-         }
 
-         var s = e.map(function (e) {
 
-           return e.length;
 
-         });
 
-         -1 === e.indexOf(null) && 1 === unique(s).length ? this.reshapeRequired = !1 : this.reshapeRequired = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           if (e = e, n.reshapeRequired) {
 
-             var t = [],
 
-               r = e.map(function (e) {
 
-                 return e.rank;
 
-               });
 
-             if (-1 === r.indexOf(null)) {
 
-               for (var i = max$1(r), a = 0, o = e; a < o.length; a++) {
 
-                 for (var s = (h = o[a]).rank, l = 0; l < i - s; ++l) h = expandDims$1(h, 1);
 
-                 t.push(h);
 
-               }
 
-               return n.mergeFunction(t);
 
-             }
 
-             for (var u = !1, c = 0, p = e; c < p.length; c++) {
 
-               var h;
 
-               if (null == (s = (h = p[c]).rank)) {
 
-                 var d = h.shape,
 
-                   f = d[0],
 
-                   g = d.slice(1).concat([f]),
 
-                   m = h.reshape([f].concat(arrayProd(d.slice(1))));
 
-                 m = (m = (0, _tfjsCore.transpose)(m, [1, 0])).reshape(g), t.push(m), u = !0;
 
-               } else if (s > 1) {
 
-                 var y = range(1, s).concat([0]);
 
-                 t.push((0, _tfjsCore.transpose)(h, y)), u = !0;
 
-               } else t.push(h);
 
-             }
 
-             var v = n.mergeFunction(t),
 
-               b = v.rank;
 
-             if (u) if (null == b) {
 
-               var w = v.shape;
 
-               g = [f = w[w.length - 1]].concat(w.slice(0, w.length - 1));
 
-               v = (0, _tfjsCore.transpose)(v.reshape([-1, f]), [1, 0]).reshape(g);
 
-             } else if (b > 1) {
 
-               y = [b - 1].concat(range(0, b - 1));
 
-               v = (0, _tfjsCore.transpose)(v, y);
 
-             }
 
-             return v;
 
-           }
 
-           return n.mergeFunction(e);
 
-         });
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         var t;
 
-         t = null == (e = e)[0] ? null : e[0].slice(1);
 
-         for (var n = 1; n < e.length; ++n) {
 
-           var r = null == e[n] ? null : e[n].slice(1);
 
-           t = this.computeElementwiseOpOutputShape(t, r);
 
-         }
 
-         for (var i = [], a = 0, o = e; a < o.length; a++) {
 
-           null != (r = o[a]) && null !== r[0] && i.push(r[0]);
 
-         }
 
-         return t = 1 === (i = unique(i)).length ? i.concat(t) : [null].concat(t);
 
-       }, t.prototype.computeMask = function (e, t) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           if (null == t) return null;
 
-           if (!Array.isArray(t)) throw new ValueError("`mask` should be an Array");
 
-           if (!Array.isArray(e)) throw new ValueError("`inputs` should be an Array");
 
-           if (t.length !== e.length) throw new ValueError("The Array 'inputs' and 'mask' are expected to have the same length, but have different lengths (" + e.length + " vs " + t.length + ")");
 
-           if (t.every(function (e) {
 
-             return null == e;
 
-           })) return null;
 
-           for (var n = (t = t.map(function (e) {
 
-             return null == e ? e : (0, _tfjsCore.expandDims)(e, 0);
 
-           }))[0], r = 1; r < t.length - 1; ++r) n = (0, _tfjsCore.logicalAnd)(n, t[r]);
 
-           return n;
 
-         });
 
-       }, t;
 
-     }(Layer),
 
-       Add = function (e) {
 
-         function t(t) {
 
-           return e.call(this, t) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.mergeFunction = function (e) {
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             for (var t = e[0].clone(), n = 1; n < e.length; ++n) t = (0, _tfjsCore.add)(t, e[n]);
 
-             return t;
 
-           });
 
-         }, t.className = "Add", t;
 
-       }(Merge);
 
-     _tfjsCore.serialization.registerClass(Add);
 
-     var Multiply = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.mergeFunction = function (e) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var t = e[0].clone(), n = 1; n < e.length; ++n) t = (0, _tfjsCore.mul)(t, e[n]);
 
-           return t;
 
-         });
 
-       }, t.className = "Multiply", t;
 
-     }(Merge);
 
-     _tfjsCore.serialization.registerClass(Multiply);
 
-     var Average = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.mergeFunction = function (e) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var t = e[0].clone(), n = 1; n < e.length; ++n) t = (0, _tfjsCore.add)(t, e[n]);
 
-           return (0, _tfjsCore.mul)(1 / e.length, t);
 
-         });
 
-       }, t.className = "Average", t;
 
-     }(Merge);
 
-     _tfjsCore.serialization.registerClass(Average);
 
-     var Maximum = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.mergeFunction = function (e) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var t = e[0], n = 1; n < e.length; ++n) t = (0, _tfjsCore.maximum)(t, e[n]);
 
-           return t;
 
-         });
 
-       }, t.className = "Maximum", t;
 
-     }(Merge);
 
-     _tfjsCore.serialization.registerClass(Maximum);
 
-     var Minimum = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.mergeFunction = function (e) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var t = e[0], n = 1; n < e.length; ++n) t = (0, _tfjsCore.minimum)(t, e[n]);
 
-           return t;
 
-         });
 
-       }, t.className = "Minimum", t;
 
-     }(Merge);
 
-     _tfjsCore.serialization.registerClass(Minimum);
 
-     var Concatenate = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.DEFAULT_AXIS = -1, null == t && (t = {}), n.axis = null == t.axis ? n.DEFAULT_AXIS : t.axis, n.supportsMasking = !0, n.reshapeRequired = !1, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         if (!Array.isArray(e) || !Array.isArray(e[0]) || 1 === e.length) throw new ValueError("A `Concatenate` layer should be called on a list of at least 2 inputs");
 
-         for (var t = !0, n = 0, r = e = e; n < r.length; n++) {
 
-           if (null != (c = r[n])) {
 
-             t = !1;
 
-             break;
 
-           }
 
-         }
 
-         if (!t) {
 
-           for (var i = [], a = 0; a < e.length; ++a) {
 
-             var o = e[a].slice();
 
-             o.splice(this.axis, 1);
 
-             for (var s = !1, l = 0, u = i; l < u.length; l++) {
 
-               var c = u[l];
 
-               if (_tfjsCore.util.arraysEqual(c, o)) {
 
-                 s = !0;
 
-                 break;
 
-               }
 
-             }
 
-             s || i.push(o);
 
-           }
 
-           if (i.length > 1) throw new ValueError("A `Concatenate` layer requires inputs with matching shapes except for the concat axis. Got input shapes: " + JSON.stringify(e));
 
-         }
 
-       }, t.prototype.mergeFunction = function (e) {
 
-         var t = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return concatenate(e, t.axis);
 
-         });
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         if (!Array.isArray(e) || !Array.isArray(e[0])) throw new ValueError("A `Concatenate` layer should be called on a list of inputs.");
 
-         for (var t = e, n = t[0].slice(), r = this.axis < 0 ? n.length + this.axis : this.axis, i = 0, a = t.slice(1); i < a.length; i++) {
 
-           var o = a[i];
 
-           if (null == n[r] || null == o[r]) {
 
-             n[r] = null;
 
-             break;
 
-           }
 
-           n[r] += o[r];
 
-         }
 
-         return n;
 
-       }, t.prototype.computeMask = function (e, t) {
 
-         var n = this;
 
-         if (null == t) return null;
 
-         if (!Array.isArray(t)) throw new ValueError("`mask` should be an array for Concatenate");
 
-         if (!Array.isArray(e)) throw new ValueError("`inputs` should be an array for Concatenate");
 
-         if (t.length !== e.length) throw new ValueError("Mismatch in the length of mask (" + t.length + ") and the legnth of inputs (" + e.length + ")");
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var r = !0;
 
-           if (t.forEach(function (e) {
 
-             null == e || (r = !1);
 
-           }), r) return null;
 
-           for (var i = [], a = 0; a < e.length; ++a) null == t[a] ? i.push((0, _tfjsCore.onesLike)(e[a]).asType("bool")) : t[a].rank < e[a].rank ? i.push((0, _tfjsCore.expandDims)(t[a], -1)) : i.push(t[a]);
 
-           var o = (0, _tfjsCore.concat)(i, n.axis);
 
-           return (0, _tfjsCore.all)(o, -1, !1);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           axis: this.axis
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Concatenate", t;
 
-     }(Merge);
 
-     function interpretAxis(e, t) {
 
-       for (; e < 0;) e += t;
 
-       return e;
 
-     }
 
-     function batchDot(e, t, n) {
 
-       if (e.shape.length > 3 || t.shape.length > 3) throw new NotImplementedError("batchDot is not implemented for tensors of 4D or higher rank yet");
 
-       if (_tfjsCore.util.assert(e.shape.length >= 2, function () {
 
-         return "batchDot requires the rank of x to be >= 2, but got " + e.shape.length;
 
-       }), _tfjsCore.util.assert(e.shape.length >= 2, function () {
 
-         return "batchDot requires the rank of y to be >= 2, but got " + t.shape.length;
 
-       }), "number" == typeof n && (n = [n, n]), "complex64" === e.dtype || "complex64" === t.dtype) throw new NotImplementedError("batchDot is not implemented for complex64-type Tensors yet.");
 
-       var r = e.shape.length,
 
-         i = t.shape.length;
 
-       null == n && (n = [r - 1, i - 2]);
 
-       var a = n;
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var n, o;
 
-         if (r > i) {
 
-           n = r - i;
 
-           for (var s = [], l = 0; l < n; ++l) s.push(1);
 
-           t = t.reshape(t.shape.concat(s));
 
-         } else if (i > r) {
 
-           n = i - r;
 
-           for (s = [], l = 0; l < n; ++l) s.push(1);
 
-           e = e.reshape(e.shape.concat(s));
 
-         } else n = 0;
 
-         if (2 === e.shape.length && 2 === t.shape.length) o = a[0] === a[1] ? e.mulStrict(t).sum(a[0]) : e.transpose([1, 0]).mulStrict(t).sum(a[1]); else {
 
-           var u = a[0] !== e.shape.length - 1,
 
-             c = a[1] === t.shape.length - 1;
 
-           o = e.matMul(t, u, c);
 
-         }
 
-         if (n > 0) {
 
-           var p = void 0,
 
-             h = [];
 
-           for (l = p = r > i ? r + i - 3 : r - 1; l < p + n; ++l) h.push(l);
 
-           o = o.squeeze(h);
 
-         }
 
-         return 1 === o.shape.length && (o = o.expandDims(1)), o;
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(Concatenate);
 
-     var Dot = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.axes = t.axes, n.normalize = null != t.normalize && t.normalize, n.supportsMasking = !0, n.reshapeRequired = !1, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         _tfjsCore.util.assert(Array.isArray(e) && 2 === e.length && Array.isArray(e[0]) && Array.isArray(e[1]), function () {
 
-           return "A `Dot` layer should be called on a list of exactly 2 inputs.";
 
-         });
 
-         var t = e[0],
 
-           n = e[1];
 
-         if (t.length > 3 || n.length > 3) throw new NotImplementedError("Dot layer does not support tensors of 4D or higher rank yet.");
 
-         var r = this.interpretAxes(t, n);
 
-         if (t[r[0]] !== n[r[1]]) throw new ValueError("Dimension incompatibility: " + t[r[0]] + " !== " + n[r[1]]);
 
-       }, t.prototype.mergeFunction = function (e) {
 
-         if (2 !== e.length) throw new ValueError("A `Dot` layer must be called on exactly 2 inputs, but received " + e.length + " input(s).");
 
-         var t,
 
-           n = e[0],
 
-           r = e[1];
 
-         return t = Array.isArray(this.axes) ? this.axes.map(function (t, n) {
 
-           return interpretAxis(t, e[n].shape.length);
 
-         }) : [interpretAxis(this.axes, n.shape.length), interpretAxis(this.axes, r.shape.length)], this.normalize && (n = l2Normalize(n, t[0]), r = l2Normalize(r, t[1])), batchDot(n, r, t);
 
-       }, t.prototype.interpretAxes = function (e, t) {
 
-         return Array.isArray(this.axes) ? this.axes : [interpretAxis(this.axes, e.length), interpretAxis(this.axes, t.length)];
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         _tfjsCore.util.assert(Array.isArray(e) && 2 === e.length && Array.isArray(e[0]) && Array.isArray(e[1]), function () {
 
-           return "A `Dot` layer should be called on a list of exactly 2 inputs.";
 
-         });
 
-         var t = e[0].slice(),
 
-           n = e[1].slice();
 
-         if (t.length > 3 || n.length > 3) throw new NotImplementedError("Dot layer does not support tensors of 4D or higher rank yet.");
 
-         var r = this.interpretAxes(t, n);
 
-         t.splice(r[0], 1), n.splice(r[1], 1), n.splice(0, 1);
 
-         var i = t.concat(n);
 
-         return 1 === i.length && i.push(1), i;
 
-       }, t.prototype.computeMask = function (e, t) {
 
-         return null;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           axes: this.axes,
 
-           normalize: this.normalize
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "Dot", t;
 
-     }(Merge);
 
-     _tfjsCore.serialization.registerClass(Dot);
 
-     var GaussianNoise = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.supportsMasking = !0, n.stddev = t.stddev, n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this),
 
-           n = {
 
-             stddev: this.stddev
 
-           };
 
-         return Object.assign(n, t), n;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e);
 
-           return inTrainPhase(function () {
 
-             return randomNormal$1(r.shape, 0, n.stddev).add(r);
 
-           }, function () {
 
-             return r;
 
-           }, t.training || !1);
 
-         });
 
-       }, t.className = "GaussianNoise", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(GaussianNoise);
 
-     var GaussianDropout = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.supportsMasking = !0, n.rate = t.rate, n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this),
 
-           n = {
 
-             rate: this.rate
 
-           };
 
-         return Object.assign(n, t), n;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t);
 
-           var r = getExactlyOneTensor(e);
 
-           if (n.rate > 0 && n.rate < 1) {
 
-             return inTrainPhase(function () {
 
-               var e = Math.sqrt(n.rate / (1 - n.rate));
 
-               return r.mul(randomNormal$1(r.shape, 1, e));
 
-             }, function () {
 
-               return r;
 
-             }, t.training || !1);
 
-           }
 
-           return r;
 
-         });
 
-       }, t.className = "GaussianDropout", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(GaussianDropout);
 
-     var AlphaDropout = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.supportsMasking = !0, n.rate = t.rate, n.noiseShape = t.noiseShape, n;
 
-       }
 
-       return __extends(t, e), t.prototype._getNoiseShape = function (e) {
 
-         return this.noiseShape || getExactlyOneTensor(e).shape;
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         return e;
 
-       }, t.prototype.getConfig = function () {
 
-         var t = e.prototype.getConfig.call(this),
 
-           n = {
 
-             rate: this.rate
 
-           };
 
-         return Object.assign(n, t), n;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           if (n.rate < 1 && n.rate > 0) {
 
-             var r = n._getNoiseShape(e);
 
-             return inTrainPhase(function () {
 
-               var t = getExactlyOneTensor(e),
 
-                 i = -1.7580993408473766,
 
-                 a = (0, _tfjsCore.greaterEqual)((0, _tfjsCore.randomUniform)(r), n.rate);
 
-               a = cast$1(a, "float32");
 
-               var o = Math.pow((1 - n.rate) * (1 + n.rate * Math.pow(i, 2)), -.5),
 
-                 s = -o * i * n.rate;
 
-               return t.mul(a).add(a.add(-1).mul(i)).mul(o).add(s);
 
-             }, function () {
 
-               return getExactlyOneTensor(e);
 
-             }, t.training || !1);
 
-           }
 
-           return e;
 
-         });
 
-       }, t.className = "AlphaDropout", t;
 
-     }(Layer);
 
-     function batchNormalization(e, t, n, r, i, a) {
 
-       var o;
 
-       if (void 0 === a && (a = .001), 2 === e.rank) o = (0, _tfjsCore.batchNorm2d)(e, t, n, r, i, a); else if (3 === e.rank) o = (0, _tfjsCore.batchNorm3d)(e, t, n, r, i, a); else {
 
-         if (4 !== e.rank) throw new NotImplementedError("batchNormalization is not implemented for array of rank " + e.rank + " yet");
 
-         o = (0, _tfjsCore.batchNorm4d)(e, t, n, r, i, a);
 
-       }
 
-       return o;
 
-     }
 
-     function regularNormalizeBatchInTraining(e, t, n, r, i) {
 
-       return void 0 === i && (i = .001), (0, _tfjsCore.tidy)(function () {
 
-         var a = (0, _tfjsCore.moments)(e, r),
 
-           o = a.mean,
 
-           s = a.variance;
 
-         return [batchNormalization(e, o, s, n, t, i), o, s];
 
-       });
 
-     }
 
-     function broadcastNormalizeBatchInTraining(e, t, n, r, i) {
 
-       return void 0 === i && (i = .001), (0, _tfjsCore.tidy)(function () {
 
-         for (var a = (0, _tfjsCore.moments)(e, r), o = a.mean, s = a.variance, l = [], u = 0, c = range(0, e.rank); u < c.length; u++) {
 
-           var p = c[u];
 
-           -1 !== r.indexOf(p) ? l.push(1) : l.push(e.shape[p]);
 
-         }
 
-         var h = o.reshape(l),
 
-           d = s.reshape(l),
 
-           f = null == t ? null : t.reshape(l),
 
-           g = null == n ? null : n.reshape(l);
 
-         return [batchNormalization(e, h, d, g, f, i), o, s];
 
-       });
 
-     }
 
-     function normalizeBatchInTraining(e, t, n, r, i) {
 
-       return void 0 === i && (i = .001), _tfjsCore.util.arraysEqual(r.slice().sort(), range(0, e.rank - 1)) ? regularNormalizeBatchInTraining(e, t, n, r, i) : broadcastNormalizeBatchInTraining(e, t, n, r, i);
 
-     }
 
-     _tfjsCore.serialization.registerClass(AlphaDropout);
 
-     var BatchNormalization = function (e) {
 
-       function t(t) {
 
-         var n = this;
 
-         return null == t && (t = {}), (n = e.call(this, t) || this).supportsMasking = !0, n.axis = null == t.axis ? -1 : t.axis, n.momentum = null == t.momentum ? .99 : t.momentum, n.epsilon = null == t.epsilon ? .001 : t.epsilon, n.center = null == t.center || t.center, n.scale = null == t.scale || t.scale, n.betaInitializer = getInitializer(t.betaInitializer || "zeros"), n.gammaInitializer = getInitializer(t.gammaInitializer || "ones"), n.movingMeanInitializer = getInitializer(t.movingMeanInitializer || "zeros"), n.movingVarianceInitializer = getInitializer(t.movingVarianceInitializer || "ones"), n.betaConstraint = getConstraint(t.betaConstraint), n.gammaConstraint = getConstraint(t.gammaConstraint), n.betaRegularizer = getRegularizer(t.betaRegularizer), n.gammaRegularizer = getRegularizer(t.gammaRegularizer), n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t;
 
-         e = getExactlyOneShape(e);
 
-         var n = this.axis >= 0 ? this.axis : this.axis + e.length,
 
-           r = e[n];
 
-         if (null == r) throw new ValueError("Axis " + n + " of input tensor should have a defined dimension but the layer received an input with shape " + JSON.stringify(e) + ".");
 
-         this.inputSpec = [new InputSpec({
 
-           ndim: e.length,
 
-           axes: (t = {}, t[n] = r, t)
 
-         })];
 
-         var i = [r];
 
-         this.scale && (this.gamma = this.addWeight("gamma", i, null, this.gammaInitializer, this.gammaRegularizer, !0, this.gammaConstraint)), this.center && (this.beta = this.addWeight("beta", i, null, this.betaInitializer, this.betaRegularizer, !0, this.betaConstraint)), this.movingMean = this.addWeight("moving_mean", i, null, this.movingMeanInitializer, null, !1), this.movingVariance = this.addWeight("moving_variance", i, null, this.movingVarianceInitializer, null, !1), this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var r = null != t.training && t.training,
 
-             i = getExactlyOneTensor(e),
 
-             a = i.shape,
 
-             o = a.length,
 
-             s = range(0, o),
 
-             l = n.axis >= 0 ? n.axis : n.axis + o;
 
-           s.splice(l, 1);
 
-           var u = pyListRepeat(1, o);
 
-           u[l] = a[l];
 
-           var c = s.slice();
 
-           c.sort();
 
-           var p = !_tfjsCore.util.arraysEqual(c, range(0, o).slice(0, o - 1));
 
-           if (!r) return function () {
 
-             if (p) {
 
-               var e = n.movingMean.read().reshape(u),
 
-                 t = n.movingVariance.read().reshape(u),
 
-                 r = n.center ? n.beta.read().reshape(u) : null,
 
-                 a = n.scale ? n.gamma.read().reshape(u) : null;
 
-               return batchNormalization(i, e, t, r, a, n.epsilon);
 
-             }
 
-             return batchNormalization(i, n.movingMean.read(), n.movingVariance.read(), null == n.beta ? null : n.beta.read(), null == n.gamma ? null : n.gamma.read(), n.epsilon);
 
-           }();
 
-           var h = normalizeBatchInTraining(i, n.gamma.read(), n.beta.read(), s, n.epsilon),
 
-             d = h[0],
 
-             f = h[1],
 
-             g = h[2],
 
-             m = function (e, t, n) {
 
-               (0, _tfjsCore.tidy)(function () {
 
-                 var r = 1 - n,
 
-                   i = e.read(),
 
-                   a = i.sub(t).mul(r);
 
-                 e.write(i.sub(a));
 
-               });
 
-             };
 
-           return m(n.movingMean, f, n.momentum), m(n.movingVariance, g, n.momentum), d;
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           axis: this.axis,
 
-           momentum: this.momentum,
 
-           epsilon: this.epsilon,
 
-           center: this.center,
 
-           scale: this.scale,
 
-           betaInitializer: serializeInitializer(this.betaInitializer),
 
-           gammaInitializer: serializeInitializer(this.gammaInitializer),
 
-           movingMeanInitializer: serializeInitializer(this.movingMeanInitializer),
 
-           movingVarianceInitializer: serializeInitializer(this.movingVarianceInitializer),
 
-           betaRegularizer: serializeRegularizer(this.betaRegularizer),
 
-           gammaRegularizer: serializeRegularizer(this.gammaRegularizer),
 
-           betaConstraint: serializeConstraint(this.betaConstraint),
 
-           gammaConstraint: serializeConstraint(this.gammaConstraint)
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "BatchNormalization", t;
 
-     }(Layer);
 
-     _tfjsCore.serialization.registerClass(BatchNormalization);
 
-     var LayerNormalization = function (e) {
 
-       function t(t) {
 
-         var n = this;
 
-         if (null == t && (t = {}), (n = e.call(this, t) || this).axis = null == t.axis ? -1 : t.axis, "number" == typeof n.axis) {
 
-           if (!Number.isInteger(n.axis)) throw new Error("Expected axis to be an integer, but received " + n.axis);
 
-         } else {
 
-           if (!Array.isArray(n.axis)) throw new Error("Expected axis to be an integer or an array of integers, but received " + JSON.stringify(n.axis));
 
-           for (var r = 0, i = n.axis; r < i.length; r++) {
 
-             var a = i[r];
 
-             if (!Number.isInteger(a)) throw new Error("Expected axis to be an array of integers, but received " + JSON.stringify(n.axis));
 
-           }
 
-         }
 
-         return n.epsilon = null == t.epsilon ? .001 : t.epsilon, n.center = null == t.center || t.center, n.scale = null == t.scale || t.scale, n.betaInitializer = getInitializer(t.betaInitializer || "zeros"), n.gammaInitializer = getInitializer(t.gammaInitializer || "ones"), n.betaRegularizer = getRegularizer(t.betaRegularizer), n.gammaRegularizer = getRegularizer(t.gammaRegularizer), n.supportsMasking = !0, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t = (e = getExactlyOneShape(e)).length;
 
-         "number" == typeof this.axis && (this.axis = [this.axis]);
 
-         for (var n = 0; n < this.axis.length; ++n) this.axis[n] < 0 && (this.axis[n] += t);
 
-         for (var r = 0, i = this.axis; r < i.length; r++) {
 
-           var a = i[r];
 
-           if (a < 0 || a >= t) throw new Error("Invalid axis: " + a);
 
-         }
 
-         if (this.axis.length !== unique(this.axis).length) throw new Error("Found duplicate axes in: " + this.axis);
 
-         var o = this.axis.map(function (t) {
 
-           return e[t];
 
-         });
 
-         this.scale ? this.gamma = this.addWeight("gamma", o, "float32", this.gammaInitializer, this.gammaRegularizer, !0) : this.gamma = null, this.center ? this.beta = this.addWeight("beta", o, "float32", this.betaInitializer, this.betaRegularizer, !0) : this.beta = null, this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this,
 
-           r = getExactlyOneTensor(e),
 
-           i = r.shape,
 
-           a = i.length;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var e = (0, _tfjsCore.moments)(r, n.axis, !0), t = e.mean, o = e.variance, s = pyListRepeat(1, a), l = 0, u = n.axis; l < u.length; l++) {
 
-             var c = u[l];
 
-             s[c] = i[c];
 
-           }
 
-           for (var p = function (e) {
 
-             return null != e && e.shape.length !== a && n.axis !== [a - 1] ? e.reshape(s) : e;
 
-           }, h = p(n.gamma.read()), d = p(n.beta.read()), f = [], g = [], m = 0; m < a; ++m) -1 !== n.axis.indexOf(m) ? (f.push(i[m]), g.push(1)) : (f.push(1), g.push(i[m]));
 
-           return t = t.tile(f), o = o.tile(f), h = h.tile(g), d = d.tile(g), batchNormalization(r, t, o, d, h, n.epsilon);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           axis: this.axis,
 
-           epsilon: this.epsilon,
 
-           center: this.center,
 
-           scale: this.scale,
 
-           betaInitializer: serializeInitializer(this.betaInitializer),
 
-           gammaInitializer: serializeInitializer(this.gammaInitializer),
 
-           betaRegularizer: serializeRegularizer(this.betaRegularizer),
 
-           gammaRegularizer: serializeRegularizer(this.gammaRegularizer)
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "LayerNormalization", t;
 
-     }(Layer);
 
-     function spatial2dPadding(e, t, n) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         if (4 !== e.rank) throw new ValueError("temporalPadding expects input tensor to be 4-D, but received a " + e.rank + "-D tensor.");
 
-         if (null == t && (t = [[1, 1], [1, 1]]), 2 !== t.length || 2 !== t[0].length || 2 !== t[1].length) throw new ValueError("spatial2dPadding expects `padding` to be an Array of two Arrays, each of which is an Array of two integers.");
 
-         if (null == n && (n = imageDataFormat()), "channelsLast" !== n && "channelsFirst" !== n) throw new ValueError("Unknown data format: " + n + ". Supported data formats are 'channelsLast' and 'channelsFirst.");
 
-         var r;
 
-         return r = "channelsFirst" === n ? [[0, 0], [0, 0], t[0], t[1]] : [[0, 0], t[0], t[1], [0, 0]], (0, _tfjsCore.pad)(e, r);
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(LayerNormalization);
 
-     var ZeroPadding2D = function (e) {
 
-       function t(t) {
 
-         var n = this;
 
-         if (null == t && (t = {}), (n = e.call(this, t) || this).dataFormat = null == t.dataFormat ? imageDataFormat() : t.dataFormat, null == t.padding) n.padding = [[1, 1], [1, 1]]; else if ("number" == typeof t.padding) n.padding = [[t.padding, t.padding], [t.padding, t.padding]]; else {
 
-           if (t.padding = t.padding, 2 !== t.padding.length) throw new ValueError("ZeroPadding2D expects padding to be a length-2 array, but received a length-" + t.padding.length + " array.");
 
-           var r = void 0,
 
-             i = void 0;
 
-           if ("number" == typeof t.padding[0]) r = [t.padding[0], t.padding[0]], i = [t.padding[1], t.padding[1]]; else {
 
-             if (t.padding = t.padding, 2 !== t.padding[0].length) throw new ValueError("ZeroPadding2D expects height padding to be a length-2 array, but received a length-" + t.padding[0].length + " array.");
 
-             if (r = t.padding[0], 2 !== t.padding[1].length) throw new ValueError("ZeroPadding2D expects width padding to be a length-2 array, but received a length-" + t.padding[1].length + " array.");
 
-             i = t.padding[1];
 
-           }
 
-           n.padding = [r, i];
 
-         }
 
-         return n.inputSpec = [new InputSpec({
 
-           ndim: 4
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         var t, n;
 
-         return e = getExactlyOneShape(e), "channelsFirst" === this.dataFormat ? (t = null != e[2] && e[2] >= 0 ? e[2] + this.padding[0][0] + this.padding[0][1] : null, n = null != e[3] && e[3] >= 0 ? e[3] + this.padding[1][0] + this.padding[1][1] : null, [e[0], e[1], t, n]) : (t = null != e[1] && e[1] >= 0 ? e[1] + this.padding[0][0] + this.padding[0][1] : null, n = null != e[2] && e[2] >= 0 ? e[2] + this.padding[1][0] + this.padding[1][1] : null, [e[0], t, n, e[3]]);
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return spatial2dPadding(getExactlyOneTensor(e), n.padding, n.dataFormat);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           padding: this.padding,
 
-           dataFormat: this.dataFormat
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "ZeroPadding2D", t;
 
-     }(Layer);
 
-     function pool2d(e, t, n, r, i, a) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var o;
 
-         checkDataFormat(i), checkPoolMode(a), checkPaddingMode(r), null == n && (n = [1, 1]), null == r && (r = "valid"), null == i && (i = imageDataFormat()), null == a && (a = "max"), e = preprocessConv2DInput(e, i);
 
-         var s = "same" === r ? "same" : "valid";
 
-         return o = "max" === a ? (0, _tfjsCore.maxPool)(e, t, n, s) : (0, _tfjsCore.avgPool)(e, t, n, s), "channelsFirst" === i && (o = (0, _tfjsCore.transpose)(o, [0, 3, 1, 2])), o;
 
