123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263 |
- define([], function(){
- // === Sylvester ===
- // Vector and Matrix mathematics modules for JavaScript
- // Copyright (c) 2007 James Coglan
- //
- // Permission is hereby granted, free of charge, to any person obtaining
- // a copy of this software and associated documentation files (the "Software"),
- // to deal in the Software without restriction, including without limitation
- // the rights to use, copy, modify, merge, publish, distribute, sublicense,
- // and/or sell copies of the Software, and to permit persons to whom the
- // Software is furnished to do so, subject to the following conditions:
- //
- // The above copyright notice and this permission notice shall be included
- // in all copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
- // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
- // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
- // THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
- // FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
- // DEALINGS IN THE SOFTWARE.
- var Sylvester = {
- version: '0.1.3',
- precision: 1e-6
- };
- function Vector() {}
- Vector.prototype = {
- // Returns element i of the vector
- e: function(i) {
- return (i < 1 || i > this.elements.length) ? null : this.elements[i-1];
- },
- // Returns the number of elements the vector has
- dimensions: function() {
- return this.elements.length;
- },
- // Returns the modulus ('length') of the vector
- modulus: function() {
- return Math.sqrt(this.dot(this));
- },
- // Returns true iff the vector is equal to the argument
- eql: function(vector) {
- var n = this.elements.length;
- var V = vector.elements || vector;
- if (n != V.length) { return false; }
- do {
- if (Math.abs(this.elements[n-1] - V[n-1]) > Sylvester.precision) { return false; }
- } while (--n);
- return true;
- },
- // Returns a copy of the vector
- dup: function() {
- return Vector.create(this.elements);
- },
- // Maps the vector to another vector according to the given function
- map: function(fn) {
- var elements = [];
- this.each(function(x, i) {
- elements.push(fn(x, i));
- });
- return Vector.create(elements);
- },
-
- // Calls the iterator for each element of the vector in turn
- each: function(fn) {
- var n = this.elements.length, k = n, i;
- do { i = k - n;
- fn(this.elements[i], i+1);
- } while (--n);
- },
- // Returns a new vector created by normalizing the receiver
- toUnitVector: function() {
- var r = this.modulus();
- if (r === 0) { return this.dup(); }
- return this.map(function(x) { return x/r; });
- },
- // Returns the angle between the vector and the argument (also a vector)
- angleFrom: function(vector) {
- var V = vector.elements || vector;
- var n = this.elements.length, k = n, i;
- if (n != V.length) { return null; }
- var dot = 0, mod1 = 0, mod2 = 0;
- // Work things out in parallel to save time
- this.each(function(x, i) {
- dot += x * V[i-1];
- mod1 += x * x;
- mod2 += V[i-1] * V[i-1];
- });
- mod1 = Math.sqrt(mod1); mod2 = Math.sqrt(mod2);
- if (mod1*mod2 === 0) { return null; }
- var theta = dot / (mod1*mod2);
- if (theta < -1) { theta = -1; }
- if (theta > 1) { theta = 1; }
- return Math.acos(theta);
- },
- // Returns true iff the vector is parallel to the argument
- isParallelTo: function(vector) {
- var angle = this.angleFrom(vector);
- return (angle === null) ? null : (angle <= Sylvester.precision);
- },
- // Returns true iff the vector is antiparallel to the argument
- isAntiparallelTo: function(vector) {
- var angle = this.angleFrom(vector);
- return (angle === null) ? null : (Math.abs(angle - Math.PI) <= Sylvester.precision);
- },
- // Returns true iff the vector is perpendicular to the argument
- isPerpendicularTo: function(vector) {
- var dot = this.dot(vector);
- return (dot === null) ? null : (Math.abs(dot) <= Sylvester.precision);
- },
- // Returns the result of adding the argument to the vector
- add: function(vector) {
- var V = vector.elements || vector;
- if (this.elements.length != V.length) { return null; }
- return this.map(function(x, i) { return x + V[i-1]; });
- },
- // Returns the result of subtracting the argument from the vector
- subtract: function(vector) {
- var V = vector.elements || vector;
- if (this.elements.length != V.length) { return null; }
- return this.map(function(x, i) { return x - V[i-1]; });
- },
- // Returns the result of multiplying the elements of the vector by the argument
- multiply: function(k) {
- return this.map(function(x) { return x*k; });
- },
- x: function(k) { return this.multiply(k); },
- // Returns the scalar product of the vector with the argument
- // Both vectors must have equal dimensionality
- dot: function(vector) {
- var V = vector.elements || vector;
- var i, product = 0, n = this.elements.length;
- if (n != V.length) { return null; }
- do { product += this.elements[n-1] * V[n-1]; } while (--n);
- return product;
- },
- // Returns the vector product of the vector with the argument
- // Both vectors must have dimensionality 3
- cross: function(vector) {
- var B = vector.elements || vector;
- if (this.elements.length != 3 || B.length != 3) { return null; }
- var A = this.elements;
- return Vector.create([
- (A[1] * B[2]) - (A[2] * B[1]),
- (A[2] * B[0]) - (A[0] * B[2]),
- (A[0] * B[1]) - (A[1] * B[0])
- ]);
- },
- // Returns the (absolute) largest element of the vector
- max: function() {
- var m = 0, n = this.elements.length, k = n, i;
- do { i = k - n;
- if (Math.abs(this.elements[i]) > Math.abs(m)) { m = this.elements[i]; }
- } while (--n);
- return m;
- },
- // Returns the index of the first match found
- indexOf: function(x) {
- var index = null, n = this.elements.length, k = n, i;
- do { i = k - n;
- if (index === null && this.elements[i] == x) {
- index = i + 1;
- }
- } while (--n);
- return index;
- },
- // Returns a diagonal matrix with the vector's elements as its diagonal elements
- toDiagonalMatrix: function() {
- return Matrix.Diagonal(this.elements);
- },
- // Returns the result of rounding the elements of the vector
- round: function() {
- return this.map(function(x) { return Math.round(x); });
- },
- // Returns a copy of the vector with elements set to the given value if they
- // differ from it by less than Sylvester.precision
- snapTo: function(x) {
- return this.map(function(y) {
- return (Math.abs(y - x) <= Sylvester.precision) ? x : y;
- });
- },
- // Returns the vector's distance from the argument, when considered as a point in space
- distanceFrom: function(obj) {
- if (obj.anchor) { return obj.distanceFrom(this); }
- var V = obj.elements || obj;
- if (V.length != this.elements.length) { return null; }
- var sum = 0, part;
- this.each(function(x, i) {
- part = x - V[i-1];
- sum += part * part;
- });
- return Math.sqrt(sum);
- },
- // Returns true if the vector is point on the given line
- liesOn: function(line) {
- return line.contains(this);
- },
- // Return true iff the vector is a point in the given plane
- liesIn: function(plane) {
- return plane.contains(this);
- },
- // Rotates the vector about the given object. The object should be a
- // point if the vector is 2D, and a line if it is 3D. Be careful with line directions!
