123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205 |
- // Copyright 2012 The Closure Library Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS-IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /**
- * @fileoverview A one dimensional cubic spline interpolator with not-a-knot
- * boundary conditions.
- *
- * See http://en.wikipedia.org/wiki/Spline_interpolation.
- *
- */
- goog.provide('goog.math.interpolator.Spline1');
- goog.require('goog.array');
- goog.require('goog.asserts');
- goog.require('goog.math');
- goog.require('goog.math.interpolator.Interpolator1');
- goog.require('goog.math.tdma');
- /**
- * A one dimensional cubic spline interpolator with natural boundary conditions.
- * @implements {goog.math.interpolator.Interpolator1}
- * @constructor
- */
- goog.math.interpolator.Spline1 = function() {
- /**
- * The abscissa of the data points.
- * @type {!Array<number>}
- * @private
- */
- this.x_ = [];
- /**
- * The spline interval coefficients.
- * Note that, in general, the length of coeffs and x is not the same.
- * @type {!Array<!Array<number>>}
- * @private
- */
- this.coeffs_ = [[0, 0, 0, Number.NaN]];
- };
- /** @override */
- goog.math.interpolator.Spline1.prototype.setData = function(x, y) {
- goog.asserts.assert(
- x.length == y.length,
- 'input arrays to setData should have the same length');
- if (x.length > 0) {
- this.coeffs_ = this.computeSplineCoeffs_(x, y);
- this.x_ = x.slice();
- } else {
- this.coeffs_ = [[0, 0, 0, Number.NaN]];
- this.x_ = [];
- }
- };
- /** @override */
- goog.math.interpolator.Spline1.prototype.interpolate = function(x) {
- var pos = goog.array.binarySearch(this.x_, x);
- if (pos < 0) {
- pos = -pos - 2;
- }
- pos = goog.math.clamp(pos, 0, this.coeffs_.length - 1);
- var d = x - this.x_[pos];
- var d2 = d * d;
- var d3 = d2 * d;
- var coeffs = this.coeffs_[pos];
- return coeffs[0] * d3 + coeffs[1] * d2 + coeffs[2] * d + coeffs[3];
- };
- /**
- * Solve for the spline coefficients such that the spline precisely interpolates
- * the data points.
- * @param {Array<number>} x The abscissa of the spline data points.
- * @param {Array<number>} y The ordinate of the spline data points.
- * @return {!Array<!Array<number>>} The spline interval coefficients.
- * @private
- */
- goog.math.interpolator.Spline1.prototype.computeSplineCoeffs_ = function(x, y) {
- var nIntervals = x.length - 1;
- var dx = new Array(nIntervals);
- var delta = new Array(nIntervals);
- for (var i = 0; i < nIntervals; ++i) {
- dx[i] = x[i + 1] - x[i];
- delta[i] = (y[i + 1] - y[i]) / dx[i];
- }
- // Compute the spline coefficients from the 1st order derivatives.
- var coeffs = [];
- if (nIntervals == 0) {
- // Nearest neighbor interpolation.
- coeffs[0] = [0, 0, 0, y[0]];
- } else if (nIntervals == 1) {
- // Straight line interpolation.
- coeffs[0] = [0, 0, delta[0], y[0]];
- } else if (nIntervals == 2) {
- // Parabola interpolation.
- var c3 = 0;
- var c2 = (delta[1] - delta[0]) / (dx[0] + dx[1]);
- var c1 = delta[0] - c2 * dx[0];
- var c0 = y[0];
- coeffs[0] = [c3, c2, c1, c0];
- } else {
- // General Spline interpolation. Compute the 1st order derivatives from
- // the Spline equations.
- var deriv = this.computeDerivatives(dx, delta);
- for (var i = 0; i < nIntervals; ++i) {
- var c3 = (deriv[i] - 2 * delta[i] + deriv[i + 1]) / (dx[i] * dx[i]);
- var c2 = (3 * delta[i] - 2 * deriv[i] - deriv[i + 1]) / dx[i];
- var c1 = deriv[i];
- var c0 = y[i];
- coeffs[i] = [c3, c2, c1, c0];
- }
- }
- return coeffs;
- };
- /**
- * Computes the derivative at each point of the spline such that
- * the curve is C2. It uses not-a-knot boundary conditions.
- * @param {Array<number>} dx The spacing between consecutive data points.
- * @param {Array<number>} slope The slopes between consecutive data points.
- * @return {!Array<number>} The Spline derivative at each data point.
- * @protected
- */
- goog.math.interpolator.Spline1.prototype.computeDerivatives = function(
- dx, slope) {
- var nIntervals = dx.length;
- // Compute the main diagonal of the system of equations.
- var mainDiag = new Array(nIntervals + 1);
- mainDiag[0] = dx[1];
- for (var i = 1; i < nIntervals; ++i) {
- mainDiag[i] = 2 * (dx[i] + dx[i - 1]);
- }
- mainDiag[nIntervals] = dx[nIntervals - 2];
- // Compute the sub diagonal of the system of equations.
- var subDiag = new Array(nIntervals);
- for (var i = 0; i < nIntervals; ++i) {
- subDiag[i] = dx[i + 1];
- }
- subDiag[nIntervals - 1] = dx[nIntervals - 2] + dx[nIntervals - 1];
- // Compute the super diagonal of the system of equations.
- var supDiag = new Array(nIntervals);
- supDiag[0] = dx[0] + dx[1];
- for (var i = 1; i < nIntervals; ++i) {
- supDiag[i] = dx[i - 1];
- }
- // Compute the right vector of the system of equations.
- var vecRight = new Array(nIntervals + 1);
- vecRight[0] =
- ((dx[0] + 2 * supDiag[0]) * dx[1] * slope[0] + dx[0] * dx[0] * slope[1]) /
- supDiag[0];
- for (var i = 1; i < nIntervals; ++i) {
- vecRight[i] = 3 * (dx[i] * slope[i - 1] + dx[i - 1] * slope[i]);
- }
- vecRight[nIntervals] =
- (dx[nIntervals - 1] * dx[nIntervals - 1] * slope[nIntervals - 2] +
- (2 * subDiag[nIntervals - 1] + dx[nIntervals - 1]) * dx[nIntervals - 2] *
- slope[nIntervals - 1]) /
- subDiag[nIntervals - 1];
- // Solve the system of equations.
- var deriv = goog.math.tdma.solve(subDiag, mainDiag, supDiag, vecRight);
- return deriv;
- };
- /**
- * Note that the inverse of a cubic spline is not a cubic spline in general.
- * As a result the inverse implementation is only approximate. In
- * particular, it only guarantees the exact inverse at the original input data
- * points passed to setData.
- * @override
- */
- goog.math.interpolator.Spline1.prototype.getInverse = function() {
- var interpolator = new goog.math.interpolator.Spline1();
- var y = [];
- for (var i = 0; i < this.x_.length; i++) {
- y[i] = this.interpolate(this.x_[i]);
- }
- interpolator.setData(y, this.x_);
- return interpolator;
- };
|