-       });
 
-     }
 
-     function pool3d(e, t, n, r, i, a) {
 
-       return (0, _tfjsCore.tidy)(function () {
 
-         var o;
 
-         checkDataFormat(i), checkPoolMode(a), checkPaddingMode(r), null == n && (n = [1, 1, 1]), null == r && (r = "valid"), null == i && (i = imageDataFormat()), null == a && (a = "max"), e = preprocessConv3DInput(e, i);
 
-         var s = "same" === r ? "same" : "valid";
 
-         return o = "max" === a ? (0, _tfjsCore.maxPool3d)(e, t, n, s) : (0, _tfjsCore.avgPool3d)(e, t, n, s), "channelsFirst" === i && (o = (0, _tfjsCore.transpose)(o, [0, 4, 1, 2, 3])), o;
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(ZeroPadding2D);
 
-     var Pooling1D = function (e) {
 
-       function t(t) {
 
-         var n = this;
 
-         if (null == t.poolSize && (t.poolSize = 2), n = e.call(this, t) || this, "number" == typeof t.poolSize) n.poolSize = [t.poolSize]; else {
 
-           if (!Array.isArray(t.poolSize) || 1 !== t.poolSize.length || "number" != typeof t.poolSize[0]) throw new ValueError("poolSize for 1D convolutional layer must be a number or an Array of a single number, but received " + JSON.stringify(t.poolSize));
 
-           n.poolSize = t.poolSize;
 
-         }
 
-         if (assertPositiveInteger(n.poolSize, "poolSize"), null == t.strides) n.strides = n.poolSize; else if ("number" == typeof t.strides) n.strides = [t.strides]; else {
 
-           if (!Array.isArray(t.strides) || 1 !== t.strides.length || "number" != typeof t.strides[0]) throw new ValueError("strides for 1D convolutional layer must be a number or an Array of a single number, but received " + JSON.stringify(t.strides));
 
-           n.strides = t.strides;
 
-         }
 
-         return assertPositiveInteger(n.strides, "strides"), n.padding = null == t.padding ? "valid" : t.padding, checkPaddingMode(n.padding), n.inputSpec = [new InputSpec({
 
-           ndim: 3
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         var t = convOutputLength((e = getExactlyOneShape(e))[1], this.poolSize[0], this.padding, this.strides[0]);
 
-         return [e[0], t, e[2]];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           n.invokeCallHook(e, t), e = expandDims$1(getExactlyOneTensor(e), 2);
 
-           var r = n.poolingFunction(getExactlyOneTensor(e), [n.poolSize[0], 1], [n.strides[0], 1], n.padding, "channelsLast");
 
-           return (0, _tfjsCore.squeeze)(r, [2]);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           poolSize: this.poolSize,
 
-           padding: this.padding,
 
-           strides: this.strides
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t;
 
-     }(Layer),
 
-       MaxPooling1D = function (e) {
 
-         function t(t) {
 
-           return e.call(this, t) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.poolingFunction = function (e, t, n, r, i) {
 
-           return checkDataFormat(i), checkPaddingMode(r), pool2d(e, t, n, r, i, "max");
 
-         }, t.className = "MaxPooling1D", t;
 
-       }(Pooling1D);
 
-     _tfjsCore.serialization.registerClass(MaxPooling1D);
 
-     var AveragePooling1D = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.poolingFunction = function (e, t, n, r, i) {
 
-         return checkDataFormat(i), checkPaddingMode(r), pool2d(e, t, n, r, i, "avg");
 
-       }, t.className = "AveragePooling1D", t;
 
-     }(Pooling1D);
 
-     _tfjsCore.serialization.registerClass(AveragePooling1D);
 
-     var Pooling2D = function (e) {
 
-       function t(t) {
 
-         var n = this;
 
-         if (null == t.poolSize && (t.poolSize = [2, 2]), (n = e.call(this, t) || this).poolSize = Array.isArray(t.poolSize) ? t.poolSize : [t.poolSize, t.poolSize], null == t.strides) n.strides = n.poolSize; else if (Array.isArray(t.strides)) {
 
-           if (2 !== t.strides.length) throw new ValueError("If the strides property of a 2D pooling layer is an Array, it is expected to have a length of 2, but received length " + t.strides.length + ".");
 
-           n.strides = t.strides;
 
-         } else n.strides = [t.strides, t.strides];
 
-         return assertPositiveInteger(n.poolSize, "poolSize"), assertPositiveInteger(n.strides, "strides"), n.padding = null == t.padding ? "valid" : t.padding, n.dataFormat = null == t.dataFormat ? "channelsLast" : t.dataFormat, checkDataFormat(n.dataFormat), checkPaddingMode(n.padding), n.inputSpec = [new InputSpec({
 
-           ndim: 4
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         e = getExactlyOneShape(e);
 
-         var t = "channelsFirst" === this.dataFormat ? e[2] : e[1],
 
-           n = "channelsFirst" === this.dataFormat ? e[3] : e[2];
 
-         return t = convOutputLength(t, this.poolSize[0], this.padding, this.strides[0]), n = convOutputLength(n, this.poolSize[1], this.padding, this.strides[1]), "channelsFirst" === this.dataFormat ? [e[0], e[1], t, n] : [e[0], t, n, e[3]];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return n.invokeCallHook(e, t), n.poolingFunction(getExactlyOneTensor(e), n.poolSize, n.strides, n.padding, n.dataFormat);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           poolSize: this.poolSize,
 
-           padding: this.padding,
 
-           strides: this.strides,
 
-           dataFormat: this.dataFormat
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t;
 
-     }(Layer),
 
-       MaxPooling2D = function (e) {
 
-         function t(t) {
 
-           return e.call(this, t) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.poolingFunction = function (e, t, n, r, i) {
 
-           return checkDataFormat(i), checkPaddingMode(r), pool2d(e, t, n, r, i, "max");
 
-         }, t.className = "MaxPooling2D", t;
 
-       }(Pooling2D);
 
-     _tfjsCore.serialization.registerClass(MaxPooling2D);
 
-     var AveragePooling2D = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.poolingFunction = function (e, t, n, r, i) {
 
-         return checkDataFormat(i), checkPaddingMode(r), pool2d(e, t, n, r, i, "avg");
 
-       }, t.className = "AveragePooling2D", t;
 
-     }(Pooling2D);
 
-     _tfjsCore.serialization.registerClass(AveragePooling2D);
 
-     var Pooling3D = function (e) {
 
-       function t(t) {
 
-         var n = this;
 
-         if (null == t.poolSize && (t.poolSize = [2, 2, 2]), (n = e.call(this, t) || this).poolSize = Array.isArray(t.poolSize) ? t.poolSize : [t.poolSize, t.poolSize, t.poolSize], null == t.strides) n.strides = n.poolSize; else if (Array.isArray(t.strides)) {
 
-           if (3 !== t.strides.length) throw new ValueError("If the strides property of a 3D pooling layer is an Array, it is expected to have a length of 3, but received length " + t.strides.length + ".");
 
-           n.strides = t.strides;
 
-         } else n.strides = [t.strides, t.strides, t.strides];
 
-         return assertPositiveInteger(n.poolSize, "poolSize"), assertPositiveInteger(n.strides, "strides"), n.padding = null == t.padding ? "valid" : t.padding, n.dataFormat = null == t.dataFormat ? "channelsLast" : t.dataFormat, checkDataFormat(n.dataFormat), checkPaddingMode(n.padding), n.inputSpec = [new InputSpec({
 
-           ndim: 5
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         e = getExactlyOneShape(e);
 
-         var t = "channelsFirst" === this.dataFormat ? e[2] : e[1],
 
-           n = "channelsFirst" === this.dataFormat ? e[3] : e[2],
 
-           r = "channelsFirst" === this.dataFormat ? e[4] : e[3];
 
-         return t = convOutputLength(t, this.poolSize[0], this.padding, this.strides[0]), n = convOutputLength(n, this.poolSize[1], this.padding, this.strides[1]), r = convOutputLength(r, this.poolSize[2], this.padding, this.strides[2]), "channelsFirst" === this.dataFormat ? [e[0], e[1], t, n, r] : [e[0], t, n, r, e[4]];
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           return n.invokeCallHook(e, t), n.poolingFunction(getExactlyOneTensor(e), n.poolSize, n.strides, n.padding, n.dataFormat);
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           poolSize: this.poolSize,
 
-           padding: this.padding,
 
-           strides: this.strides,
 
-           dataFormat: this.dataFormat
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t;
 
-     }(Layer),
 
-       MaxPooling3D = function (e) {
 
-         function t(t) {
 
-           return e.call(this, t) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.poolingFunction = function (e, t, n, r, i) {
 
-           return checkDataFormat(i), checkPaddingMode(r), pool3d(e, t, n, r, i, "max");
 
-         }, t.className = "MaxPooling3D", t;
 
-       }(Pooling3D);
 
-     _tfjsCore.serialization.registerClass(MaxPooling3D);
 
-     var AveragePooling3D = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.poolingFunction = function (e, t, n, r, i) {
 
-         return checkDataFormat(i), checkPaddingMode(r), pool3d(e, t, n, r, i, "avg");
 
-       }, t.className = "AveragePooling3D", t;
 
-     }(Pooling3D);
 
-     _tfjsCore.serialization.registerClass(AveragePooling3D);
 
-     var GlobalPooling1D = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.inputSpec = [new InputSpec({
 
-           ndim: 3
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return [e[0], e[2]];
 
-       }, t.prototype.call = function (e, t) {
 
-         throw new NotImplementedError();
 
-       }, t;
 
-     }(Layer),
 
-       GlobalAveragePooling1D = function (e) {
 
-         function t(t) {
 
-           return e.call(this, t || {}) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.call = function (e, t) {
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             var t = getExactlyOneTensor(e);
 
-             return (0, _tfjsCore.mean)(t, 1);
 
-           });
 
-         }, t.className = "GlobalAveragePooling1D", t;
 
-       }(GlobalPooling1D);
 
-     _tfjsCore.serialization.registerClass(GlobalAveragePooling1D);
 
-     var GlobalMaxPooling1D = function (e) {
 
-       function t(t) {
 
-         return e.call(this, t || {}) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var t = getExactlyOneTensor(e);
 
-           return (0, _tfjsCore.max)(t, 1);
 
-         });
 
-       }, t.className = "GlobalMaxPooling1D", t;
 
-     }(GlobalPooling1D);
 
-     _tfjsCore.serialization.registerClass(GlobalMaxPooling1D);
 
-     var GlobalPooling2D = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.dataFormat = null == t.dataFormat ? "channelsLast" : t.dataFormat, checkDataFormat(n.dataFormat), n.inputSpec = [new InputSpec({
 
-           ndim: 4
 
-         })], n;
 
-       }
 
-       return __extends(t, e), t.prototype.computeOutputShape = function (e) {
 
-         return e = e, "channelsLast" === this.dataFormat ? [e[0], e[3]] : [e[0], e[1]];
 
-       }, t.prototype.call = function (e, t) {
 
-         throw new NotImplementedError();
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           dataFormat: this.dataFormat
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t;
 
-     }(Layer),
 
-       GlobalAveragePooling2D = function (e) {
 
-         function t() {
 
-           return null !== e && e.apply(this, arguments) || this;
 
-         }
 
-         return __extends(t, e), t.prototype.call = function (e, t) {
 
-           var n = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             var t = getExactlyOneTensor(e);
 
-             return "channelsLast" === n.dataFormat ? (0, _tfjsCore.mean)(t, [1, 2]) : (0, _tfjsCore.mean)(t, [2, 3]);
 
-           });
 
-         }, t.className = "GlobalAveragePooling2D", t;
 
-       }(GlobalPooling2D);
 
-     _tfjsCore.serialization.registerClass(GlobalAveragePooling2D);
 
-     var GlobalMaxPooling2D = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var t = getExactlyOneTensor(e);
 
-           return "channelsLast" === n.dataFormat ? (0, _tfjsCore.max)(t, [1, 2]) : (0, _tfjsCore.max)(t, [2, 3]);
 
-         });
 
-       }, t.className = "GlobalMaxPooling2D", t;
 
-     }(GlobalPooling2D);
 
-     function standardizeArgs(e, t, n, r) {
 
-       if (Array.isArray(e)) {
 
-         if (null != t || null != n) throw new ValueError("When inputs is an array, neither initialState or constants should be provided");
 
-         null != r && (n = e.slice(e.length - r, e.length), e = e.slice(0, e.length - r)), e.length > 1 && (t = e.slice(1, e.length)), e = e[0];
 
-       }
 
-       function i(e) {
 
-         return null == e || Array.isArray(e) ? e : [e];
 
-       }
 
-       return {
 
-         inputs: e,
 
-         initialState: t = i(t),
 
-         constants: n = i(n)
 
-       };
 
-     }
 
-     function rnn(e, t, n, r, i, a, o, s) {
 
-       return void 0 === r && (r = !1), void 0 === o && (o = !1), void 0 === s && (s = !1), (0, _tfjsCore.tidy)(function () {
 
-         var l = t.shape.length;
 
-         if (l < 3) throw new ValueError("Input should be at least 3D, but is " + l + "D.");
 
-         var u = [1, 0].concat(range(2, l));
 
-         if (t = (0, _tfjsCore.transpose)(t, u), null != a) throw new NotImplementedError("The rnn() functoin of the deeplearn.js backend does not support constants yet.");
 
-         o && console.warn("Backend rnn(): the unroll = true option is not applicable to the imperative deeplearn.js backend."), null != i && ((i = i.asType("bool").asType("float32")).rank === l - 1 && (i = (0, _tfjsCore.expandDims)(i, -1)), i = (0, _tfjsCore.transpose)(i, u)), r && (t = (0, _tfjsCore.reverse)(t, 0), null != i && (i = (0, _tfjsCore.reverse)(i, 0)));
 
-         var c,
 
-           p,
 
-           h = [],
 
-           d = n,
 
-           f = t.shape[0],
 
-           g = (0, _tfjsCore.unstack)(t);
 
-         null != i && (p = (0, _tfjsCore.unstack)(i));
 
-         for (var m, y = function (t) {
 
-           var n = g[t],
 
-             r = (0, _tfjsCore.tidy)(function () {
 
-               return e(n, d);
 
-             });
 
-           if (null == i) c = r[0], d = r[1]; else {
 
-             var a = (0, _tfjsCore.tidy)(function () {
 
-               var e = p[t],
 
-                 n = (0, _tfjsCore.onesLike)(e).sub(e);
 
-               return {
 
-                 output: r[0].mul(e).addStrict(d[0].mul(n)),
 
-                 newStates: d.map(function (t, i) {
 
-                   return r[1][i].mul(e).addStrict(t.mul(n));
 
-                 })
 
-               };
 
-             });
 
-             c = a.output, d = a.newStates;
 
-           }
 
-           s && h.push(c);
 
-         }, v = 0; v < f; ++v) y(v);
 
-         if (s) {
 
-           m = (0, _tfjsCore.stack)(h, 1);
 
-         }
 
-         return [c, m, d];
 
-       });
 
-     }
 
-     _tfjsCore.serialization.registerClass(GlobalMaxPooling2D);
 
-     var RNN = function (e) {
 
-       function t(t) {
 
-         var n,
 
-           r = e.call(this, t) || this;
 
-         if (null == t.cell) throw new ValueError("cell property is missing for the constructor of RNN.");
 
-         if (null == (n = Array.isArray(t.cell) ? new StackedRNNCells({
 
-           cells: t.cell
 
-         }) : t.cell).stateSize) throw new ValueError("The RNN cell should have an attribute `stateSize` (tuple of integers, one integer per RNN state).");
 
-         return r.cell = n, r.returnSequences = null != t.returnSequences && t.returnSequences, r.returnState = null != t.returnState && t.returnState, r.goBackwards = null != t.goBackwards && t.goBackwards, r._stateful = null != t.stateful && t.stateful, r.unroll = null != t.unroll && t.unroll, r.supportsMasking = !0, r.inputSpec = [new InputSpec({
 
-           ndim: 3
 
-         })], r.stateSpec = null, r.states_ = null, r.numConstants = null, r.keptStates = [], r;
 
-       }
 
-       return __extends(t, e), t.prototype.getStates = function () {
 
-         return null == this.states_ ? range(0, Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1).map(function (e) {
 
-           return null;
 
-         }) : this.states_;
 
-       }, t.prototype.setStates = function (e) {
 
-         this.states_ = e;
 
-       }, t.prototype.computeOutputShape = function (e) {
 
-         isArrayOfShapes(e) && (e = e[0]), e = e;
 
-         var t = this.cell.stateSize;
 
-         Array.isArray(t) || (t = [t]);
 
-         var n,
 
-           r = t[0];
 
-         if (n = this.returnSequences ? [e[0], e[1], r] : [e[0], r], this.returnState) {
 
-           for (var i = [], a = 0, o = t; a < o.length; a++) {
 
-             var s = o[a];
 
-             i.push([e[0], s]);
 
-           }
 
-           return [n].concat(i);
 
-         }
 
-         return n;
 
-       }, t.prototype.computeMask = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           Array.isArray(t) && (t = t[0]);
 
-           var e = n.returnSequences ? t : null;
 
-           if (n.returnState) {
 
-             var r = n.states.map(function (e) {
 
-               return null;
 
-             });
 
-             return [e].concat(r);
 
-           }
 
-           return e;
 
-         });
 
-       }, Object.defineProperty(t.prototype, "states", {
 
-         get: function () {
 
-           if (null == this.states_) {
 
-             for (var e = Array.isArray(this.cell.stateSize) ? this.cell.stateSize.length : 1, t = [], n = 0; n < e; ++n) t.push(null);
 
-             return t;
 
-           }
 
-           return this.states_;
 
-         },
 
-         set: function (e) {
 
-           this.states_ = e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.build = function (e) {
 
-         if (null != this.numConstants) throw new NotImplementedError("Constants support is not implemented in RNN yet.");
 
-         isArrayOfShapes(e) && (e = e[0]), e = e;
 
-         var t = this.stateful ? e[0] : null,
 
-           n = e[e.length - 1];
 
-         this.inputSpec[0] = new InputSpec({
 
-           shape: [t, null, n]
 
-         });
 
-         var r,
 
-           i = [e[0]].concat(e.slice(2));
 
-         if (this.cell.build(i), r = Array.isArray(this.cell.stateSize) ? this.cell.stateSize : [this.cell.stateSize], null != this.stateSpec) {
 
-           if (!_tfjsCore.util.arraysEqual(this.stateSpec.map(function (e) {
 
-             return e.shape[e.shape.length - 1];
 
-           }), r)) throw new ValueError("An initialState was passed that is not compatible with cell.stateSize. Received stateSpec=" + this.stateSpec + "; However cell.stateSize is " + this.cell.stateSize);
 
-         } else this.stateSpec = r.map(function (e) {
 
-           return new InputSpec({
 
-             shape: [null, e]
 
-           });
 
-         });
 
-         this.stateful && this.resetStates();
 
-       }, t.prototype.resetStates = function (e, t) {
 
-         var n = this;
 
-         void 0 === t && (t = !1), (0, _tfjsCore.tidy)(function () {
 
-           if (!n.stateful) throw new AttributeError("Cannot call resetStates() on an RNN Layer that is not stateful.");
 
-           var r = n.inputSpec[0].shape[0];
 
-           if (null == r) throw new ValueError("If an RNN is stateful, it needs to know its batch size. Specify the batch size of your input tensors: \n- If using a Sequential model, specify the batch size by passing a `batchInputShape` option to your first layer.\n- If using the functional API, specify the batch size by passing a `batchShape` option to your Input layer.");
 
-           if (null == n.states_) Array.isArray(n.cell.stateSize) ? n.states_ = n.cell.stateSize.map(function (e) {
 
-             return (0, _tfjsCore.zeros)([r, e]);
 
-           }) : n.states_ = [(0, _tfjsCore.zeros)([r, n.cell.stateSize])]; else if (null == e) (0, _tfjsCore.dispose)(n.states_), null != n.keptStates && ((0, _tfjsCore.dispose)(n.keptStates), n.keptStates = []), Array.isArray(n.cell.stateSize) ? n.states_ = n.cell.stateSize.map(function (e) {
 
-             return (0, _tfjsCore.zeros)([r, e]);
 
-           }) : n.states_[0] = (0, _tfjsCore.zeros)([r, n.cell.stateSize]); else {
 
-             if (Array.isArray(e) || (e = [e]), e.length !== n.states_.length) throw new ValueError("Layer " + n.name + " expects " + n.states_.length + " state(s), but it received " + e.length + " state value(s). Input received: " + e);
 
-             !0 === t ? n.keptStates.push(n.states_.slice()) : (0, _tfjsCore.dispose)(n.states_);
 
-             for (var i = 0; i < n.states_.length; ++i) {
 
-               var a = e[i],
 
-                 o = Array.isArray(n.cell.stateSize) ? n.cell.stateSize[i] : n.cell.stateSize,
 
-                 s = [r, o];
 
-               if (!_tfjsCore.util.arraysEqual(a.shape, s)) throw new ValueError("State " + i + " is incompatible with layer " + n.name + ": expected shape=" + s + ", received shape=" + a.shape);
 
-               n.states_[i] = a;
 
-             }
 
-           }
 
-           n.states_ = n.states_.map(function (e) {
 
-             return (0, _tfjsCore.keep)(e.clone());
 
-           });
 
-         });
 
-       }, t.prototype.apply = function (t, n) {
 
-         var r = null == n ? null : n.initialState,
 
-           i = null == n ? null : n.constants;
 
-         null == n && (n = {});
 
-         var a = standardizeArgs(t, r, i, this.numConstants);
 
-         t = a.inputs, r = a.initialState, i = a.constants;
 
-         var o = [],
 
-           s = [];
 
-         if (null != r) {
 
-           n.initialState = r, o = o.concat(r), this.stateSpec = [];
 
-           for (var l = 0, u = r; l < u.length; l++) {
 
-             var c = u[l];
 
-             this.stateSpec.push(new InputSpec({
 
-               shape: c.shape
 
-             }));
 
-           }
 
-           s = s.concat(this.stateSpec);
 
-         }
 
-         if (null != i && (n.constants = i, o = o.concat(i), this.numConstants = i.length), o[0] instanceof SymbolicTensor) {
 
-           var p = [t].concat(o),
 
-             h = this.inputSpec.concat(s),
 
-             d = this.inputSpec;
 
-           this.inputSpec = h;
 
-           var f = e.prototype.apply.call(this, p, n);
 
-           return this.inputSpec = d, f;
 
-         }
 
-         return e.prototype.apply.call(this, t, n);
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var r = null == t ? null : t.mask,
 
-             i = null == t ? null : t.training,
 
-             a = null == t ? null : t.initialState;
 
-           e = getExactlyOneTensor(e), null == a && (a = n.stateful ? n.states_ : n.getInitialState(e));
 
-           var o = Array.isArray(n.cell.stateSize) ? n.cell.stateSize.length : 1;
 
-           if (a.length !== o) throw new ValueError("RNN Layer has " + o + " state(s) but was passed " + a.length + " initial state(s).");
 
-           n.unroll && console.warn("Ignoring unroll = true for RNN layer, due to imperative backend.");
 
-           var s = {
 
-             training: i
 
-           },
 
-             l = rnn(function (e, t) {
 
-               var r = n.cell.call([e].concat(t), s);
 
-               return [r[0], r.slice(1)];
 
-             }, e, a, n.goBackwards, r, null, n.unroll, n.returnSequences),
 
-             u = l[0],
 
-             c = l[1],
 
-             p = l[2];
 
-           n.stateful && n.resetStates(p, i);
 
-           var h = n.returnSequences ? c : u;
 
-           return n.returnState ? [h].concat(p) : h;
 
-         });
 
-       }, t.prototype.getInitialState = function (e) {
 
-         var t = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var n = (0, _tfjsCore.zeros)(e.shape);
 
-           return n = expandDims$1(n = (0, _tfjsCore.sum)(n, [1, 2])), Array.isArray(t.cell.stateSize) ? t.cell.stateSize.map(function (e) {
 
-             return e > 1 ? tile$1(n, [1, e]) : n;
 
-           }) : t.cell.stateSize > 1 ? [tile$1(n, [1, t.cell.stateSize])] : [n];
 
-         });
 
-       }, Object.defineProperty(t.prototype, "trainableWeights", {
 
-         get: function () {
 
-           return this.trainable ? this.cell.trainableWeights : [];
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "nonTrainableWeights", {
 
-         get: function () {
 
-           return this.trainable ? this.cell.nonTrainableWeights : this.cell.weights;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.setFastWeightInitDuringBuild = function (t) {
 
-         e.prototype.setFastWeightInitDuringBuild.call(this, t), null != this.cell && this.cell.setFastWeightInitDuringBuild(t);
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           returnSequences: this.returnSequences,
 
-           returnState: this.returnState,
 
-           goBackwards: this.goBackwards,
 
-           stateful: this.stateful,
 
-           unroll: this.unroll
 
-         };
 
-         null != this.numConstants && (t.numConstants = this.numConstants);
 
-         var n = this.cell.getConfig();
 
-         t.cell = {
 
-           className: this.cell.getClassName(),
 
-           config: n
 
-         };
 
-         var r = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, r), t;
 
-       }, t.fromConfig = function (e, t, n) {
 
-         void 0 === n && (n = {});
 
-         var r = deserialize(t.cell, n);
 
-         return new e(Object.assign(t, {
 
-           cell: r
 
-         }));
 
-       }, t.className = "RNN", t;
 
-     }(Layer);
 
-     exports.RNN = RNN;
 
-     _tfjsCore.serialization.registerClass(RNN);
 
-     var RNNCell = function (e) {
 
-       function t() {
 
-         return null !== e && e.apply(this, arguments) || this;
 
-       }
 
-       return __extends(t, e), t;
 
-     }(Layer),
 
-       SimpleRNNCell = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this, t) || this;
 
-           return n.DEFAULT_ACTIVATION = "tanh", n.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", n.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", n.DEFAULT_BIAS_INITIALIZER = "zeros", n.units = t.units, assertPositiveInteger(n.units, "units"), n.activation = getActivation(null == t.activation ? n.DEFAULT_ACTIVATION : t.activation), n.useBias = null == t.useBias || t.useBias, n.kernelInitializer = getInitializer(t.kernelInitializer || n.DEFAULT_KERNEL_INITIALIZER), n.recurrentInitializer = getInitializer(t.recurrentInitializer || n.DEFAULT_RECURRENT_INITIALIZER), n.biasInitializer = getInitializer(t.biasInitializer || n.DEFAULT_BIAS_INITIALIZER), n.kernelRegularizer = getRegularizer(t.kernelRegularizer), n.recurrentRegularizer = getRegularizer(t.recurrentRegularizer), n.biasRegularizer = getRegularizer(t.biasRegularizer), n.kernelConstraint = getConstraint(t.kernelConstraint), n.recurrentConstraint = getConstraint(t.recurrentConstraint), n.biasConstraint = getConstraint(t.biasConstraint), n.dropout = min$1([1, max$1([0, null == t.dropout ? 0 : t.dropout])]), n.recurrentDropout = min$1([1, max$1([0, null == t.recurrentDropout ? 0 : t.recurrentDropout])]), n.stateSize = n.units, n.dropoutMask = null, n.recurrentDropoutMask = null, n;
 
-         }
 
-         return __extends(t, e), t.prototype.build = function (e) {
 
-           e = getExactlyOneShape(e), this.kernel = this.addWeight("kernel", [e[e.length - 1], this.units], null, this.kernelInitializer, this.kernelRegularizer, !0, this.kernelConstraint), this.recurrentKernel = this.addWeight("recurrent_kernel", [this.units, this.units], null, this.recurrentInitializer, this.recurrentRegularizer, !0, this.recurrentConstraint), this.useBias ? this.bias = this.addWeight("bias", [this.units], null, this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint) : this.bias = null, this.built = !0;
 
-         }, t.prototype.call = function (e, t) {
 
-           var n = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             if (2 !== (e = e).length) throw new ValueError("SimpleRNNCell expects 2 input Tensors, got " + e.length + ".");
 
-             var r = e[1];
 
-             e = e[0];
 
-             var i,
 
-               a = null != t.training && t.training;
 
-             0 < n.dropout && n.dropout < 1 && null == n.dropoutMask && (n.dropoutMask = generateDropoutMask(function () {
 
-               return (0, _tfjsCore.onesLike)(e);
 
-             }, n.dropout, a)), 0 < n.recurrentDropout && n.recurrentDropout < 1 && null == n.recurrentDropoutMask && (n.recurrentDropoutMask = generateDropoutMask(function () {
 
-               return (0, _tfjsCore.onesLike)(r);
 
-             }, n.recurrentDropout, a));
 
-             var o = n.dropoutMask,
 
-               s = n.recurrentDropoutMask;
 
-             i = dot(null != o ? (0, _tfjsCore.mul)(e, o) : e, n.kernel.read()), null != n.bias && (i = biasAdd(i, n.bias.read())), null != s && (r = (0, _tfjsCore.mul)(r, s));
 
-             var l = (0, _tfjsCore.add)(i, dot(r, n.recurrentKernel.read()));
 
-             return null != n.activation && (l = n.activation.apply(l)), [l, l];
 
-           });
 
-         }, t.prototype.getConfig = function () {
 
-           var t = {
 
-             units: this.units,
 
-             activation: serializeActivation(this.activation),
 
-             useBias: this.useBias,
 
-             kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-             recurrentInitializer: serializeInitializer(this.recurrentInitializer),
 
-             biasInitializer: serializeInitializer(this.biasInitializer),
 
-             kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-             recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),
 
-             biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-             activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-             kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-             recurrentConstraint: serializeConstraint(this.recurrentConstraint),
 
-             biasConstraint: serializeConstraint(this.biasConstraint),
 
-             dropout: this.dropout,
 
-             recurrentDropout: this.recurrentDropout
 
-           },
 
-             n = e.prototype.getConfig.call(this);
 
-           return Object.assign(t, n), t;
 
-         }, t.className = "SimpleRNNCell", t;
 
-       }(RNNCell);
 
-     _tfjsCore.serialization.registerClass(SimpleRNNCell);
 
-     var SimpleRNN = function (e) {
 
-       function t(t) {
 
-         return t.cell = new SimpleRNNCell(t), e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (t, n) {
 