- rotate: function(t, obj) {
- var V, R, x, y, z;
- switch (this.elements.length) {
- case 2:
- V = obj.elements || obj;
- if (V.length != 2) { return null; }
- R = Matrix.Rotation(t).elements;
- x = this.elements[0] - V[0];
- y = this.elements[1] - V[1];
- return Vector.create([
- V[0] + R[0][0] * x + R[0][1] * y,
- V[1] + R[1][0] * x + R[1][1] * y
- ]);
- break;
- case 3:
- if (!obj.direction) { return null; }
- var C = obj.pointClosestTo(this).elements;
- R = Matrix.Rotation(t, obj.direction).elements;
- x = this.elements[0] - C[0];
- y = this.elements[1] - C[1];
- z = this.elements[2] - C[2];
- return Vector.create([
- C[0] + R[0][0] * x + R[0][1] * y + R[0][2] * z,
- C[1] + R[1][0] * x + R[1][1] * y + R[1][2] * z,
- C[2] + R[2][0] * x + R[2][1] * y + R[2][2] * z
- ]);
- break;
- default:
- return null;
- }
- },
- // Returns the result of reflecting the point in the given point, line or plane
- reflectionIn: function(obj) {
- if (obj.anchor) {
- // obj is a plane or line
- var P = this.elements.slice();
- var C = obj.pointClosestTo(P).elements;
- return Vector.create([C[0] + (C[0] - P[0]), C[1] + (C[1] - P[1]), C[2] + (C[2] - (P[2] || 0))]);
- } else {
- // obj is a point
- var Q = obj.elements || obj;
- if (this.elements.length != Q.length) { return null; }
- return this.map(function(x, i) { return Q[i-1] + (Q[i-1] - x); });
- }
- },
- // Utility to make sure vectors are 3D. If they are 2D, a zero z-component is added
- to3D: function() {
- var V = this.dup();
- switch (V.elements.length) {
- case 3: break;
- case 2: V.elements.push(0); break;
- default: return null;
- }
- return V;
- },
- // Returns a string representation of the vector
- inspect: function() {
- return '[' + this.elements.join(', ') + ']';
- },
- // Set vector's elements from an array
- setElements: function(els) {
- this.elements = (els.elements || els).slice();
- return this;
- }
- };
-
- // Constructor function
- Vector.create = function(elements) {
- var V = new Vector();
- return V.setElements(elements);
- };
- // i, j, k unit vectors
- Vector.i = Vector.create([1,0,0]);
- Vector.j = Vector.create([0,1,0]);
- Vector.k = Vector.create([0,0,1]);
- // Random vector of size n
- Vector.Random = function(n) {
- var elements = [];
- do { elements.push(Math.random());
- } while (--n);
- return Vector.create(elements);
- };
- // Vector filled with zeros
- Vector.Zero = function(n) {
- var elements = [];
- do { elements.push(0);
- } while (--n);
- return Vector.create(elements);
- };
- function Matrix() {}
- Matrix.prototype = {
- // Returns element (i,j) of the matrix
- e: function(i,j) {
- if (i < 1 || i > this.elements.length || j < 1 || j > this.elements[0].length) { return null; }
- return this.elements[i-1][j-1];
- },
- // Returns row k of the matrix as a vector
- row: function(i) {
- if (i > this.elements.length) { return null; }
- return Vector.create(this.elements[i-1]);
- },
- // Returns column k of the matrix as a vector
- col: function(j) {
- if (j > this.elements[0].length) { return null; }
- var col = [], n = this.elements.length, k = n, i;
- do { i = k - n;
- col.push(this.elements[i][j-1]);
- } while (--n);
- return Vector.create(col);
- },
- // Returns the number of rows/columns the matrix has
- dimensions: function() {
- return {rows: this.elements.length, cols: this.elements[0].length};
- },
- // Returns the number of rows in the matrix
- rows: function() {
- return this.elements.length;
- },
- // Returns the number of columns in the matrix
- cols: function() {
- return this.elements[0].length;
- },
- // Returns true iff the matrix is equal to the argument. You can supply
- // a vector as the argument, in which case the receiver must be a
- // one-column matrix equal to the vector.
