// Copyright 2008 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Provides an object representation of an AffineTransform and * methods for working with it. */ goog.provide('goog.math.AffineTransform'); /** * Creates a 2D affine transform. An affine transform performs a linear * mapping from 2D coordinates to other 2D coordinates that preserves the * "straightness" and "parallelness" of lines. * * Such a coordinate transformation can be represented by a 3 row by 3 column * matrix with an implied last row of [ 0 0 1 ]. This matrix transforms source * coordinates (x,y) into destination coordinates (x',y') by considering them * to be a column vector and multiplying the coordinate vector by the matrix * according to the following process: *
 *      [ x']   [  m00  m01  m02  ] [ x ]   [ m00x + m01y + m02 ]
 *      [ y'] = [  m10  m11  m12  ] [ y ] = [ m10x + m11y + m12 ]
 *      [ 1 ]   [   0    0    1   ] [ 1 ]   [         1         ]
 * 
* * This class is optimized for speed and minimizes calculations based on its * knowledge of the underlying matrix (as opposed to say simply performing * matrix multiplication). * * @param {number=} opt_m00 The m00 coordinate of the transform. * @param {number=} opt_m10 The m10 coordinate of the transform. * @param {number=} opt_m01 The m01 coordinate of the transform. * @param {number=} opt_m11 The m11 coordinate of the transform. * @param {number=} opt_m02 The m02 coordinate of the transform. * @param {number=} opt_m12 The m12 coordinate of the transform. * @struct * @constructor * @final */ goog.math.AffineTransform = function( opt_m00, opt_m10, opt_m01, opt_m11, opt_m02, opt_m12) { if (arguments.length == 6) { this.setTransform( /** @type {number} */ (opt_m00), /** @type {number} */ (opt_m10), /** @type {number} */ (opt_m01), /** @type {number} */ (opt_m11), /** @type {number} */ (opt_m02), /** @type {number} */ (opt_m12)); } else if (arguments.length != 0) { throw Error('Insufficient matrix parameters'); } else { this.m00_ = this.m11_ = 1; this.m10_ = this.m01_ = this.m02_ = this.m12_ = 0; } }; /** * @return {boolean} Whether this transform is the identity transform. */ goog.math.AffineTransform.prototype.isIdentity = function() { return this.m00_ == 1 && this.m10_ == 0 && this.m01_ == 0 && this.m11_ == 1 && this.m02_ == 0 && this.m12_ == 0; }; /** * @return {!goog.math.AffineTransform} A copy of this transform. */ goog.math.AffineTransform.prototype.clone = function() { return new goog.math.AffineTransform( this.m00_, this.m10_, this.m01_, this.m11_, this.m02_, this.m12_); }; /** * Sets this transform to the matrix specified by the 6 values. * * @param {number} m00 The m00 coordinate of the transform. * @param {number} m10 The m10 coordinate of the transform. * @param {number} m01 The m01 coordinate of the transform. * @param {number} m11 The m11 coordinate of the transform. * @param {number} m02 The m02 coordinate of the transform. * @param {number} m12 The m12 coordinate of the transform. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.setTransform = function( m00, m10, m01, m11, m02, m12) { if (!goog.isNumber(m00) || !goog.isNumber(m10) || !goog.isNumber(m01) || !goog.isNumber(m11) || !goog.isNumber(m02) || !goog.isNumber(m12)) { throw Error('Invalid transform parameters'); } this.m00_ = m00; this.m10_ = m10; this.m01_ = m01; this.m11_ = m11; this.m02_ = m02; this.m12_ = m12; return this; }; /** * Sets this transform to be identical to the given transform. * * @param {!goog.math.AffineTransform} tx The transform to copy. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.copyFrom = function(tx) { this.m00_ = tx.m00_; this.m10_ = tx.m10_; this.m01_ = tx.m01_; this.m11_ = tx.m11_; this.m02_ = tx.m02_; this.m12_ = tx.m12_; return this; }; /** * Concatenates this transform with a scaling transformation. * * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.scale = function(sx, sy) { this.m00_ *= sx; this.m10_ *= sx; this.m01_ *= sy; this.m11_ *= sy; return this; }; /** * Pre-concatenates this transform with a scaling transformation, * i.e. calculates the following matrix product: * *
 * [sx  0 0] [m00 m01 m02]
 * [ 0 sy 0] [m10 m11 m12]
 * [ 0  0 1] [  0   0   1]
 * 
* * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.preScale = function(sx, sy) { this.m00_ *= sx; this.m01_ *= sx; this.m02_ *= sx; this.m10_ *= sy; this.m11_ *= sy; this.m12_ *= sy; return this; }; /** * Concatenates this transform with a translate transformation. * * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.translate = function(dx, dy) { this.m02_ += dx * this.m00_ + dy * this.m01_; this.m12_ += dx * this.m10_ + dy * this.m11_; return this; }; /** * Pre-concatenates this transform with a translate transformation, * i.e. calculates the following matrix product: * *