-         var r = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           null != r.cell.dropoutMask && ((0, _tfjsCore.dispose)(r.cell.dropoutMask), r.cell.dropoutMask = null), null != r.cell.recurrentDropoutMask && ((0, _tfjsCore.dispose)(r.cell.recurrentDropoutMask), r.cell.recurrentDropoutMask = null);
 
-           var i = null == n ? null : n.mask,
 
-             a = null == n ? null : n.training,
 
-             o = null == n ? null : n.initialState;
 
-           return e.prototype.call.call(r, t, {
 
-             mask: i,
 
-             training: a,
 
-             initialState: o
 
-           });
 
-         });
 
-       }, Object.defineProperty(t.prototype, "units", {
 
-         get: function () {
 
-           return this.cell.units;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "activation", {
 
-         get: function () {
 
-           return this.cell.activation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "useBias", {
 
-         get: function () {
 
-           return this.cell.useBias;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelInitializer", {
 
-         get: function () {
 
-           return this.cell.kernelInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentInitializer", {
 
-         get: function () {
 
-           return this.cell.recurrentInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasInitializer", {
 
-         get: function () {
 
-           return this.cell.biasInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelRegularizer", {
 
-         get: function () {
 
-           return this.cell.kernelRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentRegularizer", {
 
-         get: function () {
 
-           return this.cell.recurrentRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasRegularizer", {
 
-         get: function () {
 
-           return this.cell.biasRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelConstraint", {
 
-         get: function () {
 
-           return this.cell.kernelConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentConstraint", {
 
-         get: function () {
 
-           return this.cell.recurrentConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasConstraint", {
 
-         get: function () {
 
-           return this.cell.biasConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "dropout", {
 
-         get: function () {
 
-           return this.cell.dropout;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentDropout", {
 
-         get: function () {
 
-           return this.cell.recurrentDropout;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.getConfig = function () {
 
-         var t = {
 
-           units: this.units,
 
-           activation: serializeActivation(this.activation),
 
-           useBias: this.useBias,
 
-           kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-           recurrentInitializer: serializeInitializer(this.recurrentInitializer),
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-           recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-           recurrentConstraint: serializeConstraint(this.recurrentConstraint),
 
-           biasConstraint: serializeConstraint(this.biasConstraint),
 
-           dropout: this.dropout,
 
-           recurrentDropout: this.recurrentDropout
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return delete n.cell, Object.assign(t, n), t;
 
-       }, t.fromConfig = function (e, t) {
 
-         return new e(t);
 
-       }, t.className = "SimpleRNN", t;
 
-     }(RNN);
 
-     _tfjsCore.serialization.registerClass(SimpleRNN);
 
-     var GRUCell = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.DEFAULT_ACTIVATION = "tanh", n.DEFAULT_RECURRENT_ACTIVATION = "hardSigmoid", n.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", n.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", n.DEFAULT_BIAS_INITIALIZER = "zeros", n.units = t.units, assertPositiveInteger(n.units, "units"), n.activation = getActivation(void 0 === t.activation ? n.DEFAULT_ACTIVATION : t.activation), n.recurrentActivation = getActivation(void 0 === t.recurrentActivation ? n.DEFAULT_RECURRENT_ACTIVATION : t.recurrentActivation), n.useBias = null == t.useBias || t.useBias, n.kernelInitializer = getInitializer(t.kernelInitializer || n.DEFAULT_KERNEL_INITIALIZER), n.recurrentInitializer = getInitializer(t.recurrentInitializer || n.DEFAULT_RECURRENT_INITIALIZER), n.biasInitializer = getInitializer(t.biasInitializer || n.DEFAULT_BIAS_INITIALIZER), n.kernelRegularizer = getRegularizer(t.kernelRegularizer), n.recurrentRegularizer = getRegularizer(t.recurrentRegularizer), n.biasRegularizer = getRegularizer(t.biasRegularizer), n.kernelConstraint = getConstraint(t.kernelConstraint), n.recurrentConstraint = getConstraint(t.recurrentConstraint), n.biasConstraint = getConstraint(t.biasConstraint), n.dropout = min$1([1, max$1([0, null == t.dropout ? 0 : t.dropout])]), n.recurrentDropout = min$1([1, max$1([0, null == t.recurrentDropout ? 0 : t.recurrentDropout])]), n.implementation = t.implementation, n.stateSize = n.units, n.dropoutMask = null, n.recurrentDropoutMask = null, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t = (e = getExactlyOneShape(e))[e.length - 1];
 
-         this.kernel = this.addWeight("kernel", [t, 3 * this.units], null, this.kernelInitializer, this.kernelRegularizer, !0, this.kernelConstraint), this.recurrentKernel = this.addWeight("recurrent_kernel", [this.units, 3 * this.units], null, this.recurrentInitializer, this.recurrentRegularizer, !0, this.recurrentConstraint), this.useBias ? this.bias = this.addWeight("bias", [3 * this.units], null, this.biasInitializer, this.biasRegularizer, !0, this.biasConstraint) : this.bias = null, this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           if (2 !== (e = e).length) throw new ValueError("GRUCell expects 2 input Tensors (inputs, h, c), got " + e.length + ".");
 
-           var r = null != t.training && t.training,
 
-             i = e[1];
 
-           e = e[0], 0 < n.dropout && n.dropout < 1 && null == n.dropoutMask && (n.dropoutMask = generateDropoutMask(function () {
 
-             return (0, _tfjsCore.onesLike)(e);
 
-           }, n.dropout, r, 3)), 0 < n.recurrentDropout && n.recurrentDropout < 1 && null == n.recurrentDropoutMask && (n.recurrentDropoutMask = generateDropoutMask(function () {
 
-             return (0, _tfjsCore.onesLike)(i);
 
-           }, n.recurrentDropout, r, 3));
 
-           var a,
 
-             o,
 
-             s,
 
-             l = n.dropoutMask,
 
-             u = n.recurrentDropoutMask;
 
-           0 < n.dropout && n.dropout < 1 && (e = (0, _tfjsCore.mul)(e, l[0]));
 
-           var c = dot(e, n.kernel.read());
 
-           n.useBias && (c = biasAdd(c, n.bias.read())), 0 < n.recurrentDropout && n.recurrentDropout < 1 && (i = (0, _tfjsCore.mul)(i, u[0]));
 
-           var p = n.recurrentKernel.read(),
 
-             h = (0, _tfjsCore.split)(p, [2 * n.units, n.units], p.rank - 1),
 
-             d = h[0],
 
-             f = h[1],
 
-             g = dot(i, d),
 
-             m = (0, _tfjsCore.split)(c, 3, c.rank - 1),
 
-             y = m[0],
 
-             v = m[1],
 
-             b = m[2],
 
-             w = (0, _tfjsCore.split)(g, 2, g.rank - 1),
 
-             z = w[0],
 
-             S = w[1];
 
-           a = n.recurrentActivation.apply((0, _tfjsCore.add)(y, z)), o = n.recurrentActivation.apply((0, _tfjsCore.add)(v, S));
 
-           var A = dot((0, _tfjsCore.mul)(o, i), f);
 
-           s = n.activation.apply((0, _tfjsCore.add)(b, A));
 
-           var _ = (0, _tfjsCore.add)((0, _tfjsCore.mul)(a, i), (0, _tfjsCore.mul)((0, _tfjsCore.add)(1, (0, _tfjsCore.neg)(a)), s));
 
-           return [_, _];
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           units: this.units,
 
-           activation: serializeActivation(this.activation),
 
-           recurrentActivation: serializeActivation(this.recurrentActivation),
 
-           useBias: this.useBias,
 
-           kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-           recurrentInitializer: serializeInitializer(this.recurrentInitializer),
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-           recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-           recurrentConstraint: serializeConstraint(this.recurrentConstraint),
 
-           biasConstraint: serializeConstraint(this.biasConstraint),
 
-           dropout: this.dropout,
 
-           recurrentDropout: this.recurrentDropout,
 
-           implementation: this.implementation
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "GRUCell", t;
 
-     }(RNNCell);
 
-     _tfjsCore.serialization.registerClass(GRUCell);
 
-     var GRU = function (e) {
 
-       function t(t) {
 
-         return 0 === t.implementation && console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."), t.cell = new GRUCell(t), e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (t, n) {
 
-         var r = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           null != r.cell.dropoutMask && ((0, _tfjsCore.dispose)(r.cell.dropoutMask), r.cell.dropoutMask = null), null != r.cell.recurrentDropoutMask && ((0, _tfjsCore.dispose)(r.cell.recurrentDropoutMask), r.cell.recurrentDropoutMask = null);
 
-           var i = null == n ? null : n.mask,
 
-             a = null == n ? null : n.training,
 
-             o = null == n ? null : n.initialState;
 
-           return e.prototype.call.call(r, t, {
 
-             mask: i,
 
-             training: a,
 
-             initialState: o
 
-           });
 
-         });
 
-       }, Object.defineProperty(t.prototype, "units", {
 
-         get: function () {
 
-           return this.cell.units;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "activation", {
 
-         get: function () {
 
-           return this.cell.activation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentActivation", {
 
-         get: function () {
 
-           return this.cell.recurrentActivation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "useBias", {
 
-         get: function () {
 
-           return this.cell.useBias;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelInitializer", {
 
-         get: function () {
 
-           return this.cell.kernelInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentInitializer", {
 
-         get: function () {
 
-           return this.cell.recurrentInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasInitializer", {
 
-         get: function () {
 
-           return this.cell.biasInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelRegularizer", {
 
-         get: function () {
 
-           return this.cell.kernelRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentRegularizer", {
 
-         get: function () {
 
-           return this.cell.recurrentRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasRegularizer", {
 
-         get: function () {
 
-           return this.cell.biasRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelConstraint", {
 
-         get: function () {
 
-           return this.cell.kernelConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentConstraint", {
 
-         get: function () {
 
-           return this.cell.recurrentConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasConstraint", {
 
-         get: function () {
 
-           return this.cell.biasConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "dropout", {
 
-         get: function () {
 
-           return this.cell.dropout;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentDropout", {
 
-         get: function () {
 
-           return this.cell.recurrentDropout;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "implementation", {
 
-         get: function () {
 
-           return this.cell.implementation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.getConfig = function () {
 
-         var t = {
 
-           units: this.units,
 
-           activation: serializeActivation(this.activation),
 
-           recurrentActivation: serializeActivation(this.recurrentActivation),
 
-           useBias: this.useBias,
 
-           kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-           recurrentInitializer: serializeInitializer(this.recurrentInitializer),
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-           recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-           recurrentConstraint: serializeConstraint(this.recurrentConstraint),
 
-           biasConstraint: serializeConstraint(this.biasConstraint),
 
-           dropout: this.dropout,
 
-           recurrentDropout: this.recurrentDropout,
 
-           implementation: this.implementation
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return delete n.cell, Object.assign(t, n), t;
 
-       }, t.fromConfig = function (e, t) {
 
-         return 0 === t.implmentation && (t.implementation = 1), new e(t);
 
-       }, t.className = "GRU", t;
 
-     }(RNN);
 
-     _tfjsCore.serialization.registerClass(GRU);
 
-     var LSTMCell = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.DEFAULT_ACTIVATION = "tanh", n.DEFAULT_RECURRENT_ACTIVATION = "hardSigmoid", n.DEFAULT_KERNEL_INITIALIZER = "glorotNormal", n.DEFAULT_RECURRENT_INITIALIZER = "orthogonal", n.DEFAULT_BIAS_INITIALIZER = "zeros", n.units = t.units, assertPositiveInteger(n.units, "units"), n.activation = getActivation(void 0 === t.activation ? n.DEFAULT_ACTIVATION : t.activation), n.recurrentActivation = getActivation(void 0 === t.recurrentActivation ? n.DEFAULT_RECURRENT_ACTIVATION : t.recurrentActivation), n.useBias = null == t.useBias || t.useBias, n.kernelInitializer = getInitializer(t.kernelInitializer || n.DEFAULT_KERNEL_INITIALIZER), n.recurrentInitializer = getInitializer(t.recurrentInitializer || n.DEFAULT_RECURRENT_INITIALIZER), n.biasInitializer = getInitializer(t.biasInitializer || n.DEFAULT_BIAS_INITIALIZER), n.unitForgetBias = t.unitForgetBias, n.kernelRegularizer = getRegularizer(t.kernelRegularizer), n.recurrentRegularizer = getRegularizer(t.recurrentRegularizer), n.biasRegularizer = getRegularizer(t.biasRegularizer), n.kernelConstraint = getConstraint(t.kernelConstraint), n.recurrentConstraint = getConstraint(t.recurrentConstraint), n.biasConstraint = getConstraint(t.biasConstraint), n.dropout = min$1([1, max$1([0, null == t.dropout ? 0 : t.dropout])]), n.recurrentDropout = min$1([1, max$1([0, null == t.recurrentDropout ? 0 : t.recurrentDropout])]), n.implementation = t.implementation, n.stateSize = [n.units, n.units], n.dropoutMask = null, n.recurrentDropoutMask = null, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         var t,
 
-           n,
 
-           r = (e = getExactlyOneShape(e))[e.length - 1];
 
-         if (this.kernel = this.addWeight("kernel", [r, 4 * this.units], null, this.kernelInitializer, this.kernelRegularizer, !0, this.kernelConstraint), this.recurrentKernel = this.addWeight("recurrent_kernel", [this.units, 4 * this.units], null, this.recurrentInitializer, this.recurrentRegularizer, !0, this.recurrentConstraint), this.useBias) {
 
-           if (this.unitForgetBias) {
 
-             var i = this.biasInitializer,
 
-               a = this.units;
 
-             n = new ((t = function (e) {
 
-               function t() {
 
-                 return null !== e && e.apply(this, arguments) || this;
 
-               }
 
-               return __extends(t, e), t.prototype.apply = function (e, t) {
 
-                 var n = i.apply([a]),
 
-                   r = new Ones().apply([a]),
 
-                   o = i.apply([2 * a]);
 
-                 return concatAlongFirstAxis(concatAlongFirstAxis(n, r), o);
 
-               }, t;
 
-             }(Initializer)).className = "CustomInit", t)();
 
-           } else n = this.biasInitializer;
 
-           this.bias = this.addWeight("bias", [4 * this.units], null, n, this.biasRegularizer, !0, this.biasConstraint);
 
-         } else this.bias = null;
 
-         this.built = !0;
 
-       }, t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           var r = null != t.training && t.training;
 
-           if (3 !== (e = e).length) throw new ValueError("LSTMCell expects 3 input Tensors (inputs, h, c), got " + e.length + ".");
 
-           var i = e[1],
 
-             a = e[2];
 
-           e = e[0], 0 < n.dropout && n.dropout < 1 && null == n.dropoutMask && (n.dropoutMask = generateDropoutMask(function () {
 
-             return (0, _tfjsCore.onesLike)(e);
 
-           }, n.dropout, r, 4)), 0 < n.recurrentDropout && n.recurrentDropout < 1 && null == n.recurrentDropoutMask && (n.recurrentDropoutMask = generateDropoutMask(function () {
 
-             return (0, _tfjsCore.onesLike)(i);
 
-           }, n.recurrentDropout, r, 4));
 
-           var o,
 
-             s,
 
-             l,
 
-             u,
 
-             c = n.dropoutMask,
 
-             p = n.recurrentDropoutMask;
 
-           0 < n.dropout && n.dropout < 1 && (e = (0, _tfjsCore.mul)(e, c[0]));
 
-           var h = dot(e, n.kernel.read());
 
-           0 < n.recurrentDropout && n.recurrentDropout < 1 && (i = (0, _tfjsCore.mul)(i, p[0])), h = (0, _tfjsCore.add)(h, dot(i, n.recurrentKernel.read())), n.useBias && (h = biasAdd(h, n.bias.read()));
 
-           var d = (0, _tfjsCore.split)(h, 4, h.rank - 1),
 
-             f = d[0],
 
-             g = d[1],
 
-             m = d[2],
 
-             y = d[3];
 
-           o = n.recurrentActivation.apply(f), s = n.recurrentActivation.apply(g), l = (0, _tfjsCore.add)((0, _tfjsCore.mul)(s, a), (0, _tfjsCore.mul)(o, n.activation.apply(m))), u = n.recurrentActivation.apply(y);
 
-           var v = (0, _tfjsCore.mul)(u, n.activation.apply(l));
 
-           return [v, v, l];
 
-         });
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           units: this.units,
 
-           activation: serializeActivation(this.activation),
 
-           recurrentActivation: serializeActivation(this.recurrentActivation),
 
-           useBias: this.useBias,
 
-           kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-           recurrentInitializer: serializeInitializer(this.recurrentInitializer),
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           unitForgetBias: this.unitForgetBias,
 
-           kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-           recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-           recurrentConstraint: serializeConstraint(this.recurrentConstraint),
 
-           biasConstraint: serializeConstraint(this.biasConstraint),
 
-           dropout: this.dropout,
 
-           recurrentDropout: this.recurrentDropout,
 
-           implementation: this.implementation
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.className = "LSTMCell", t;
 
-     }(RNNCell);
 
-     _tfjsCore.serialization.registerClass(LSTMCell);
 
-     var LSTM = function (e) {
 
-       function t(t) {
 
-         return 0 === t.implementation && console.warn("`implementation=0` has been deprecated, and now defaults to `implementation=1`. Please update your layer call."), t.cell = new LSTMCell(t), e.call(this, t) || this;
 
-       }
 
-       return __extends(t, e), t.prototype.call = function (t, n) {
 
-         var r = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           null != r.cell.dropoutMask && ((0, _tfjsCore.dispose)(r.cell.dropoutMask), r.cell.dropoutMask = null), null != r.cell.recurrentDropoutMask && ((0, _tfjsCore.dispose)(r.cell.recurrentDropoutMask), r.cell.recurrentDropoutMask = null);
 
-           var i = null == n ? null : n.mask,
 
-             a = null == n ? null : n.training,
 
-             o = null == n ? null : n.initialState;
 
-           return e.prototype.call.call(r, t, {
 
-             mask: i,
 
-             training: a,
 
-             initialState: o
 
-           });
 
-         });
 
-       }, Object.defineProperty(t.prototype, "units", {
 
-         get: function () {
 
-           return this.cell.units;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "activation", {
 
-         get: function () {
 
-           return this.cell.activation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentActivation", {
 
-         get: function () {
 
-           return this.cell.recurrentActivation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "useBias", {
 
-         get: function () {
 
-           return this.cell.useBias;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelInitializer", {
 
-         get: function () {
 
-           return this.cell.kernelInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentInitializer", {
 
-         get: function () {
 
-           return this.cell.recurrentInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasInitializer", {
 
-         get: function () {
 
-           return this.cell.biasInitializer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "unitForgetBias", {
 
-         get: function () {
 
-           return this.cell.unitForgetBias;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelRegularizer", {
 
-         get: function () {
 
-           return this.cell.kernelRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentRegularizer", {
 
-         get: function () {
 
-           return this.cell.recurrentRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasRegularizer", {
 
-         get: function () {
 
-           return this.cell.biasRegularizer;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "kernelConstraint", {
 
-         get: function () {
 
-           return this.cell.kernelConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentConstraint", {
 
-         get: function () {
 
-           return this.cell.recurrentConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "biasConstraint", {
 
-         get: function () {
 
-           return this.cell.biasConstraint;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "dropout", {
 
-         get: function () {
 
-           return this.cell.dropout;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "recurrentDropout", {
 
-         get: function () {
 
-           return this.cell.recurrentDropout;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "implementation", {
 
-         get: function () {
 
-           return this.cell.implementation;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.getConfig = function () {
 
-         var t = {
 
-           units: this.units,
 
-           activation: serializeActivation(this.activation),
 
-           recurrentActivation: serializeActivation(this.recurrentActivation),
 
-           useBias: this.useBias,
 
-           kernelInitializer: serializeInitializer(this.kernelInitializer),
 
-           recurrentInitializer: serializeInitializer(this.recurrentInitializer),
 
-           biasInitializer: serializeInitializer(this.biasInitializer),
 
-           unitForgetBias: this.unitForgetBias,
 
-           kernelRegularizer: serializeRegularizer(this.kernelRegularizer),
 
-           recurrentRegularizer: serializeRegularizer(this.recurrentRegularizer),
 
-           biasRegularizer: serializeRegularizer(this.biasRegularizer),
 
-           activityRegularizer: serializeRegularizer(this.activityRegularizer),
 
-           kernelConstraint: serializeConstraint(this.kernelConstraint),
 
-           recurrentConstraint: serializeConstraint(this.recurrentConstraint),
 
-           biasConstraint: serializeConstraint(this.biasConstraint),
 
-           dropout: this.dropout,
 
-           recurrentDropout: this.recurrentDropout,
 
-           implementation: this.implementation
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return delete n.cell, Object.assign(t, n), t;
 
-       }, t.fromConfig = function (e, t) {
 
-         return 0 === t.implmentation && (t.implementation = 1), new e(t);
 
-       }, t.className = "LSTM", t;
 
-     }(RNN);
 
-     _tfjsCore.serialization.registerClass(LSTM);
 
-     var StackedRNNCells = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.cells = t.cells, n;
 
-       }
 
-       return __extends(t, e), Object.defineProperty(t.prototype, "stateSize", {
 
-         get: function () {
 
-           for (var e = [], t = 0, n = this.cells.slice().reverse(); t < n.length; t++) {
 
-             var r = n[t];
 
-             Array.isArray(r.stateSize) ? e.push.apply(e, r.stateSize) : e.push(r.stateSize);
 
-           }
 
-           return e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.call = function (e, t) {
 
-         var n = this;
 
-         return (0, _tfjsCore.tidy)(function () {
 
-           for (var r = (e = e).slice(1), i = [], a = 0, o = n.cells.slice().reverse(); a < o.length; a++) {
 
-             var s = o[a];
 
-             Array.isArray(s.stateSize) ? i.push(r.splice(0, s.stateSize.length)) : i.push(r.splice(0, 1));
 
-           }
 
-           i.reverse();
 
-           for (var l, u = [], c = 0; c < n.cells.length; ++c) {
 
-             s = n.cells[c];
 
-             r = i[c], l = 0 === c ? [e[0]].concat(r) : [l[0]].concat(r), l = s.call(l, t), u.push(l.slice(1));
 
-           }
 
-           r = [];
 
-           for (var p = 0, h = u.slice().reverse(); p < h.length; p++) {
 
-             var d = h[p];
 
-             r.push.apply(r, d);
 
-           }
 
-           return [l[0]].concat(r);
 
-         });
 
-       }, t.prototype.build = function (e) {
 
-         var t;
 
-         isArrayOfShapes(e) && (e = e[0]), e = e, this.cells.forEach(function (n, r) {
 
-           nameScope("RNNCell_" + r, function () {
 
-             n.build(e), t = Array.isArray(n.stateSize) ? n.stateSize[0] : n.stateSize, e = [e[0], t];
 
-           });
 
-         }), this.built = !0;
 
-       }, t.prototype.getConfig = function () {
 
-         for (var t = [], n = 0, r = this.cells; n < r.length; n++) {
 
-           var i = r[n];
 
-           t.push({
 
-             className: i.getClassName(),
 
-             config: i.getConfig()
 
-           });
 
-         }
 
-         var a = {
 
-           cells: t
 
-         },
 
-           o = e.prototype.getConfig.call(this);
 
-         return Object.assign(a, o), a;
 
-       }, t.fromConfig = function (e, t, n) {
 
-         void 0 === n && (n = {});
 
-         for (var r = [], i = 0, a = t.cells; i < a.length; i++) {
 
-           var o = a[i];
 
-           r.push(deserialize(o, n));
 
-         }
 
-         return new e({
 
-           cells: r
 
-         });
 
-       }, Object.defineProperty(t.prototype, "trainableWeights", {
 
-         get: function () {
 
-           if (!this.trainable) return [];
 
-           for (var e = [], t = 0, n = this.cells; t < n.length; t++) {
 
-             var r = n[t];
 
-             e.push.apply(e, r.trainableWeights);
 
-           }
 
-           return e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "nonTrainableWeights", {
 
-         get: function () {
 
-           for (var e = [], t = 0, n = this.cells; t < n.length; t++) {
 
-             var r = n[t];
 
-             e.push.apply(e, r.nonTrainableWeights);
 
-           }
 
-           if (!this.trainable) {
 
-             for (var i = [], a = 0, o = this.cells; a < o.length; a++) {
 
-               r = o[a];
 
-               i.push.apply(i, r.trainableWeights);
 
-             }
 
-             return i.concat(e);
 
-           }
 
-           return e;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.getWeights = function () {
 
-         for (var e = [], t = 0, n = this.cells; t < n.length; t++) {
 
-           var r = n[t];
 
-           e.push.apply(e, r.weights);
 
-         }
 
-         return batchGetValue(e);
 
-       }, t.prototype.setWeights = function (e) {
 
-         for (var t = [], n = 0, r = this.cells; n < r.length; n++) for (var i = r[n], a = i.weights.length, o = e.splice(a), s = 0; s < i.weights.length; ++s) t.push([i.weights[s], o[s]]);
 
-         batchSetValue(t);
 
-       }, t.className = "StackedRNNCells", t;
 
-     }(RNNCell);
 
-     function generateDropoutMask(e, t, n, r) {
 
-       function i() {
 
-         return dropout$1(e(), t);
 
-       }
 
-       if (void 0 === n && (n = null), void 0 === r && (r = 1), r > 1) {
 
-         for (var a = [], o = 0; o < r; o++) a.push(inTrainPhase(i, e, n));
 
-         return a.map(function (e) {
 
-           return (0, _tfjsCore.keep)(e.clone());
 
-         });
 
-       }
 
-       return (0, _tfjsCore.keep)(inTrainPhase(i, e, n).clone());
 
-     }
 
-     _tfjsCore.serialization.registerClass(StackedRNNCells);
 
-     var Wrapper = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this, t) || this;
 
-         return n.layer = t.layer, n;
 
-       }
 
-       return __extends(t, e), t.prototype.build = function (e) {
 
-         this.built = !0;
 
-       }, Object.defineProperty(t.prototype, "trainable", {
 
-         get: function () {
 
-           return null != this.layer && this.layer.trainable;
 
-         },
 
-         set: function (e) {
 
-           null != this.layer && (this.layer.trainable = e);
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "trainableWeights", {
 
-         get: function () {
 
-           return this.layer.trainableWeights;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "nonTrainableWeights", {
 
-         get: function () {
 
-           return this.layer.nonTrainableWeights;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "updates", {
 
-         get: function () {
 
-           return this.layer._updates;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), Object.defineProperty(t.prototype, "losses", {
 
-         get: function () {
 
-           return this.layer.losses;
 
-         },
 
-         enumerable: !0,
 
-         configurable: !0
 
-       }), t.prototype.getWeights = function () {
 
-         return this.layer.getWeights();
 
-       }, t.prototype.setWeights = function (e) {
 
-         this.layer.setWeights(e);
 
-       }, t.prototype.getConfig = function () {
 
-         var t = {
 
-           layer: {
 
-             className: this.layer.getClassName(),
 
-             config: this.layer.getConfig()
 
-           }
 
-         },
 
-           n = e.prototype.getConfig.call(this);
 
-         return Object.assign(t, n), t;
 
-       }, t.prototype.setFastWeightInitDuringBuild = function (t) {
 
-         e.prototype.setFastWeightInitDuringBuild.call(this, t), null != this.layer && this.layer.setFastWeightInitDuringBuild(t);
 
-       }, t.fromConfig = function (e, t, n) {
 
-         void 0 === n && (n = {});
 
-         var r = deserialize(t.layer, n);
 
-         delete t.layer;
 
-         var i = {
 
-           layer: r
 
-         };
 
-         return Object.assign(i, t), new e(i);
 
-       }, t;
 
-     }(Layer),
 
-       TimeDistributed = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this, t) || this;
 
-           return n.supportsMasking = !0, n;
 
-         }
 
-         return __extends(t, e), t.prototype.build = function (t) {
 
-           if ((t = getExactlyOneShape(t)).length < 3) throw new ValueError("TimeDistributed layer expects an input shape >= 3D, but received input shape " + JSON.stringify(t));
 
-           this.inputSpec = [{
 
-             shape: t
 
-           }];
 
-           var n = [t[0]].concat(t.slice(2));
 
-           this.layer.built || (this.layer.build(n), this.layer.built = !0), e.prototype.build.call(this, t);
 
-         }, t.prototype.computeOutputShape = function (e) {
 
-           var t = [(e = getExactlyOneShape(e))[0]].concat(e.slice(2)),
 
-             n = this.layer.computeOutputShape(t),
 
-             r = e[1];
 
-           return [n[0], r].concat(n.slice(1));
 
-         }, t.prototype.call = function (e, t) {
 
-           var n = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             return rnn(function (e, r) {
 
-               return [getExactlyOneTensor(n.layer.call(e, t)), []];
 
-             }, e = getExactlyOneTensor(e), [], !1, null, null, !1, !0)[1];
 
-           });
 
-         }, t.className = "TimeDistributed", t;
 
-       }(Wrapper);
 
-     function checkBidirectionalMergeMode(e) {
 
-       checkStringTypeUnionValue(VALID_BIDIRECTIONAL_MERGE_MODES, "BidirectionalMergeMode", e);
 
-     }
 
-     _tfjsCore.serialization.registerClass(TimeDistributed);
 
-     var DEFAULT_BIDIRECTIONAL_MERGE_MODE = "concat",
 
-       Bidirectional = function (e) {
 
-         function t(t) {
 
-           var n = e.call(this, t) || this,
 
-             r = t.layer.getConfig(),
 
-             i = {};
 
-           i.className = t.layer.getClassName(), i.config = r, n.forwardLayer = deserialize(i), r.goBackwards = !0 !== r.goBackwards;
 
-           var a = {};
 
-           if (a.className = t.layer.getClassName(), a.config = r, n.backwardLayer = deserialize(a), n.forwardLayer.name = "forward_" + n.forwardLayer.name, n.backwardLayer.name = "backward_" + n.backwardLayer.name, n.mergeMode = void 0 === t.mergeMode ? DEFAULT_BIDIRECTIONAL_MERGE_MODE : t.mergeMode, checkBidirectionalMergeMode(n.mergeMode), t.weights) throw new NotImplementedError("weights support is not implemented for Bidirectional layer yet.");
 
