123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448 |
- // Copyright 2006 The Closure Library Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS-IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /**
- * @fileoverview Additional mathematical functions.
- */
- goog.provide('goog.math');
- goog.require('goog.array');
- goog.require('goog.asserts');
- /**
- * Returns a random integer greater than or equal to 0 and less than {@code a}.
- * @param {number} a The upper bound for the random integer (exclusive).
- * @return {number} A random integer N such that 0 <= N < a.
- */
- goog.math.randomInt = function(a) {
- return Math.floor(Math.random() * a);
- };
- /**
- * Returns a random number greater than or equal to {@code a} and less than
- * {@code b}.
- * @param {number} a The lower bound for the random number (inclusive).
- * @param {number} b The upper bound for the random number (exclusive).
- * @return {number} A random number N such that a <= N < b.
- */
- goog.math.uniformRandom = function(a, b) {
- return a + Math.random() * (b - a);
- };
- /**
- * Takes a number and clamps it to within the provided bounds.
- * @param {number} value The input number.
- * @param {number} min The minimum value to return.
- * @param {number} max The maximum value to return.
- * @return {number} The input number if it is within bounds, or the nearest
- * number within the bounds.
- */
- goog.math.clamp = function(value, min, max) {
- return Math.min(Math.max(value, min), max);
- };
- /**
- * The % operator in JavaScript returns the remainder of a / b, but differs from
- * some other languages in that the result will have the same sign as the
- * dividend. For example, -1 % 8 == -1, whereas in some other languages
- * (such as Python) the result would be 7. This function emulates the more
- * correct modulo behavior, which is useful for certain applications such as
- * calculating an offset index in a circular list.
- *
- * @param {number} a The dividend.
- * @param {number} b The divisor.
- * @return {number} a % b where the result is between 0 and b (either 0 <= x < b
- * or b < x <= 0, depending on the sign of b).
- */
- goog.math.modulo = function(a, b) {
- var r = a % b;
- // If r and b differ in sign, add b to wrap the result to the correct sign.
- return (r * b < 0) ? r + b : r;
- };
- /**
- * Performs linear interpolation between values a and b. Returns the value
- * between a and b proportional to x (when x is between 0 and 1. When x is
- * outside this range, the return value is a linear extrapolation).
- * @param {number} a A number.
- * @param {number} b A number.
- * @param {number} x The proportion between a and b.
- * @return {number} The interpolated value between a and b.
- */
- goog.math.lerp = function(a, b, x) {
- return a + x * (b - a);
- };
- /**
- * Tests whether the two values are equal to each other, within a certain
- * tolerance to adjust for floating point errors.
- * @param {number} a A number.
- * @param {number} b A number.
- * @param {number=} opt_tolerance Optional tolerance range. Defaults
- * to 0.000001. If specified, should be greater than 0.
- * @return {boolean} Whether {@code a} and {@code b} are nearly equal.
- */
- goog.math.nearlyEquals = function(a, b, opt_tolerance) {
- return Math.abs(a - b) <= (opt_tolerance || 0.000001);
- };
- // TODO(user): Rename to normalizeAngle, retaining old name as deprecated
- // alias.
- /**
- * Normalizes an angle to be in range [0-360). Angles outside this range will
- * be normalized to be the equivalent angle with that range.
- * @param {number} angle Angle in degrees.
- * @return {number} Standardized angle.
- */
- goog.math.standardAngle = function(angle) {
- return goog.math.modulo(angle, 360);
- };
- /**
- * Normalizes an angle to be in range [0-2*PI). Angles outside this range will
- * be normalized to be the equivalent angle with that range.
- * @param {number} angle Angle in radians.
- * @return {number} Standardized angle.
- */
- goog.math.standardAngleInRadians = function(angle) {
- return goog.math.modulo(angle, 2 * Math.PI);
- };
- /**
- * Converts degrees to radians.
- * @param {number} angleDegrees Angle in degrees.
- * @return {number} Angle in radians.
- */
- goog.math.toRadians = function(angleDegrees) {
- return angleDegrees * Math.PI / 180;
- };
- /**
- * Converts radians to degrees.
- * @param {number} angleRadians Angle in radians.
- * @return {number} Angle in degrees.
- */
- goog.math.toDegrees = function(angleRadians) {
- return angleRadians * 180 / Math.PI;
- };
- /**
- * For a given angle and radius, finds the X portion of the offset.
- * @param {number} degrees Angle in degrees (zero points in +X direction).
- * @param {number} radius Radius.
- * @return {number} The x-distance for the angle and radius.
- */
- goog.math.angleDx = function(degrees, radius) {
- return radius * Math.cos(goog.math.toRadians(degrees));
- };
- /**
- * For a given angle and radius, finds the Y portion of the offset.
- * @param {number} degrees Angle in degrees (zero points in +X direction).
