123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192 |
- /**
- * @license
- * Visual Blocks Language
- *
- * Copyright 2012 Google Inc.
- * https://developers.google.com/blockly/
- *
- * Licensed under the Apache License, Version 2.0 (the "License");
- * you may not use this file except in compliance with the License.
- * You may obtain a copy of the License at
- *
- * http://www.apache.org/licenses/LICENSE-2.0
- *
- * Unless required by applicable law or agreed to in writing, software
- * distributed under the License is distributed on an "AS IS" BASIS,
- * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- * See the License for the specific language governing permissions and
- * limitations under the License.
- */
- /**
- * @fileoverview Generating Python for colour blocks.
- * @author fraser@google.com (Neil Fraser)
- */
- 'use strict';
- goog.provide('Blockly.Python.visionkit');
- goog.require('Blockly.Python');
- Blockly.Python["visionkit_import"] = function(block) {
- var vision_import = Blockly.Python.valueToCode(block,"IMPORT",Blockly.Python.ORDER_NONE) || 0;
- var vision_from = block.getFieldValue("FROM");
- var code = "from " + vision_from + " " + vision_import+ "\n";
- return code;
- }
- Blockly.Python["visionkit_import_annotator"] = function(block) {
- var code ="import " + block.getFieldValue("IMPORT") || "Annotator"
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python["visionkit_import_models"] = function(block) {
- var code ="import "+ block.getFieldValue("IMPORT") || "face_detection"
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python["visionkit_import_inference"] = function(block) {
- var code ="import "+ block.getFieldValue("IMPORT") || "CameraInference"
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python["visionkit_cameraInference"] = function(block) {
- var inference = block.getFieldValue("INFERENCE");
- var usemodel = block.getFieldValue("USEMODEL");
- var statement_input = Blockly.Python.statementToCode(block, "STACK");
- var code = "with CameraInference(" + usemodel + ") as " +inference +":\n"+
- statement_input+"\n";
- return code;
- }
- Blockly.Python["visionkit_runInference"] = function(block) {
- var input = Blockly.Python.valueToCode(block,"INPUT",Blockly.Python.ORDER_NONE) || "";
- var code = "inference.run(" + input + ")";
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python["visionkit_GetInference"] = function(block) {
- var inference = block.getFieldValue("INFERENCE");
- var code = "inference."+ inference;
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python["visionkit_faceDetection_operation"] = function(block) {
- var model = block.getFieldValue("MODEL");
- var operation = block.getFieldValue("OPERATION");
- var input = Blockly.Python.valueToCode(block,"INPUT",Blockly.Python.ORDER_NONE) || "";
- var code = model+"."+operation+"("+input+")";
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python["visionkit_model_get"] = function(block) {
- var model = block.getFieldValue("MODEL");
- var input = Blockly.Python.valueToCode(block,"INPUT",Blockly.Python.ORDER_NONE) || "";
- var code = input + "." +model;
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python['visionkit_Use_Annotator'] = function(block) {
- var annotator = block.getFieldValue("ANNOTATOR");
- var dimen_x = block.getFieldValue("X-DIMEN");
- var dimen_y = block.getFieldValue("Y-DIMEN");
- var code = "Annotator(" + annotator + ", dimensions = ("+ dimen_x + "," + dimen_y +"))\n";
- return code;
- }
- Blockly.Python['visionkit_Use_Annotator_output'] = function(block) {
- var annotator = block.getFieldValue("ANNOTATOR");
- var dimen_x = block.getFieldValue("X-DIMEN");
- var dimen_y = block.getFieldValue("Y-DIMEN");
- var code = "Annotator(" + annotator + ", dimensions = ("+ dimen_x + "," + dimen_y +"))";
- return [code, Blockly.Python.ORDER_ATOMIC];
- }
- Blockly.Python['visionkit_Annotator_operation'] = function(block) {
- var operation = block.getFieldValue("OPERATION");
- var code = "annotator." + operation + "()\n";
- return code
- }
- Blockly.Python['visionkit_Annotator_Bounding'] = function(block) {
- var fill = block.getFieldValue("FILL")
- var input = Blockly.Python.valueToCode(block,"INPUT",Blockly.Python.ORDER_NONE) || "";
- var code = "annotator.bounding_box(transform(" + input + "),fill="+ fill +")\n";
- return code
- }
- Blockly.Python['visionkit_myAssistant'] = function(block) {
- var code = "MyAssistant()";
- return [code, Blockly.Python.ORDER_ATOMIC]
- }
- /************************************
- * Simplify *
- *************************************/
- Blockly.Python['visionkit_import_aiy'] = function(block) {
- var code = "from aiy.vision.inference import CameraInference\n"+
- "from aiy.vision.models import face_detection\n"+
- "from aiy.vision.annotator import Annotator\n";
- return code;
- }
- Blockly.Python['visionkit_avg_joy_score'] = function(block) {
- // var input = Blockly.Python.valueToCode(block,"INPUT",Blockly.Python.ORDER_NONE) || "";
- var code = "def avg_joy_score(faces):\n"+
- " if faces:\n"+
- " return sum(face.joy_score for face in faces) / len(faces)\n"+
- " return 0\n";
- return code
- }
- Blockly.Python['visionkit_annotator_camera'] = function(block) {
- var x = block.getFieldValue("X");
- var y = block.getFieldValue("Y")
- var scale_x = block.getFieldValue("SCALE_X")
- var scale_y = block.getFieldValue("SCALE_Y")
- var code = "annotator = Annotator(camera, dimensions=("+x+", "+y+"))\n"+
- "scale_x = "+x+" / "+scale_x+"\n"+
- "scale_y = "+y+" / "+scale_y+"\n"
- return code;
- }
- Blockly.Python['visionkit_transform_boundingBox'] = function(block) {
- var code = "def transform(bounding_box):\n"+
- " x, y, width, height = bounding_box\n"+
- " return (scale_x * x, scale_y * y, scale_x * (x + width), scale_y * (y + height))\n"
- return code;
- }
- Blockly.Python['visionkit_CameraInference'] = function(block) {
- var setting = block.getFieldValue("SETTING")
- var statement_input = Blockly.Python.statementToCode(block,"STACK")
- var input_a = Blockly.Python.prefixLines(/** @type {string} */ (statement_input), Blockly.Python.INDENT);
- var code = "with CameraInference(face_detection.model()) as inference:\n"+
- " for result in inference.run(num_frames):\n"+
- " faces = face_detection.get_faces(result)\n"+
- " annotator.clear()\n"+
- " for face in faces:\n"+
- " annotator.bounding_box(transform(face.bounding_box), fill=0)\n"+
- " annotator.update()\n"+
- input_a;
- return code;
-
- }
- Blockly.Python['visionkit_avg_joy_score_num'] = function(block) {
- var face = block.getFieldValue("FACE")
- var code = "avg_joy_score("+face+")"
- return [code, Blockly.Python.ORDER_ATOMIC]
- }
- Blockly.Python['visionkit_face'] = function(block) {
- var code = "faces"
- return [code, Blockly.Python.ORDER_ATOMIC]
- }
|