-           return n._stateful = t.layer.stateful, n.returnSequences = t.layer.returnSequences, n.returnState = t.layer.returnState, n.supportsMasking = !0, n._trainable = !0, n.inputSpec = t.layer.inputSpec, n.numConstants = null, n;
 
-         }
 
-         return __extends(t, e), Object.defineProperty(t.prototype, "trainable", {
 
-           get: function () {
 
-             return this._trainable;
 
-           },
 
-           set: function (e) {
 
-             this._trainable = e, null != this.forwardLayer && (this.forwardLayer.trainable = e), null != this.backwardLayer && (this.backwardLayer.trainable = e);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.getWeights = function () {
 
-           return this.forwardLayer.getWeights().concat(this.backwardLayer.getWeights());
 
-         }, t.prototype.setWeights = function (e) {
 
-           var t = e.length,
 
-             n = Math.floor(t / 2);
 
-           this.forwardLayer.setWeights(e.slice(0, n)), this.backwardLayer.setWeights(e.slice(n));
 
-         }, t.prototype.computeOutputShape = function (e) {
 
-           var t,
 
-             n,
 
-             r,
 
-             i = this.forwardLayer.computeOutputShape(e);
 
-           return Array.isArray(i) && Array.isArray(i[0]) || (i = [i]), i = i, this.returnState ? (r = i.slice(1), t = i[0]) : t = i[0], t = t, "concat" === this.mergeMode ? (t[t.length - 1] *= 2, n = [t]) : n = null == this.mergeMode ? [t, t.slice()] : [t], this.returnState ? null == this.mergeMode ? n.concat(r).concat(r.slice()) : [t].concat(r).concat(r.slice()) : singletonOrArray(n);
 
-         }, t.prototype.apply = function (t, n) {
 
-           var r = null == n ? null : n.initialState,
 
-             i = null == n ? null : n.constants;
 
-           null == n && (n = {});
 
-           var a = standardizeArgs(t, r, i, this.numConstants);
 
-           if (t = a.inputs, r = a.initialState, i = a.constants, Array.isArray(t) && (r = t.slice(1), t = t[0]), (null == r || 0 === r.length) && null == i) return e.prototype.apply.call(this, t, n);
 
-           var o = [],
 
-             s = [];
 
-           if (null != r) {
 
-             var l = r.length;
 
-             if (l % 2 > 0) throw new ValueError("When passing `initialState` to a Bidrectional RNN, the state should be an Array containing the states of the underlying RNNs.");
 
-             n.initialState = r, o.push.apply(o, r);
 
-             var u = r.map(function (e) {
 
-               return new InputSpec({
 
-                 shape: e.shape
 
-               });
 
-             });
 
-             this.forwardLayer.stateSpec = u.slice(0, l / 2), this.backwardLayer.stateSpec = u.slice(l / 2), s.push.apply(s, u);
 
-           }
 
-           if (null != i) throw new NotImplementedError("Support for constants in Bidirectional layers is not implemented yet.");
 
-           for (var c = o[0] instanceof SymbolicTensor, p = 0, h = o; p < h.length; p++) {
 
-             if (h[p] instanceof SymbolicTensor !== c) throw new ValueError("The initial state of a Bidirectional layer cannot be specified as a mix of symbolic and non-symbolic tensors");
 
-           }
 
-           if (c) {
 
-             var d = [t].concat(o),
 
-               f = this.inputSpec.concat(s),
 
-               g = this.inputSpec;
 
-             this.inputSpec = f;
 
-             var m = e.prototype.apply.call(this, d, n);
 
-             return this.inputSpec = g, m;
 
-           }
 
-           return e.prototype.apply.call(this, t, n);
 
-         }, t.prototype.call = function (e, t) {
 
-           var n = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             if (null != t.mask) throw new NotImplementedError("The support for masking is not implemented for Bidirectional layers yet.");
 
-             var r,
 
-               i,
 
-               a,
 
-               o,
 
-               s = t.initialState;
 
-             if (null == s) r = n.forwardLayer.call(e, t), i = n.backwardLayer.call(e, t); else {
 
-               var l = s.slice(0, s.length / 2),
 
-                 u = s.slice(s.length / 2);
 
-               r = n.forwardLayer.call(e, Object.assign(t, {
 
-                 initialState: l
 
-               })), i = n.backwardLayer.call(e, Object.assign(t, {
 
-                 initialState: u
 
-               }));
 
-             }
 
-             return n.returnState && (Array.isArray(r) && (a = r.slice(1).concat(i.slice(1))), r = r[0], i = i[0]), n.returnSequences && (i = (0, _tfjsCore.reverse)(i, 1)), "concat" === n.mergeMode ? o = concatenate([r, i]) : "sum" === n.mergeMode ? o = (0, _tfjsCore.add)(r, i) : "ave" === n.mergeMode ? o = (0, _tfjsCore.mul)(.5, (0, _tfjsCore.add)(r, i)) : "mul" === n.mergeMode ? o = (0, _tfjsCore.mul)(r, i) : null == n.mergeMode && (o = [r, i]), n.returnState ? null == n.mergeMode ? o.concat(a) : [o].concat(a) : o;
 
-           });
 
-         }, t.prototype.resetStates = function (e) {
 
-           this.forwardLayer.resetStates(), this.backwardLayer.resetStates();
 
-         }, t.prototype.build = function (e) {
 
-           var t = this;
 
-           nameScope(this.forwardLayer.name, function () {
 
-             t.forwardLayer.build(e);
 
-           }), nameScope(this.backwardLayer.name, function () {
 
-             t.backwardLayer.build(e);
 
-           }), this.built = !0;
 
-         }, Object.defineProperty(t.prototype, "trainableWeights", {
 
-           get: function () {
 
-             return this.forwardLayer.trainableWeights.concat(this.backwardLayer.trainableWeights);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), Object.defineProperty(t.prototype, "nonTrainableWeights", {
 
-           get: function () {
 
-             return this.forwardLayer.nonTrainableWeights.concat(this.backwardLayer.nonTrainableWeights);
 
-           },
 
-           enumerable: !0,
 
-           configurable: !0
 
-         }), t.prototype.setFastWeightInitDuringBuild = function (t) {
 
-           e.prototype.setFastWeightInitDuringBuild.call(this, t), null != this.forwardLayer && this.forwardLayer.setFastWeightInitDuringBuild(t), null != this.backwardLayer && this.backwardLayer.setFastWeightInitDuringBuild(t);
 
-         }, t.prototype.getConfig = function () {
 
-           var t = {
 
-             mergeMode: this.mergeMode
 
-           },
 
-             n = e.prototype.getConfig.call(this);
 
-           return Object.assign(t, n), t;
 
-         }, t.fromConfig = function (e, t) {
 
-           var n = deserialize(t.layer);
 
-           if (delete t.layer, null != t.numConstants) throw new NotImplementedError("Deserialization of a Bidirectional layer with numConstants present is not supported yet.");
 
-           var r = t;
 
-           return r.layer = n, new e(r);
 
-         }, t.className = "Bidirectional", t;
 
-       }(Wrapper);
 
-     function inputLayer(e) {
 
-       return new InputLayer(e);
 
-     }
 
-     function elu$2(e) {
 
-       return new ELU(e);
 
-     }
 
-     function reLU(e) {
 
-       return new ReLU(e);
 
-     }
 
-     function leakyReLU(e) {
 
-       return new LeakyReLU(e);
 
-     }
 
-     function prelu$1(e) {
 
-       return new PReLU(e);
 
-     }
 
-     function softmax$1(e) {
 
-       return new Softmax$1(e);
 
-     }
 
-     function thresholdedReLU(e) {
 
-       return new ThresholdedReLU(e);
 
-     }
 
-     function conv1d$2(e) {
 
-       return new Conv1D(e);
 
-     }
 
-     function conv2d$1(e) {
 
-       return new Conv2D(e);
 
-     }
 
-     function conv2dTranspose$1(e) {
 
-       return new Conv2DTranspose(e);
 
-     }
 
-     function conv3d$2(e) {
 
-       return new Conv3D(e);
 
-     }
 
-     function separableConv2d$1(e) {
 
-       return new SeparableConv2D(e);
 
-     }
 
-     function cropping2D(e) {
 
-       return new Cropping2D(e);
 
-     }
 
-     function upSampling2d(e) {
 
-       return new UpSampling2D(e);
 
-     }
 
-     function depthwiseConv2d$2(e) {
 
-       return new DepthwiseConv2D(e);
 
-     }
 
-     function activation(e) {
 
-       return new Activation$1(e);
 
-     }
 
-     function dense(e) {
 
-       return new Dense(e);
 
-     }
 
-     function dropout$2(e) {
 
-       return new Dropout(e);
 
-     }
 
-     function flatten$1(e) {
 
-       return new Flatten(e);
 
-     }
 
-     function repeatVector(e) {
 
-       return new RepeatVector(e);
 
-     }
 
-     function reshape(e) {
 
-       return new Reshape(e);
 
-     }
 
-     function permute(e) {
 
-       return new Permute(e);
 
-     }
 
-     function embedding(e) {
 
-       return new Embedding(e);
 
-     }
 
-     function add$2(e) {
 
-       return new Add(e);
 
-     }
 
-     function average$1(e) {
 
-       return new Average(e);
 
-     }
 
-     function concatenate$2(e) {
 
-       return new Concatenate(e);
 
-     }
 
-     function maximum$2(e) {
 
-       return new Maximum(e);
 
-     }
 
-     function minimum$2(e) {
 
-       return new Minimum(e);
 
-     }
 
-     function multiply$1(e) {
 
-       return new Multiply(e);
 
-     }
 
-     function dot$1(e) {
 
-       return new Dot(e);
 
-     }
 
-     function batchNormalization$1(e) {
 
-       return new BatchNormalization(e);
 
-     }
 
-     function layerNormalization(e) {
 
-       return new LayerNormalization(e);
 
-     }
 
-     function zeroPadding2d(e) {
 
-       return new ZeroPadding2D(e);
 
-     }
 
-     function averagePooling1d(e) {
 
-       return new AveragePooling1D(e);
 
-     }
 
-     function avgPool1d(e) {
 
-       return averagePooling1d(e);
 
-     }
 
-     function avgPooling1d(e) {
 
-       return averagePooling1d(e);
 
-     }
 
-     function averagePooling2d(e) {
 
-       return new AveragePooling2D(e);
 
-     }
 
-     function avgPool2d(e) {
 
-       return averagePooling2d(e);
 
-     }
 
-     function avgPooling2d(e) {
 
-       return averagePooling2d(e);
 
-     }
 
-     function averagePooling3d(e) {
 
-       return new AveragePooling3D(e);
 
-     }
 
-     function avgPool3d$1(e) {
 
-       return averagePooling3d(e);
 
-     }
 
-     function avgPooling3d(e) {
 
-       return averagePooling3d(e);
 
-     }
 
-     function globalAveragePooling1d(e) {
 
-       return new GlobalAveragePooling1D(e);
 
-     }
 
-     function globalAveragePooling2d(e) {
 
-       return new GlobalAveragePooling2D(e);
 
-     }
 
-     function globalMaxPooling1d(e) {
 
-       return new GlobalMaxPooling1D(e);
 
-     }
 
-     function globalMaxPooling2d(e) {
 
-       return new GlobalMaxPooling2D(e);
 
-     }
 
-     function maxPooling1d(e) {
 
-       return new MaxPooling1D(e);
 
-     }
 
-     function maxPooling2d(e) {
 
-       return new MaxPooling2D(e);
 
-     }
 
-     function maxPooling3d(e) {
 
-       return new MaxPooling3D(e);
 
-     }
 
-     function gru(e) {
 
-       return new GRU(e);
 
-     }
 
-     function gruCell(e) {
 
-       return new GRUCell(e);
 
-     }
 
-     function lstm(e) {
 
-       return new LSTM(e);
 
-     }
 
-     function lstmCell(e) {
 
-       return new LSTMCell(e);
 
-     }
 
-     function simpleRNN(e) {
 
-       return new SimpleRNN(e);
 
-     }
 
-     function simpleRNNCell(e) {
 
-       return new SimpleRNNCell(e);
 
-     }
 
-     function rnn$1(e) {
 
-       return new RNN(e);
 
-     }
 
-     function stackedRNNCells(e) {
 
-       return new StackedRNNCells(e);
 
-     }
 
-     function bidirectional(e) {
 
-       return new Bidirectional(e);
 
-     }
 
-     function timeDistributed(e) {
 
-       return new TimeDistributed(e);
 
-     }
 
-     _tfjsCore.serialization.registerClass(Bidirectional);
 
-     var globalMaxPool1d = globalMaxPooling1d,
 
-       globalMaxPool2d = globalMaxPooling2d,
 
-       maxPool1d = maxPooling1d,
 
-       maxPool2d = maxPooling2d;
 
-     function gaussianNoise(e) {
 
-       return new GaussianNoise(e);
 
-     }
 
-     function gaussianDropout(e) {
 
-       return new GaussianDropout(e);
 
-     }
 
-     function alphaDropout(e) {
 
-       return new AlphaDropout(e);
 
-     }
 
-     function masking(e) {
 
-       return new Masking(e);
 
-     }
 
-     var exports_layers = Object.freeze({
 
-       inputLayer: inputLayer,
 
-       elu: elu$2,
 
-       reLU: reLU,
 
-       leakyReLU: leakyReLU,
 
-       prelu: prelu$1,
 
-       softmax: softmax$1,
 
-       thresholdedReLU: thresholdedReLU,
 
-       conv1d: conv1d$2,
 
-       conv2d: conv2d$1,
 
-       conv2dTranspose: conv2dTranspose$1,
 
-       conv3d: conv3d$2,
 
-       separableConv2d: separableConv2d$1,
 
-       cropping2D: cropping2D,
 
-       upSampling2d: upSampling2d,
 
-       depthwiseConv2d: depthwiseConv2d$2,
 
-       activation: activation,
 
-       dense: dense,
 
-       dropout: dropout$2,
 
-       flatten: flatten$1,
 
-       repeatVector: repeatVector,
 
-       reshape: reshape,
 
-       permute: permute,
 
-       embedding: embedding,
 
-       add: add$2,
 
-       average: average$1,
 
-       concatenate: concatenate$2,
 
-       maximum: maximum$2,
 
-       minimum: minimum$2,
 
-       multiply: multiply$1,
 
-       dot: dot$1,
 
-       batchNormalization: batchNormalization$1,
 
-       layerNormalization: layerNormalization,
 
-       zeroPadding2d: zeroPadding2d,
 
-       averagePooling1d: averagePooling1d,
 
-       avgPool1d: avgPool1d,
 
-       avgPooling1d: avgPooling1d,
 
-       averagePooling2d: averagePooling2d,
 
-       avgPool2d: avgPool2d,
 
-       avgPooling2d: avgPooling2d,
 
-       averagePooling3d: averagePooling3d,
 
-       avgPool3d: avgPool3d$1,
 
-       avgPooling3d: avgPooling3d,
 
-       globalAveragePooling1d: globalAveragePooling1d,
 
-       globalAveragePooling2d: globalAveragePooling2d,
 
-       globalMaxPooling1d: globalMaxPooling1d,
 
-       globalMaxPooling2d: globalMaxPooling2d,
 
-       maxPooling1d: maxPooling1d,
 
-       maxPooling2d: maxPooling2d,
 
-       maxPooling3d: maxPooling3d,
 
-       gru: gru,
 
-       gruCell: gruCell,
 
-       lstm: lstm,
 
-       lstmCell: lstmCell,
 
-       simpleRNN: simpleRNN,
 
-       simpleRNNCell: simpleRNNCell,
 
-       rnn: rnn$1,
 
-       stackedRNNCells: stackedRNNCells,
 
-       bidirectional: bidirectional,
 
-       timeDistributed: timeDistributed,
 
-       globalMaxPool1d: globalMaxPool1d,
 
-       globalMaxPool2d: globalMaxPool2d,
 
-       maxPool1d: maxPool1d,
 
-       maxPool2d: maxPool2d,
 
-       Layer: Layer,
 
-       RNN: RNN,
 
-       RNNCell: RNNCell,
 
-       input: input,
 
-       gaussianNoise: gaussianNoise,
 
-       gaussianDropout: gaussianDropout,
 
-       alphaDropout: alphaDropout,
 
-       masking: masking
 
-     });
 
-     exports.layers = exports_layers;
 
-     function binaryAccuracy$1(e, t) {
 
-       return binaryAccuracy(e, t);
 
-     }
 
-     function binaryCrossentropy$2(e, t) {
 
-       return binaryCrossentropy$1(e, t);
 
-     }
 
-     function sparseCategoricalAccuracy$1(e, t) {
 
-       return sparseCategoricalAccuracy(e, t);
 
-     }
 
-     function categoricalAccuracy$1(e, t) {
 
-       return categoricalAccuracy(e, t);
 
-     }
 
-     function categoricalCrossentropy$2(e, t) {
 
-       return categoricalCrossentropy$1(e, t);
 
-     }
 
-     function precision$1(e, t) {
 
-       return precision(e, t);
 
-     }
 
-     function recall$1(e, t) {
 
-       return recall(e, t);
 
-     }
 
-     function cosineProximity$1(e, t) {
 
-       return cosineProximity(e, t);
 
-     }
 
-     function meanAbsoluteError$1(e, t) {
 
-       return meanAbsoluteError(e, t);
 
-     }
 
-     function meanAbsolutePercentageError$1(e, t) {
 
-       return meanAbsolutePercentageError(e, t);
 
-     }
 
-     function MAPE$2(e, t) {
 
-       return meanAbsolutePercentageError(e, t);
 
-     }
 
-     function mape$2(e, t) {
 
-       return meanAbsolutePercentageError(e, t);
 
-     }
 
-     function meanSquaredError$1(e, t) {
 
-       return meanSquaredError(e, t);
 
-     }
 
-     function MSE$2(e, t) {
 
-       return meanSquaredError(e, t);
 
-     }
 
-     function mse$2(e, t) {
 
-       return meanSquaredError(e, t);
 
-     }
 
-     var exports_metrics = Object.freeze({
 
-       binaryAccuracy: binaryAccuracy$1,
 
-       binaryCrossentropy: binaryCrossentropy$2,
 
-       sparseCategoricalAccuracy: sparseCategoricalAccuracy$1,
 
-       categoricalAccuracy: categoricalAccuracy$1,
 
-       categoricalCrossentropy: categoricalCrossentropy$2,
 
-       precision: precision$1,
 
-       recall: recall$1,
 
-       cosineProximity: cosineProximity$1,
 
-       meanAbsoluteError: meanAbsoluteError$1,
 
-       meanAbsolutePercentageError: meanAbsolutePercentageError$1,
 
-       MAPE: MAPE$2,
 
-       mape: mape$2,
 
-       meanSquaredError: meanSquaredError$1,
 
-       MSE: MSE$2,
 
-       mse: mse$2
 
-     }),
 
-       exports_models = Object.freeze({
 
-         modelFromJSON: modelFromJSON
 
-       });
 
-     exports.models = exports_models;
 
-     exports.metrics = exports_metrics;
 
-     function l1l2(e) {
 
-       return new L1L2(e);
 
-     }
 
-     function l1$1(e) {
 
-       return l1(e);
 
-     }
 
-     function l2$1(e) {
 
-       return l2(e);
 
-     }
 
-     var exports_regularizers = Object.freeze({
 
-       l1l2: l1l2,
 
-       l1: l1$1,
 
-       l2: l2$1
 
-     }),
 
-       Callback = function (e) {
 
-         function t() {
 
-           var t = null !== e && e.apply(this, arguments) || this;
 
-           return t.model = null, t;
 
-         }
 
-         return __extends(t, e), t.prototype.setModel = function (e) {
 
-           if (!(e instanceof LayersModel)) throw new Error("model must be a LayersModel, not some other Container");
 
-           this.model = e;
 
-         }, t;
 
-       }(BaseCallback);
 
-     exports.Callback = Callback;
 
-     exports.regularizers = exports_regularizers;
 
-     function less(e, t) {
 
-       return e < t;
 
-     }
 
-     function greater$1(e, t) {
 
-       return e > t;
 
-     }
 
-     var EarlyStopping = function (e) {
 
-       function t(t) {
 
-         var n = e.call(this) || this;
 
-         if (null == t && (t = {}), t.restoreBestWeights) throw new NotImplementedError("restoreBestWeights = True is not implemented in EarlyStopping yet.");
 
-         return n.monitor = t.monitor || "val_loss", n.minDelta = Math.abs(t.minDelta || 0), n.patience = t.patience || 0, n.verbose = t.verbose || 0, n.mode = t.mode || "auto", n.baseline = t.baseline, -1 === ["auto", "min", "max"].indexOf(n.mode) && (console.warn("EarlyStopping mode '" + n.mode + "' is invalid. Falling back to mode 'auto'."), n.mode = "auto"), "min" === n.mode ? n.monitorFunc = less : "max" === n.mode ? n.monitorFunc = greater$1 : -1 !== n.monitor.indexOf("acc") ? n.monitorFunc = greater$1 : n.monitorFunc = less, n.monitorFunc === less && (n.minDelta *= -1), n;
 
-       }
 
-       return __extends(t, e), t.prototype.onTrainBegin = function (e) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (e) {
 
-             return this.wait = 0, this.stoppedEpoch = 0, null != this.baseline ? this.best = this.baseline : this.best = this.monitorFunc === less ? 1 / 0 : -1 / 0, [2];
 
-           });
 
-         });
 
-       }, t.prototype.onEpochEnd = function (e, t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           var n;
 
-           return __generator(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return [4, resolveScalarsInLogs(t)];
 
-               case 1:
 
-                 return r.sent(), null == (n = this.getMonitorValue(t)) ? [2] : (this.monitorFunc(n - this.minDelta, this.best) ? (this.best = n, this.wait = 0) : (this.wait++, this.wait >= this.patience && (this.stoppedEpoch = e, this.model.stopTraining = !0)), [2]);
 
-             }
 
-           });
 
-         });
 
-       }, t.prototype.onTrainEnd = function (e) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (e) {
 
-             return this.stoppedEpoch > 0 && this.verbose && console.log("Epoch " + this.stoppedEpoch + ": early stopping."), [2];
 
-           });
 
-         });
 
-       }, t.prototype.getMonitorValue = function (e) {
 
-         null == e && (e = {});
 
-         var t = e[this.monitor];
 
-         return null == t && console.warn("Metric for EarlyStopping " + this.monitor + " is not available. Available metrics are: " + Object.keys(e)), t;
 
-       }, t;
 
-     }(Callback);
 
-     exports.EarlyStopping = EarlyStopping;
 
-     function earlyStopping(e) {
 
-       return new EarlyStopping(e);
 
-     }
 
-     var callbacks = {
 
-       earlyStopping: earlyStopping
 
-     };
 
-     exports.callbacks = callbacks;
 
-   }, { "@tensorflow/tfjs-core": "node_modules/@tensorflow/tfjs-core/dist/tf-core.esm.js" }], "node_modules/@tensorflow/tfjs-data/dist/tf-data.esm.js": [function (require, module, exports) {
 
-     var global = arguments[3];
 
-     var Buffer = require("buffer").Buffer;
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.array = array;
 
-     exports.zip = zip;
 
-     exports.csv = csv;
 
-     exports.func = func;
 
-     exports.generator = generator;
 
-     exports.microphone = microphone;
 
-     exports.webcam = webcam;
 
-     exports.version_data = exports.URLDataSource = exports.FileDataSource = exports.TextLineDataset = exports.CSVDataset = exports.Dataset = void 0;
 
-     var _tfjsCore = require("@tensorflow/tfjs-core");
 
-     /**
 
-      * @license
 
-      * Copyright 2019 Google LLC. All Rights Reserved.
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * http://www.apache.org/licenses/LICENSE-2.0
 
-      *
 
-      * Unless required by applicable law or agreed to in writing, software
 
-      * distributed under the License is distributed on an "AS IS" BASIS,
 
-      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-      * See the License for the specific language governing permissions and
 
-      * limitations under the License.
 
-      * =============================================================================
 
-      */
 
-     var extendStatics = function (t, e) {
 
-       return (extendStatics = Object.setPrototypeOf || {
 
-         __proto__: []
 
-       } instanceof Array && function (t, e) {
 
-         t.__proto__ = e;
 
-       } || function (t, e) {
 
-         for (var r in e) e.hasOwnProperty(r) && (t[r] = e[r]);
 
-       })(t, e);
 
-     };
 
-     function __extends(t, e) {
 
-       function r() {
 
-         this.constructor = t;
 
-       }
 
-       extendStatics(t, e), t.prototype = null === e ? Object.create(e) : (r.prototype = e.prototype, new r());
 
-     }
 
-     function __awaiter(t, e, r, n) {
 
-       return new (r || (r = Promise))(function (i, o) {
 
-         function a(t) {
 
-           try {
 
-             u(n.next(t));
 
-           } catch (t) {
 
-             o(t);
 
-           }
 
-         }
 
-         function s(t) {
 
-           try {
 
-             u(n.throw(t));
 
-           } catch (t) {
 
-             o(t);
 
-           }
 
-         }
 
-         function u(t) {
 
-           t.done ? i(t.value) : new r(function (e) {
 
-             e(t.value);
 
-           }).then(a, s);
 
-         }
 
-         u((n = n.apply(t, e || [])).next());
 
-       });
 
-     }
 
-     function __generator(t, e) {
 
-       var r,
 
-         n,
 
-         i,
 
-         o,
 
-         a = {
 
-           label: 0,
 
-           sent: function () {
 
-             if (1 & i[0]) throw i[1];
 
-             return i[1];
 
-           },
 
-           trys: [],
 
-           ops: []
 
-         };
 
-       return o = {
 
-         next: s(0),
 
-         throw: s(1),
 
-         return: s(2)
 
-       }, "function" == typeof Symbol && (o[Symbol.iterator] = function () {
 
-         return this;
 
-       }), o;
 
-       function s(o) {
 
-         return function (s) {
 
-           return function (o) {
 
-             if (r) throw new TypeError("Generator is already executing.");
 
-             for (; a;) try {
 
-               if (r = 1, n && (i = 2 & o[0] ? n.return : o[0] ? n.throw || ((i = n.return) && i.call(n), 0) : n.next) && !(i = i.call(n, o[1])).done) return i;
 
-               switch (n = 0, i && (o = [2 & o[0], i.value]), o[0]) {
 
-                 case 0:
 
-                 case 1:
 
-                   i = o;
 
-                   break;
 
-                 case 4:
 
-                   return a.label++, {
 
-                     value: o[1],
 
-                     done: !1
 
-                   };
 
-                 case 5:
 
-                   a.label++, n = o[1], o = [0];
 
-                   continue;
 
-                 case 7:
 
-                   o = a.ops.pop(), a.trys.pop();
 
-                   continue;
 
-                 default:
 
-                   if (!(i = (i = a.trys).length > 0 && i[i.length - 1]) && (6 === o[0] || 2 === o[0])) {
 
-                     a = 0;
 
-                     continue;
 
-                   }
 
-                   if (3 === o[0] && (!i || o[1] > i[0] && o[1] < i[3])) {
 
-                     a.label = o[1];
 
-                     break;
 
-                   }
 
-                   if (6 === o[0] && a.label < i[1]) {
 
-                     a.label = i[1], i = o;
 
-                     break;
 
-                   }
 
-                   if (i && a.label < i[2]) {
 
-                     a.label = i[2], a.ops.push(o);
 
-                     break;
 
-                   }
 
-                   i[2] && a.ops.pop(), a.trys.pop();
 
-                   continue;
 
-               }
 
-               o = e.call(t, a);
 
-             } catch (t) {
 
-               o = [6, t], n = 0;
 
-             } finally {
 
-                 r = i = 0;
 
-               }
 
-             if (5 & o[0]) throw o[1];
 
-             return {
 
-               value: o[0] ? o[1] : void 0,
 
-               done: !0
 
-             };
 
-           }([o, s]);
 
-         };
 
-       }
 
-     }
 
-     var commonjsGlobal = "undefined" != typeof window ? window : "undefined" != typeof global ? global : "undefined" != typeof self ? self : {};
 
-     function createCommonjsModule(t, e) {
 
-       return t(e = {
 
-         exports: {}
 
-       }, e.exports), e.exports;
 
-     }
 
-     var alea = createCommonjsModule(function (t) {
 
-       !function (t, e, r) {
 
-         function n(t, e) {
 
-           return e.c = t.c, e.s0 = t.s0, e.s1 = t.s1, e.s2 = t.s2, e;
 
-         }
 
-         function i(t, e) {
 
-           var r = new function (t) {
 
-             var e,
 
-               r = this,
 
-               n = (e = 4022871197, function (t) {
 
-                 t = t.toString();
 
-                 for (var r = 0; r < t.length; r++) {
 
-                   var n = .02519603282416938 * (e += t.charCodeAt(r));
 
-                   n -= e = n >>> 0, e = (n *= e) >>> 0, e += 4294967296 * (n -= e);
 
-                 }
 
-                 return 2.3283064365386963e-10 * (e >>> 0);
 
-               });
 
-             r.next = function () {
 
-               var t = 2091639 * r.s0 + 2.3283064365386963e-10 * r.c;
 
-               return r.s0 = r.s1, r.s1 = r.s2, r.s2 = t - (r.c = 0 | t);
 
-             }, r.c = 1, r.s0 = n(" "), r.s1 = n(" "), r.s2 = n(" "), r.s0 -= n(t), r.s0 < 0 && (r.s0 += 1), r.s1 -= n(t), r.s1 < 0 && (r.s1 += 1), r.s2 -= n(t), r.s2 < 0 && (r.s2 += 1), n = null;
 
-           }(t),
 
-             i = e && e.state,
 
-             o = r.next;
 
-           return o.int32 = function () {
 
-             return 4294967296 * r.next() | 0;
 
-           }, o.double = function () {
 
-             return o() + 1.1102230246251565e-16 * (2097152 * o() | 0);
 
-           }, o.quick = o, i && ("object" == typeof i && n(i, r), o.state = function () {
 
-             return n(r, {});
 
-           }), o;
 
