chao faf16d266e update | 3 months ago | |
---|---|---|
.. | ||
src | 3 months ago | |
.npmignore | 3 months ago | |
CHANGELOG.json | 3 months ago | |
CHANGELOG.md | 3 months ago | |
LICENSE | 3 months ago | |
README.md | 3 months ago | |
jest.config.js | 3 months ago | |
package.json | 3 months ago | |
tsconfig.build.json | 3 months ago | |
tsconfig.json | 3 months ago | |
tsconfig.test.json | 3 months ago |
A C-style structure serializer and deserializer. Written in TypeScript and highly takes advantage of its type system.
WARNING: The public API is UNSTABLE. If you have any questions, please open an issue.
$ npm i @yume-chan/struct
import Struct from '@yume-chan/struct';
const MyStruct =
new Struct({ littleEndian: true })
.int8('foo')
.int64('bar')
.int32('bazLength')
.string('baz', { lengthField: 'bazLength' });
const value = await MyStruct.deserialize(stream);
value.foo // number
value.bar // bigint
value.bazLength // number
value.baz // string
const buffer = MyStruct.serialize({
foo: 42,
bar: 42n,
// `bazLength` automatically set to `baz`'s byte length
baz: 'Hello, World!',
});
Here is a list of features, their used APIs, and their compatibilities. If an optional feature is not actually used, its requirements can be ignored.
Some features can be polyfilled to support older runtimes, but this library doesn't ship with any polyfills.
API | Chrome | Edge | Firefox | Internet Explorer | Safari | Node.js |
---|---|---|---|---|---|---|
Promise |
32 | 12 | 29 | No | 8 | 0.12 |
ArrayBuffer |
7 | 12 | 4 | 10 | 5.1 | 0.10 |
Uint8Array |
7 | 12 | 4 | 10 | 5.1 | 0.10 |
DataView |
9 | 12 | 15 | 10 | 5.1 | 0.10 |
Overall | 32 | 12 | 29 | No | 8 | 0.12 |
int64
/uint64
API | Chrome | Edge | Firefox | Internet Explorer | Safari | Node.js |
---|---|---|---|---|---|---|
BigInt 1 |
67 | 79 | 68 | No | 14 | 10.4 |
1 Can't be polyfilled
string
API | Chrome | Edge | Firefox | Internet Explorer | Safari | Node.js |
---|---|---|---|---|---|---|
TextEncoder |
38 | 79 | 19 | No | 10.1 | 8.31, 11 |
1 TextEncoder
and TextDecoder
are only available in util
module. Need to be assigned to globalThis
.
placeholder
function placeholder<T>(): T {
return undefined as unknown as T;
}
Returns a (fake) value of the given type. It's only useful in TypeScript, if you are using JavaScript, you shouldn't care about it.
Many methods in this library have multiple generic parameters, but TypeScript only allows users to specify none (let TypeScript inference all of them from arguments), or all generic arguments. (Microsoft/TypeScript#26242)
Detail explanation (click to expand)
When you have a generic method, where half generic parameters can be inferred.
declare function fn<A, B>(a: A): [A, B];
fn(42); // Expected 2 type arguments, but got 1. ts(2558)
Rather than force users repeat the type A
, I declare a parameter for B
.
declare function fn2<A, B>(a: A, b: B): [A, B];
I don't really need a value of type B
, I only require its type information
fn2(42, placeholder<boolean>()) // fn2<number, boolean>
To workaround this issue, these methods have an extra _typescriptType
parameter, to let you specify a generic parameter, without passing all other generic arguments manually. The actual value of _typescriptType
argument is never used, so you can pass any value, as long as it has the correct type, including values produced by this placeholder
method.
With that said, I don't expect you to specify any generic arguments manually when using this library.
Struct
class Struct<
TFields extends object = {},
TOmitInitKey extends string | number | symbol = never,
TExtra extends object = {},
TPostDeserialized = undefined
> {
public constructor(options: Partial<StructOptions> = StructDefaultOptions);
}
Creates a new structure definition.
Generic parameters (click to expand)
This information was added to help you understand how does it work. These are considered as "internal state" so don't specify them manually.