- eql: function(matrix) {
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- if (this.elements.length != M.length ||
- this.elements[0].length != M[0].length) { return false; }
- var ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
- do { i = ki - ni;
- nj = kj;
- do { j = kj - nj;
- if (Math.abs(this.elements[i][j] - M[i][j]) > Sylvester.precision) { return false; }
- } while (--nj);
- } while (--ni);
- return true;
- },
- // Returns a copy of the matrix
- dup: function() {
- return Matrix.create(this.elements);
- },
- // Maps the matrix to another matrix (of the same dimensions) according to the given function
- map: function(fn) {
- var els = [], ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
- do { i = ki - ni;
- nj = kj;
- els[i] = [];
- do { j = kj - nj;
- els[i][j] = fn(this.elements[i][j], i + 1, j + 1);
- } while (--nj);
- } while (--ni);
- return Matrix.create(els);
- },
- // Returns true iff the argument has the same dimensions as the matrix
- isSameSizeAs: function(matrix) {
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- return (this.elements.length == M.length &&
- this.elements[0].length == M[0].length);
- },
- // Returns the result of adding the argument to the matrix
- add: function(matrix) {
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- if (!this.isSameSizeAs(M)) { return null; }
- return this.map(function(x, i, j) { return x + M[i-1][j-1]; });
- },
- // Returns the result of subtracting the argument from the matrix
- subtract: function(matrix) {
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- if (!this.isSameSizeAs(M)) { return null; }
- return this.map(function(x, i, j) { return x - M[i-1][j-1]; });
- },
- // Returns true iff the matrix can multiply the argument from the left
- canMultiplyFromLeft: function(matrix) {
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- // this.columns should equal matrix.rows
- return (this.elements[0].length == M.length);
- },
- // Returns the result of multiplying the matrix from the right by the argument.
- // If the argument is a scalar then just multiply all the elements. If the argument is
- // a vector, a vector is returned, which saves you having to remember calling
- // col(1) on the result.
- multiply: function(matrix) {
- if (!matrix.elements) {
- return this.map(function(x) { return x * matrix; });
- }
- var returnVector = matrix.modulus ? true : false;
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- if (!this.canMultiplyFromLeft(M)) { return null; }
- var ni = this.elements.length, ki = ni, i, nj, kj = M[0].length, j;
- var cols = this.elements[0].length, elements = [], sum, nc, c;
- do { i = ki - ni;
- elements[i] = [];
- nj = kj;
- do { j = kj - nj;
- sum = 0;
- nc = cols;
- do { c = cols - nc;
- sum += this.elements[i][c] * M[c][j];
- } while (--nc);
- elements[i][j] = sum;
- } while (--nj);
- } while (--ni);
- var M = Matrix.create(elements);
- return returnVector ? M.col(1) : M;
- },
- x: function(matrix) { return this.multiply(matrix); },
- // Returns a submatrix taken from the matrix
- // Argument order is: start row, start col, nrows, ncols
- // Element selection wraps if the required index is outside the matrix's bounds, so you could
- // use this to perform row/column cycling or copy-augmenting.
- minor: function(a, b, c, d) {
- var elements = [], ni = c, i, nj, j;
- var rows = this.elements.length, cols = this.elements[0].length;
- do { i = c - ni;
- elements[i] = [];
- nj = d;
- do { j = d - nj;
- elements[i][j] = this.elements[(a+i-1)%rows][(b+j-1)%cols];
- } while (--nj);
- } while (--ni);
- return Matrix.create(elements);
- },
- // Returns the transpose of the matrix
- transpose: function() {
- var rows = this.elements.length, cols = this.elements[0].length;
- var elements = [], ni = cols, i, nj, j;
- do { i = cols - ni;
- elements[i] = [];
- nj = rows;
- do { j = rows - nj;
- elements[i][j] = this.elements[j][i];
- } while (--nj);
- } while (--ni);
- return Matrix.create(elements);
- },
- // Returns true iff the matrix is square
- isSquare: function() {
- return (this.elements.length == this.elements[0].length);
- },
- // Returns the (absolute) largest element of the matrix
- max: function() {
- var m = 0, ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
- do { i = ki - ni;
- nj = kj;
- do { j = kj - nj;
- if (Math.abs(this.elements[i][j]) > Math.abs(m)) { m = this.elements[i][j]; }
- } while (--nj);
- } while (--ni);
- return m;
- },
- // Returns the indeces of the first match found by reading row-by-row from left to right
- indexOf: function(x) {
- var index = null, ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
- do { i = ki - ni;
- nj = kj;
- do { j = kj - nj;
- if (this.elements[i][j] == x) { return {i: i+1, j: j+1}; }
- } while (--nj);
- } while (--ni);
- return null;
- },
- // If the matrix is square, returns the diagonal elements as a vector.
- // Otherwise, returns null.
- diagonal: function() {
- if (!this.isSquare) { return null; }
- var els = [], n = this.elements.length, k = n, i;
- do { i = k - n;
- els.push(this.elements[i][i]);
- } while (--n);
- return Vector.create(els);
- },
- // Make the matrix upper (right) triangular by Gaussian elimination.
- // This method only adds multiples of rows to other rows. No rows are
- // scaled up or switched, and the determinant is preserved.