-         }
 
-         e && e.exports ? e.exports = i : r && r.amd ? r(function () {
 
-           return i;
 
-         }) : this.alea = i;
 
-       }(0, t, !1);
 
-     }),
 
-       xor128 = createCommonjsModule(function (t) {
 
-         !function (t, e, r) {
 
-           function n(t, e) {
 
-             return e.x = t.x, e.y = t.y, e.z = t.z, e.w = t.w, e;
 
-           }
 
-           function i(t, e) {
 
-             var r = new function (t) {
 
-               var e = this,
 
-                 r = "";
 
-               e.x = 0, e.y = 0, e.z = 0, e.w = 0, e.next = function () {
 
-                 var t = e.x ^ e.x << 11;
 
-                 return e.x = e.y, e.y = e.z, e.z = e.w, e.w ^= e.w >>> 19 ^ t ^ t >>> 8;
 
-               }, t === (0 | t) ? e.x = t : r += t;
 
-               for (var n = 0; n < r.length + 64; n++) e.x ^= 0 | r.charCodeAt(n), e.next();
 
-             }(t),
 
-               i = e && e.state,
 
-               o = function () {
 
-                 return (r.next() >>> 0) / 4294967296;
 
-               };
 
-             return o.double = function () {
 
-               do {
 
-                 var t = ((r.next() >>> 11) + (r.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, o.int32 = r.next, o.quick = o, i && ("object" == typeof i && n(i, r), o.state = function () {
 
-               return n(r, {});
 
-             }), o;
 
-           }
 
-           e && e.exports ? e.exports = i : r && r.amd ? r(function () {
 
-             return i;
 
-           }) : this.xor128 = i;
 
-         }(0, t, !1);
 
-       }),
 
-       xorwow = createCommonjsModule(function (t) {
 
-         !function (t, e, r) {
 
-           function n(t, e) {
 
-             return e.x = t.x, e.y = t.y, e.z = t.z, e.w = t.w, e.v = t.v, e.d = t.d, e;
 
-           }
 
-           function i(t, e) {
 
-             var r = new function (t) {
 
-               var e = this,
 
-                 r = "";
 
-               e.next = function () {
 
-                 var t = e.x ^ e.x >>> 2;
 
-                 return e.x = e.y, e.y = e.z, e.z = e.w, e.w = e.v, (e.d = e.d + 362437 | 0) + (e.v = e.v ^ e.v << 4 ^ t ^ t << 1) | 0;
 
-               }, e.x = 0, e.y = 0, e.z = 0, e.w = 0, e.v = 0, t === (0 | t) ? e.x = t : r += t;
 
-               for (var n = 0; n < r.length + 64; n++) e.x ^= 0 | r.charCodeAt(n), n == r.length && (e.d = e.x << 10 ^ e.x >>> 4), e.next();
 
-             }(t),
 
-               i = e && e.state,
 
-               o = function () {
 
-                 return (r.next() >>> 0) / 4294967296;
 
-               };
 
-             return o.double = function () {
 
-               do {
 
-                 var t = ((r.next() >>> 11) + (r.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, o.int32 = r.next, o.quick = o, i && ("object" == typeof i && n(i, r), o.state = function () {
 
-               return n(r, {});
 
-             }), o;
 
-           }
 
-           e && e.exports ? e.exports = i : r && r.amd ? r(function () {
 
-             return i;
 
-           }) : this.xorwow = i;
 
-         }(0, t, !1);
 
-       }),
 
-       xorshift7 = createCommonjsModule(function (t) {
 
-         !function (t, e, r) {
 
-           function n(t, e) {
 
-             return e.x = t.x.slice(), e.i = t.i, e;
 
-           }
 
-           function i(t, e) {
 
-             null == t && (t = +new Date());
 
-             var r = new function (t) {
 
-               var e = this;
 
-               e.next = function () {
 
-                 var t,
 
-                   r,
 
-                   n = e.x,
 
-                   i = e.i;
 
-                 return t = n[i], r = (t ^= t >>> 7) ^ t << 24, r ^= (t = n[i + 1 & 7]) ^ t >>> 10, r ^= (t = n[i + 3 & 7]) ^ t >>> 3, r ^= (t = n[i + 4 & 7]) ^ t << 7, t = n[i + 7 & 7], r ^= (t ^= t << 13) ^ t << 9, n[i] = r, e.i = i + 1 & 7, r;
 
-               }, function (t, e) {
 
-                 var r,
 
-                   n = [];
 
-                 if (e === (0 | e)) n[0] = e; else for (e = "" + e, r = 0; r < e.length; ++r) n[7 & r] = n[7 & r] << 15 ^ e.charCodeAt(r) + n[r + 1 & 7] << 13;
 
-                 for (; n.length < 8;) n.push(0);
 
-                 for (r = 0; r < 8 && 0 === n[r]; ++r);
 
-                 for (8 == r ? n[7] = -1 : n[r], t.x = n, t.i = 0, r = 256; r > 0; --r) t.next();
 
-               }(e, t);
 
-             }(t),
 
-               i = e && e.state,
 
-               o = function () {
 
-                 return (r.next() >>> 0) / 4294967296;
 
-               };
 
-             return o.double = function () {
 
-               do {
 
-                 var t = ((r.next() >>> 11) + (r.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, o.int32 = r.next, o.quick = o, i && (i.x && n(i, r), o.state = function () {
 
-               return n(r, {});
 
-             }), o;
 
-           }
 
-           e && e.exports ? e.exports = i : r && r.amd ? r(function () {
 
-             return i;
 
-           }) : this.xorshift7 = i;
 
-         }(0, t, !1);
 
-       }),
 
-       xor4096 = createCommonjsModule(function (t) {
 
-         !function (t, e, r) {
 
-           function n(t, e) {
 
-             return e.i = t.i, e.w = t.w, e.X = t.X.slice(), e;
 
-           }
 
-           function i(t, e) {
 
-             null == t && (t = +new Date());
 
-             var r = new function (t) {
 
-               var e = this;
 
-               e.next = function () {
 
-                 var t,
 
-                   r,
 
-                   n = e.w,
 
-                   i = e.X,
 
-                   o = e.i;
 
-                 return e.w = n = n + 1640531527 | 0, r = i[o + 34 & 127], t = i[o = o + 1 & 127], r ^= r << 13, t ^= t << 17, r ^= r >>> 15, t ^= t >>> 12, r = i[o] = r ^ t, e.i = o, r + (n ^ n >>> 16) | 0;
 
-               }, function (t, e) {
 
-                 var r,
 
-                   n,
 
-                   i,
 
-                   o,
 
-                   a,
 
-                   s = [],
 
-                   u = 128;
 
-                 for (e === (0 | e) ? (n = e, e = null) : (e += "\0", n = 0, u = Math.max(u, e.length)), i = 0, o = -32; o < u; ++o) e && (n ^= e.charCodeAt((o + 32) % e.length)), 0 === o && (a = n), n ^= n << 10, n ^= n >>> 15, n ^= n << 4, n ^= n >>> 13, o >= 0 && (a = a + 1640531527 | 0, i = 0 == (r = s[127 & o] ^= n + a) ? i + 1 : 0);
 
-                 for (i >= 128 && (s[127 & (e && e.length || 0)] = -1), i = 127, o = 512; o > 0; --o) n = s[i + 34 & 127], r = s[i = i + 1 & 127], n ^= n << 13, r ^= r << 17, n ^= n >>> 15, r ^= r >>> 12, s[i] = n ^ r;
 
-                 t.w = a, t.X = s, t.i = i;
 
-               }(e, t);
 
-             }(t),
 
-               i = e && e.state,
 
-               o = function () {
 
-                 return (r.next() >>> 0) / 4294967296;
 
-               };
 
-             return o.double = function () {
 
-               do {
 
-                 var t = ((r.next() >>> 11) + (r.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, o.int32 = r.next, o.quick = o, i && (i.X && n(i, r), o.state = function () {
 
-               return n(r, {});
 
-             }), o;
 
-           }
 
-           e && e.exports ? e.exports = i : r && r.amd ? r(function () {
 
-             return i;
 
-           }) : this.xor4096 = i;
 
-         }(0, t, !1);
 
-       }),
 
-       tychei = createCommonjsModule(function (t) {
 
-         !function (t, e, r) {
 
-           function n(t, e) {
 
-             return e.a = t.a, e.b = t.b, e.c = t.c, e.d = t.d, e;
 
-           }
 
-           function i(t, e) {
 
-             var r = new function (t) {
 
-               var e = this,
 
-                 r = "";
 
-               e.next = function () {
 
-                 var t = e.b,
 
-                   r = e.c,
 
-                   n = e.d,
 
-                   i = e.a;
 
-                 return t = t << 25 ^ t >>> 7 ^ r, r = r - n | 0, n = n << 24 ^ n >>> 8 ^ i, i = i - t | 0, e.b = t = t << 20 ^ t >>> 12 ^ r, e.c = r = r - n | 0, e.d = n << 16 ^ r >>> 16 ^ i, e.a = i - t | 0;
 
-               }, e.a = 0, e.b = 0, e.c = -1640531527, e.d = 1367130551, t === Math.floor(t) ? (e.a = t / 4294967296 | 0, e.b = 0 | t) : r += t;
 
-               for (var n = 0; n < r.length + 20; n++) e.b ^= 0 | r.charCodeAt(n), e.next();
 
-             }(t),
 
-               i = e && e.state,
 
-               o = function () {
 
-                 return (r.next() >>> 0) / 4294967296;
 
-               };
 
-             return o.double = function () {
 
-               do {
 
-                 var t = ((r.next() >>> 11) + (r.next() >>> 0) / 4294967296) / (1 << 21);
 
-               } while (0 === t);
 
-               return t;
 
-             }, o.int32 = r.next, o.quick = o, i && ("object" == typeof i && n(i, r), o.state = function () {
 
-               return n(r, {});
 
-             }), o;
 
-           }
 
-           e && e.exports ? e.exports = i : r && r.amd ? r(function () {
 
-             return i;
 
-           }) : this.tychei = i;
 
-         }(0, t, !1);
 
-       }),
 
-       seedrandom = createCommonjsModule(function (t) {
 
-         !function (e, r) {
 
-           var n,
 
-             i = this,
 
-             o = 256,
 
-             a = 6,
 
-             s = "random",
 
-             u = r.pow(o, a),
 
-             c = r.pow(2, 52),
 
-             l = 2 * c,
 
-             h = o - 1;
 
-           function f(t, f, v) {
 
-             var _ = [],
 
-               w = p(function t(e, r) {
 
-                 var n,
 
-                   i = [],
 
-                   o = typeof e;
 
-                 if (r && "object" == o) for (n in e) try {
 
-                   i.push(t(e[n], r - 1));
 
-                 } catch (t) { }
 
-                 return i.length ? i : "string" == o ? e : e + "\0";
 
-               }((f = 1 == f ? {
 
-                 entropy: !0
 
-               } : f || {}).entropy ? [t, m(e)] : null == t ? function () {
 
-                 try {
 
-                   var t;
 
-                   return n && (t = n.randomBytes) ? t = t(o) : (t = new Uint8Array(o), (i.crypto || i.msCrypto).getRandomValues(t)), m(t);
 
-                 } catch (t) {
 
-                   var r = i.navigator,
 
-                     a = r && r.plugins;
 
-                   return [+new Date(), i, a, i.screen, m(e)];
 
-                 }
 
-               }() : t, 3), _),
 
-               y = new function (t) {
 
-                 var e,
 
-                   r = t.length,
 
-                   n = this,
 
-                   i = 0,
 
-                   a = n.i = n.j = 0,
 
-                   s = n.S = [];
 
-                 r || (t = [r++]);
 
-                 for (; i < o;) s[i] = i++;
 
-                 for (i = 0; i < o; i++) s[i] = s[a = h & a + t[i % r] + (e = s[i])], s[a] = e;
 
-                 (n.g = function (t) {
 
-                   for (var e, r = 0, i = n.i, a = n.j, s = n.S; t--;) e = s[i = h & i + 1], r = r * o + s[h & (s[i] = s[a = h & a + e]) + (s[a] = e)];
 
-                   return n.i = i, n.j = a, r;
 
-                 })(o);
 
-               }(_),
 
-               g = function () {
 
-                 for (var t = y.g(a), e = u, r = 0; t < c;) t = (t + r) * o, e *= o, r = y.g(1);
 
-                 for (; t >= l;) t /= 2, e /= 2, r >>>= 1;
 
-                 return (t + r) / e;
 
-               };
 
-             return g.int32 = function () {
 
-               return 0 | y.g(4);
 
-             }, g.quick = function () {
 
-               return y.g(4) / 4294967296;
 
-             }, g.double = g, p(m(y.S), e), (f.pass || v || function (t, e, n, i) {
 
-               return i && (i.S && d(i, y), t.state = function () {
 
-                 return d(y, {});
 
-               }), n ? (r[s] = t, e) : t;
 
-             })(g, w, "global" in f ? f.global : this == r, f.state);
 
-           }
 
-           function d(t, e) {
 
-             return e.i = t.i, e.j = t.j, e.S = t.S.slice(), e;
 
-           }
 
-           function p(t, e) {
 
-             for (var r, n = t + "", i = 0; i < n.length;) e[h & i] = h & (r ^= 19 * e[h & i]) + n.charCodeAt(i++);
 
-             return m(e);
 
-           }
 
-           function m(t) {
 
-             return String.fromCharCode.apply(0, t);
 
-           }
 
-           if (r["seed" + s] = f, p(r.random(), e), t.exports) {
 
-             t.exports = f;
 
-             try {
 
-               n = require("crypto");
 
-             } catch (t) { }
 
-           } else 0;
 
-         }([], Math);
 
-       });
 
-     seedrandom.alea = alea, seedrandom.xor128 = xor128, seedrandom.xorwow = xorwow, seedrandom.xorshift7 = xorshift7, seedrandom.xor4096 = xor4096, seedrandom.tychei = tychei;
 
-     var seedrandom$1 = seedrandom,
 
-       seedrandom_1 = seedrandom$1.alea;
 
-     function deepMap(t, e) {
 
-       return deepMapInternal(t, e);
 
-     }
 
-     function deepMapInternal(t, e, r, n) {
 
-       if (void 0 === r && (r = new Map()), void 0 === n && (n = new Set()), null == t) return null;
 
-       if (n.has(t)) throw new Error("Circular references are not supported.");
 
-       if (r.has(t)) return r.get(t);
 
-       var i = e(t);
 
-       if (i.recurse && null !== i.value) throw new Error("A deep map function may not return both a value and recurse=true.");
 
-       if (i.recurse) {
 
-         if (isIterable(t)) {
 
-           var o = Array.isArray(t) ? [] : {};
 
-           for (var a in n.add(t), t) {
 
-             var s = deepMapInternal(t[a], e, r, n);
 
-             o[a] = s;
 
-           }
 
-           return n.delete(t), o;
 
-         }
 
-         throw new Error("Can't recurse into non-iterable type: " + t);
 
-       }
 
-       return r.set(t, i.value), i.value;
 
-     }
 
-     function deepZip(t, e) {
 
-       return void 0 === e && (e = zipToList), deepZipInternal(t, e);
 
-     }
 
-     function deepZipInternal(t, e, r) {
 
-       void 0 === r && (r = new Set());
 
-       var n = t[0];
 
-       if (r.has(n)) throw new Error("Circular references are not supported.");
 
-       var i = e(t);
 
-       if (i.recurse && null !== i.value) throw new Error("A deep zip function may not return both a value and recurse=true.");
 
-       if (i.recurse) {
 
-         if (isIterable(n)) {
 
-           var o = Array.isArray(n) ? [] : {};
 
-           r.add(n);
 
-           var a = function (n) {
 
-             var i = deepZipInternal(t.map(function (t) {
 
-               return t[n];
 
-             }), e, r);
 
-             o[n] = i;
 
-           };
 
-           for (var s in n) a(s);
 
-           return r.delete(n), o;
 
-         }
 
-         throw new Error("Can't recurse into non-iterable type: " + n);
 
-       }
 
-       return i.value;
 
-     }
 
-     function zipToList(t) {
 
-       return null === t ? null : isIterable(t[0]) ? {
 
-         value: null,
 
-         recurse: !0
 
-       } : {
 
-           value: t,
 
-           recurse: !1
 
-         };
 
-     }
 
-     function deepMapAndAwaitAll(t, e) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         var r, n, i, o, a, s;
 
-         return __generator(this, function (u) {
 
-           switch (u.label) {
 
-             case 0:
 
-               r = new Map(), deepMapInternal(t, e, r), n = 0, i = Array.from(r.keys()), u.label = 1;
 
-             case 1:
 
-               return n < i.length ? (o = i[n], (a = r.get(o)) instanceof Promise ? [4, a] : [3, 3]) : [3, 4];
 
-             case 2:
 
-               s = u.sent(), r.set(o, s), u.label = 3;
 
-             case 3:
 
-               return n++, [3, 1];
 
-             case 4:
 
-               return [2, deepMapInternal(t, e, r)];
 
-           }
 
-         });
 
-       });
 
-     }
 
-     function isIterable(t) {
 
-       return null != t && !ArrayBuffer.isView(t) && (Array.isArray(t) || "object" == typeof t && !(t instanceof _tfjsCore.Tensor));
 
-     }
 
-     function canTensorify(t) {
 
-       return null == t || isPrimitive(t) || Array.isArray(t) || "object" == typeof t && t instanceof _tfjsCore.Tensor || _tfjsCore.util.isTypedArray(t);
 
-     }
 
-     function isPrimitive(t) {
 
-       return null === t || "object" != typeof t && "function" != typeof t;
 
-     }
 
-     function deepClone(t) {
 
-       return deepMap(t, cloneIfTensor);
 
-     }
 
-     function cloneIfTensor(t) {
 
-       return t instanceof _tfjsCore.Tensor ? {
 
-         value: t.clone(),
 
-         recurse: !1
 
-       } : isIterable(t) ? {
 
-         value: null,
 
-         recurse: !0
 
-       } : {
 
-             value: t,
 
-             recurse: !1
 
-           };
 
-     }
 
-     var RingBuffer = function () {
 
-       function t(t) {
 
-         if (this.capacity = t, this.begin = 0, this.end = 0, null == t) throw new RangeError("Can't create a ring buffer of unknown capacity.");
 
-         if (t < 1) throw new RangeError("Can't create ring buffer of capacity < 1.");
 
-         this.data = new Array(t), this.doubledCapacity = 2 * t;
 
-       }
 
-       return t.prototype.wrap = function (t) {
 
-         for (; t < 0;) t += this.doubledCapacity;
 
-         return t % this.doubledCapacity;
 
-       }, t.prototype.get = function (t) {
 
-         if (t < 0) throw new RangeError("Can't get item at a negative index.");
 
-         return this.data[t % this.capacity];
 
-       }, t.prototype.set = function (t, e) {
 
-         if (t < 0) throw new RangeError("Can't set item at a negative index.");
 
-         this.data[t % this.capacity] = e;
 
-       }, t.prototype.length = function () {
 
-         var t = this.end - this.begin;
 
-         return t < 0 && (t = this.doubledCapacity + t), t;
 
-       }, t.prototype.isFull = function () {
 
-         return this.length() === this.capacity;
 
-       }, t.prototype.isEmpty = function () {
 
-         return 0 === this.length();
 
-       }, t.prototype.push = function (t) {
 
-         if (this.isFull()) throw new RangeError("Ring buffer is full.");
 
-         this.set(this.end, t), this.end = this.wrap(this.end + 1);
 
-       }, t.prototype.pushAll = function (t) {
 
-         for (var e = 0, r = t; e < r.length; e++) {
 
-           var n = r[e];
 
-           this.push(n);
 
-         }
 
-       }, t.prototype.pop = function () {
 
-         if (this.isEmpty()) throw new RangeError("Ring buffer is empty.");
 
-         this.end = this.wrap(this.end - 1);
 
-         var t = this.get(this.end);
 
-         return this.set(this.end, void 0), t;
 
-       }, t.prototype.unshift = function (t) {
 
-         if (this.isFull()) throw new RangeError("Ring buffer is full.");
 
-         this.begin = this.wrap(this.begin - 1), this.set(this.begin, t);
 
-       }, t.prototype.shift = function () {
 
-         if (this.isEmpty()) throw new RangeError("Ring buffer is empty.");
 
-         var t = this.get(this.begin);
 
-         return this.set(this.begin, void 0), this.begin = this.wrap(this.begin + 1), t;
 
-       }, t.prototype.shuffleExcise = function (t) {
 
-         if (this.isEmpty()) throw new RangeError("Ring buffer is empty.");
 
-         var e = this.wrap(this.begin + t),
 
-           r = this.get(e);
 
-         return this.set(e, this.pop()), r;
 
-       }, t;
 
-     }(),
 
-       GrowingRingBuffer = function (t) {
 
-         function e() {
 
-           return t.call(this, e.INITIAL_CAPACITY) || this;
 
-         }
 
-         return __extends(e, t), e.prototype.isFull = function () {
 
-           return !1;
 
-         }, e.prototype.push = function (e) {
 
-           t.prototype.isFull.call(this) && this.expand(), t.prototype.push.call(this, e);
 
-         }, e.prototype.unshift = function (e) {
 
-           t.prototype.isFull.call(this) && this.expand(), t.prototype.unshift.call(this, e);
 
-         }, e.prototype.expand = function () {
 
-           for (var t = 2 * this.capacity, e = new Array(t), r = this.length(), n = 0; n < r; n++) e[n] = this.get(this.wrap(this.begin + n));
 
-           this.data = e, this.capacity = t, this.doubledCapacity = 2 * this.capacity, this.begin = 0, this.end = r;
 
-         }, e.INITIAL_CAPACITY = 32, e;
 
-       }(RingBuffer);
 
-     function iteratorFromItems(t) {
 
-       return new ArrayIterator(t);
 
-     }
 
-     function iteratorFromFunction(t) {
 
-       return new FunctionCallIterator(t);
 
-     }
 
-     function iteratorFromConcatenated(t, e) {
 
-       return new ChainedIterator(t, e);
 
-     }
 
-     function iteratorFromZipped(t, e) {
 
-       return void 0 === e && (e = ZipMismatchMode.FAIL), new ZipIterator(t, e);
 
-     }
 
-     var ZipMismatchMode,
 
-       LazyIterator = function () {
 
-         function t() { }
 
-         return t.prototype.toArray = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return t = [], [4, this.next()];
 
-                 case 1:
 
-                   e = r.sent(), r.label = 2;
 
-                 case 2:
 
-                   return e.done ? [3, 4] : (t.push(e.value), [4, this.next()]);
 
-                 case 3:
 
-                   return e = r.sent(), [3, 2];
 
-                 case 4:
 
-                   return [2, t];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.toArrayForTest = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return t = this.prefetch(100), e = [], [4, t.next()];
 
-                 case 1:
 
-                   r = n.sent(), n.label = 2;
 
-                 case 2:
 
-                   return r.done ? [3, 4] : (e.push(r.value), [4, t.next()]);
 
-                 case 3:
 
-                   return r = n.sent(), [3, 2];
 
-                 case 4:
 
-                   return [2, e];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.resolveFully = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t;
 
-             return __generator(this, function (e) {
 
-               switch (e.label) {
 
-                 case 0:
 
-                   return [4, this.next()];
 
-                 case 1:
 
-                   t = e.sent(), e.label = 2;
 
-                 case 2:
 
-                   return t.done ? [3, 4] : [4, this.next()];
 
-                 case 3:
 
-                   return t = e.sent(), [3, 2];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.resolveWhile = function (t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var e, r;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return [4, this.next()];
 
-                 case 1:
 
-                   e = n.sent(), r = t(e.value), n.label = 2;
 
-                 case 2:
 
-                   return e.done || !r ? [3, 4] : [4, this.next()];
 
-                 case 3:
 
-                   return e = n.sent(), r = t(e.value), [3, 2];
 
-                 case 4:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.handleErrors = function (t) {
 
-           return new ErrorHandlingLazyIterator(this, t);
 
-         }, t.prototype.filter = function (t) {
 
-           return new FilterIterator(this, t);
 
-         }, t.prototype.map = function (t) {
 
-           return new MapIterator(this, t);
 
-         }, t.prototype.mapAsync = function (t) {
 
-           return new AsyncMapIterator(this, t);
 
-         }, t.prototype.serialMapAsync = function (t) {
 
-           return new AsyncMapIterator(this, t).serial();
 
-         }, t.prototype.flatmap = function (t) {
 
-           return new FlatmapIterator(this, t);
 
-         }, t.prototype.forEachAsync = function (t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2, this.map(t).resolveFully()];
 
-             });
 
-           });
 
-         }, t.prototype.serialForEach = function (t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2, this.serialMapAsync(t).resolveWhile(function (t) {
 
-                 return !0 === t;
 
-               })];
 
-             });
 
-           });
 
-         }, t.prototype.rowMajorBatch = function (t, e) {
 
-           return void 0 === e && (e = !0), new RowMajorBatchIterator(this, t, e);
 
-         }, t.prototype.columnMajorBatch = function (t, e, r) {
 
-           return void 0 === e && (e = !0), void 0 === r && (r = zipToList), this.rowMajorBatch(t, e).map(function (t) {
 
-             return deepZip(t, r);
 
-           });
 
-         }, t.prototype.concatenate = function (t, e) {
 
-           return new ChainedIterator(iteratorFromItems([this, t]), e);
 
-         }, t.prototype.take = function (t) {
 
-           return t < 0 || null == t ? this : new TakeIterator(this, t);
 
-         }, t.prototype.skip = function (t) {
 
-           return t < 0 || null == t ? this : new SkipIterator(this, t);
 
-         }, t.prototype.prefetch = function (t) {
 
-           return new PrefetchIterator(this, t);
 
-         }, t.prototype.shuffle = function (t, e) {
 
-           return new ShuffleIterator(this, t, e);
 
-         }, t.prototype.serial = function () {
 
-           return new SerialIterator(this);
 
-         }, t;
 
-       }(),
 
-       ArrayIterator = function (t) {
 
-         function e(e) {
 
-           var r = t.call(this) || this;
 
-           return r.items = e, r.trav = 0, r;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return "Array of " + this.items.length + " items";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t;
 
-             return __generator(this, function (e) {
 
-               return this.trav >= this.items.length ? [2, {
 
-                 value: null,
 
-                 done: !0
 
-               }] : (t = this.items[this.trav], this.trav++, [2, {
 
-                 value: deepClone(t),
 
-                 done: !1
 
-               }]);
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       FunctionCallIterator = function (t) {
 
-         function e(e) {
 
-           var r = t.call(this) || this;
 
-           return r.nextFn = e, r;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return "Function call";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               try {
 
-                 return [2, this.nextFn()];
 
-               } catch (t) {
 
-                 throw t.message = "Error thrown while iterating through a dataset: " + t.message, t;
 
-               }
 
-               return [2];
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       SerialIterator = function (t) {
 
-         function e(e) {
 
-           var r = t.call(this) || this;
 
-           return r.upstream = e, r.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), r;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Serial";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               return [2, this.upstream.next()];
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       SkipIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.maxCount = r, n.count = 0, n.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Skip";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t;
 
-             return __generator(this, function (e) {
 
-               switch (e.label) {
 
-                 case 0:
 
-                   return this.count++ < this.maxCount ? [4, this.upstream.next()] : [3, 2];
 
-                 case 1:
 
-                   return (t = e.sent()).done ? [2, t] : ((0, _tfjsCore.dispose)(t.value), [3, 0]);
 
-                 case 2:
 
-                   return [2, this.upstream.next()];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       TakeIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.maxCount = r, n.count = 0, n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Take";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               return this.count++ >= this.maxCount ? [2, {
 
-                 value: null,
 
-                 done: !0
 
-               }] : [2, this.upstream.next()];
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       RowMajorBatchIterator = function (t) {
 
-         function e(e, r, n) {
 
-           void 0 === n && (n = !0);
 
-           var i = t.call(this) || this;
 
-           return i.upstream = e, i.batchSize = r, i.enableSmallLastBatch = n, i.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), i;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> RowMajorBatch";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   t = [], r.label = 1;
 
-                 case 1:
 
-                   return t.length < this.batchSize ? [4, this.upstream.next()] : [3, 3];
 
-                 case 2:
 
-                   return (e = r.sent()).done ? this.enableSmallLastBatch && t.length > 0 ? [2, {
 
-                     value: t,
 
-                     done: !1
 
-                   }] : [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }] : (t.push(e.value), [3, 1]);
 
-                 case 3:
 
-                   return [2, {
 
-                     value: t,
 
-                     done: !1
 
-                   }];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       FilterIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.predicate = r, n.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Filter";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t;
 
-             return __generator(this, function (e) {
 
-               switch (e.label) {
 
-                 case 0:
 
-                   return [4, this.upstream.next()];
 
-                 case 1:
 
-                   return (t = e.sent()).done || this.predicate(t.value) ? [2, t] : ((0, _tfjsCore.dispose)(t.value), [3, 0]);
 
-                 case 2:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       MapIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.transform = r, n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Map";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r, n, i, o, a;
 
-             return __generator(this, function (s) {
 
-               switch (s.label) {
 
-                 case 0:
 
-                   return [4, this.upstream.next()];
 
-                 case 1:
 
-                   if ((t = s.sent()).done) return [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }];
 
-                   for (e = _tfjsCore.tensor_util.getTensorsInContainer(t.value), r = this.transform(t.value), n = _tfjsCore.tensor_util.getTensorsInContainer(r), i = 0, o = e; i < o.length; i++) a = o[i], _tfjsCore.tensor_util.isTensorInList(a, n) || a.dispose();
 
-                   return [2, {
 
-                     value: r,
 
-                     done: !1
 
-                   }];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       ErrorHandlingLazyIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.handler = r, n.count = 0, n.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> handleErrors";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t;
 
-             return __generator(this, function (e) {
 
-               switch (e.label) {
 
-                 case 0:
 
-                   e.label = 1;
 
-                 case 1:
 
-                   return e.trys.push([1, 3, , 4]), [4, this.upstream.next()];
 
-                 case 2:
 
-                   return [2, e.sent()];
 
-                 case 3:
 
-                   return t = e.sent(), this.handler(t) ? [3, 4] : [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }];
 
-                 case 4:
 