TFields
: Type of the Struct value. Modified when new fields are added.TOmitInitKey
: When serializing a structure containing variable length buffers, the length field can be calculate from the buffer field, so they doesn't need to be provided explicitly.TExtra
: Type of extra fields. Modified when extra
is called.TPostDeserialized
: State of the postDeserialize
function. Modified when postDeserialize
is called. Affects return type of deserialize
Parameters
options
:
littleEndian:boolean = false
: Whether all multi-byte fields in this struct are little-endian encoded.int8
/uint8
/int16
/uint16
/int32
/uint32
int32<
TName extends string | number | symbol,
TTypeScriptType = number
>(
name: TName,
_typescriptType?: TTypeScriptType
): Struct<
TFields & Record<TName, TTypeScriptType>,
TOmitInitKey,
TExtra,
TPostDeserialized
>;
Appends an int8
/uint8
/int16
/uint16
/int32
/uint32
field to the Struct
.
Generic parameters (click to expand)
TName
: Literal type of the field's name.TTypeScriptType = number
: Type of the field in the result object. For example you can declare it as a number literal type, or some enum type.
Parameters
name
: (Required) Field name. Must be a string literal._typescriptType
: Set field's type. See examples below.Note
There is no generic constraints on the TTypeScriptType
, because TypeScript doesn't allow casting enum types to number
.
So it's technically possible to pass in an incompatible type (e.g. string
). But obviously, it's a bad idea.
Examples
Append an int32
field named foo
const struct = new Struct()
.int32('foo');
const value = await struct.deserialize(stream);
value.foo; // number
struct.serialize({ }) // error: 'foo' is required
struct.serialize({ foo: 'bar' }) // error: 'foo' must be a number
struct.serialize({ foo: 42 }) // ok
placeholder
method)enum MyEnum {
a,
b,
}
const struct = new Struct()
.int32('foo', placeholder<MyEnum>())
.int32('bar', MyEnum.a as const);
const value = await struct.deserialize(stream);
value.foo; // MyEnum
value.bar; // MyEnum.a
struct.serialize({ foo: 42, bar: MyEnum.a }); // error: 'foo' must be of type `MyEnum`
struct.serialize({ foo: MyEnum.a, bar: MyEnum.b }); // error: 'bar' must be of type `MyEnum.a`
struct.serialize({ foo: MyEnum.a, bar: MyEnum.b }); // ok
int64
/uint64
int64<
TName extends string | number | symbol,
TTypeScriptType = bigint
>(
name: TName,
_typescriptType?: TTypeScriptType
): Struct<
TFields & Record<TName, TTypeScriptType>,
TOmitInitKey,
TExtra,
TPostDeserialized
>;
Appends an int64
/uint64
field to the Struct
. The usage is same as uint32
/uint32
.
Requires native support for BigInt
. Check compatibility table for more information.
uint8Array
/string
uint8Array<
TName extends string | number | symbol,
TTypeScriptType = ArrayBuffer
>(
name: TName,
options: FixedLengthBufferLikeFieldOptions,
_typescriptType?: TTypeScriptType,
): Struct<
TFields & Record<TName, TTypeScriptType>,
TOmitInitKey,
TExtra,
TPostDeserialized
>;
uint8Array<
TName extends string | number | symbol,
TLengthField extends LengthField<TFields>,
TOptions extends VariableLengthBufferLikeFieldOptions<TFields, TLengthField>,
TTypeScriptType = ArrayBuffer,
>(
name: TName,
options: TOptions,
_typescriptType?: TTypeScriptType,
): Struct<
TFields & Record<TName, TTypeScriptType>,
TOmitInitKey | TLengthField,
TExtra,
TPostDeserialized
>;
Appends an uint8Array
/string
field to the Struct
.
The options
parameter defines its length, it can be in two formats:
{ length: number }
: Presence of the length
option indicates that it's a fixed length array.{ lengthField: string; lengthFieldRadix?: number }
: Presence of the lengthField
option indicates it's a variable length array. The lengthField
options must refers to a number
or string
(can't be bigint
) typed field that's already defined in this Struct
. If the length field is a string
, the optional lengthFieldRadix
option (defaults to 10
) defines the radix when converting the string to a number. When deserializing, it will use that field's value as its length. When serializing, it will write its length to that field.fields
fields<
TOther extends Struct<any, any, any, any>
>(
other: TOther
): Struct<
TFields & TOther['fieldsType'],
TOmitInitKey | TOther['omitInitType'],
TExtra & TOther['extraType'],
TPostDeserialized
>;
Merges (flats) another Struct
's fields and extra fields into the current one.