- toRightTriangular: function() {
- var M = this.dup(), els;
- var n = this.elements.length, k = n, i, np, kp = this.elements[0].length, p;
- do { i = k - n;
- if (M.elements[i][i] == 0) {
- for (j = i + 1; j < k; j++) {
- if (M.elements[j][i] != 0) {
- els = []; np = kp;
- do { p = kp - np;
- els.push(M.elements[i][p] + M.elements[j][p]);
- } while (--np);
- M.elements[i] = els;
- break;
- }
- }
- }
- if (M.elements[i][i] != 0) {
- for (j = i + 1; j < k; j++) {
- var multiplier = M.elements[j][i] / M.elements[i][i];
- els = []; np = kp;
- do { p = kp - np;
- // Elements with column numbers up to an including the number
- // of the row that we're subtracting can safely be set straight to
- // zero, since that's the point of this routine and it avoids having
- // to loop over and correct rounding errors later
- els.push(p <= i ? 0 : M.elements[j][p] - M.elements[i][p] * multiplier);
- } while (--np);
- M.elements[j] = els;
- }
- }
- } while (--n);
- return M;
- },
- toUpperTriangular: function() { return this.toRightTriangular(); },
- // Returns the determinant for square matrices
- determinant: function() {
- if (!this.isSquare()) { return null; }
- var M = this.toRightTriangular();
- var det = M.elements[0][0], n = M.elements.length - 1, k = n, i;
- do { i = k - n + 1;
- det = det * M.elements[i][i];
- } while (--n);
- return det;
- },
- det: function() { return this.determinant(); },
- // Returns true iff the matrix is singular
- isSingular: function() {
- return (this.isSquare() && this.determinant() === 0);
- },
- // Returns the trace for square matrices
- trace: function() {
- if (!this.isSquare()) { return null; }
- var tr = this.elements[0][0], n = this.elements.length - 1, k = n, i;
- do { i = k - n + 1;
- tr += this.elements[i][i];
- } while (--n);
- return tr;
- },
- tr: function() { return this.trace(); },
- // Returns the rank of the matrix
- rank: function() {
- var M = this.toRightTriangular(), rank = 0;
- var ni = this.elements.length, ki = ni, i, nj, kj = this.elements[0].length, j;
- do { i = ki - ni;
- nj = kj;
- do { j = kj - nj;
- if (Math.abs(M.elements[i][j]) > Sylvester.precision) { rank++; break; }
- } while (--nj);
- } while (--ni);
- return rank;
- },
-
- rk: function() { return this.rank(); },
- // Returns the result of attaching the given argument to the right-hand side of the matrix
- augment: function(matrix) {
- var M = matrix.elements || matrix;
- if (typeof(M[0][0]) == 'undefined') { M = Matrix.create(M).elements; }
- var T = this.dup(), cols = T.elements[0].length;
- var ni = T.elements.length, ki = ni, i, nj, kj = M[0].length, j;
- if (ni != M.length) { return null; }
- do { i = ki - ni;
- nj = kj;
- do { j = kj - nj;
- T.elements[i][cols + j] = M[i][j];
- } while (--nj);
- } while (--ni);
- return T;
- },
- // Returns the inverse (if one exists) using Gauss-Jordan
- inverse: function() {
- if (!this.isSquare() || this.isSingular()) { return null; }
- var ni = this.elements.length, ki = ni, i, j;
- var M = this.augment(Matrix.I(ni)).toRightTriangular();
- var np, kp = M.elements[0].length, p, els, divisor;
- var inverse_elements = [], new_element;
- // Matrix is non-singular so there will be no zeros on the diagonal
- // Cycle through rows from last to first
- do { i = ni - 1;
- // First, normalise diagonal elements to 1
- els = []; np = kp;
- inverse_elements[i] = [];
- divisor = M.elements[i][i];
- do { p = kp - np;
- new_element = M.elements[i][p] / divisor;
- els.push(new_element);
- // Shuffle of the current row of the right hand side into the results
- // array as it will not be modified by later runs through this loop
- if (p >= ki) { inverse_elements[i].push(new_element); }
- } while (--np);
- M.elements[i] = els;
- // Then, subtract this row from those above it to
- // give the identity matrix on the left hand side
- for (j = 0; j < i; j++) {
- els = []; np = kp;
- do { p = kp - np;
- els.push(M.elements[j][p] - M.elements[i][p] * M.elements[j][i]);
- } while (--np);
- M.elements[j] = els;
- }
- } while (--ni);
- return Matrix.create(inverse_elements);
- },
- inv: function() { return this.inverse(); },
- // Returns the result of rounding all the elements
- round: function() {
- return this.map(function(x) { return Math.round(x); });
- },
- // Returns a copy of the matrix with elements set to the given value if they
- // differ from it by less than Sylvester.precision
- snapTo: function(x) {
- return this.map(function(p) {
- return (Math.abs(p - x) <= Sylvester.precision) ? x : p;
- });
- },
- // Returns a string representation of the matrix
- inspect: function() {
- var matrix_rows = [];
- var n = this.elements.length, k = n, i;
- do { i = k - n;
- matrix_rows.push(Vector.create(this.elements[i]).inspect());
- } while (--n);
- return matrix_rows.join('\n');
- },
- // Set the matrix's elements from an array. If the argument passed
- // is a vector, the resulting matrix will be a single column.
- setElements: function(els) {
- var i, elements = els.elements || els;
- if (typeof(elements[0][0]) != 'undefined') {
- var ni = elements.length, ki = ni, nj, kj, j;
- this.elements = [];
- do { i = ki - ni;
- nj = elements[i].length; kj = nj;
- this.elements[i] = [];
- do { j = kj - nj;
- this.elements[i][j] = elements[i][j];
- } while (--nj);
- } while(--ni);
- return this;
- }
- var n = elements.length, k = n;
- this.elements = [];
- do { i = k - n;
- this.elements.push([elements[i]]);
- } while (--n);
- return this;
- }
- };
- // Constructor function
- Matrix.create = function(elements) {
- var M = new Matrix();
- return M.setElements(elements);
- };
- // Identity matrix of size n
- Matrix.I = function(n) {
- var els = [], k = n, i, nj, j;
- do { i = k - n;
- els[i] = []; nj = k;
- do { j = k - nj;
- els[i][j] = (i == j) ? 1 : 0;
- } while (--nj);
- } while (--n);
- return Matrix.create(els);
- };
- // Diagonal matrix - all off-diagonal elements are zero
- Matrix.Diagonal = function(elements) {
- var n = elements.length, k = n, i;
- var M = Matrix.I(n);
- do { i = k - n;
- M.elements[i][i] = elements[i];
- } while (--n);
- return M;
- };
- // Rotation matrix about some axis. If no axis is
- // supplied, assume we're after a 2D transform
- Matrix.Rotation = function(theta, a) {
- if (!a) {
- return Matrix.create([
- [Math.cos(theta), -Math.sin(theta)],
- [Math.sin(theta), Math.cos(theta)]
- ]);
- }
- var axis = a.dup();
- if (axis.elements.length != 3) { return null; }
- var mod = axis.modulus();
- var x = axis.elements[0]/mod, y = axis.elements[1]/mod, z = axis.elements[2]/mod;
- var s = Math.sin(theta), c = Math.cos(theta), t = 1 - c;
- // Formula derived here: http://www.gamedev.net/reference/articles/article1199.asp
- // That proof rotates the co-ordinate system so theta
- // becomes -theta and sin becomes -sin here.