-                   return [3, 0];
 
-                 case 5:
 
-                   return [2];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       AsyncMapIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.transform = r, n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> AsyncMap";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r, n, i, o, a;
 
-             return __generator(this, function (s) {
 
-               switch (s.label) {
 
-                 case 0:
 
-                   return [4, this.upstream.next()];
 
-                 case 1:
 
-                   return (t = s.sent()).done ? [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }] : (e = _tfjsCore.tensor_util.getTensorsInContainer(t.value), [4, this.transform(t.value)]);
 
-                 case 2:
 
-                   for (r = s.sent(), n = _tfjsCore.tensor_util.getTensorsInContainer(r), i = 0, o = e; i < o.length; i++) a = o[i], _tfjsCore.tensor_util.isTensorInList(a, n) || a.dispose();
 
-                   return [2, {
 
-                     value: r,
 
-                     done: !1
 
-                   }];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       OneToManyIterator = function (t) {
 
-         function e() {
 
-           var e = t.call(this) || this;
 
-           return e.outputQueue = new GrowingRingBuffer(), e.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), e;
 
-         }
 
-         return __extends(e, t), e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   return 0 !== this.outputQueue.length() ? [3, 2] : [4, this.pump()];
 
-                 case 1:
 
-                   return t.sent() ? [3, 0] : [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }];
 
-                 case 2:
 
-                   return [2, {
 
-                     value: this.outputQueue.shift(),
 
-                     done: !1
 
-                   }];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator),
 
-       FlatmapIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.transform = r, n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Flatmap";
 
-         }, e.prototype.pump = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r, n, i, o, a;
 
-             return __generator(this, function (s) {
 
-               switch (s.label) {
 
-                 case 0:
 
-                   return [4, this.upstream.next()];
 
-                 case 1:
 
-                   if ((t = s.sent()).done) return [2, !1];
 
-                   for (e = _tfjsCore.tensor_util.getTensorsInContainer(t.value), r = this.transform(t.value), n = _tfjsCore.tensor_util.getTensorsInContainer(r), this.outputQueue.pushAll(r), i = 0, o = e; i < o.length; i++) a = o[i], _tfjsCore.tensor_util.isTensorInList(a, n) || a.dispose();
 
-                   return [2, !0];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(OneToManyIterator),
 
-       ChainedIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.baseErrorHandler = r, n.lastRead = null, n.iterator = null, n.moreIterators = e, n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return "TODO: fill in upstream of chained summaries -> Chained";
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               return this.lastRead = this.readFromChain(this.lastRead), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.readFromChain = function (t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var e, r;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return [4, t];
 
-                 case 1:
 
-                   return n.sent(), null != this.iterator ? [3, 3] : [4, this.moreIterators.next()];
 
-                 case 2:
 
-                   if ((e = n.sent()).done) return [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }];
 
-                   this.iterator = e.value, null != this.baseErrorHandler && (this.iterator = this.iterator.handleErrors(this.baseErrorHandler)), n.label = 3;
 
-                 case 3:
 
-                   return [4, this.iterator.next()];
 
-                 case 4:
 
-                   return (r = n.sent()).done ? (this.iterator = null, [2, this.readFromChain(t)]) : [2, r];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(LazyIterator);
 
-     !function (t) {
 
-       t[t.FAIL = 0] = "FAIL", t[t.SHORTEST = 1] = "SHORTEST", t[t.LONGEST = 2] = "LONGEST";
 
-     }(ZipMismatchMode || (ZipMismatchMode = {}));
 
-     var ZipIterator = function (t) {
 
-       function e(e, r) {
 
-         void 0 === r && (r = ZipMismatchMode.FAIL);
 
-         var n = t.call(this) || this;
 
-         return n.iterators = e, n.mismatchMode = r, n.count = 0, n.currentPromise = null, n;
 
-       }
 
-       return __extends(e, t), e.prototype.summary = function () {
 
-         return "{TODO: fill in upstream of zip summaries} -> Zip";
 
-       }, e.prototype.nextState = function (t) {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           function e(t) {
 
-             return t instanceof LazyIterator ? {
 
-               value: t.next().then(function (t) {
 
-                 return r++, t.done && n++, t.value;
 
-               }),
 
-               recurse: !1
 
-             } : {
 
-                 value: null,
 
-                 recurse: !0
 
-               };
 
-           }
 
-           var r, n, i;
 
-           return __generator(this, function (o) {
 
-             switch (o.label) {
 
-               case 0:
 
-                 return [4, t];
 
-               case 1:
 
-                 return o.sent(), r = 0, n = 0, [4, deepMapAndAwaitAll(this.iterators, e)];
 
-               case 2:
 
-                 if (i = o.sent(), r === n) return [2, {
 
-                   value: null,
 
-                   done: !0
 
-                 }];
 
-                 if (n > 0) switch (this.mismatchMode) {
 
-                   case ZipMismatchMode.FAIL:
 
-                     throw new Error("Zipped streams should have the same length. Mismatched at element " + this.count + ".");
 
-                   case ZipMismatchMode.SHORTEST:
 
-                     return [2, {
 
-                       value: null,
 
-                       done: !0
 
-                     }];
 
-                   case ZipMismatchMode.LONGEST:
 
-                 }
 
-                 return this.count++, [2, {
 
-                   value: i,
 
-                   done: !1
 
-                 }];
 
-             }
 
-           });
 
-         });
 
-       }, e.prototype.next = function () {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           return __generator(this, function (t) {
 
-             return this.currentPromise = this.nextState(this.currentPromise), [2, this.currentPromise];
 
-           });
 
-         });
 
-       }, e;
 
-     }(LazyIterator),
 
-       PrefetchIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.bufferSize = r, n.buffer = new RingBuffer(r), n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Prefetch";
 
-         }, e.prototype.refill = function () {
 
-           for (; !this.buffer.isFull();) {
 
-             var t = this.upstream.next();
 
-             this.buffer.push(t);
 
-           }
 
-         }, e.prototype.next = function () {
 
-           return this.refill(), this.buffer.shift();
 
-         }, e;
 
-       }(LazyIterator),
 
-       ShuffleIterator = function (t) {
 
-         function e(e, r, n) {
 
-           var i = t.call(this, e, r) || this;
 
-           return i.upstream = e, i.windowSize = r, i.upstreamExhausted = !1, i.random = seedrandom_1(n || _tfjsCore.util.now().toString()), i.lastRead = Promise.resolve({
 
-             value: null,
 
-             done: !1
 
-           }), i;
 
-         }
 
-         return __extends(e, t), e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t = this;
 
-             return __generator(this, function (e) {
 
-               return this.lastRead = this.lastRead.then(function () {
 
-                 return t.serialNext();
 
-               }), [2, this.lastRead];
 
-             });
 
-           });
 
-         }, e.prototype.randomInt = function (t) {
 
-           return Math.floor(this.random() * t);
 
-         }, e.prototype.chooseIndex = function () {
 
-           return this.randomInt(this.buffer.length());
 
-         }, e.prototype.serialNext = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   this.upstreamExhausted || this.refill(), r.label = 1;
 
-                 case 1:
 
-                   return this.buffer.isEmpty() ? [3, 3] : (t = this.chooseIndex(), [4, this.buffer.shuffleExcise(t)]);
 
-                 case 2:
 
-                   return (e = r.sent()).done ? (this.upstreamExhausted = !0, [3, 1]) : (this.refill(), [2, e]);
 
-                 case 3:
 
-                   return [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(PrefetchIterator),
 
-       Dataset = function () {
 
-         function t() {
 
-           this.size = null;
 
-         }
 
-         return t.prototype.batch = function (t, e) {
 
-           var r = this;
 
-           void 0 === e && (e = !0);
 
-           var n = this;
 
-           return _tfjsCore.util.assert(t > 0, function () {
 
-             return "batchSize needs to be positive, but it is\n      " + t;
 
-           }), datasetFromIteratorFn(function () {
 
-             return __awaiter(r, void 0, void 0, function () {
 
-               return __generator(this, function (r) {
 
-                 switch (r.label) {
 
-                   case 0:
 
-                     return [4, n.iterator()];
 
-                   case 1:
 
-                     return [2, r.sent().columnMajorBatch(t, e, deepBatchConcat)];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size === 1 / 0 || null == this.size ? this.size : e ? Math.ceil(this.size / t) : Math.floor(this.size / t));
 
-         }, t.prototype.concatenate = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               var e, n;
 
-               return __generator(this, function (i) {
 
-                 switch (i.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return n = (e = i.sent()).concatenate, [4, t.iterator()];
 
-                   case 2:
 
-                     return [2, n.apply(e, [i.sent()])];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size === 1 / 0 || t.size === 1 / 0 ? 1 / 0 : null != this.size && null != t.size ? this.size + t.size : null);
 
-         }, t.prototype.filter = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               return __generator(this, function (e) {
 
-                 switch (e.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return [2, e.sent().filter(function (e) {
 
-                       return (0, _tfjsCore.tidy)(function () {
 
-                         return t(e);
 
-                       });
 
-                     })];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size === 1 / 0 ? 1 / 0 : null);
 
-         }, t.prototype.forEachAsync = function (t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               switch (e.label) {
 
-                 case 0:
 
-                   return [4, this.iterator()];
 
-                 case 1:
 
-                   return [2, e.sent().forEachAsync(t)];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.forEach = function (t) {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return (0, _tfjsCore.deprecationWarn)("dataset.forEach() is deprecated and will be removed. Please use dataset.forEachAsync() instead"), [2, this.forEachAsync(t)];
 
-             });
 
-           });
 
-         }, t.prototype.map = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               return __generator(this, function (e) {
 
-                 switch (e.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return [2, e.sent().map(function (e) {
 
-                       return (0, _tfjsCore.tidy)(function () {
 
-                         return t(e);
 
-                       });
 
-                     })];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size);
 
-         }, t.prototype.mapAsync = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               return __generator(this, function (e) {
 
-                 switch (e.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return [2, e.sent().mapAsync(t)];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size);
 
-         }, t.prototype.prefetch = function (t) {
 
-           var e = this;
 
-           if (null == t) throw new RangeError("`Dataset.prefetch()` requires bufferSize to be specified.");
 
-           var r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               return __generator(this, function (e) {
 
-                 switch (e.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return [2, e.sent().prefetch(t)];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size);
 
-         }, t.prototype.repeat = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               var e = this;
 
-               return __generator(this, function (n) {
 
-                 return [2, iteratorFromConcatenated(iteratorFromFunction(function () {
 
-                   return __awaiter(e, void 0, void 0, function () {
 
-                     var t;
 
-                     return __generator(this, function (e) {
 
-                       switch (e.label) {
 
-                         case 0:
 
-                           return t = {}, [4, r.iterator()];
 
-                         case 1:
 
-                           return [2, (t.value = e.sent(), t.done = !1, t)];
 
-                       }
 
-                     });
 
-                   });
 
-                 }).take(t))];
 
-               });
 
-             });
 
-           }, null != this.size && t > 0 ? this.size * t : 0 === t ? 0 : null != this.size && (void 0 === t || t < 0) ? 1 / 0 : null);
 
-         }, t.prototype.skip = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               return __generator(this, function (e) {
 
-                 switch (e.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return [2, e.sent().skip(t)];
 
-                 }
 
-               });
 
-             });
 
-           }, null != this.size && t >= 0 && this.size >= t ? this.size - t : null != this.size && (this.size < t || void 0 === t || t < 0) ? 0 : null);
 
-         }, t.prototype.shuffle = function (t, e, r) {
 
-           var n = this;
 
-           if (void 0 === r && (r = !0), null == t || t < 0) throw null == this.size ? new RangeError("`Dataset.shuffle()` requires bufferSize to be specified.") : new RangeError("`Dataset.shuffle()` requires bufferSize to be specified.  If your data fits in main memory (for regular JS objects), and/or GPU memory (for `tf.Tensor`s), consider setting bufferSize to the dataset size (" + this.size + " elements)");
 
-           var i = this,
 
-             o = seedrandom_1(e || _tfjsCore.util.now().toString());
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(n, void 0, void 0, function () {
 
-               var e;
 
-               return __generator(this, function (n) {
 
-                 switch (n.label) {
 
-                   case 0:
 
-                     return e = o.int32(), r && (e += o.int32()), [4, i.iterator()];
 
-                   case 1:
 
-                     return [2, n.sent().shuffle(t, e.toString())];
 
-                 }
 
-               });
 
-             });
 
-           }, this.size);
 
-         }, t.prototype.take = function (t) {
 
-           var e = this,
 
-             r = this;
 
-           return datasetFromIteratorFn(function () {
 
-             return __awaiter(e, void 0, void 0, function () {
 
-               return __generator(this, function (e) {
 
-                 switch (e.label) {
 
-                   case 0:
 
-                     return [4, r.iterator()];
 
-                   case 1:
 
-                     return [2, e.sent().take(t)];
 
-                 }
 
-               });
 
-             });
 
-           }, null != this.size && this.size > t ? t : null != this.size && this.size <= t ? this.size : null);
 
-         }, t.prototype.toArray = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   if (this.size === 1 / 0) throw new Error("Can not convert infinite data stream to array.");
 
-                   return [4, this.iterator()];
 
-                 case 1:
 
-                   return [2, t.sent().toArray()];
 
-               }
 
-             });
 
-           });
 
-         }, t.prototype.toArrayForTest = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   if (this.size === 1 / 0) throw new Error("Can not convert infinite data stream to array.");
 
-                   return [4, this.iterator()];
 
-                 case 1:
 
-                   return [2, t.sent().toArrayForTest()];
 
-               }
 
-             });
 
-           });
 
-         }, t.MAX_BUFFER_SIZE = 1e4, t;
 
-       }();
 
-     exports.Dataset = Dataset;
 
-     function datasetFromIteratorFn(t, e) {
 
-       return void 0 === e && (e = null), new (function (r) {
 
-         function n() {
 
-           var t = null !== r && r.apply(this, arguments) || this;
 
-           return t.size = e, t;
 
-         }
 
-         return __extends(n, r), n.prototype.iterator = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (e) {
 
-               return [2, t()];
 
-             });
 
-           });
 
-         }, n;
 
-       }(Dataset))();
 
-     }
 
-     function array(t) {
 
-       var e = this;
 
-       return datasetFromIteratorFn(function () {
 
-         return __awaiter(e, void 0, void 0, function () {
 
-           return __generator(this, function (e) {
 
-             return [2, iteratorFromItems(t)];
 
-           });
 
-         });
 
-       }, t.length);
 
-     }
 
-     function zip(t) {
 
-       var e,
 
-         r = this;
 
-       if (!isIterable(t)) throw new Error("The argument to zip() must be an object or array.");
 
-       if (Array.isArray(t)) for (var n = 0; n < t.length; n++) e = null == e ? t[n].size : Math.min(e, t[n].size); else if (t instanceof Object) for (var i in t) e = null == e ? t[i].size : Math.min(e, t[i].size);
 
-       return datasetFromIteratorFn(function () {
 
-         return __awaiter(r, void 0, void 0, function () {
 
-           return __generator(this, function (e) {
 
-             switch (e.label) {
 
-               case 0:
 
-                 return [4, deepMapAndAwaitAll(t, function (t) {
 
-                   if (t instanceof Dataset) return {
 
-                     value: t.iterator(),
 
-                     recurse: !1
 
-                   };
 
-                   if (isIterable(t)) return {
 
-                     value: null,
 
-                     recurse: !0
 
-                   };
 
-                   throw new Error("Leaves of the structure passed to zip() must be Datasets, not primitives.");
 
-                 })];
 
-               case 1:
 
-                 return [2, iteratorFromZipped(e.sent(), ZipMismatchMode.SHORTEST)];
 
-             }
 
-           });
 
-         });
 
-       }, e);
 
-     }
 
-     function deepBatchConcat(t) {
 
-       return null === t ? null : canTensorify(t[0]) ? {
 
-         value: batchConcat(t),
 
-         recurse: !1
 
-       } : {
 
-           value: null,
 
-           recurse: !0
 
-         };
 
-     }
 
-     function batchConcat(t) {
 
-       if (0 === t.length) throw new Error("Can't make a batch of zero elements.");
 
-       return t[0] instanceof _tfjsCore.Tensor ? (0, _tfjsCore.stack)(t) : (0, _tfjsCore.tensor)(t);
 
-     }
 
-     var TextLineDataset = function (t) {
 
-       function e(e) {
 
-         var r = t.call(this) || this;
 
-         return r.input = e, r;
 
-       }
 
-       return __extends(e, t), e.prototype.iterator = function () {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           var t, e;
 
-           return __generator(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return [4, this.input.iterator()];
 
-               case 1:
 
-                 return t = r.sent(), e = t.decodeUTF8(), [2, e.split("\n").map(function (t) {
 
-                   return t.endsWith("\r") && (t = t.slice(0, -1)), t;
 
-                 })];
 
-             }
 
-           });
 
-         });
 
-       }, e;
 
-     }(Dataset),
 
-       CODE_QUOTE = '"',
 
-       STATE_OUT = Symbol("out"),
 
-       STATE_FIELD = Symbol("field"),
 
-       STATE_QUOTE = Symbol("quote"),
 
-       STATE_QUOTE_AFTER_QUOTE = Symbol("quoteafterquote"),
 
-       STATE_WITHIN_QUOTE_IN_QUOTE = Symbol("quoteinquote"),
 
-       CSVDataset = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.input = e, n.hasHeader = !0, n.fullColumnNames = null, n.columnNamesValidated = !1, n.columnConfigs = null, n.configuredColumnsOnly = !1, n.delimiter = ",", n.delimWhitespace = !1, n.base = new TextLineDataset(e), r || (r = {}), n.hasHeader = !1 !== r.hasHeader, n.fullColumnNames = r.columnNames, n.columnConfigs = r.columnConfigs, n.configuredColumnsOnly = r.configuredColumnsOnly, r.delimWhitespace ? (_tfjsCore.util.assert(null == r.delimiter, function () {
 
-             return "Delimiter should not be provided when delimWhitespace is true.";
 
-           }), n.delimWhitespace = !0, n.delimiter = " ") : n.delimiter = r.delimiter ? r.delimiter : ",", n;
 
-         }
 
-         return __extends(e, t), e.prototype.columnNames = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   return this.columnNamesValidated ? [3, 2] : [4, this.setColumnNames()];
 
-                 case 1:
 
-                   t.sent(), t.label = 2;
 
-                 case 2:
 
-                   return [2, this.configuredColumnsOnly ? Object.keys(this.columnConfigs) : this.fullColumnNames];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.setColumnNames = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t,
 
-               e,
 
-               r,
 
-               n,
 
-               i,
 
-               o,
 
-               a = this;
 
-             return __generator(this, function (s) {
 
-               switch (s.label) {
 
-                 case 0:
 
-                   return [4, this.maybeReadHeaderLine()];
 
-                 case 1:
 
-                   if (t = s.sent(), !this.fullColumnNames && !t) throw new Error("Column names must be provided if there is no header line.");
 
-                   if (this.fullColumnNames && t && _tfjsCore.util.assert(t.length === this.fullColumnNames.length, function () {
 
-                     return "The length of provided columnNames (" + a.fullColumnNames.length.toString() + ") does not match the length of the header line read from file (" + t.length.toString() + ").";
 
-                   }), this.fullColumnNames || (this.fullColumnNames = t), e = this.fullColumnNames.reduce(function (t, e) {
 
-                     return t[e] = t[e] + 1 || 1, t;
 
-                   }, {}), r = Object.keys(e).filter(function (t) {
 
-                     return e[t] > 1;
 
-                   }), _tfjsCore.util.assert(0 === r.length, function () {
 
-                     return "Duplicate column names found: " + r.toString();
 
-                   }), this.columnConfigs) for (n = 0, i = Object.keys(this.columnConfigs); n < i.length; n++) if (o = i[n], -1 === this.fullColumnNames.indexOf(o)) throw new Error('The key "' + o + '" provided in columnConfigs does not match any of the column names (' + this.fullColumnNames.toString() + ").");
 
-                   return this.columnNamesValidated = !0, [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.maybeReadHeaderLine = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return this.hasHeader ? [4, this.base.iterator()] : [3, 3];
 
-                 case 1:
 
-                   return [4, r.sent().next()];
 
-                 case 2:
 
-                   if ((t = r.sent()).done) throw new Error("No data was found for CSV parsing.");
 
-                   return e = t.value, [2, this.parseRow(e, !1)];
 
-                 case 3:
 
-                   return [2, null];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.iterator = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t,
 
-               e = this;
 
-             return __generator(this, function (r) {
 
-               switch (r.label) {
 
-                 case 0:
 
-                   return this.columnNamesValidated ? [3, 2] : [4, this.setColumnNames()];
 
-                 case 1:
 
-                   r.sent(), r.label = 2;
 
-                 case 2:
 
-                   return [4, this.base.iterator()];
 
-                 case 3:
 
-                   return t = r.sent(), this.hasHeader && (t = t.skip(1)), [2, t.map(function (t) {
 
-                     return e.makeDataElement(t);
 
-                   })];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.makeDataElement = function (t) {
 
-           for (var e = this.parseRow(t), r = {}, n = {}, i = 0; i < this.fullColumnNames.length; i++) {
 
-             var o = this.fullColumnNames[i],
 
-               a = this.columnConfigs ? this.columnConfigs[o] : null;
 
-             if (!this.configuredColumnsOnly || a) {
 
-               var s = e[i],
 
-                 u = null;
 
-               if ("" === s) {
 
-                 if (a && void 0 !== a.default) u = a.default; else {
 
-                   if (a && (a.required || a.isLabel)) throw new Error("Required column " + o + " is empty in this line: " + t);
 
-                   u = void 0;
 
-                 }
 
-               } else {
 
-                 var c = Number(s);
 
-                 if (isNaN(c)) u = a && "bool" === a.dtype ? this.getBoolean(s) : s; else if (a && a.dtype) switch (a.dtype) {
 
-                   case "float32":
 
-                     u = c;
 
-                     break;
 
-                   case "int32":
 
-                     u = Math.floor(c);
 
-                     break;
 
-                   case "bool":
 
-                     u = this.getBoolean(s);
 
-                     break;
 
-                   default:
 
-                     u = c;
 
-                 } else u = c;
 
-               }
 
-               a && a.isLabel ? n[o] = u : r[o] = u;
 
-             }
 
-           }
 
-           return 0 === Object.keys(n).length ? r : {
 
-             xs: r,
 
-             ys: n
 
-           };
 
-         }, e.prototype.getBoolean = function (t) {
 
-           return "1" === t || "true" === t.toLowerCase() ? 1 : 0;
 
-         }, e.prototype.parseRow = function (t, e) {
 
-           void 0 === e && (e = !0);
 
-           for (var r = [], n = 0, i = t.length, o = STATE_OUT, a = 0; a < i; a++) switch (o) {
 
-             case STATE_OUT:
 
-               switch (t.charAt(a)) {
 
-                 case CODE_QUOTE:
 
-                   n = a + 1, o = STATE_QUOTE;
 
-                   break;
 
-                 case this.delimiter:
 
-                   if (n = a + 1, " " === this.delimiter && this.delimWhitespace) break;
 
-                   r.push(""), o = STATE_OUT;
 
-                   break;
 
-                 default:
 
-                   o = STATE_FIELD, n = a;
 
-               }
 
-               break;
 
-             case STATE_FIELD:
 
-               switch (t.charAt(a)) {
 
-                 case this.delimiter:
 
-                   r.push(t.substring(n, a)), o = STATE_OUT, n = a + 1;
 
-               }
 
-               break;
 
-             case STATE_QUOTE:
 
-               switch (t.charAt(a)) {
 
-                 case CODE_QUOTE:
 
-                   o = STATE_QUOTE_AFTER_QUOTE;
 
-               }
 
-               break;
 
-             case STATE_QUOTE_AFTER_QUOTE:
 
-               switch (t.charAt(a)) {
 
-                 case this.delimiter:
 
-                   r.push(t.substring(n, a - 1)), o = STATE_OUT, n = a + 1;
 
-                   break;
 
-                 case CODE_QUOTE:
 
-                   o = STATE_QUOTE;
 
-                   break;
 
-                 default:
 
-                   o = STATE_WITHIN_QUOTE_IN_QUOTE;
 
-               }
 
-               break;
 
-             case STATE_WITHIN_QUOTE_IN_QUOTE:
 
-               switch (t.charAt(a)) {
 
-                 case CODE_QUOTE:
 
-                   o = STATE_QUOTE;
 
-               }
 
-           }
 
-           if (o === STATE_QUOTE_AFTER_QUOTE ? r.push(t.substring(n, i - 1)) : r.push(t.substring(n)), e && r.length !== this.fullColumnNames.length) throw new Error("Invalid row in csv file. Should have " + this.fullColumnNames.length + " elements in a row, but got " + r);
 
-           return r;
 
-         }, e;
 
-       }(Dataset),
 
-       MicrophoneIterator = function (t) {
 
-         function e(e) {
 
-           var r = t.call(this) || this;
 
-           r.microphoneConfig = e, r.isClosed = !1, r.fftSize = e.fftSize || 1024;
 
-           var n = Math.log2(r.fftSize);
 
-           if (r.fftSize < 0 || n < 4 || n > 14 || !Number.isInteger(n)) throw new Error("Invalid fftSize: it must be a power of 2 between 2 to 4 and 2 to 14, but got " + r.fftSize);
 
-           if (r.numFrames = e.numFramesPerSpectrogram || 43, r.sampleRateHz = e.sampleRateHz, r.columnTruncateLength = e.columnTruncateLength || r.fftSize, r.audioTrackConstraints = e.audioTrackConstraints, r.smoothingTimeConstant = e.smoothingTimeConstant || 0, r.includeSpectrogram = !1 !== e.includeSpectrogram, r.includeWaveform = !0 === e.includeWaveform, !r.includeSpectrogram && !r.includeWaveform) throw new Error("Both includeSpectrogram and includeWaveform are false. At least one type of data should be returned.");
 
-           return r;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return "microphone";
 
-         }, e.create = function (t) {
 
-           return void 0 === t && (t = {}), __awaiter(this, void 0, void 0, function () {
 
-             var r;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   if ((0, _tfjsCore.env)().get("IS_NODE")) throw new Error("microphone API is only supported in browser environment.");
 
-                   return [4, (r = new e(t)).start()];
 
-                 case 1:
 
-                   return n.sent(), [2, r];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.start = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r, n;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   return i.trys.push([0, 2, , 3]), t = this, [4, navigator.mediaDevices.getUserMedia({
 
-                     audio: null == this.audioTrackConstraints || this.audioTrackConstraints,
 
-                     video: !1
 
-                   })];
 
-                 case 1:
 
-                   return t.stream = i.sent(), [3, 3];
 
-                 case 2:
 
-                   throw e = i.sent(), new Error("Error thrown while initializing video stream: " + e.message);
 
-                 case 3:
 
-                   if (!this.stream) throw new Error("Could not obtain audio from microphone.");
 
-                   if (r = window.AudioContext || window.webkitAudioContext, this.audioContext = new r(), this.sampleRateHz) {
 
-                     if (this.audioContext.sampleRate !== this.sampleRateHz) throw new Error("Mismatch in sampling rate: Expected: " + this.sampleRateHz + "; Actual: " + this.audioContext.sampleRate);
 
-                   } else this.sampleRateHz = this.audioContext.sampleRate;
 
-                   return n = this.audioContext.createMediaStreamSource(this.stream), this.analyser = this.audioContext.createAnalyser(), this.analyser.fftSize = 2 * this.fftSize, this.analyser.smoothingTimeConstant = this.smoothingTimeConstant, n.connect(this.analyser), this.freqData = new Float32Array(this.fftSize), this.timeData = new Float32Array(this.fftSize), [2];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r, n, i;
 
-             return __generator(this, function (o) {
 
-               switch (o.label) {
 
-                 case 0:
 
-                   return this.isClosed ? [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }] : [4, this.getAudioData()];
 
-                 case 1:
 
-                   return r = o.sent(), this.includeSpectrogram && (n = this.flattenQueue(r.freqDataQueue), t = this.getTensorFromAudioDataArray(n, [this.numFrames, this.columnTruncateLength, 1])), this.includeWaveform && (i = this.flattenQueue(r.timeDataQueue), e = this.getTensorFromAudioDataArray(i, [this.numFrames * this.fftSize, 1])), [2, {
 
-                     value: {
 
-                       spectrogram: t,
 
-                       waveform: e
 
-                     },
 
-                     done: !1
 
-                   }];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.capture = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   return [4, this.next()];
 
-                 case 1:
 
-                   return [2, t.sent().value];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.getAudioData = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t,
 
-               e,
 
-               r,
 
-               n = this;
 
-             return __generator(this, function (i) {
 
-               return t = [], e = [], r = 0, [2, new Promise(function (i) {
 
-                 var o = setInterval(function () {
 
-                   n.includeSpectrogram && (n.analyser.getFloatFrequencyData(n.freqData), n.freqData[0] === -1 / 0 && i({
 
-                     freqDataQueue: t,
 
-                     timeDataQueue: e
 
-                   }), t.push(n.freqData.slice(0, n.columnTruncateLength))), n.includeWaveform && (n.analyser.getFloatTimeDomainData(n.timeData), e.push(n.timeData.slice())), ++r === n.numFrames && (clearInterval(o), i({
 
-                     freqDataQueue: t,
 
-                     timeDataQueue: e
 
-                   }));
 
-                 }, n.fftSize / n.sampleRateHz * 1e3);
 
-               })];
 
-             });
 
-           });
 
-         }, e.prototype.stop = function () {
 
-           this.isClosed || (this.isClosed = !0, this.analyser.disconnect(), this.audioContext.close(), null != this.stream && this.stream.getTracks().length > 0 && this.stream.getTracks()[0].stop());
 
-         }, e.prototype.toArray = function () {
 
-           throw new Error("Can not convert infinite audio stream to array.");
 
-         }, e.prototype.getSampleRate = function () {
 
-           return this.sampleRateHz;
 
-         }, e.prototype.flattenQueue = function (t) {
 
-           var e = t[0].length,
 
-             r = new Float32Array(t.length * e);
 
-           return t.forEach(function (t, n) {
 
-             return r.set(t, n * e);
 
-           }), r;
 