Examples
Extending another Struct
const MyStructV1 =
new Struct()
.int32('field1');
const MyStructV2 =
new Struct()
.fields(MyStructV1)
.int32('field2');
const structV2 = await MyStructV2.deserialize(stream);
structV2.field1; // number
structV2.field2; // number
// Fields are flatten
const MyStructV1 =
new Struct()
.int32('field1');
const MyStructV2 =
new Struct()
.int32('field2')
.fields(MyStructV1);
const structV2 = await MyStructV2.deserialize(stream);
structV2.field1; // number
structV2.field2; // number
// Same result as above, but serialize/deserialize order is reversed
extra
extra<
T extends Record<
Exclude<
keyof T,
Exclude<
keyof T,
keyof TFields
>
>,
never
>
>(
value: T & ThisType<Overwrite<Overwrite<TExtra, T>, TFields>>
): Struct<
TFields,
TInit,
Overwrite<TExtra, T>,
TPostDeserialized
>;
Adds extra fields into the Struct
. Extra fields will be defined on prototype of each Struct values, so they don't affect serialize and deserialize process, and deserialized fields will overwrite extra fields.
Multiple calls merge all extra fields together.
Generic Parameters
T
: Type of the extra fields. The scary looking generic constraint is used to forbid overwriting any already existed fields.Parameters
value
: An object containing anything you want to add to Struct values. Accessors and methods are also allowed.Examples
Add an extra field
const struct = new Struct()
.int32('foo')
.extra({
bar: 'hello',
});
const value = await struct.deserialize(stream);
value.foo; // number
value.bar; // 'hello'
struct.serialize({ foo: 42 }); // ok
struct.serialize({ foo: 42, bar: 'hello' }); // error: 'bar' is redundant
this
in functions refers to the result object.const struct = new Struct()
.int32('foo')
.extra({
get bar() {
// `this` is the result Struct value
return this.foo + 1;
},
logBar() {
// `this` also contains other extra fields
console.log(this.bar);
},
});
const value = await struct.deserialize(stream);
value.foo; // number
value.bar; // number
value.logBar();
postDeserialize
postDeserialize(): Struct<TFields, TOmitInitKey, TExtra, undefined>;
Remove any registered post-deserialization callback.
postDeserialize(
callback: (this: TFields, object: TFields) => never
): Struct<TFields, TOmitInitKey, TExtra, never>;
postDeserialize(
callback: (this: TFields, object: TFields) => void
): Struct<TFields, TOmitInitKey, TExtra, undefined>;
Registers (or replaces) a custom callback to be run after deserialized.
this
in callback
, along with the first parameter object
will both be the deserialized Struct value.
A callback returning never
(always throws errors) will change the return type of deserialize
to never
.
A callback returning void
means it modify the result object in-place (or doesn't modify it at all), so deserialize
will still return the result object.
postDeserialize<TPostSerialize>(
callback: (this: TFields, object: TFields) => TPostSerialize
): Struct<TFields, TOmitInitKey, TExtra, TPostSerialize>;
Registers (or replaces) a custom callback to be run after deserialized.
A callback returning anything other than undefined
will cause deserialize
to return that value instead.
Generic Parameters
TPostSerialize
: Type of the new result.Parameters
callback
: An function contains the custom logic to be run, optionally returns a new result. Or undefined
, to remove any previously set postDeserialize
callback.Examples
Handle an "error" packet
// Say your protocol have an error packet,
// You want to throw a JavaScript Error when received such a packet,
// But you don't want to modify all receiving path
const struct = new Struct()
.int32('messageLength')
.string('message', { lengthField: 'messageLength' })
.postDeserialize(value => {
throw new Error(value.message);
});
// I think this one doesn't need any code example
Replace result object
const struct1 = new Struct()
.int32('foo')
.postDeserialize(value => {
return {
bar: value.foo,
};
});
const value = await struct.deserialize(stream);
value.foo // error: not exist
value.bar; // number
deserialize
interface StructDeserializeStream {
/**
* Read data from the underlying data source.
*
* The stream must return exactly `length` bytes or data. If that's not possible
* (due to end of file or other error condition), it must throw an error.
*/
read(length: number): Uint8Array;
}
interface StructAsyncDeserializeStream {
/**
* Read data from the underlying data source.
*
* The stream must return exactly `length` bytes or data. If that's not possible
* (due to end of file or other error condition), it must throw an error.
