1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283 |
- // Copyright 2012 The Closure Library Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS-IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /**
- * @fileoverview A one dimensional monotone cubic spline interpolator.
- *
- * See http://en.wikipedia.org/wiki/Monotone_cubic_interpolation.
- *
- */
- goog.provide('goog.math.interpolator.Pchip1');
- goog.require('goog.math');
- goog.require('goog.math.interpolator.Spline1');
- /**
- * A one dimensional monotone cubic spline interpolator.
- * @extends {goog.math.interpolator.Spline1}
- * @constructor
- * @final
- */
- goog.math.interpolator.Pchip1 = function() {
- goog.math.interpolator.Pchip1.base(this, 'constructor');
- };
- goog.inherits(goog.math.interpolator.Pchip1, goog.math.interpolator.Spline1);
- /** @override */
- goog.math.interpolator.Pchip1.prototype.computeDerivatives = function(
- dx, slope) {
- var len = dx.length;
- var deriv = new Array(len + 1);
- for (var i = 1; i < len; ++i) {
- if (goog.math.sign(slope[i - 1]) * goog.math.sign(slope[i]) <= 0) {
- deriv[i] = 0;
- } else {
- var w1 = 2 * dx[i] + dx[i - 1];
- var w2 = dx[i] + 2 * dx[i - 1];
- deriv[i] = (w1 + w2) / (w1 / slope[i - 1] + w2 / slope[i]);
- }
- }
- deriv[0] =
- this.computeDerivativeAtBoundary_(dx[0], dx[1], slope[0], slope[1]);
- deriv[len] = this.computeDerivativeAtBoundary_(
- dx[len - 1], dx[len - 2], slope[len - 1], slope[len - 2]);
- return deriv;
- };
- /**
- * Computes the derivative of a data point at a boundary.
- * @param {number} dx0 The spacing of the 1st data point.
- * @param {number} dx1 The spacing of the 2nd data point.
- * @param {number} slope0 The slope of the 1st data point.
- * @param {number} slope1 The slope of the 2nd data point.
- * @return {number} The derivative at the 1st data point.
- * @private
- */
- goog.math.interpolator.Pchip1.prototype.computeDerivativeAtBoundary_ = function(
- dx0, dx1, slope0, slope1) {
- var deriv = ((2 * dx0 + dx1) * slope0 - dx0 * slope1) / (dx0 + dx1);
- if (goog.math.sign(deriv) != goog.math.sign(slope0)) {
- deriv = 0;
- } else if (
- goog.math.sign(slope0) != goog.math.sign(slope1) &&
- Math.abs(deriv) > Math.abs(3 * slope0)) {
- deriv = 3 * slope0;
- }
- return deriv;
- };
|