- * @param {number} radius Radius.
- * @return {number} The y-distance for the angle and radius.
- */
- goog.math.angleDy = function(degrees, radius) {
- return radius * Math.sin(goog.math.toRadians(degrees));
- };
- /**
- * Computes the angle between two points (x1,y1) and (x2,y2).
- * Angle zero points in the +X direction, 90 degrees points in the +Y
- * direction (down) and from there we grow clockwise towards 360 degrees.
- * @param {number} x1 x of first point.
- * @param {number} y1 y of first point.
- * @param {number} x2 x of second point.
- * @param {number} y2 y of second point.
- * @return {number} Standardized angle in degrees of the vector from
- * x1,y1 to x2,y2.
- */
- goog.math.angle = function(x1, y1, x2, y2) {
- return goog.math.standardAngle(
- goog.math.toDegrees(Math.atan2(y2 - y1, x2 - x1)));
- };
- /**
- * Computes the difference between startAngle and endAngle (angles in degrees).
- * @param {number} startAngle Start angle in degrees.
- * @param {number} endAngle End angle in degrees.
- * @return {number} The number of degrees that when added to
- * startAngle will result in endAngle. Positive numbers mean that the
- * direction is clockwise. Negative numbers indicate a counter-clockwise
- * direction.
- * The shortest route (clockwise vs counter-clockwise) between the angles
- * is used.
- * When the difference is 180 degrees, the function returns 180 (not -180)
- * angleDifference(30, 40) is 10, and angleDifference(40, 30) is -10.
- * angleDifference(350, 10) is 20, and angleDifference(10, 350) is -20.
- */
- goog.math.angleDifference = function(startAngle, endAngle) {
- var d =
- goog.math.standardAngle(endAngle) - goog.math.standardAngle(startAngle);
- if (d > 180) {
- d = d - 360;
- } else if (d <= -180) {
- d = 360 + d;
- }
- return d;
- };
- /**
- * Returns the sign of a number as per the "sign" or "signum" function.
- * @param {number} x The number to take the sign of.
- * @return {number} -1 when negative, 1 when positive, 0 when 0. Preserves
- * signed zeros and NaN.
- */
- goog.math.sign = function(x) {
- if (x > 0) {
- return 1;
- }
- if (x < 0) {
- return -1;
- }
- return x; // Preserves signed zeros and NaN.
- };
- /**
- * JavaScript implementation of Longest Common Subsequence problem.
- * http://en.wikipedia.org/wiki/Longest_common_subsequence
- *
- * Returns the longest possible array that is subarray of both of given arrays.
- *
- * @param {IArrayLike<S>} array1 First array of objects.
- * @param {IArrayLike<T>} array2 Second array of objects.
- * @param {Function=} opt_compareFn Function that acts as a custom comparator
- * for the array ojects. Function should return true if objects are equal,
- * otherwise false.
- * @param {Function=} opt_collectorFn Function used to decide what to return
- * as a result subsequence. It accepts 2 arguments: index of common element
- * in the first array and index in the second. The default function returns
- * element from the first array.
- * @return {!Array<S|T>} A list of objects that are common to both arrays
- * such that there is no common subsequence with size greater than the
- * length of the list.
- * @template S,T
- */
- goog.math.longestCommonSubsequence = function(
- array1, array2, opt_compareFn, opt_collectorFn) {
- var compare = opt_compareFn || function(a, b) { return a == b; };
- var collect = opt_collectorFn || function(i1, i2) { return array1[i1]; };
- var length1 = array1.length;
- var length2 = array2.length;
- var arr = [];
- for (var i = 0; i < length1 + 1; i++) {
- arr[i] = [];
- arr[i][0] = 0;
- }
- for (var j = 0; j < length2 + 1; j++) {
- arr[0][j] = 0;
- }
- for (i = 1; i <= length1; i++) {
- for (j = 1; j <= length2; j++) {
- if (compare(array1[i - 1], array2[j - 1])) {
- arr[i][j] = arr[i - 1][j - 1] + 1;
- } else {
- arr[i][j] = Math.max(arr[i - 1][j], arr[i][j - 1]);
- }
- }
- }
- // Backtracking
- var result = [];
- var i = length1, j = length2;
- while (i > 0 && j > 0) {
- if (compare(array1[i - 1], array2[j - 1])) {
- result.unshift(collect(i - 1, j - 1));
- i--;
- j--;
- } else {
- if (arr[i - 1][j] > arr[i][j - 1]) {
- i--;
- } else {
- j--;
- }
- }
- }
- return result;
- };
- /**
- * Returns the sum of the arguments.
- * @param {...number} var_args Numbers to add.
- * @return {number} The sum of the arguments (0 if no arguments were provided,
- * {@code NaN} if any of the arguments is not a valid number).