*/
read(length: number): Promise<Uint8Array>;
}
deserialize(
stream: StructDeserializeStream,
): TPostDeserialized extends undefined
? Overwrite<TExtra, TValue>
: TPostDeserialized
>;
deserialize(
stream: StructAsyncDeserializeStream,
): Promise<
TPostDeserialized extends undefined
? Overwrite<TExtra, TValue>
: TPostDeserialized
>
>;
Deserialize a struct value from stream
.
It will be synchronous (returns a value) or asynchronous (returns a Promise
) depending on the type of stream
.
As the signature shows, if the postDeserialize
callback returns any value, deserialize
will return that value instead.
The read
method of stream
, when being called, should returns exactly length
bytes of data (or throw an Error
if it can't).
serialize
serialize(init: Evaluate<Omit<TFields, TOmitInitKey>>): Uint8Array;
serialize(init: Evaluate<Omit<TFields, TOmitInitKey>>, output: Uint8Array): number;
Serialize a struct value into an Uint8Array
.
If an output
is given, it will serialize the struct into it, and returns the number of bytes written.
It's also possible to create your own field types.
Struct#field
field<
TName extends string | number | symbol,
TDefinition extends StructFieldDefinition<any, any, any>
>(
name: TName,
definition: TDefinition
): Struct<
TFields & Record<TName, TDefinition['TValue']>,
TOmitInitKey | TDefinition['TOmitInitKey'],
TExtra,
TPostDeserialized
>;
Appends a StructFieldDefinition
to the Struct
.
All built-in field type methods are actually aliases to it. For example, calling
struct.int8('foo')
is same as
struct.field(
'foo',
new NumberFieldDefinition(
NumberFieldType.Int8
)
)
StructFieldValue
: Contains value of a field, with optional metadata and accessor methods.StructFieldDefinition
: Definition of a field, can deserialize StructFieldValue
s from a stream or create them from exist values.StructValue
: A map between field names and StructFieldValue
s.Struct
: Definiton of a struct, a map between field names and StructFieldDefintion
s. May contain extra metadata.Struct#deserialize()
: A map between field names and results of StructFieldValue#get()
.StructFieldDefinition
abstract class StructFieldDefinition<
TOptions = void,
TValue = unknown,
TOmitInitKey extends PropertyKey = never,
> {
public readonly options: TOptions;
public constructor(options: TOptions);
}
A field definition defines how to deserialize a field.
It's an abstract
class, means it can't be constructed (new
ed) directly. It's only used as a base class for other field types.
TValue
/TOmitInitKey
These two fields provide type information to TypeScript compiler. Their values will always be undefined
, but having correct types is enough. You don't need to touch them.
getSize
abstract getSize(): number;
Derived classes must implement this method to return size (or minimal size if it's dynamic) of this field.
Actual size should be returned from StructFieldValue#getSize
create
abstract create(
options: Readonly<StructOptions>,
struct: StructValue,
value: TValue,
): StructFieldValue<this>;
Derived classes must implement this method to create its own field value instance for the current definition.
Struct#serialize
will call this method, then call StructFieldValue#serialize
to serialize one field value.
deserialize
abstract deserialize(
options: Readonly<StructOptions>,
stream: StructDeserializeStream,
struct: StructValue,
): StructFieldValue<this>;
abstract deserialize(
options: Readonly<StructOptions>,
stream: StructAsyncDeserializeStream,
struct: StructValue,
): Promise<StructFieldValue<this>>;
Derived classes must implement this method to define how to deserialize a value from stream
.
It must be synchronous (returns a value) or asynchronous (returns a Promise
) depending on the type of stream
.
Usually implementations should be:
stream
create
methodSometimes, extra metadata is present when deserializing, but need to be calculated when serializing, for example a UTF-8 encoded string may have different length between itself (character count) and serialized form (byte length). So deserialize
can save those metadata on the StructFieldValue
instance for later use.
StructFieldValue
abstract class StructFieldValue<
TDefinition extends StructFieldDefinition<any, any, any>
>
A field value defines how to serialize a field.
getSize
getSize(): number;
Gets size of this field. By default, it returns its definition
's size.
If this field's size can change based on some criteria, one must override getSize
to return its actual size.
get
/set
get(): TDefinition['TValue'];
set(value: TDefinition['TValue']): void;
Defines how to get or set this field's value. By default, it reads/writes its value
field.
If one needs to manipulate other states when getting/setting values, they can override these methods.
serialize
abstract serialize(
dataView: DataView,
offset: number
): void;
Derived classes must implement this method to serialize current value into dataView
, from offset
. It must not write more bytes than what its getSize
returned.