- return Matrix.create([
- [ t*x*x + c, t*x*y - s*z, t*x*z + s*y ],
- [ t*x*y + s*z, t*y*y + c, t*y*z - s*x ],
- [ t*x*z - s*y, t*y*z + s*x, t*z*z + c ]
- ]);
- };
- // Special case rotations
- Matrix.RotationX = function(t) {
- var c = Math.cos(t), s = Math.sin(t);
- return Matrix.create([
- [ 1, 0, 0 ],
- [ 0, c, -s ],
- [ 0, s, c ]
- ]);
- };
- Matrix.RotationY = function(t) {
- var c = Math.cos(t), s = Math.sin(t);
- return Matrix.create([
- [ c, 0, s ],
- [ 0, 1, 0 ],
- [ -s, 0, c ]
- ]);
- };
- Matrix.RotationZ = function(t) {
- var c = Math.cos(t), s = Math.sin(t);
- return Matrix.create([
- [ c, -s, 0 ],
- [ s, c, 0 ],
- [ 0, 0, 1 ]
- ]);
- };
- // Random matrix of n rows, m columns
- Matrix.Random = function(n, m) {
- return Matrix.Zero(n, m).map(
- function() { return Math.random(); }
- );
- };
- // Matrix filled with zeros
- Matrix.Zero = function(n, m) {
- var els = [], ni = n, i, nj, j;
- do { i = n - ni;
- els[i] = [];
- nj = m;
- do { j = m - nj;
- els[i][j] = 0;
- } while (--nj);
- } while (--ni);
- return Matrix.create(els);
- };
- function Line() {}
- Line.prototype = {
- // Returns true if the argument occupies the same space as the line
- eql: function(line) {
- return (this.isParallelTo(line) && this.contains(line.anchor));
- },
- // Returns a copy of the line
- dup: function() {
- return Line.create(this.anchor, this.direction);
- },
- // Returns the result of translating the line by the given vector/array
- translate: function(vector) {
- var V = vector.elements || vector;
- return Line.create([
- this.anchor.elements[0] + V[0],
- this.anchor.elements[1] + V[1],
- this.anchor.elements[2] + (V[2] || 0)
- ], this.direction);
- },
- // Returns true if the line is parallel to the argument. Here, 'parallel to'
- // means that the argument's direction is either parallel or antiparallel to
- // the line's own direction. A line is parallel to a plane if the two do not
- // have a unique intersection.
- isParallelTo: function(obj) {
- if (obj.normal) { return obj.isParallelTo(this); }
- var theta = this.direction.angleFrom(obj.direction);
- return (Math.abs(theta) <= Sylvester.precision || Math.abs(theta - Math.PI) <= Sylvester.precision);
- },
- // Returns the line's perpendicular distance from the argument,
- // which can be a point, a line or a plane
- distanceFrom: function(obj) {
- if (obj.normal) { return obj.distanceFrom(this); }
- if (obj.direction) {
- // obj is a line
- if (this.isParallelTo(obj)) { return this.distanceFrom(obj.anchor); }
- var N = this.direction.cross(obj.direction).toUnitVector().elements;
- var A = this.anchor.elements, B = obj.anchor.elements;
- return Math.abs((A[0] - B[0]) * N[0] + (A[1] - B[1]) * N[1] + (A[2] - B[2]) * N[2]);
- } else {
- // obj is a point
- var P = obj.elements || obj;
- var A = this.anchor.elements, D = this.direction.elements;
- var PA1 = P[0] - A[0], PA2 = P[1] - A[1], PA3 = (P[2] || 0) - A[2];
- var modPA = Math.sqrt(PA1*PA1 + PA2*PA2 + PA3*PA3);
- if (modPA === 0) return 0;
- // Assumes direction vector is normalized
- var cosTheta = (PA1 * D[0] + PA2 * D[1] + PA3 * D[2]) / modPA;
- var sin2 = 1 - cosTheta*cosTheta;
- return Math.abs(modPA * Math.sqrt(sin2 < 0 ? 0 : sin2));
- }
- },
- // Returns true iff the argument is a point on the line
- contains: function(point) {
- var dist = this.distanceFrom(point);
- return (dist !== null && dist <= Sylvester.precision);
- },
- // Returns true iff the line lies in the given plane
- liesIn: function(plane) {
- return plane.contains(this);
- },
- // Returns true iff the line has a unique point of intersection with the argument
- intersects: function(obj) {
- if (obj.normal) { return obj.intersects(this); }
- return (!this.isParallelTo(obj) && this.distanceFrom(obj) <= Sylvester.precision);
- },
- // Returns the unique intersection point with the argument, if one exists
- intersectionWith: function(obj) {
- if (obj.normal) { return obj.intersectionWith(this); }
- if (!this.intersects(obj)) { return null; }
- var P = this.anchor.elements, X = this.direction.elements,
- Q = obj.anchor.elements, Y = obj.direction.elements;