- */
- goog.math.sum = function(var_args) {
- return /** @type {number} */ (
- goog.array.reduce(
- arguments, function(sum, value) { return sum + value; }, 0));
- };
- /**
- * Returns the arithmetic mean of the arguments.
- * @param {...number} var_args Numbers to average.
- * @return {number} The average of the arguments ({@code NaN} if no arguments
- * were provided or any of the arguments is not a valid number).
- */
- goog.math.average = function(var_args) {
- return goog.math.sum.apply(null, arguments) / arguments.length;
- };
- /**
- * Returns the unbiased sample variance of the arguments. For a definition,
- * see e.g. http://en.wikipedia.org/wiki/Variance
- * @param {...number} var_args Number samples to analyze.
- * @return {number} The unbiased sample variance of the arguments (0 if fewer
- * than two samples were provided, or {@code NaN} if any of the samples is
- * not a valid number).
- */
- goog.math.sampleVariance = function(var_args) {
- var sampleSize = arguments.length;
- if (sampleSize < 2) {
- return 0;
- }
- var mean = goog.math.average.apply(null, arguments);
- var variance =
- goog.math.sum.apply(null, goog.array.map(arguments, function(val) {
- return Math.pow(val - mean, 2);
- })) / (sampleSize - 1);
- return variance;
- };
- /**
- * Returns the sample standard deviation of the arguments. For a definition of
- * sample standard deviation, see e.g.
- * http://en.wikipedia.org/wiki/Standard_deviation
- * @param {...number} var_args Number samples to analyze.
- * @return {number} The sample standard deviation of the arguments (0 if fewer
- * than two samples were provided, or {@code NaN} if any of the samples is
- * not a valid number).
- */
- goog.math.standardDeviation = function(var_args) {
- return Math.sqrt(goog.math.sampleVariance.apply(null, arguments));
- };
- /**
- * Returns whether the supplied number represents an integer, i.e. that is has
- * no fractional component. No range-checking is performed on the number.
- * @param {number} num The number to test.
- * @return {boolean} Whether {@code num} is an integer.
- */
- goog.math.isInt = function(num) {
- return isFinite(num) && num % 1 == 0;
- };
- /**
- * Returns whether the supplied number is finite and not NaN.
- * @param {number} num The number to test.
- * @return {boolean} Whether {@code num} is a finite number.
- * @deprecated Use {@link isFinite} instead.
- */
- goog.math.isFiniteNumber = function(num) {
- return isFinite(num);
- };
- /**
- * @param {number} num The number to test.
- * @return {boolean} Whether it is negative zero.
- */
- goog.math.isNegativeZero = function(num) {
- return num == 0 && 1 / num < 0;
- };
- /**
- * Returns the precise value of floor(log10(num)).
- * Simpler implementations didn't work because of floating point rounding
- * errors. For example
- * <ul>
- * <li>Math.floor(Math.log(num) / Math.LN10) is off by one for num == 1e+3.
- * <li>Math.floor(Math.log(num) * Math.LOG10E) is off by one for num == 1e+15.
- * <li>Math.floor(Math.log10(num)) is off by one for num == 1e+15 - 1.
- * </ul>
- * @param {number} num A floating point number.
- * @return {number} Its logarithm to base 10 rounded down to the nearest
- * integer if num > 0. -Infinity if num == 0. NaN if num < 0.
- */
- goog.math.log10Floor = function(num) {
- if (num > 0) {
- var x = Math.round(Math.log(num) * Math.LOG10E);
- return x - (parseFloat('1e' + x) > num ? 1 : 0);
- }
- return num == 0 ? -Infinity : NaN;
- };
- /**
- * A tweaked variant of {@code Math.floor} which tolerates if the passed number
- * is infinitesimally smaller than the closest integer. It often happens with
- * the results of floating point calculations because of the finite precision
- * of the intermediate results. For example {@code Math.floor(Math.log(1000) /
- * Math.LN10) == 2}, not 3 as one would expect.
- * @param {number} num A number.
- * @param {number=} opt_epsilon An infinitesimally small positive number, the
- * rounding error to tolerate.
- * @return {number} The largest integer less than or equal to {@code num}.
- */
- goog.math.safeFloor = function(num, opt_epsilon) {
- goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
- return Math.floor(num + (opt_epsilon || 2e-15));
- };
- /**
- * A tweaked variant of {@code Math.ceil}. See {@code goog.math.safeFloor} for
- * details.
- * @param {number} num A number.
- * @param {number=} opt_epsilon An infinitesimally small positive number, the
- * rounding error to tolerate.
- * @return {number} The smallest integer greater than or equal to {@code num}.
- */
- goog.math.safeCeil = function(num, opt_epsilon) {
- goog.asserts.assert(!goog.isDef(opt_epsilon) || opt_epsilon > 0);
- return Math.ceil(num - (opt_epsilon || 2e-15));
- };
|