-         }, e.prototype.getTensorFromAudioDataArray = function (t, e) {
 
-           var r = new Float32Array(_tfjsCore.util.sizeFromShape(e));
 
-           return r.set(t, r.length - t.length), (0, _tfjsCore.tensor)(r, e);
 
-         }, e;
 
-       }(LazyIterator),
 
-       WebcamIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           if (n.webcamVideoElement = e, n.webcamConfig = r, n.isClosed = !0, n.resize = !1, n.needToResize()) if (n.resize = !0, n.cropSize = [n.webcamConfig.resizeHeight, n.webcamConfig.resizeWidth], n.cropBoxInd = (0, _tfjsCore.tensor1d)([0], "int32"), n.webcamConfig.centerCrop) {
 
-             var i = 1 * n.webcamConfig.resizeWidth / n.webcamVideoElement.width,
 
-               o = 1 * n.webcamConfig.resizeHeight / n.webcamVideoElement.height,
 
-               a = (1 - i) / 2,
 
-               s = (1 - o) / 2,
 
-               u = a + i,
 
-               c = o + s;
 
-             n.cropBox = (0, _tfjsCore.tensor2d)([s, a, c, u], [1, 4]);
 
-           } else n.cropBox = (0, _tfjsCore.tensor2d)([0, 0, 1, 1], [1, 4]);
 
-           return n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return "webcam";
 
-         }, e.create = function (t, r) {
 
-           return void 0 === r && (r = {}), __awaiter(this, void 0, void 0, function () {
 
-             var n;
 
-             return __generator(this, function (i) {
 
-               switch (i.label) {
 
-                 case 0:
 
-                   if ((0, _tfjsCore.env)().get("IS_NODE")) throw new Error("tf.data.webcam is only supported in browser environment.");
 
-                   if (!t) {
 
-                     if (t = document.createElement("video"), !r.resizeWidth || !r.resizeHeight) throw new Error("Please provide webcam video element, or resizeWidth and resizeHeight to create a hidden video element.");
 
-                     t.width = r.resizeWidth, t.height = r.resizeHeight;
 
-                   }
 
-                   return [4, (n = new e(t, r)).start()];
 
-                 case 1:
 
-                   return i.sent(), [2, n];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.start = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t,
 
-               e,
 
-               r = this;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   this.webcamConfig.facingMode && _tfjsCore.util.assert("user" === this.webcamConfig.facingMode || "environment" === this.webcamConfig.facingMode, function () {
 
-                     return "Invalid webcam facing mode: " + r.webcamConfig.facingMode + ". Please provide 'user' or 'environment'";
 
-                   }), n.label = 1;
 
-                 case 1:
 
-                   return n.trys.push([1, 3, , 4]), t = this, [4, navigator.mediaDevices.getUserMedia({
 
-                     video: {
 
-                       deviceId: this.webcamConfig.deviceId,
 
-                       facingMode: this.webcamConfig.facingMode ? this.webcamConfig.facingMode : "user",
 
-                       width: this.webcamVideoElement.width,
 
-                       height: this.webcamVideoElement.height
 
-                     }
 
-                   })];
 
-                 case 2:
 
-                   return t.stream = n.sent(), [3, 4];
 
-                 case 3:
 
-                   throw (e = n.sent()).message = "Error thrown while initializing video stream: " + e.message, e;
 
-                 case 4:
 
-                   if (!this.stream) throw new Error("Could not obtain video from webcam.");
 
-                   try {
 
-                     this.webcamVideoElement.srcObject = this.stream;
 
-                   } catch (t) {
 
-                     console.log(t), this.webcamVideoElement.src = window.URL.createObjectURL(this.stream);
 
-                   }
 
-                   return this.webcamVideoElement.play(), this.isClosed = !1, [2, new Promise(function (t) {
 
-                     r.webcamVideoElement.onloadedmetadata = function () {
 
-                       t();
 
-                     };
 
-                   })];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t;
 
-             return __generator(this, function (e) {
 
-               if (this.isClosed) return [2, {
 
-                 value: null,
 
-                 done: !0
 
-               }];
 
-               try {
 
-                 t = _tfjsCore.browser.fromPixels(this.webcamVideoElement);
 
-               } catch (t) {
 
-                 throw new Error("Error thrown converting video to pixels: " + JSON.stringify(t));
 
-               }
 
-               if (!this.resize) return [2, {
 
-                 value: t,
 
-                 done: !1
 
-               }];
 
-               try {
 
-                 return [2, {
 
-                   value: this.cropAndResizeFrame(t),
 
-                   done: !1
 
-                 }];
 
-               } catch (t) {
 
-                 throw new Error("Error thrown cropping the video: " + t.message);
 
-               } finally {
 
-                 t.dispose();
 
-               }
 
-               return [2];
 
-             });
 
-           });
 
-         }, e.prototype.needToResize = function () {
 
-           return !(!this.webcamConfig.resizeWidth || !this.webcamConfig.resizeHeight || this.webcamVideoElement.width === this.webcamConfig.resizeWidth && this.webcamVideoElement.height === this.webcamConfig.resizeHeight);
 
-         }, e.prototype.cropAndResizeFrame = function (t) {
 
-           var e = this;
 
-           return (0, _tfjsCore.tidy)(function () {
 
-             var r,
 
-               n = t.toFloat().expandDims(0),
 
-               i = (r = _tfjsCore.image.cropAndResize(n, e.cropBox, e.cropBoxInd, e.cropSize, "bilinear")).shape;
 
-             return r.reshape(i.slice(1));
 
-           });
 
-         }, e.prototype.capture = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               switch (t.label) {
 
-                 case 0:
 
-                   return [4, this.next()];
 
-                 case 1:
 
-                   return [2, t.sent().value];
 
-               }
 
-             });
 
-           });
 
-         }, e.prototype.stop = function () {
 
-           this.stream.getTracks().forEach(function (t) {
 
-             return t.stop();
 
-           });
 
-           try {
 
-             this.webcamVideoElement.srcObject = null;
 
-           } catch (t) {
 
-             console.log(t), this.webcamVideoElement.src = null;
 
-           }
 
-           this.isClosed = !0;
 
-         }, e.prototype.toArray = function () {
 
-           throw new Error("Can not convert infinite video stream to array.");
 
-         }, e;
 
-       }(LazyIterator),
 
-       DataSource = function () {
 
-         return function () { };
 
-       }(),
 
-       StringIterator = function (t) {
 
-         function e() {
 
-           return null !== t && t.apply(this, arguments) || this;
 
-         }
 
-         return __extends(e, t), e.prototype.split = function (t) {
 
-           return new SplitIterator(this, t);
 
-         }, e;
 
-       }(LazyIterator),
 
-       SplitIterator = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.impl = new SplitIteratorImpl(e, r), n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.impl.summary();
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               return [2, this.impl.next()];
 
-             });
 
-           });
 
-         }, e;
 
-       }(StringIterator),
 
-       SplitIteratorImpl = function (t) {
 
-         function e(e, r) {
 
-           var n = t.call(this) || this;
 
-           return n.upstream = e, n.separator = r, n.carryover = "", n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Split('" + this.separator + "')";
 
-         }, e.prototype.pump = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r, n, i;
 
-             return __generator(this, function (o) {
 
-               switch (o.label) {
 
-                 case 0:
 
-                   return [4, this.upstream.next()];
 
-                 case 1:
 
-                   if ((t = o.sent()).done) return "" === this.carryover ? [2, !1] : (this.outputQueue.push(this.carryover), this.carryover = "", [2, !0]);
 
-                   for ((e = t.value.split(this.separator))[0] = this.carryover + e[0], r = 0, n = e.slice(0, -1); r < n.length; r++) i = n[r], this.outputQueue.push(i);
 
-                   return this.carryover = e[e.length - 1], [2, !0];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(OneToManyIterator),
 
-       ByteChunkIterator = function (t) {
 
-         function e() {
 
-           return null !== t && t.apply(this, arguments) || this;
 
-         }
 
-         return __extends(e, t), e.prototype.decodeUTF8 = function () {
 
-           return new Utf8Iterator(this);
 
-         }, e;
 
-       }(LazyIterator),
 
-       Utf8Iterator = function (t) {
 
-         function e(e) {
 
-           var r = t.call(this) || this;
 
-           return r.upstream = e, r.impl = new Utf8IteratorImpl(e), r;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.impl.summary();
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               return [2, this.impl.next()];
 
-             });
 
-           });
 
-         }, e;
 
-       }(StringIterator),
 
-       Utf8IteratorImpl = function (t) {
 
-         function e(e) {
 
-           var r = t.call(this) || this;
 
-           if (r.upstream = e, (0, _tfjsCore.env)().get("IS_BROWSER")) r.decoder = new TextDecoder("utf-8"); else {
 
-             var n = require("string_decoder").StringDecoder;
 
-             r.decoder = new n("utf8");
 
-           }
 
-           return r;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return this.upstream.summary() + " -> Utf8";
 
-         }, e.prototype.pump = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t, e, r;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return [4, this.upstream.next()];
 
-                 case 1:
 
-                   return (t = n.sent()).done ? [2, !1] : (e = t.value, r = (0, _tfjsCore.env)().get("IS_BROWSER") ? this.decoder.decode(e, {
 
-                     stream: !0
 
-                   }) : this.decoder.write(Buffer.from(e.buffer)), this.outputQueue.push(r), [2, !0]);
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(OneToManyIterator),
 
-       FileChunkIterator = function (t) {
 
-         function e(e, r) {
 
-           void 0 === r && (r = {});
 
-           var n = t.call(this) || this;
 
-           return n.file = e, n.options = r, _tfjsCore.util.assert(e instanceof Uint8Array || !!(0, _tfjsCore.env)().get("IS_BROWSER") && (e instanceof File || e instanceof Blob), function () {
 
-             return "FileChunkIterator only supports File, Blob and Uint8Array right now.";
 
-           }), n.offset = r.offset || 0, n.chunkSize = r.chunkSize || 1048576, n;
 
-         }
 
-         return __extends(e, t), e.prototype.summary = function () {
 
-           return "FileChunks " + this.file;
 
-         }, e.prototype.next = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             var t,
 
-               e,
 
-               r = this;
 
-             return __generator(this, function (n) {
 
-               switch (n.label) {
 
-                 case 0:
 
-                   return this.offset >= (this.file instanceof Uint8Array ? this.file.byteLength : this.file.size) ? [2, {
 
-                     value: null,
 
-                     done: !0
 
-                   }] : (t = new Promise(function (t, e) {
 
-                     var n = r.offset + r.chunkSize;
 
-                     if (r.file instanceof Uint8Array) t(new Uint8Array(r.file.slice(r.offset, n))); else {
 
-                       var i = new FileReader();
 
-                       i.onload = function (r) {
 
-                         var n = i.result;
 
-                         if (n instanceof ArrayBuffer && (n = new Uint8Array(n)), !(n instanceof Uint8Array)) return e(new TypeError("FileReader returned unknown type."));
 
-                         t(n);
 
-                       }, i.onabort = function (t) {
 
-                         return e(new Error("Aborted"));
 
-                       }, i.onerror = function (t) {
 
-                         return e(new Error(t.type));
 
-                       };
 
-                       var o = r.file.slice(r.offset, n);
 
-                       i.readAsArrayBuffer(o);
 
-                     }
 
-                     r.offset = n;
 
-                   }), e = {}, [4, t]);
 
-                 case 1:
 
-                   return [2, (e.value = n.sent(), e.done = !1, e)];
 
-               }
 
-             });
 
-           });
 
-         }, e;
 
-       }(ByteChunkIterator);
 
-     exports.CSVDataset = CSVDataset;
 
-     exports.TextLineDataset = TextLineDataset;
 
-     function urlChunkIterator(t, e) {
 
-       return void 0 === e && (e = {}), __awaiter(this, void 0, void 0, function () {
 
-         var r, n, i, o, a;
 
-         return __generator(this, function (s) {
 
-           switch (s.label) {
 
-             case 0:
 
-               return "string" == typeof t ? r = t : (r = t.url, n = getRequestInitFromRequest(t)), [4, _tfjsCore.util.fetch(r, n)];
 
-             case 1:
 
-               return (i = s.sent()).ok ? (a = Uint8Array.bind, [4, i.arrayBuffer()]) : [3, 3];
 
-             case 2:
 
-               return o = new (a.apply(Uint8Array, [void 0, s.sent()]))(), [2, new FileChunkIterator(o, e)];
 
-             case 3:
 
-               throw new Error(i.statusText);
 
-           }
 
-         });
 
-       });
 
-     }
 
-     var getRequestInitFromRequest = function (t) {
 
-       return {
 
-         method: t.method,
 
-         headers: t.headers,
 
-         body: t.body,
 
-         mode: t.mode,
 
-         credentials: t.credentials,
 
-         cache: t.cache,
 
-         redirect: t.redirect,
 
-         referrer: t.referrer,
 
-         integrity: t.integrity
 
-       };
 
-     };
 
-     function isLocalPath(t) {
 
-       return "string" == typeof t && "file://" === t.substr(0, 7);
 
-     }
 
-     var FileDataSource = function (t) {
 
-       function e(e, r) {
 
-         void 0 === r && (r = {});
 
-         var n = t.call(this) || this;
 
-         return n.input = e, n.options = r, n;
 
-       }
 
-       return __extends(e, t), e.prototype.iterator = function () {
 
-         return __awaiter(this, void 0, void 0, function () {
 
-           var t;
 
-           return __generator(this, function (e) {
 
-             return isLocalPath(this.input) && (0, _tfjsCore.env)().get("IS_NODE") && (t = require("fs"), this.input = t.readFileSync(this.input.substr(7))), [2, new FileChunkIterator(this.input, this.options)];
 
-           });
 
-         });
 
-       }, e;
 
-     }(DataSource),
 
-       URLDataSource = function (t) {
 
-         function e(e, r) {
 
-           void 0 === r && (r = {});
 
-           var n = t.call(this) || this;
 
-           return n.url = e, n.fileOptions = r, n;
 
-         }
 
-         return __extends(e, t), e.prototype.iterator = function () {
 
-           return __awaiter(this, void 0, void 0, function () {
 
-             return __generator(this, function (t) {
 
-               return isLocalPath(this.url) ? [2, new FileDataSource(this.url, this.fileOptions).iterator()] : [2, urlChunkIterator(this.url, this.fileOptions)];
 
-             });
 
-           });
 
-         }, e;
 
-       }(DataSource);
 
-     exports.URLDataSource = URLDataSource;
 
-     exports.FileDataSource = FileDataSource;
 
-     function csv(t, e) {
 
-       return void 0 === e && (e = {}), new CSVDataset(new URLDataSource(t), e);
 
-     }
 
-     function func(t) {
 
-       var e = this,
 
-         r = iteratorFromFunction(t);
 
-       return datasetFromIteratorFn(function () {
 
-         return __awaiter(e, void 0, void 0, function () {
 
-           return __generator(this, function (t) {
 
-             return [2, r];
 
-           });
 
-         });
 
-       });
 
-     }
 
-     function generator(t) {
 
-       var e = this;
 
-       return datasetFromIteratorFn(function () {
 
-         return __awaiter(e, void 0, void 0, function () {
 
-           var e;
 
-           return __generator(this, function (r) {
 
-             switch (r.label) {
 
-               case 0:
 
-                 return [4, t()];
 
-               case 1:
 
-                 return e = r.sent(), [2, iteratorFromFunction(function () {
 
-                   return e.next();
 
-                 })];
 
-             }
 
-           });
 
-         });
 
-       });
 
-     }
 
-     function webcam(t, e) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         return __generator(this, function (r) {
 
-           return [2, WebcamIterator.create(t, e)];
 
-         });
 
-       });
 
-     }
 
-     function microphone(t) {
 
-       return __awaiter(this, void 0, void 0, function () {
 
-         return __generator(this, function (e) {
 
-           return [2, MicrophoneIterator.create(t)];
 
-         });
 
-       });
 
-     }
 
-     var version = "1.3.1";
 
-     exports.version_data = version;
 
-   }, { "@tensorflow/tfjs-core": "node_modules/@tensorflow/tfjs-core/dist/tf-core.esm.js", "crypto": "node_modules/parcel-bundler/src/builtins/_empty.js", "string_decoder": "node_modules/parcel-bundler/src/builtins/_empty.js", "fs": "node_modules/parcel-bundler/src/builtins/_empty.js", "buffer": "node_modules/buffer/index.js" }], "node_modules/@tensorflow/tfjs/dist/tf.esm.js": [function (require, module, exports) {
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     var _exportNames = {
 
-       version: true,
 
-       data: true
 
-     };
 
-     exports.data = exports.version = void 0;
 
-     var _tfjsCore = require("@tensorflow/tfjs-core");
 
-     Object.keys(_tfjsCore).forEach(function (key) {
 
-       if (key === "default" || key === "__esModule") return;
 
-       if (Object.prototype.hasOwnProperty.call(_exportNames, key)) return;
 
-       Object.defineProperty(exports, key, {
 
-         enumerable: true,
 
-         get: function () {
 
-           return _tfjsCore[key];
 
-         }
 
-       });
 
-     });
 
-     var _tfjsLayers = require("@tensorflow/tfjs-layers");
 
-     Object.keys(_tfjsLayers).forEach(function (key) {
 
-       if (key === "default" || key === "__esModule") return;
 
-       if (Object.prototype.hasOwnProperty.call(_exportNames, key)) return;
 
-       Object.defineProperty(exports, key, {
 
-         enumerable: true,
 
-         get: function () {
 
-           return _tfjsLayers[key];
 
-         }
 
-       });
 
-     });
 
-     var _tfjsConverter = require("@tensorflow/tfjs-converter");
 
-     Object.keys(_tfjsConverter).forEach(function (key) {
 
-       if (key === "default" || key === "__esModule") return;
 
-       if (Object.prototype.hasOwnProperty.call(_exportNames, key)) return;
 
-       Object.defineProperty(exports, key, {
 
-         enumerable: true,
 
-         get: function () {
 
-           return _tfjsConverter[key];
 
-         }
 
-       });
 
-     });
 
-     var tfjsData = _interopRequireWildcard(require("@tensorflow/tfjs-data"));
 
-     exports.data = tfjsData;
 
-     function _getRequireWildcardCache() { if (typeof WeakMap !== "function") return null; var cache = new WeakMap(); _getRequireWildcardCache = function () { return cache; }; return cache; }
 
-     function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; if (obj != null) { var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
 
-     // @tensorflow/tfjs Copyright 2019 Google
 
-     var version = "1.3.1",
 
-       version$1 = {
 
-         "tfjs-core": _tfjsCore.version_core,
 
-         "tfjs-data": tfjsData.version_data,
 
-         "tfjs-layers": _tfjsLayers.version_layers,
 
-         "tfjs-converter": _tfjsConverter.version_converter,
 
-         tfjs: version
 
-       };
 
-     exports.version = version$1;
 
-   }, { "@tensorflow/tfjs-core": "node_modules/@tensorflow/tfjs-core/dist/tf-core.esm.js", "@tensorflow/tfjs-layers": "node_modules/@tensorflow/tfjs-layers/dist/tf-layers.esm.js", "@tensorflow/tfjs-converter": "node_modules/@tensorflow/tfjs-converter/dist/tf-converter.esm.js", "@tensorflow/tfjs-data": "node_modules/@tensorflow/tfjs-data/dist/tf-data.esm.js" }], "demo_util.js": [function (require, module, exports) {
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.isMobile = isMobile;
 
-     exports.updateTryResNetButtonDatGuiCss = updateTryResNetButtonDatGuiCss;
 
-     exports.toggleLoadingUI = toggleLoadingUI;
 
-     exports.drawPoint = drawPoint;
 
-     exports.drawSegment = drawSegment;
 
-     exports.drawSkeleton = drawSkeleton;
 
-     exports.drawKeypoints = drawKeypoints;
 
-     exports.drawBoundingBox = drawBoundingBox;
 
-     exports.renderToCanvas = renderToCanvas;
 
-     exports.renderImageToCanvas = renderImageToCanvas;
 
-     exports.drawHeatMapValues = drawHeatMapValues;
 
-     exports.drawOffsetVectors = drawOffsetVectors;
 
-     exports.tryResNetButtonText = exports.tryResNetButtonName = void 0;
 
-     var posenet = _interopRequireWildcard(require("@tensorflow-models/posenet"));
 
-     var tf = _interopRequireWildcard(require("@tensorflow/tfjs"));
 
-     function _getRequireWildcardCache() { if (typeof WeakMap !== "function") return null; var cache = new WeakMap(); _getRequireWildcardCache = function () { return cache; }; return cache; }
 
-     function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; if (obj != null) { var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
 
-     /**
 
-      * @license
 
-      * Copyright 2019 Google LLC. All Rights Reserved.
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * https://www.apache.org/licenses/LICENSE-2.0
 
-      *
 
-      * Unless required by applicable law or agreed to in writing, software
 
-      * distributed under the License is distributed on an "AS IS" BASIS,
 
-      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-      * See the License for the specific language governing permissions and
 
-      * limitations under the License.
 
-      * =============================================================================
 
-      */
 
-     const color = 'aqua';
 
-     const boundingBoxColor = 'red';
 
-     const lineWidth = 2;
 
-     const tryResNetButtonName = 'tryResNetButton';
 
-     exports.tryResNetButtonName = tryResNetButtonName;
 
-     const tryResNetButtonText = '[New] Try ResNet50';
 
-     exports.tryResNetButtonText = tryResNetButtonText;
 
-     const tryResNetButtonTextCss = 'width:100%;text-decoration:underline;';
 
-     const tryResNetButtonBackgroundCss = 'background:#e61d5f;';
 
-     function isAndroid() {
 
-       return /Android/i.test(navigator.userAgent);
 
-     }
 
-     function isiOS() {
 
-       return /iPhone|iPad|iPod/i.test(navigator.userAgent);
 
-     }
 
-     function isMobile() {
 
-       return isAndroid() || isiOS();
 
-     }
 
-     function setDatGuiPropertyCss(propertyText, liCssString, spanCssString = '') {
 
-       var spans = document.getElementsByClassName('property-name');
 
-       for (var i = 0; i < spans.length; i++) {
 
-         var text = spans[i].textContent || spans[i].innerText;
 
-         if (text == propertyText) {
 
-           spans[i].parentNode.parentNode.style = liCssString;
 
-           if (spanCssString !== '') {
 
-             spans[i].style = spanCssString;
 
-           }
 
-         }
 
-       }
 
-     }
 
-     function updateTryResNetButtonDatGuiCss() {
 
-       setDatGuiPropertyCss(tryResNetButtonText, tryResNetButtonBackgroundCss, tryResNetButtonTextCss);
 
-     }
 
-     /**
 
-      * Toggles between the loading UI and the main canvas UI.
 
-      */
 
-     function toggleLoadingUI(showLoadingUI, loadingDivId = 'loading', mainDivId = 'main') {
 
-       //   if (showLoadingUI) {
 
-       //     document.getElementById(loadingDivId).style.display = 'block';
 
-       //     document.getElementById(mainDivId).style.display = 'none'; // document.getElementById('selectEvent').style.display = "none";
 
-       //   } else {
 
-       //     document.getElementById(loadingDivId).style.display = 'none';
 
-       //     document.getElementById(mainDivId).style.display = 'block';
 
-       //     document.getElementById('selectEvent').style.display = "block";
 
-       //   }
 
-     }
 
-     function toTuple({
 
-       y,
 
-       x
 
-     }) {
 
-       return [y, x];
 
-     }
 
-     function drawPoint(ctx, y, x, r, color, name, num) {
 
-       ctx.beginPath();
 
-       ctx.arc(x, y, r, 0, 2 * Math.PI);
 
-       
 
-       if (name === 'nose') {
 
-         // ctx.fillRect(0,0,100,100)
 
-         // ctx.strokeRect(x - 15, y - 135, 50, 50); // ctx.clearRect(x, y, 100, 100)
 
-         //ctx.font = '30px Verdana';
 
-         // ctx.fillText(num, x, y - 100);
 
-       } // canvas 显示文字
 
-       ctx.font = '12px Verdana';
 
-       // ctx.fillText(name, x, y);
 
-       ctx.fillStyle = color;
 
-       ctx.fill();
 
-     }
 
-     /**
 
-      * Draws a line on a canvas, i.e. a joint
 
-      */
 
-     function drawSegment([ay, ax], [by, bx], color, scale, ctx, left, right) {
 
-       ctx.beginPath();
 
-       if (ay != 0 && ax != 0 && by != 0 && bx != 0) {
 
-         ctx.moveTo(ax * scale, ay * scale);
 
-         ctx.lineTo(bx * scale, by * scale);
 
-       }
 
-       ctx.lineWidth = lineWidth;
 
-       ctx.strokeStyle = color; // canvas 写文字 坐标点相连
 
-       // ctx.fillText(left, ax * scale, ay * scale, bx * scale, by * scale);
 
-       // ctx.fillText(right, bx * scale, by * scale, ax * scale, ay * scale);
 
-       ctx.stroke();
 
-     }
 
-     /**
 
-      * Draws a pose skeleton by looking up all adjacent keypoints/joints
 
-      * 通过查找所有相邻的关键点/关节来绘制姿态骨架
 
-      */
 
-     function drawSkeleton(keypoints, minConfidence, ctx, scale = 1) {
 
-       const adjacentKeyPoints = posenet.getAdjacentKeyPoints(keypoints, minConfidence);
 
-       adjacentKeyPoints.forEach(keypoints => {
 
-         drawSegment(toTuple(keypoints[0].position), toTuple(keypoints[1].position), color, scale, ctx, keypoints[0].part, keypoints[1].part);
 
-       });
 
-     }
 
-     /**
 
-      * Draw pose keypoints onto a canvas
 
-      * 在画布上绘制姿态关键点
 
-      */
 
-     function drawKeypoints(keypoints, minConfidence, ctx, num, scale = 1) {
 
-       for (let i = 0; i < keypoints.length; i++) {
 
-         const keypoint = keypoints[i];
 
-         if (keypoint.score < minConfidence) {
 
-           continue;
 
-         }
 
-         const {
 
-           y,
 
-           x
 
-         } = keypoint.position;
 
-         drawPoint(ctx, y * scale, x * scale, 3, color, keypoint.part, num);
 
-       }
 
-     }
 
-     /**
 
-      * Draw the bounding box of a pose. For example, for a whole person standing
 
-      * in an image, the bounding box will begin at the nose and extend to one of
 
-      * ankles
 
-      * 画一个姿势的边界框。例如,一个完整的人站着
 
-      * 在一个图像中,边界框将从鼻子开始并延伸到其中一个
 
-      * 脚踝
 
-      */
 
-     function drawBoundingBox(keypoints, ctx) {
 
-       const boundingBox = posenet.getBoundingBox(keypoints);
 
-       ctx.rect(boundingBox.minX, boundingBox.minY, boundingBox.maxX - boundingBox.minX, boundingBox.maxY - boundingBox.minY);
 
-       ctx.fillText("Hello Canvas", ax * scale, ay * scale, bx * scale, by * scale);
 
-       ctx.strokeStyle = boundingBoxColor;
 
-       ctx.stroke();
 
-     }
 
-     /**
 
-      * Converts an arary of pixel data into an ImageData object
 
-      */
 
-     async function renderToCanvas(a, ctx) {
 
-       const [height, width] = a.shape;
 
-       const imageData = new ImageData(width, height);
 
-       const data = await a.data();
 
-       for (let i = 0; i < height * width; ++i) {
 
-         const j = i * 4;
 
-         const k = i * 3;
 
-         imageData.data[j + 0] = data[k + 0];
 
-         imageData.data[j + 1] = data[k + 1];
 
-         imageData.data[j + 2] = data[k + 2];
 
-         imageData.data[j + 3] = 255;
 
-       }
 
-       ctx.putImageData(imageData, 0, 0);
 
-     }
 
-     /**
 
-      * Draw an image on a canvas
 
-      */
 
-     function renderImageToCanvas(image, size, canvas) {
 
-       canvas.width = size[0];
 
-       canvas.height = size[1];
 
-       const ctx = canvas.getContext('2d');
 
-       ctx.drawImage(image, 0, 0);
 
-     }
 
-     /**
 
-      * Draw heatmap values, one of the model outputs, on to the canvas
 
-      * Read our blog post for a description of PoseNet's heatmap outputs
 
-      * https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
 
-      */
 
-     function drawHeatMapValues(heatMapValues, outputStride, canvas) {
 
-       const ctx = canvas.getContext('2d');
 
-       const radius = 5;
 
-       const scaledValues = heatMapValues.mul(tf.scalar(outputStride, 'int32'));
 
-       drawPoints(ctx, scaledValues, radius, color);
 
-     }
 
-     /**
 
-      * Used by the drawHeatMapValues method to draw heatmap points on to
 
-      * the canvas
 
-      */
 
-     function drawPoints(ctx, points, radius, color) {
 
-       const data = points.buffer().values;
 
-       for (let i = 0; i < data.length; i += 2) {
 
-         const pointY = data[i];
 
-         const pointX = data[i + 1];
 
-         if (pointX !== 0 && pointY !== 0) {
 
-           ctx.beginPath();
 
-           ctx.arc(pointX, pointY, radius, 0, 2 * Math.PI);
 
-           ctx.fillStyle = color;
 
-           ctx.fill();
 
-         }
 
-       }
 
-     }
 
-     /**
 
-      * Draw offset vector values, one of the model outputs, on to the canvas
 
-      * Read our blog post for a description of PoseNet's offset vector outputs
 
-      * https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
 
-      */
 
-     function drawOffsetVectors(heatMapValues, offsets, outputStride, scale = 1, ctx) {
 
-       const offsetPoints = posenet.singlePose.getOffsetPoints(heatMapValues, outputStride, offsets);
 
-       const heatmapData = heatMapValues.buffer().values;
 
-       const offsetPointsData = offsetPoints.buffer().values;
 
-       for (let i = 0; i < heatmapData.length; i += 2) {
 
-         const heatmapY = heatmapData[i] * outputStride;
 
-         const heatmapX = heatmapData[i + 1] * outputStride;
 
-         const offsetPointY = offsetPointsData[i];
 
-         const offsetPointX = offsetPointsData[i + 1];
 
-         drawSegment([heatmapY, heatmapX], [offsetPointY, offsetPointX], color, scale, ctx);
 
-       }
 
-     }
 
-   }, { "@tensorflow-models/posenet": "node_modules/@tensorflow-models/posenet/dist/posenet.esm.js", "@tensorflow/tfjs": "node_modules/@tensorflow/tfjs/dist/tf.esm.js" }], "camera.js": [function (require, module, exports) {
 
-     "use strict";
 
-     Object.defineProperty(exports, "__esModule", {
 
-       value: true
 
-     });
 
-     exports.bindPage = bindPage;
 
-     var posenet = _interopRequireWildcard(require("@tensorflow-models/posenet"));
 
-     var _dat = _interopRequireDefault(require("dat.gui"));
 
-     var _stats = _interopRequireDefault(require("stats.js"));
 
-     var _demo_util = require("./demo_util");
 
-     function _interopRequireDefault(obj) { return obj && obj.__esModule ? obj : { default: obj }; }
 
-     function _getRequireWildcardCache() { if (typeof WeakMap !== "function") return null; var cache = new WeakMap(); _getRequireWildcardCache = function () { return cache; }; return cache; }
 
-     function _interopRequireWildcard(obj) { if (obj && obj.__esModule) { return obj; } var cache = _getRequireWildcardCache(); if (cache && cache.has(obj)) { return cache.get(obj); } var newObj = {}; if (obj != null) { var hasPropertyDescriptor = Object.defineProperty && Object.getOwnPropertyDescriptor; for (var key in obj) { if (Object.prototype.hasOwnProperty.call(obj, key)) { var desc = hasPropertyDescriptor ? Object.getOwnPropertyDescriptor(obj, key) : null; if (desc && (desc.get || desc.set)) { Object.defineProperty(newObj, key, desc); } else { newObj[key] = obj[key]; } } } } newObj.default = obj; if (cache) { cache.set(obj, newObj); } return newObj; }
 
-     /**
 
-      * @license
 
-      * Copyright 2019 Google LLC. All Rights Reserved.
 