 * [1 0 dx] [m00 m01 m02]
 * [0 1 dy] [m10 m11 m12]
 * [0 0  1] [  0   0   1]
 * 
* * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.preTranslate = function(dx, dy) { this.m02_ += dx; this.m12_ += dy; return this; }; /** * Concatenates this transform with a rotation transformation around an anchor * point. * * @param {number} theta The angle of rotation measured in radians. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.rotate = function(theta, x, y) { return this.concatenate( goog.math.AffineTransform.getRotateInstance(theta, x, y)); }; /** * Pre-concatenates this transform with a rotation transformation around an * anchor point. * * @param {number} theta The angle of rotation measured in radians. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.preRotate = function(theta, x, y) { return this.preConcatenate( goog.math.AffineTransform.getRotateInstance(theta, x, y)); }; /** * Concatenates this transform with a shear transformation. * * @param {number} shx The x shear factor. * @param {number} shy The y shear factor. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.shear = function(shx, shy) { var m00 = this.m00_; var m10 = this.m10_; this.m00_ += shy * this.m01_; this.m10_ += shy * this.m11_; this.m01_ += shx * m00; this.m11_ += shx * m10; return this; }; /** * Pre-concatenates this transform with a shear transformation. * i.e. calculates the following matrix product: * *
 * [  1 shx 0] [m00 m01 m02]
 * [shy   1 0] [m10 m11 m12]
 * [  0   0 1] [  0   0   1]
 * 
* * @param {number} shx The x shear factor. * @param {number} shy The y shear factor. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.preShear = function(shx, shy) { var m00 = this.m00_; var m01 = this.m01_; var m02 = this.m02_; this.m00_ += shx * this.m10_; this.m01_ += shx * this.m11_; this.m02_ += shx * this.m12_; this.m10_ += shy * m00; this.m11_ += shy * m01; this.m12_ += shy * m02; return this; }; /** * @return {string} A string representation of this transform. The format of * of the string is compatible with SVG matrix notation, i.e. * "matrix(a,b,c,d,e,f)". * @override */ goog.math.AffineTransform.prototype.toString = function() { return 'matrix(' + [this.m00_, this.m10_, this.m01_, this.m11_, this.m02_, this.m12_].join( ',') + ')'; }; /** * @return {number} The scaling factor in the x-direction (m00). */ goog.math.AffineTransform.prototype.getScaleX = function() { return this.m00_; }; /** * @return {number} The scaling factor in the y-direction (m11). */ goog.math.AffineTransform.prototype.getScaleY = function() { return this.m11_; }; /** * @return {number} The translation in the x-direction (m02). */ goog.math.AffineTransform.prototype.getTranslateX = function() { return this.m02_; }; /** * @return {number} The translation in the y-direction (m12). */ goog.math.AffineTransform.prototype.getTranslateY = function() { return this.m12_; }; /** * @return {number} The shear factor in the x-direction (m01). */ goog.math.AffineTransform.prototype.getShearX = function() { return this.m01_; }; /** * @return {number} The shear factor in the y-direction (m10). */ goog.math.AffineTransform.prototype.getShearY = function() { return this.m10_; }; /** * Concatenates an affine transform to this transform. * * @param {!goog.math.AffineTransform} tx The transform to concatenate. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.concatenate = function(tx) { var m0 = this.m00_; var m1 = this.m01_; this.m00_ = tx.m00_ * m0 + tx.m10_ * m1; this.m01_ = tx.m01_ * m0 + tx.m11_ * m1; this.m02_ += tx.m02_ * m0 + tx.m12_ * m1; m0 = this.m10_; m1 = this.m11_; this.m10_ = tx.m00_ * m0 + tx.m10_ * m1; this.m11_ = tx.m01_ * m0 + tx.m11_ * m1; this.m12_ += tx.m02_ * m0 + tx.m12_ * m1; return this; }; /** * Pre-concatenates an affine transform to this transform. * * @param {!goog.math.AffineTransform} tx The transform to preconcatenate. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.preConcatenate = function(tx) { var m0 = this.m00_; var m1 = this.m10_; this.m00_ = tx.m00_ * m0 + tx.m01_ * m1; this.m10_ = tx.m10_ * m0 + tx.m11_ * m1; m0 = this.m01_; m1 = this.m11_; this.m01_ = tx.m00_ * m0 + tx.m01_ * m1; this.m11_ = tx.m10_ * m0 + tx.m11_ * m1; m0 = this.m02_; m1 = this.m12_; this.m02_ = tx.m00_ * m0 + tx.m01_ * m1 + tx.m02_; this.m12_ = tx.m10_ * m0 + tx.m11_ * m1 + tx.m12_; return this; }; /** * Transforms an array of coordinates by this transform and stores the result * into a destination array. * * @param {!Array} src The array containing the source points * as x, y value pairs. * @param {number} srcOff The offset to the first point to be transformed. * @param {!Array} dst The array into which to store the transformed * point pairs. * @param {number} dstOff The offset of the location of the first transformed * point in the destination