123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341 |
- // Copyright 2007 The Closure Library Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS-IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /**
- * @fileoverview Represents a cubic Bezier curve.
- *
- * Uses the deCasteljau algorithm to compute points on the curve.
- * http://en.wikipedia.org/wiki/De_Casteljau's_algorithm
- *
- * Currently it uses an unrolled version of the algorithm for speed. Eventually
- * it may be useful to use the loop form of the algorithm in order to support
- * curves of arbitrary degree.
- *
- * @author robbyw@google.com (Robby Walker)
- */
- goog.provide('goog.math.Bezier');
- goog.require('goog.math');
- goog.require('goog.math.Coordinate');
- /**
- * Object representing a cubic bezier curve.
- * @param {number} x0 X coordinate of the start point.
- * @param {number} y0 Y coordinate of the start point.
- * @param {number} x1 X coordinate of the first control point.
- * @param {number} y1 Y coordinate of the first control point.
- * @param {number} x2 X coordinate of the second control point.
- * @param {number} y2 Y coordinate of the second control point.
- * @param {number} x3 X coordinate of the end point.
- * @param {number} y3 Y coordinate of the end point.
- * @struct
- * @constructor
- * @final
- */
- goog.math.Bezier = function(x0, y0, x1, y1, x2, y2, x3, y3) {
- /**
- * X coordinate of the first point.
- * @type {number}
- */
- this.x0 = x0;
- /**
- * Y coordinate of the first point.
- * @type {number}
- */
- this.y0 = y0;
- /**
- * X coordinate of the first control point.
- * @type {number}
- */
- this.x1 = x1;
- /**
- * Y coordinate of the first control point.
- * @type {number}
- */
- this.y1 = y1;
- /**
- * X coordinate of the second control point.
- * @type {number}
- */
- this.x2 = x2;
- /**
- * Y coordinate of the second control point.
- * @type {number}
- */
- this.y2 = y2;
- /**
- * X coordinate of the end point.
- * @type {number}
- */
- this.x3 = x3;
- /**
- * Y coordinate of the end point.
- * @type {number}
- */
- this.y3 = y3;
- };
- /**
- * Constant used to approximate ellipses.
- * See: http://canvaspaint.org/blog/2006/12/ellipse/
- * @type {number}
- */
- goog.math.Bezier.KAPPA = 4 * (Math.sqrt(2) - 1) / 3;
- /**
- * @return {!goog.math.Bezier} A copy of this curve.
- */
- goog.math.Bezier.prototype.clone = function() {
- return new goog.math.Bezier(
- this.x0, this.y0, this.x1, this.y1, this.x2, this.y2, this.x3, this.y3);
- };
- /**
- * Test if the given curve is exactly the same as this one.
- * @param {goog.math.Bezier} other The other curve.
- * @return {boolean} Whether the given curve is the same as this one.
- */
- goog.math.Bezier.prototype.equals = function(other) {
- return this.x0 == other.x0 && this.y0 == other.y0 && this.x1 == other.x1 &&
- this.y1 == other.y1 && this.x2 == other.x2 && this.y2 == other.y2 &&
- this.x3 == other.x3 && this.y3 == other.y3;
- };
- /**
- * Modifies the curve in place to progress in the opposite direction.
- */
- goog.math.Bezier.prototype.flip = function() {
- var temp = this.x0;
- this.x0 = this.x3;
- this.x3 = temp;
- temp = this.y0;
- this.y0 = this.y3;
- this.y3 = temp;
- temp = this.x1;
- this.x1 = this.x2;
- this.x2 = temp;
- temp = this.y1;
- this.y1 = this.y2;
- this.y2 = temp;
- };
- /**
- * Computes the curve's X coordinate at a point between 0 and 1.
- * @param {number} t The point on the curve to find.
- * @return {number} The computed coordinate.
- */
- goog.math.Bezier.prototype.getPointX = function(t) {
- // Special case start and end.
- if (t == 0) {
- return this.x0;
- } else if (t == 1) {
- return this.x3;
- }
- // Step one - from 4 points to 3
- var ix0 = goog.math.lerp(this.x0, this.x1, t);
- var ix1 = goog.math.lerp(this.x1, this.x2, t);
- var ix2 = goog.math.lerp(this.x2, this.x3, t);
- // Step two - from 3 points to 2
- ix0 = goog.math.lerp(ix0, ix1, t);
- ix1 = goog.math.lerp(ix1, ix2, t);
- // Final step - last point
- return goog.math.lerp(ix0, ix1, t);
- };
- /**
- * Computes the curve's Y coordinate at a point between 0 and 1.
- * @param {number} t The point on the curve to find.
- * @return {number} The computed coordinate.
- */
- goog.math.Bezier.prototype.getPointY = function(t) {
- // Special case start and end.