- var X1 = X[0], X2 = X[1], X3 = X[2], Y1 = Y[0], Y2 = Y[1], Y3 = Y[2];
- var PsubQ1 = P[0] - Q[0], PsubQ2 = P[1] - Q[1], PsubQ3 = P[2] - Q[2];
- var XdotQsubP = - X1*PsubQ1 - X2*PsubQ2 - X3*PsubQ3;
- var YdotPsubQ = Y1*PsubQ1 + Y2*PsubQ2 + Y3*PsubQ3;
- var XdotX = X1*X1 + X2*X2 + X3*X3;
- var YdotY = Y1*Y1 + Y2*Y2 + Y3*Y3;
- var XdotY = X1*Y1 + X2*Y2 + X3*Y3;
- var k = (XdotQsubP * YdotY / XdotX + XdotY * YdotPsubQ) / (YdotY - XdotY * XdotY);
- return Vector.create([P[0] + k*X1, P[1] + k*X2, P[2] + k*X3]);
- },
- // Returns the point on the line that is closest to the given point or line
- pointClosestTo: function(obj) {
- if (obj.direction) {
- // obj is a line
- if (this.intersects(obj)) { return this.intersectionWith(obj); }
- if (this.isParallelTo(obj)) { return null; }
- var D = this.direction.elements, E = obj.direction.elements;
- var D1 = D[0], D2 = D[1], D3 = D[2], E1 = E[0], E2 = E[1], E3 = E[2];
- // Create plane containing obj and the shared normal and intersect this with it
- // Thank you: http://www.cgafaq.info/wiki/Line-line_distance
- var x = (D3 * E1 - D1 * E3), y = (D1 * E2 - D2 * E1), z = (D2 * E3 - D3 * E2);
- var N = Vector.create([x * E3 - y * E2, y * E1 - z * E3, z * E2 - x * E1]);
- var P = Plane.create(obj.anchor, N);
- return P.intersectionWith(this);
- } else {
- // obj is a point
- var P = obj.elements || obj;
- if (this.contains(P)) { return Vector.create(P); }
- var A = this.anchor.elements, D = this.direction.elements;
- var D1 = D[0], D2 = D[1], D3 = D[2], A1 = A[0], A2 = A[1], A3 = A[2];
- var x = D1 * (P[1]-A2) - D2 * (P[0]-A1), y = D2 * ((P[2] || 0) - A3) - D3 * (P[1]-A2),
- z = D3 * (P[0]-A1) - D1 * ((P[2] || 0) - A3);
- var V = Vector.create([D2 * x - D3 * z, D3 * y - D1 * x, D1 * z - D2 * y]);
- var k = this.distanceFrom(P) / V.modulus();
- return Vector.create([
- P[0] + V.elements[0] * k,
- P[1] + V.elements[1] * k,
- (P[2] || 0) + V.elements[2] * k
- ]);
- }
- },
- // Returns a copy of the line rotated by t radians about the given line. Works by
- // finding the argument's closest point to this line's anchor point (call this C) and
- // rotating the anchor about C. Also rotates the line's direction about the argument's.
- // Be careful with this - the rotation axis' direction affects the outcome!
- rotate: function(t, line) {
- // If we're working in 2D
- if (typeof(line.direction) == 'undefined') { line = Line.create(line.to3D(), Vector.k); }
- var R = Matrix.Rotation(t, line.direction).elements;
- var C = line.pointClosestTo(this.anchor).elements;
- var A = this.anchor.elements, D = this.direction.elements;
- var C1 = C[0], C2 = C[1], C3 = C[2], A1 = A[0], A2 = A[1], A3 = A[2];
- var x = A1 - C1, y = A2 - C2, z = A3 - C3;
- return Line.create([
- C1 + R[0][0] * x + R[0][1] * y + R[0][2] * z,
- C2 + R[1][0] * x + R[1][1] * y + R[1][2] * z,
- C3 + R[2][0] * x + R[2][1] * y + R[2][2] * z
- ], [
- R[0][0] * D[0] + R[0][1] * D[1] + R[0][2] * D[2],
- R[1][0] * D[0] + R[1][1] * D[1] + R[1][2] * D[2],
- R[2][0] * D[0] + R[2][1] * D[1] + R[2][2] * D[2]
- ]);
- },
- // Returns the line's reflection in the given point or line
- reflectionIn: function(obj) {
- if (obj.normal) {
- // obj is a plane
- var A = this.anchor.elements, D = this.direction.elements;
- var A1 = A[0], A2 = A[1], A3 = A[2], D1 = D[0], D2 = D[1], D3 = D[2];
- var newA = this.anchor.reflectionIn(obj).elements;
- // Add the line's direction vector to its anchor, then mirror that in the plane
- var AD1 = A1 + D1, AD2 = A2 + D2, AD3 = A3 + D3;
- var Q = obj.pointClosestTo([AD1, AD2, AD3]).elements;
- var newD = [Q[0] + (Q[0] - AD1) - newA[0], Q[1] + (Q[1] - AD2) - newA[1], Q[2] + (Q[2] - AD3) - newA[2]];
- return Line.create(newA, newD);
- } else if (obj.direction) {
- // obj is a line - reflection obtained by rotating PI radians about obj
- return this.rotate(Math.PI, obj);
- } else {
- // obj is a point - just reflect the line's anchor in it
- var P = obj.elements || obj;
- return Line.create(this.anchor.reflectionIn([P[0], P[1], (P[2] || 0)]), this.direction);
- }
- },
- // Set the line's anchor point and direction.
