// Copyright 2012 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview A one dimensional monotone cubic spline interpolator. * * See http://en.wikipedia.org/wiki/Monotone_cubic_interpolation. * */ goog.provide('goog.math.interpolator.Pchip1'); goog.require('goog.math'); goog.require('goog.math.interpolator.Spline1'); /** * A one dimensional monotone cubic spline interpolator. * @extends {goog.math.interpolator.Spline1} * @constructor * @final */ goog.math.interpolator.Pchip1 = function() { goog.math.interpolator.Pchip1.base(this, 'constructor'); }; goog.inherits(goog.math.interpolator.Pchip1, goog.math.interpolator.Spline1); /** @override */ goog.math.interpolator.Pchip1.prototype.computeDerivatives = function( dx, slope) { var len = dx.length; var deriv = new Array(len + 1); for (var i = 1; i < len; ++i) { if (goog.math.sign(slope[i - 1]) * goog.math.sign(slope[i]) <= 0) { deriv[i] = 0; } else { var w1 = 2 * dx[i] + dx[i - 1]; var w2 = dx[i] + 2 * dx[i - 1]; deriv[i] = (w1 + w2) / (w1 / slope[i - 1] + w2 / slope[i]); } } deriv[0] = this.computeDerivativeAtBoundary_(dx[0], dx[1], slope[0], slope[1]); deriv[len] = this.computeDerivativeAtBoundary_( dx[len - 1], dx[len - 2], slope[len - 1], slope[len - 2]); return deriv; }; /** * Computes the derivative of a data point at a boundary. * @param {number} dx0 The spacing of the 1st data point. * @param {number} dx1 The spacing of the 2nd data point. * @param {number} slope0 The slope of the 1st data point. * @param {number} slope1 The slope of the 2nd data point. * @return {number} The derivative at the 1st data point. * @private */ goog.math.interpolator.Pchip1.prototype.computeDerivativeAtBoundary_ = function( dx0, dx1, slope0, slope1) { var deriv = ((2 * dx0 + dx1) * slope0 - dx0 * slope1) / (dx0 + dx1); if (goog.math.sign(deriv) != goog.math.sign(slope0)) { deriv = 0; } else if ( goog.math.sign(slope0) != goog.math.sign(slope1) && Math.abs(deriv) > Math.abs(3 * slope0)) { deriv = 3 * slope0; } return deriv; };