array. * @param {number} numPts The number of points to transform. */ goog.math.AffineTransform.prototype.transform = function( src, srcOff, dst, dstOff, numPts) { var i = srcOff; var j = dstOff; var srcEnd = srcOff + 2 * numPts; while (i < srcEnd) { var x = src[i++]; var y = src[i++]; dst[j++] = x * this.m00_ + y * this.m01_ + this.m02_; dst[j++] = x * this.m10_ + y * this.m11_ + this.m12_; } }; /** * @return {number} The determinant of this transform. */ goog.math.AffineTransform.prototype.getDeterminant = function() { return this.m00_ * this.m11_ - this.m01_ * this.m10_; }; /** * Returns whether the transform is invertible. A transform is not invertible * if the determinant is 0 or any value is non-finite or NaN. * * @return {boolean} Whether the transform is invertible. */ goog.math.AffineTransform.prototype.isInvertible = function() { var det = this.getDeterminant(); return isFinite(det) && isFinite(this.m02_) && isFinite(this.m12_) && det != 0; }; /** * @return {!goog.math.AffineTransform} An AffineTransform object * representing the inverse transformation. */ goog.math.AffineTransform.prototype.createInverse = function() { var det = this.getDeterminant(); return new goog.math.AffineTransform( this.m11_ / det, -this.m10_ / det, -this.m01_ / det, this.m00_ / det, (this.m01_ * this.m12_ - this.m11_ * this.m02_) / det, (this.m10_ * this.m02_ - this.m00_ * this.m12_) / det); }; /** * Creates a transform representing a scaling transformation. * * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @return {!goog.math.AffineTransform} A transform representing a scaling * transformation. */ goog.math.AffineTransform.getScaleInstance = function(sx, sy) { return new goog.math.AffineTransform().setToScale(sx, sy); }; /** * Creates a transform representing a translation transformation. * * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {!goog.math.AffineTransform} A transform representing a * translation transformation. */ goog.math.AffineTransform.getTranslateInstance = function(dx, dy) { return new goog.math.AffineTransform().setToTranslation(dx, dy); }; /** * Creates a transform representing a shearing transformation. * * @param {number} shx The x-axis shear factor. * @param {number} shy The y-axis shear factor. * @return {!goog.math.AffineTransform} A transform representing a shearing * transformation. */ goog.math.AffineTransform.getShearInstance = function(shx, shy) { return new goog.math.AffineTransform().setToShear(shx, shy); }; /** * Creates a transform representing a rotation transformation. * * @param {number} theta The angle of rotation measured in radians. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {!goog.math.AffineTransform} A transform representing a rotation * transformation. */ goog.math.AffineTransform.getRotateInstance = function(theta, x, y) { return new goog.math.AffineTransform().setToRotation(theta, x, y); }; /** * Sets this transform to a scaling transformation. * * @param {number} sx The x-axis scaling factor. * @param {number} sy The y-axis scaling factor. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.setToScale = function(sx, sy) { return this.setTransform(sx, 0, 0, sy, 0, 0); }; /** * Sets this transform to a translation transformation. * * @param {number} dx The distance to translate in the x direction. * @param {number} dy The distance to translate in the y direction. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.setToTranslation = function(dx, dy) { return this.setTransform(1, 0, 0, 1, dx, dy); }; /** * Sets this transform to a shearing transformation. * * @param {number} shx The x-axis shear factor. * @param {number} shy The y-axis shear factor. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.setToShear = function(shx, shy) { return this.setTransform(1, shy, shx, 1, 0, 0); }; /** * Sets this transform to a rotation transformation. * * @param {number} theta The angle of rotation measured in radians. * @param {number} x The x coordinate of the anchor point. * @param {number} y The y coordinate of the anchor point. * @return {!goog.math.AffineTransform} This affine transform. */ goog.math.AffineTransform.prototype.setToRotation = function(theta, x, y) { var cos = Math.cos(theta); var sin = Math.sin(theta); return this.setTransform( cos, sin, -sin, cos, x - x * cos + y * sin, y - x * sin - y * cos); }; /** * Compares two affine transforms for equality. * * @param {goog.math.AffineTransform} tx The other affine transform. * @return {boolean} whether the two transforms are equal. */ goog.math.AffineTransform.prototype.equals = function(tx) { if (this == tx) { return true; } if (!tx) { return false; } return this.m00_ == tx.m00_ && this.m01_ == tx.m01_ && this.m02_ == tx.m02_ && this.m10_ == tx.m10_ && this.m11_ == tx.m11_ && this.m12_ == tx.m12_; };