- setVectors: function(anchor, direction) {
- // Need to do this so that line's properties are not
- // references to the arguments passed in
- anchor = Vector.create(anchor);
- direction = Vector.create(direction);
- if (anchor.elements.length == 2) {anchor.elements.push(0); }
- if (direction.elements.length == 2) { direction.elements.push(0); }
- if (anchor.elements.length > 3 || direction.elements.length > 3) { return null; }
- var mod = direction.modulus();
- if (mod === 0) { return null; }
- this.anchor = anchor;
- this.direction = Vector.create([
- direction.elements[0] / mod,
- direction.elements[1] / mod,
- direction.elements[2] / mod
- ]);
- return this;
- }
- };
-
- // Constructor function
- Line.create = function(anchor, direction) {
- var L = new Line();
- return L.setVectors(anchor, direction);
- };
- // Axes
- Line.X = Line.create(Vector.Zero(3), Vector.i);
- Line.Y = Line.create(Vector.Zero(3), Vector.j);
- Line.Z = Line.create(Vector.Zero(3), Vector.k);
- function Plane() {}
- Plane.prototype = {
- // Returns true iff the plane occupies the same space as the argument
- eql: function(plane) {
- return (this.contains(plane.anchor) && this.isParallelTo(plane));
- },
- // Returns a copy of the plane
- dup: function() {
- return Plane.create(this.anchor, this.normal);
- },
- // Returns the result of translating the plane by the given vector
- translate: function(vector) {
- var V = vector.elements || vector;
- return Plane.create([
- this.anchor.elements[0] + V[0],
- this.anchor.elements[1] + V[1],
- this.anchor.elements[2] + (V[2] || 0)
- ], this.normal);
- },
- // Returns true iff the plane is parallel to the argument. Will return true
- // if the planes are equal, or if you give a line and it lies in the plane.
- isParallelTo: function(obj) {
- var theta;
- if (obj.normal) {
- // obj is a plane
- theta = this.normal.angleFrom(obj.normal);
- return (Math.abs(theta) <= Sylvester.precision || Math.abs(Math.PI - theta) <= Sylvester.precision);
- } else if (obj.direction) {
- // obj is a line
- return this.normal.isPerpendicularTo(obj.direction);
- }
- return null;
- },
-
- // Returns true iff the receiver is perpendicular to the argument
- isPerpendicularTo: function(plane) {
- var theta = this.normal.angleFrom(plane.normal);
- return (Math.abs(Math.PI/2 - theta) <= Sylvester.precision);
- },
- // Returns the plane's distance from the given object (point, line or plane)
- distanceFrom: function(obj) {
- if (this.intersects(obj) || this.contains(obj)) { return 0; }
- if (obj.anchor) {
- // obj is a plane or line
- var A = this.anchor.elements, B = obj.anchor.elements, N = this.normal.elements;
- return Math.abs((A[0] - B[0]) * N[0] + (A[1] - B[1]) * N[1] + (A[2] - B[2]) * N[2]);
- } else {
- // obj is a point
- var P = obj.elements || obj;
- var A = this.anchor.elements, N = this.normal.elements;
- return Math.abs((A[0] - P[0]) * N[0] + (A[1] - P[1]) * N[1] + (A[2] - (P[2] || 0)) * N[2]);
- }
- },
- // Returns true iff the plane contains the given point or line
- contains: function(obj) {
- if (obj.normal) { return null; }
- if (obj.direction) {
- return (this.contains(obj.anchor) && this.contains(obj.anchor.add(obj.direction)));
- } else {
- var P = obj.elements || obj;
- var A = this.anchor.elements, N = this.normal.elements;
- var diff = Math.abs(N[0]*(A[0] - P[0]) + N[1]*(A[1] - P[1]) + N[2]*(A[2] - (P[2] || 0)));
- return (diff <= Sylvester.precision);
- }
- },
- // Returns true iff the plane has a unique point/line of intersection with the argument
- intersects: function(obj) {
- if (typeof(obj.direction) == 'undefined' && typeof(obj.normal) == 'undefined') { return null; }
- return !this.isParallelTo(obj);
- },
- // Returns the unique intersection with the argument, if one exists. The result
- // will be a vector if a line is supplied, and a line if a plane is supplied.
- intersectionWith: function(obj) {
- if (!this.intersects(obj)) { return null; }
- if (obj.direction) {
- // obj is a line
- var A = obj.anchor.elements, D = obj.direction.elements,
- P = this.anchor.elements, N = this.normal.elements;
- var multiplier = (N[0]*(P[0]-A[0]) + N[1]*(P[1]-A[1]) + N[2]*(P[2]-A[2])) / (N[0]*D[0] + N[1]*D[1] + N[2]*D[2]);
- return Vector.create([A[0] + D[0]*multiplier, A[1] + D[1]*multiplier, A[2] + D[2]*multiplier]);
- } else if (obj.normal) {
- // obj is a plane
- var direction = this.normal.cross(obj.normal).toUnitVector();
- // To find an anchor point, we find one co-ordinate that has a value
- // of zero somewhere on the intersection, and remember which one we picked
- var N = this.normal.elements, A = this.anchor.elements,
- O = obj.normal.elements, B = obj.anchor.elements;
- var solver = Matrix.Zero(2,2), i = 0;
- while (solver.isSingular()) {
- i++;
- solver = Matrix.create([
- [ N[i%3], N[(i+1)%3] ],
- [ O[i%3], O[(i+1)%3] ]
- ]);
- }
- // Then we solve the simultaneous equations in the remaining dimensions
- var inverse = solver.inverse().elements;
- var x = N[0]*A[0] + N[1]*A[1] + N[2]*A[2];
- var y = O[0]*B[0] + O[1]*B[1] + O[2]*B[2];
- var intersection = [
- inverse[0][0] * x + inverse[0][1] * y,
- inverse[1][0] * x + inverse[1][1] * y
- ];
- var anchor = [];
- for (var j = 1; j <= 3; j++) {
- // This formula picks the right element from intersection by
- // cycling depending on which element we set to zero above
- anchor.push((i == j) ? 0 : intersection[(j + (5 - i)%3)%3]);
- }
- return Line.create(anchor, direction);
- }
- },
- // Returns the point in the plane closest to the given point
- pointClosestTo: function(point) {
- var P = point.elements || point;
- var A = this.anchor.elements, N = this.normal.elements;
- var dot = (A[0] - P[0]) * N[0] + (A[1] - P[1]) * N[1] + (A[2] - (P[2] || 0)) * N[2];
- return Vector.create([P[0] + N[0] * dot, P[1] + N[1] * dot, (P[2] || 0) + N[2] * dot]);
- },
- // Returns a copy of the plane, rotated by t radians about the given line
- // See notes on Line#rotate.