- if (t == 0) {
- return this.y0;
- } else if (t == 1) {
- return this.y3;
- }
- // Step one - from 4 points to 3
- var iy0 = goog.math.lerp(this.y0, this.y1, t);
- var iy1 = goog.math.lerp(this.y1, this.y2, t);
- var iy2 = goog.math.lerp(this.y2, this.y3, t);
- // Step two - from 3 points to 2
- iy0 = goog.math.lerp(iy0, iy1, t);
- iy1 = goog.math.lerp(iy1, iy2, t);
- // Final step - last point
- return goog.math.lerp(iy0, iy1, t);
- };
- /**
- * Computes the curve at a point between 0 and 1.
- * @param {number} t The point on the curve to find.
- * @return {!goog.math.Coordinate} The computed coordinate.
- */
- goog.math.Bezier.prototype.getPoint = function(t) {
- return new goog.math.Coordinate(this.getPointX(t), this.getPointY(t));
- };
- /**
- * Changes this curve in place to be the portion of itself from [t, 1].
- * @param {number} t The start of the desired portion of the curve.
- */
- goog.math.Bezier.prototype.subdivideLeft = function(t) {
- if (t == 1) {
- return;
- }
- // Step one - from 4 points to 3
- var ix0 = goog.math.lerp(this.x0, this.x1, t);
- var iy0 = goog.math.lerp(this.y0, this.y1, t);
- var ix1 = goog.math.lerp(this.x1, this.x2, t);
- var iy1 = goog.math.lerp(this.y1, this.y2, t);
- var ix2 = goog.math.lerp(this.x2, this.x3, t);
- var iy2 = goog.math.lerp(this.y2, this.y3, t);
- // Collect our new x1 and y1
- this.x1 = ix0;
- this.y1 = iy0;
- // Step two - from 3 points to 2
- ix0 = goog.math.lerp(ix0, ix1, t);
- iy0 = goog.math.lerp(iy0, iy1, t);
- ix1 = goog.math.lerp(ix1, ix2, t);
- iy1 = goog.math.lerp(iy1, iy2, t);
- // Collect our new x2 and y2
- this.x2 = ix0;
- this.y2 = iy0;
- // Final step - last point
- this.x3 = goog.math.lerp(ix0, ix1, t);
- this.y3 = goog.math.lerp(iy0, iy1, t);
- };
- /**
- * Changes this curve in place to be the portion of itself from [0, t].
- * @param {number} t The end of the desired portion of the curve.
- */
- goog.math.Bezier.prototype.subdivideRight = function(t) {
- this.flip();
- this.subdivideLeft(1 - t);
- this.flip();
- };
- /**
- * Changes this curve in place to be the portion of itself from [s, t].
- * @param {number} s The start of the desired portion of the curve.
- * @param {number} t The end of the desired portion of the curve.
- */
- goog.math.Bezier.prototype.subdivide = function(s, t) {
- this.subdivideRight(s);
- this.subdivideLeft((t - s) / (1 - s));
- };
- /**
- * Computes the position t of a point on the curve given its x coordinate.
- * That is, for an input xVal, finds t s.t. getPointX(t) = xVal.
- * As such, the following should always be true up to some small epsilon:
- * t ~ solvePositionFromXValue(getPointX(t)) for t in [0, 1].
- * @param {number} xVal The x coordinate of the point to find on the curve.
- * @return {number} The position t.
- */
- goog.math.Bezier.prototype.solvePositionFromXValue = function(xVal) {
- // Desired precision on the computation.
- var epsilon = 1e-6;
- // Initial estimate of t using linear interpolation.
- var t = (xVal - this.x0) / (this.x3 - this.x0);
- if (t <= 0) {
- return 0;
- } else if (t >= 1) {
- return 1;
- }
- // Try gradient descent to solve for t. If it works, it is very fast.
- var tMin = 0;
- var tMax = 1;
- var value = 0;
- for (var i = 0; i < 8; i++) {
- value = this.getPointX(t);
- var derivative = (this.getPointX(t + epsilon) - value) / epsilon;
- if (Math.abs(value - xVal) < epsilon) {
- return t;
- } else if (Math.abs(derivative) < epsilon) {
- break;
- } else {
- if (value < xVal) {
- tMin = t;
- } else {
- tMax = t;
- }
- t -= (value - xVal) / derivative;
- }
- }
- // If the gradient descent got stuck in a local minimum, e.g. because
- // the derivative was close to 0, use a Dichotomy refinement instead.
- // We limit the number of interations to 8.
- for (var i = 0; Math.abs(value - xVal) > epsilon && i < 8; i++) {
- if (value < xVal) {
- tMin = t;
- t = (t + tMax) / 2;
- } else {
- tMax = t;
- t = (t + tMin) / 2;
- }
- value = this.getPointX(t);
- }
- return t;
- };
- /**
- * Computes the y coordinate of a point on the curve given its x coordinate.
- * @param {number} xVal The x coordinate of the point on the curve.
- * @return {number} The y coordinate of the point on the curve.
- */
- goog.math.Bezier.prototype.solveYValueFromXValue = function(xVal) {
- return this.getPointY(this.solvePositionFromXValue(xVal));
- };
|