# Robust Video Matting (RVM) ![Teaser](/documentation/image/teaser.gif)

English | 中文

Official repository for the paper [Robust High-Resolution Video Matting with Temporal Guidance](https://peterl1n.github.io/RobustVideoMatting/). RVM is specifically designed for robust human video matting. Unlike existing neural models that process frames as independent images, RVM uses a recurrent neural network to process videos with temporal memory. RVM can perform matting in real-time on any videos without additional inputs. It achieves **4K 76FPS** and **HD 104FPS** on an Nvidia GTX 1080 Ti GPU. The project was developed at [ByteDance Inc.](https://www.bytedance.com/)
## News * [Nov 03 2021] Fixed a bug in [train.py](https://github.com/PeterL1n/RobustVideoMatting/commit/48effc91576a9e0e7a8519f3da687c0d3522045f). * [Sep 16 2021] Code is re-released under GPL-3.0 license. * [Aug 25 2021] Source code and pretrained models are published. * [Jul 27 2021] Paper is accepted by WACV 2022.
## Showreel Watch the showreel video ([YouTube](https://youtu.be/Jvzltozpbpk), [Bilibili](https://www.bilibili.com/video/BV1Z3411B7g7/)) to see the model's performance.

All footage in the video are available in [Google Drive](https://drive.google.com/drive/folders/1VFnWwuu-YXDKG-N6vcjK_nL7YZMFapMU?usp=sharing).
## Demo * [Webcam Demo](https://peterl1n.github.io/RobustVideoMatting/#/demo): Run the model live in your browser. Visualize recurrent states. * [Colab Demo](https://colab.research.google.com/drive/10z-pNKRnVNsp0Lq9tH1J_XPZ7CBC_uHm?usp=sharing): Test our model on your own videos with free GPU.
## Download We recommend MobileNetv3 models for most use cases. ResNet50 models are the larger variant with small performance improvements. Our model is available on various inference frameworks. See [inference documentation](documentation/inference.md) for more instructions.
Framework Download Notes
PyTorch rvm_mobilenetv3.pth
rvm_resnet50.pth
Official weights for PyTorch. Doc
TorchHub Nothing to Download. Easiest way to use our model in your PyTorch project. Doc
TorchScript rvm_mobilenetv3_fp32.torchscript
rvm_mobilenetv3_fp16.torchscript
rvm_resnet50_fp32.torchscript
rvm_resnet50_fp16.torchscript
If inference on mobile, consider export int8 quantized models yourself. Doc
ONNX rvm_mobilenetv3_fp32.onnx
rvm_mobilenetv3_fp16.onnx
rvm_resnet50_fp32.onnx
rvm_resnet50_fp16.onnx
Tested on ONNX Runtime with CPU and CUDA backends. Provided models use opset 12. Doc, Exporter.
TensorFlow rvm_mobilenetv3_tf.zip
rvm_resnet50_tf.zip
TensorFlow 2 SavedModel. Doc
TensorFlow.js rvm_mobilenetv3_tfjs_int8.zip
Run the model on the web. Demo, Starter Code
CoreML rvm_mobilenetv3_1280x720_s0.375_fp16.mlmodel
rvm_mobilenetv3_1280x720_s0.375_int8.mlmodel
rvm_mobilenetv3_1920x1080_s0.25_fp16.mlmodel
rvm_mobilenetv3_1920x1080_s0.25_int8.mlmodel
CoreML does not support dynamic resolution. Other resolutions can be exported yourself. Models require iOS 13+. s denotes downsample_ratio. Doc, Exporter
All models are available in [Google Drive](https://drive.google.com/drive/folders/1pBsG-SCTatv-95SnEuxmnvvlRx208VKj?usp=sharing) and [Baidu Pan](https://pan.baidu.com/s/1puPSxQqgBFOVpW4W7AolkA) (code: gym7).
## PyTorch Example 1. Install dependencies: ```sh pip install -r requirements_inference.txt ``` 2. Load the model: ```python import torch from model import MattingNetwork model = MattingNetwork('mobilenetv3').eval().cuda() # or "resnet50" model.load_state_dict(torch.load('rvm_mobilenetv3.pth')) ``` 3. To convert videos, we provide a simple conversion API: ```python from inference import convert_video convert_video( model, # The model, can be on any device (cpu or cuda). input_source='input.mp4', # A video file or an image sequence directory. output_type='video', # Choose "video" or "png_sequence" output_composition='com.mp4', # File path if video; directory path if png sequence. output_alpha="pha.mp4", # [Optional] Output the raw alpha prediction. output_foreground="fgr.mp4", # [Optional] Output the raw foreground prediction. output_video_mbps=4, # Output video mbps. Not needed for png sequence. downsample_ratio=None, # A hyperparameter to adjust or use None for auto. seq_chunk=12, # Process n frames at once for better parallelism. ) ``` 4. Or write your own inference code: ```python from torch.utils.data import DataLoader from torchvision.transforms import ToTensor from inference_utils import VideoReader, VideoWriter reader = VideoReader('input.mp4', transform=ToTensor()) writer = VideoWriter('output.mp4', frame_rate=30) bgr = torch.tensor([.47, 1, .6]).view(3, 1, 1).cuda() # Green background. rec = [None] * 4 # Initial recurrent states. downsample_ratio = 0.25 # Adjust based on your video. with torch.no_grad(): for src in DataLoader(reader): # RGB tensor normalized to 0 ~ 1. fgr, pha, *rec = model(src.cuda(), *rec, downsample_ratio) # Cycle the recurrent states. com = fgr * pha + bgr * (1 - pha) # Composite to green background. writer.write(com) # Write frame. ``` 5. The models and converter API are also available through TorchHub. ```python # Load the model. model = torch.hub.load("PeterL1n/RobustVideoMatting", "mobilenetv3") # or "resnet50" # Converter API. convert_video = torch.hub.load("PeterL1n/RobustVideoMatting", "converter") ``` Please see [inference documentation](documentation/inference.md) for details on `downsample_ratio` hyperparameter, more converter arguments, and more advanced usage.
## Training and Evaluation Please refer to the [training documentation](documentation/training.md) to train and evaluate your own model.
## Speed Speed is measured with `inference_speed_test.py` for reference. | GPU | dType | HD (1920x1080) | 4K (3840x2160) | | -------------- | ----- | -------------- |----------------| | RTX 3090 | FP16 | 172 FPS | 154 FPS | | RTX 2060 Super | FP16 | 134 FPS | 108 FPS | | GTX 1080 Ti | FP32 | 104 FPS | 74 FPS | * Note 1: HD uses `downsample_ratio=0.25`, 4K uses `downsample_ratio=0.125`. All tests use batch size 1 and frame chunk 1. * Note 2: GPUs before Turing architecture does not support FP16 inference, so GTX 1080 Ti uses FP32. * Note 3: We only measure tensor throughput. The provided video conversion script in this repo is expected to be much slower, because it does not utilize hardware video encoding/decoding and does not have the tensor transfer done on parallel threads. If you are interested in implementing hardware video encoding/decoding in Python, please refer to [PyNvCodec](https://github.com/NVIDIA/VideoProcessingFramework).
## Project Members * [Shanchuan Lin](https://www.linkedin.com/in/shanchuanlin/) * [Linjie Yang](https://sites.google.com/site/linjieyang89/) * [Imran Saleemi](https://www.linkedin.com/in/imran-saleemi/) * [Soumyadip Sengupta](https://homes.cs.washington.edu/~soumya91/)
## Third-Party Projects * [NCNN C++ Android](https://github.com/FeiGeChuanShu/ncnn_Android_RobustVideoMatting) ([@FeiGeChuanShu](https://github.com/FeiGeChuanShu)) * [lite.ai.toolkit](https://github.com/DefTruth/RobustVideoMatting.lite.ai.toolkit) ([@DefTruth](https://github.com/DefTruth)) * [Gradio Web Demo](https://huggingface.co/spaces/akhaliq/Robust-Video-Matting) ([@AK391](https://github.com/AK391)) * [Unity Engine demo with NatML](https://hub.natml.ai/@natsuite/robust-video-matting) ([@natsuite](https://github.com/natsuite)) * [MNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/mnn/cv/mnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth)) * [TNN C++ Demo](https://github.com/DefTruth/lite.ai.toolkit/blob/main/lite/tnn/cv/tnn_rvm.cpp) ([@DefTruth](https://github.com/DefTruth))