-      * Licensed under the Apache License, Version 2.0 (the "License");
 
-      * you may not use this file except in compliance with the License.
 
-      * You may obtain a copy of the License at
 
-      *
 
-      * https://www.apache.org/licenses/LICENSE-2.0
 
-      *
 
-      * Unless required by applicable law or agreed to in writing, software
 
-      * distributed under the License is distributed on an "AS IS" BASIS,
 
-      * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 
-      * See the License for the specific language governing permissions and
 
-      * limitations under the License.
 
-      * =============================================================================
 
-      */
 
-     const videoWidth = 400;
 
-     const videoHeight = 436;
 
-     let data = ""; //  识别姿势
 
-     let events = ""; //  用户的所有事件
 
-     let event = ""; //  用户选取事件的apikey
 
-     let users = new Object();
 
-     const stats = new _stats.default();
 
-     let recognition_posenet = "识别姿势"; // 识别姿势
 
-     let recognition_first = "识别第"; // 识别第几人
 
-     let people = "人";
 
-     // var lang = GLOBALS.lang
 
-     // let recognition_posenet = lang == 'en' ? 'Recognizing Posture' : lang == 'hant' ? "識別姿勢" : "识别姿势"; // 识别姿势
 
-     // let recognition_first = lang == 'en' ? 'Recognizing The' : lang == 'hant' ? "識別第" : "识别第"; // 识别第几人
 
-     // let people = lang == 'en' ? 'people' : lang == 'hant' ? "人" : "人";
 
-     let getEvent = false; // cloud 发送数据
 
-     function getEvents() {
 
-       let XHR = new XMLHttpRequest();
 
-       XHR.open('get', "https://api.cocorobo.cn/iot/data/apikey/".concat(window.user.data.apiKey, "/event/"));
 
-       XHR.send();
 
-       XHR.onreadystatechange = function () {
 
-         if (XHR.readyState == 4 && XHR.status == 200) {
 
-           events = JSON.parse(XHR.responseText);
 
-           getEvent = true;
 
-           event = JSON.parse(XHR.responseText)[0].eventAPIKey;
 
-           let str = "";
 
-           events.map(x => {
 
-             str = str + "<option value=".concat(x.eventAPIKey, ">").concat(x.name, "</option>");
 
-           });
 
-           document.getElementById('selectEvent').innerHTML = str;
 
-         }
 
-       };
 
-     }
 
-     /**
 
-      * Loads a the camera to be used in the demo
 
-      *
 
-      */
 
-     async function setupCamera() {
 
-       if (!navigator.mediaDevices || !navigator.mediaDevices.getUserMedia) {
 
-         throw new Error('Browser API navigator.mediaDevices.getUserMedia not available');
 
-       }
 
-       const video = document.getElementById('video');
 
-       video.width = videoWidth;
 
-       video.height = videoHeight;
 
-       const mobile = (0, _demo_util.isMobile)();
 
-       const stream = await navigator.mediaDevices.getUserMedia({
 
-         'audio': false,
 
-         'video': {
 
-           facingMode: 'user',
 
-           width: mobile ? undefined : videoWidth,
 
-           height: mobile ? undefined : videoHeight
 
-         }
 
-       });
 
-       video.srcObject = stream;
 
-       return new Promise(resolve => {
 
-         video.onloadedmetadata = () => {
 
-           resolve(video);
 
-         };
 
-       });
 
-     }
 
-     async function loadVideo() {
 
-       const video = await setupCamera();
 
-       video.play();
 
-       return video;
 
-     }
 
-     const defaultQuantBytes = 2;
 
-     const defaultMobileNetMultiplier = (0, _demo_util.isMobile)() ? 0.50 : 0.75;
 
-     const defaultMobileNetStride = 16;
 
-     const defaultMobileNetInputResolution = 500;
 
-     const defaultResNetMultiplier = 1.0;
 
-     const defaultResNetStride = 32;
 
-     const defaultResNetInputResolution = 250;
 
-     const guiState = {
 
-       algorithm: 'multi-pose',
 
-       input: {
 
-         architecture: 'MobileNetV1',
 
-         outputStride: defaultMobileNetStride,
 
-         inputResolution: defaultMobileNetInputResolution,
 
-         multiplier: defaultMobileNetMultiplier,
 
-         quantBytes: defaultQuantBytes
 
-       },
 
-       singlePoseDetection: {
 
-         minPoseConfidence: 0.1,
 
-         minPartConfidence: 0.5
 
-       },
 
-       multiPoseDetection: {
 
-         maxPoseDetections: 5,
 
-         minPoseConfidence: 0.15,
 
-         minPartConfidence: 0.1,
 
-         nmsRadius: 30.0
 
-       },
 
-       output: {
 
-         showVideo: true,
 
-         showSkeleton: true,
 
-         showPoints: true,
 
-         showBoundingBox: false
 
-       },
 
-       net: null
 
-     };
 
-     /**
 
-      * Sets up dat.gui controller on the top-right of the window
 
-      */
 
-     function setupGui(cameras, net) {
 
-       guiState.net = net;
 
-       if (cameras.length > 0) {
 
-         guiState.camera = cameras[0].deviceId;
 
-       }
 
-       const gui = new _dat.default.GUI({
 
-         width: 300
 
-       });
 
-       let architectureController = null;
 
-       guiState[_demo_util.tryResNetButtonName] = function () {
 
-         architectureController.setValue('ResNet50');
 
-       };
 
-       gui.add(guiState, _demo_util.tryResNetButtonName).name(_demo_util.tryResNetButtonText);
 
-       (0, _demo_util.updateTryResNetButtonDatGuiCss)(); // The single-pose algorithm is faster and simpler but requires only one
 
-       // person to be in the frame or results will be innaccurate. Multi-pose works
 
-       // for more than 1 person
 
-       const algorithmController = gui.add(guiState, 'algorithm', ['single-pose', 'multi-pose']); // The input parameters have the most effect on accuracy and speed of the
 
-       // network
 
-       let input = gui.addFolder('Input'); // Architecture: there are a few PoseNet models varying in size and
 
-       // accuracy. 1.01 is the largest, but will be the slowest. 0.50 is the
 
-       // fastest, but least accurate.
 
-       architectureController = input.add(guiState.input, 'architecture', ['MobileNetV1', 'ResNet50']);
 
-       guiState.architecture = guiState.input.architecture; // Input resolution:  Internally, this parameter affects the height and width
 
-       // of the layers in the neural network. The higher the value of the input
 
-       // resolution the better the accuracy but slower the speed.
 
-       let inputResolutionController = null;
 
-       function updateGuiInputResolution(inputResolution, inputResolutionArray) {
 
-         if (inputResolutionController) {
 
-           inputResolutionController.remove();
 
-         }
 
-         guiState.inputResolution = inputResolution;
 
-         guiState.input.inputResolution = inputResolution;
 
-         inputResolutionController = input.add(guiState.input, 'inputResolution', inputResolutionArray);
 
-         inputResolutionController.onChange(function (inputResolution) {
 
-           guiState.changeToInputResolution = inputResolution;
 
-         });
 
-       } // Output stride:  Internally, this parameter affects the height and width of
 
-       // the layers in the neural network. The lower the value of the output stride
 
-       // the higher the accuracy but slower the speed, the higher the value the
 
-       // faster the speed but lower the accuracy.
 
-       let outputStrideController = null;
 
-       function updateGuiOutputStride(outputStride, outputStrideArray) {
 
-         if (outputStrideController) {
 
-           outputStrideController.remove();
 
-         }
 
-         guiState.outputStride = outputStride;
 
-         guiState.input.outputStride = outputStride;
 
-         outputStrideController = input.add(guiState.input, 'outputStride', outputStrideArray);
 
-         outputStrideController.onChange(function (outputStride) {
 
-           guiState.changeToOutputStride = outputStride;
 
-         });
 
-       } // Multiplier: this parameter affects the number of feature map channels in
 
-       // the MobileNet. The higher the value, the higher the accuracy but slower the
 
-       // speed, the lower the value the faster the speed but lower the accuracy.
 
-       let multiplierController = null;
 
-       function updateGuiMultiplier(multiplier, multiplierArray) {
 
-         if (multiplierController) {
 
-           multiplierController.remove();
 
-         }
 
-         guiState.multiplier = multiplier;
 
-         guiState.input.multiplier = multiplier;
 
-         multiplierController = input.add(guiState.input, 'multiplier', multiplierArray);
 
-         multiplierController.onChange(function (multiplier) {
 
-           guiState.changeToMultiplier = multiplier;
 
-         });
 
-       } // QuantBytes: this parameter affects weight quantization in the ResNet50
 
-       // model. The available options are 1 byte, 2 bytes, and 4 bytes. The higher
 
-       // the value, the larger the model size and thus the longer the loading time,
 
-       // the lower the value, the shorter the loading time but lower the accuracy.
 
-       let quantBytesController = null;
 
-       function updateGuiQuantBytes(quantBytes, quantBytesArray) {
 
-         if (quantBytesController) {
 
-           quantBytesController.remove();
 
-         }
 
-         guiState.quantBytes = +quantBytes;
 
-         guiState.input.quantBytes = +quantBytes;
 
-         quantBytesController = input.add(guiState.input, 'quantBytes', quantBytesArray);
 
-         quantBytesController.onChange(function (quantBytes) {
 
-           guiState.changeToQuantBytes = +quantBytes;
 
-         });
 
-       }
 
-       function updateGui() {
 
-         if (guiState.input.architecture === 'MobileNetV1') {
 
-           updateGuiInputResolution(defaultMobileNetInputResolution, [200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800]);
 
-           updateGuiOutputStride(defaultMobileNetStride, [8, 16]);
 
-           updateGuiMultiplier(defaultMobileNetMultiplier, [0.50, 0.75, 1.0]);
 
-         } else {
 
-           // guiState.input.architecture === "ResNet50"
 
-           updateGuiInputResolution(defaultResNetInputResolution, [200, 250, 300, 350, 400, 450, 500, 550, 600, 650, 700, 750, 800]);
 
-           updateGuiOutputStride(defaultResNetStride, [32, 16]);
 
-           updateGuiMultiplier(defaultResNetMultiplier, [1.0]);
 
-         }
 
-         updateGuiQuantBytes(defaultQuantBytes, [1, 2, 4]);
 
-       }
 
-       updateGui();
 
-       input.open(); // Pose confidence: the overall confidence in the estimation of a person's
 
-       // pose (i.e. a person detected in a frame)
 
-       // Min part confidence: the confidence that a particular estimated keypoint
 
-       // position is accurate (i.e. the elbow's position)
 
-       let single = gui.addFolder('Single Pose Detection');
 
-       single.add(guiState.singlePoseDetection, 'minPoseConfidence', 0.0, 1.0);
 
-       single.add(guiState.singlePoseDetection, 'minPartConfidence', 0.0, 1.0);
 
-       let multi = gui.addFolder('Multi Pose Detection');
 
-       multi.add(guiState.multiPoseDetection, 'maxPoseDetections').min(1).max(20).step(1);
 
-       multi.add(guiState.multiPoseDetection, 'minPoseConfidence', 0.0, 1.0);
 
-       multi.add(guiState.multiPoseDetection, 'minPartConfidence', 0.0, 1.0); // nms Radius: controls the minimum distance between poses that are returned
 
-       // defaults to 20, which is probably fine for most use cases
 
-       multi.add(guiState.multiPoseDetection, 'nmsRadius').min(0.0).max(40.0);
 
-       multi.open();
 
-       let output = gui.addFolder('Output');
 
-       output.add(guiState.output, 'showVideo');
 
-       output.add(guiState.output, 'showSkeleton');
 
-       output.add(guiState.output, 'showPoints');
 
-       output.add(guiState.output, 'showBoundingBox');
 
-       output.open();
 
-       architectureController.onChange(function (architecture) {
 
-         // if architecture is ResNet50, then show ResNet50 options
 
-         updateGui();
 
-         guiState.changeToArchitecture = architecture;
 
-       });
 
-       algorithmController.onChange(function (value) {
 
-         switch (guiState.algorithm) {
 
-           case 'single-pose':
 
-             multi.close();
 
-             single.open();
 
-             break;
 
-           case 'multi-pose':
 
-             single.close();
 
-             multi.open();
 
-             break;
 
-         }
 
-       });
 
-     }
 
-     /**
 
-      * Sets up a frames per second panel on the top-left of the window
 
-      */
 
-     function setupFPS() {
 
-       stats.showPanel(0); // 0: fps, 1: ms, 2: mb, 3+: custom
 
-       // document.getElementById('main').appendChild(stats.dom);
 
-     }
 
-     /**
 
-      * Feeds an image to posenet to estimate poses - this is where the magic
 
-      * happens. This function loops with a requestAnimationFrame method.
 
-      * 实时监测姿态
 
-      */
 
-     function detectPoseInRealTime(video, net) {
 
-       const canvas = document.getElementById('output');
 
-       const ctx = canvas.getContext('2d'); // since images are being fed from a webcam, we want to feed in the
 
-       // original image and then just flip the keypoints' x coordinates. If instead
 
-       // we flip the image, then correcting left-right keypoint pairs requires a
 
-       // permutation on all the keypoints.
 
-       const flipPoseHorizontal = true;
 
-       canvas.width = videoWidth;
 
-       canvas.height = videoHeight;
 
-       async function poseDetectionFrame() {
 
-         if (guiState.changeToArchitecture) {
 
-           // Important to purge variables and free up GPU memory
 
-           guiState.net.dispose();
 
-           (0, _demo_util.toggleLoadingUI)(true);
 
-           guiState.net = await posenet.load({
 
-             architecture: guiState.changeToArchitecture,
 
-             outputStride: guiState.outputStride,
 
-             inputResolution: guiState.inputResolution,
 
-             multiplier: guiState.multiplier
 
-           });
 
-           (0, _demo_util.toggleLoadingUI)(false);
 
-           guiState.architecture = guiState.changeToArchitecture;
 
-           guiState.changeToArchitecture = null;
 
-         }
 
-         if (guiState.changeToMultiplier) {
 
-           guiState.net.dispose();
 
-           (0, _demo_util.toggleLoadingUI)(true);
 
-           guiState.net = await posenet.load({
 
-             architecture: guiState.architecture,
 
-             outputStride: guiState.outputStride,
 
-             inputResolution: guiState.inputResolution,
 
-             multiplier: +guiState.changeToMultiplier,
 
-             quantBytes: guiState.quantBytes
 
-           });
 
-           (0, _demo_util.toggleLoadingUI)(false);
 
-           guiState.multiplier = +guiState.changeToMultiplier;
 
-           guiState.changeToMultiplier = null;
 
-         }
 
-         if (guiState.changeToOutputStride) {
 
-           // Important to purge variables and free up GPU memory
 
-           guiState.net.dispose();
 
-           (0, _demo_util.toggleLoadingUI)(true);
 
-           guiState.net = await posenet.load({
 
-             architecture: guiState.architecture,
 
-             outputStride: +guiState.changeToOutputStride,
 
-             inputResolution: guiState.inputResolution,
 
-             multiplier: guiState.multiplier,
 
-             quantBytes: guiState.quantBytes
 
-           });
 
-           (0, _demo_util.toggleLoadingUI)(false);
 
-           guiState.outputStride = +guiState.changeToOutputStride;
 
-           guiState.changeToOutputStride = null;
 
-         }
 
-         if (guiState.changeToInputResolution) {
 
-           // Important to purge variables and free up GPU memory
 
-           guiState.net.dispose();
 
-           (0, _demo_util.toggleLoadingUI)(true);
 
-           guiState.net = await posenet.load({
 
-             architecture: guiState.architecture,
 
-             outputStride: guiState.outputStride,
 
-             inputResolution: +guiState.changeToInputResolution,
 
-             multiplier: guiState.multiplier,
 
-             quantBytes: guiState.quantBytes
 
-           });
 
-           (0, _demo_util.toggleLoadingUI)(false);
 
-           guiState.inputResolution = +guiState.changeToInputResolution;
 
-           guiState.changeToInputResolution = null;
 
-         }
 
-         if (guiState.changeToQuantBytes) {
 
-           // Important to purge variables and free up GPU memory
 
-           guiState.net.dispose();
 
-           (0, _demo_util.toggleLoadingUI)(true);
 
-           guiState.net = await posenet.load({
 
-             architecture: guiState.architecture,
 
-             outputStride: guiState.outputStride,
 
-             inputResolution: guiState.inputResolution,
 
-             multiplier: guiState.multiplier,
 
-             quantBytes: guiState.changeToQuantBytes
 
-           });
 
-           (0, _demo_util.toggleLoadingUI)(false);
 
-           guiState.quantBytes = guiState.changeToQuantBytes;
 
-           guiState.changeToQuantBytes = null;
 
-         } // Begin monitoring code for frames per second
 
-         stats.begin();
 
-         let poses = [];
 
-         let minPoseConfidence;
 
-         let minPartConfidence;
 
-         switch (guiState.algorithm) {
 
-           case 'single-pose':
 
-             const pose = await guiState.net.estimatePoses(video, {
 
-               flipHorizontal: flipPoseHorizontal,
 
-               decodingMethod: 'single-person'
 
-             });
 
-             poses = poses.concat(pose);
 
-             minPoseConfidence = +guiState.singlePoseDetection.minPoseConfidence;
 
-             minPartConfidence = +guiState.singlePoseDetection.minPartConfidence;
 
-             break;
 
-           case 'multi-pose':
 
-             let all_poses = await guiState.net.estimatePoses(video, {
 
-               flipHorizontal: flipPoseHorizontal,
 
-               decodingMethod: 'multi-person',
 
-               maxDetections: guiState.multiPoseDetection.maxPoseDetections,
 
-               scoreThreshold: guiState.multiPoseDetection.minPartConfidence,
 
-               nmsRadius: guiState.multiPoseDetection.nmsRadius
 
-             });
 
-             poses = poses.concat(all_poses);
 
-             minPoseConfidence = +guiState.multiPoseDetection.minPoseConfidence;
 
-             minPartConfidence = +guiState.multiPoseDetection.minPartConfidence;
 
-             break;
 
-         }
 
-         ctx.clearRect(0, 0, videoWidth, videoHeight);
 
-         if (guiState.output.showVideo) {
 
-           ctx.save();
 
-           ctx.scale(-1, 1);
 
-           ctx.translate(-videoWidth, 0);
 
-           ctx.drawImage(video, 0, 0, videoWidth, videoHeight);
 
-           ctx.restore();
 
-         } // For each pose (i.e. person) detected in an image, loop through the poses
 
-         // and draw the resulting skeleton and keypoints if over certain confidence
 
-         // scores
 
-         /** 姿态 判断
 
-          * 当左手腕和右手腕的高度 大于 左眼或者右眼时 -----手举高状态
 
-          * 右肘和右肩大致处于同一水平面且右手腕 大于 右肩 小于    ----- 敬礼
 
-          * 臀部距脚踝的距离略 约等于 膝盖到脚踝的距离 ---- 坐着
 
-          * 臀部距脚踝的距离略 约等于 膝盖到脚踝的距离 且  手腕与肘、肩在同一水平面  ---- 深蹲
 
-          * 双手腕 超过左右眼时                    ------- 挥手
 
-          * 鼻子的垂直坐标小于双肩时               ------- 鞠躬
 
-          * 鼻子的平行坐标与脚踝的平行坐标相差较大时       -------- 摔倒
 
-         */
 
-         let count = 0; // 识别的人数
 
-         let Arr = []; // 获取所有的坐标点
 
-         let strs = ""; // 坐标点字符串
 
-         let status = ""; // 识别的姿势
 
-         poses.forEach(({
 
-           score,
 
-           keypoints
 
-         }) => {
 
-           if (score >= minPoseConfidence) {
 
-             keypoints.map(x => {
 
-               if (x.position.y > 436) {
 
-                 x.position.y = 0;
 
-                 x.position.x = 0;
 
-               }
 
-               if (x.position.x > 400) {
 
-                 x.position.y = 0;
 
-                 x.position.x = 0;
 
-               }
 
-               return x;
 
-             });
 
-             let nose = keypoints[0].position.y,
 
-               leftEye = keypoints[1].position.y,
 
-               rightEye = keypoints[2].position.y,
 
-               leftEar = keypoints[3].position.y,
 
-               rightEar = keypoints[4].position.y,
 
-               leftShoulder = keypoints[5].position.y,
 
-               rightShoulder = keypoints[6].position.y,
 
-               leftElbow = keypoints[7].position.y,
 
-               rightElbow = keypoints[8].position.y,
 
-               leftWrist = keypoints[9].position.y,
 
-               rightWrist = keypoints[10].position.y,
 
-               leftHip = keypoints[11].position.y,
 
-               rightHip = keypoints[12].position.y,
 
-               leftKnee = keypoints[13].position.y,
 
-               rightknee = keypoints[14].position.y,
 
-               leftAnkle = keypoints[15].position.y,
 
-               rightAnkle = keypoints[16].position.y;
 
-             let left_hip_knee = leftHip - leftAnkle; // 左臀距左脚踝的垂直距离
 
-             let left_right_hip_knee = leftHip - rightAnkle; // 左臀距右脚踝的垂直距离
 
-             let right_hip_knee = rightHip - rightAnkle; // 右臀距右脚踝的垂直距离
 
-             let right_left_hip_knee = rightHip - leftAnkle; // 右臀距左脚踝的垂直距离
 
-             let left_knee_ankle = leftKnee - leftAnkle; // 左膝盖距左脚踝的垂直距离
 
-             let left_right_knee_ankle = leftKnee - rightAnkle; // 左膝盖距右脚踝的垂直距离
 
-             let right_Knee_ankle = rightknee - rightAnkle; // 右膝盖距右脚踝的垂直距离
 
-             let right_left_knee_ankle = rightknee - leftAnkle; // 右膝盖距左脚踝的垂直距离
 
-             // 挥手
 
-             if ((leftEye > leftWrist || rightEye > leftWrist) && (leftShoulder > leftElbow || rightShoulder > leftElbow) && leftWrist != 0 && (leftEye > rightWrist || rightEye > rightWrist) && (leftShoulder > rightElbow || rightShoulder > rightElbow) && rightWrist != 0) {
 
-               // console.log('挥手wave');
 
-               status = "wave";
 
-             } else if ((leftEye > leftWrist || rightEye > leftWrist) && (leftShoulder > leftElbow || rightShoulder > leftElbow) && leftWrist != 0) {
 
-               // console.log('左手举高liftleft')
 
-               status = "liftleft";
 
-             } else if ((leftEye > rightWrist || rightEye > rightWrist) && (leftShoulder > rightElbow || rightShoulder > rightElbow) && rightWrist != 0) {
 
-               // console.log('右手举高liftright')
 
-               status = "liftright";
 
-             } else if (rightWrist != 0 && rightEye < rightWrist && rightWrist < rightShoulder && Math.abs(rightElbow - rightShoulder) < 10) {
 
-               // 敬礼
 
-               // console.log('敬礼salute')
 
-               status = "salute";
 
-             } else if ((nose > leftShoulder || nose > rightShoulder) && rightShoulder != 0 && leftShoulder != 0) {
 
-               // console.log('鞠躬bow');
 
-               status = "bow";
 
-             } else if (leftHip != 0 && leftAnkle != 0 && leftKnee != 0) {
 
-               if (Math.abs(left_hip_knee - left_knee_ankle) > 40 && Math.abs(right_hip_knee - right_Knee_ankle) > 40 && Math.abs(left_right_hip_knee - left_right_knee_ankle) > 40 && Math.abs(right_left_hip_knee - right_left_knee_ankle) > 40) {
 
-                 // console.log('站立 stand')
 
-                 status = "stand";
 
-               }
 
-             } // }
 
-             // 深蹲(squat)&& 坐着 sit
 
-             if (leftHip != 0 && leftAnkle != 0 && leftKnee != 0) {
 
-               if (Math.abs(left_hip_knee - left_knee_ankle) < 40 && Math.abs(right_hip_knee - right_Knee_ankle) < 40 && Math.abs(left_right_hip_knee - left_right_knee_ankle) < 40 && Math.abs(right_left_hip_knee - right_left_knee_ankle) < 40) {
 
-                 if (Math.abs(leftHip - leftKnee) < 20 || Math.abs(rightHip - rightknee) < 20) {
 
-                   // console.log('深蹲squat');
 
-                   status = "squat";
 
-                 } else {
 
-                   // console.log('坐着状态sit')
 
-                   status = "sit";
 
-                 }
 
-               }
 
-             } // 摔倒(falldown)
 
-             if (keypoints[15].position.x !== 0 && keypoints[16].position.x) {
 
-               if (keypoints[15].position.x - keypoints[0].position.x > 80 || keypoints[16].position.x - keypoints[0].position.x > 80) {
 
-                 // console.log('摔倒falldown');
 
-                 status = "falldown";
 
-               }
 
-             }
 
-             data = {
 
-               posture: status
 
-             };
 
-             // 传送到cloud 的姿势
 
-             window.dataPosenet = data.posture
 
-             count++;
 
-             Arr = Arr.concat(keypoints.map(x => x.position));
 
-             users;
 
-             let str = "<div style=\"margin-bottom:10px;\"><span>".concat(recognition_first, "<i style=\"color:#2c4fcd;padding:0 5px;font-style:normal;\"> ").concat(count, " </i>").concat(people, "</span><span style=\"margin-left:20px\">").concat(recognition_posenet, "\uFF1A<i style=").concat(status ? "color:#2c4fcd;font-style:normal" : "color:#ccc;font-style:normal", ">").concat(status ? status : 'no result', "</i></span></div>"); // keypoints.map(x => {
 
-             //   str = str + `<li>${x.part}:{${x.position.x.toFixed(2)},${x.position.y.toFixed(2)}}</li>`;
 
-             //   return x;
 
-             // })
 
-             // str = str + '</ul></div>';
 
-             strs = strs + str;
 
-             if (guiState.output.showPoints) {
 
-               (0, _demo_util.drawKeypoints)(keypoints, minPartConfidence, ctx, count);
 
-             }
 
-             if (guiState.output.showSkeleton) {
 
-               (0, _demo_util.drawSkeleton)(keypoints, minPartConfidence, ctx);
 
-             }
 
-             if (guiState.output.showBoundingBox) {
 
-               (0, _demo_util.drawBoundingBox)(keypoints, ctx);
 
-             }
 
-           }
 
-         }); // 识别的人数
 
-         // document.getElementById('posenet_num').innerText = count; // 坐标点
 
-         document.getElementById('coordinate_points').innerHTML = strs; // End monitoring code for frames per second
 
-         stats.end();
 
-         requestAnimationFrame(poseDetectionFrame);
 
-       }
 
-       poseDetectionFrame();
 
-     }
 
-     /**
 
-      * Kicks off the demo by loading the posenet model, finding and loading
 
-      * available camera devices, and setting off the detectPoseInRealTime function.
 
-      */
 
-     async function bindPage() {
 
-       (0, _demo_util.toggleLoadingUI)(true);
 
-       const net = await posenet.load({
 
-         architecture: guiState.input.architecture,
 
-         outputStride: guiState.input.outputStride,
 
-         inputResolution: guiState.input.inputResolution,
 
-         multiplier: guiState.input.multiplier,
 
-         quantBytes: guiState.input.quantBytes
 
-       });
 
-       (0, _demo_util.toggleLoadingUI)(false);
 
-       let video;
 
-       try {
 
-         video = await loadVideo();
 
-       } catch (e) {
 
-         let info = document.getElementById('info');
 
-         info.textContent = 'this browser does not support video capture,' + 'or this device does not have a camera';
 
-         info.style.display = 'block';
 
-         throw e;
 
-       }
 
-       setupGui([], net);
 
-       setupFPS();
 
-       detectPoseInRealTime(video, net);
 
-     }
 
-     navigator.getUserMedia = navigator.getUserMedia || navigator.webkitGetUserMedia || navigator.mozGetUserMedia; // kick off the demo
 
-     bindPage();
 
-   }, { "@tensorflow-models/posenet": "node_modules/@tensorflow-models/posenet/dist/posenet.esm.js", "dat.gui": "node_modules/dat.gui/build/dat.gui.module.js", "stats.js": "node_modules/stats.js/build/stats.min.js", "./demo_util": "demo_util.js" }]
 
- }, {}, ["camera.js"], null)
 
- //# sourceMappingURL=/camera.283d5d54.js.map
 
 
  |