- rotate: function(t, line) {
- var R = Matrix.Rotation(t, line.direction).elements;
- var C = line.pointClosestTo(this.anchor).elements;
- var A = this.anchor.elements, N = this.normal.elements;
- var C1 = C[0], C2 = C[1], C3 = C[2], A1 = A[0], A2 = A[1], A3 = A[2];
- var x = A1 - C1, y = A2 - C2, z = A3 - C3;
- return Plane.create([
- C1 + R[0][0] * x + R[0][1] * y + R[0][2] * z,
- C2 + R[1][0] * x + R[1][1] * y + R[1][2] * z,
- C3 + R[2][0] * x + R[2][1] * y + R[2][2] * z
- ], [
- R[0][0] * N[0] + R[0][1] * N[1] + R[0][2] * N[2],
- R[1][0] * N[0] + R[1][1] * N[1] + R[1][2] * N[2],
- R[2][0] * N[0] + R[2][1] * N[1] + R[2][2] * N[2]
- ]);
- },
- // Returns the reflection of the plane in the given point, line or plane.
- reflectionIn: function(obj) {
- if (obj.normal) {
- // obj is a plane
- var A = this.anchor.elements, N = this.normal.elements;
- var A1 = A[0], A2 = A[1], A3 = A[2], N1 = N[0], N2 = N[1], N3 = N[2];
- var newA = this.anchor.reflectionIn(obj).elements;
- // Add the plane's normal to its anchor, then mirror that in the other plane
- var AN1 = A1 + N1, AN2 = A2 + N2, AN3 = A3 + N3;
- var Q = obj.pointClosestTo([AN1, AN2, AN3]).elements;
- var newN = [Q[0] + (Q[0] - AN1) - newA[0], Q[1] + (Q[1] - AN2) - newA[1], Q[2] + (Q[2] - AN3) - newA[2]];
- return Plane.create(newA, newN);
- } else if (obj.direction) {
- // obj is a line
- return this.rotate(Math.PI, obj);
- } else {
- // obj is a point
- var P = obj.elements || obj;
- return Plane.create(this.anchor.reflectionIn([P[0], P[1], (P[2] || 0)]), this.normal);
- }
- },
- // Sets the anchor point and normal to the plane. If three arguments are specified,
- // the normal is calculated by assuming the three points should lie in the same plane.
- // If only two are sepcified, the second is taken to be the normal. Normal vector is
- // normalised before storage.
- setVectors: function(anchor, v1, v2) {
- anchor = Vector.create(anchor);
- anchor = anchor.to3D(); if (anchor === null) { return null; }
- v1 = Vector.create(v1);
- v1 = v1.to3D(); if (v1 === null) { return null; }
- if (typeof(v2) == 'undefined') {
- v2 = null;
- } else {
- v2 = Vector.create(v2);
- v2 = v2.to3D(); if (v2 === null) { return null; }
- }
- var A1 = anchor.elements[0], A2 = anchor.elements[1], A3 = anchor.elements[2];
- var v11 = v1.elements[0], v12 = v1.elements[1], v13 = v1.elements[2];
- var normal, mod;
- if (v2 !== null) {
- var v21 = v2.elements[0], v22 = v2.elements[1], v23 = v2.elements[2];
- normal = Vector.create([
- (v12 - A2) * (v23 - A3) - (v13 - A3) * (v22 - A2),
- (v13 - A3) * (v21 - A1) - (v11 - A1) * (v23 - A3),
- (v11 - A1) * (v22 - A2) - (v12 - A2) * (v21 - A1)
- ]);
- mod = normal.modulus();
- if (mod === 0) { return null; }
- normal = Vector.create([normal.elements[0] / mod, normal.elements[1] / mod, normal.elements[2] / mod]);
- } else {
- mod = Math.sqrt(v11*v11 + v12*v12 + v13*v13);
- if (mod === 0) { return null; }
- normal = Vector.create([v1.elements[0] / mod, v1.elements[1] / mod, v1.elements[2] / mod]);
- }
- this.anchor = anchor;
- this.normal = normal;
- return this;
- }
- };
- // Constructor function
- Plane.create = function(anchor, v1, v2) {
- var P = new Plane();
- return P.setVectors(anchor, v1, v2);
- };
- // X-Y-Z planes
- Plane.XY = Plane.create(Vector.Zero(3), Vector.k);
- Plane.YZ = Plane.create(Vector.Zero(3), Vector.i);
- Plane.ZX = Plane.create(Vector.Zero(3), Vector.j);
- Plane.YX = Plane.XY; Plane.ZY = Plane.YZ; Plane.XZ = Plane.ZX;
- return {
- $V : Vector.create,
- $M : Matrix.create,
- $L : Line.create,
- $P : Plane.create,
- Matrix: Matrix,
- Vector: Vector,
- Plane: Plane
- }
- });
|