| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 | import osimport randomfrom torch.utils.data import Datasetfrom PIL import Imagefrom .augmentation import MotionAugmentationclass ImageMatteDataset(Dataset):    def __init__(self,                 imagematte_dir,                 background_image_dir,                 background_video_dir,                 size,                 seq_length,                 seq_sampler,                 transform):        self.imagematte_dir = imagematte_dir        self.imagematte_files = os.listdir(os.path.join(imagematte_dir, 'fgr'))        self.background_image_dir = background_image_dir        self.background_image_files = os.listdir(background_image_dir)        self.background_video_dir = background_video_dir        self.background_video_clips = os.listdir(background_video_dir)        self.background_video_frames = [sorted(os.listdir(os.path.join(background_video_dir, clip)))                                        for clip in self.background_video_clips]        self.seq_length = seq_length        self.seq_sampler = seq_sampler        self.size = size        self.transform = transform            def __len__(self):        return max(len(self.imagematte_files), len(self.background_image_files) + len(self.background_video_clips))        def __getitem__(self, idx):        if random.random() < 0.5:            bgrs = self._get_random_image_background()        else:            bgrs = self._get_random_video_background()                fgrs, phas = self._get_imagematte(idx)                if self.transform is not None:            return self.transform(fgrs, phas, bgrs)                return fgrs, phas, bgrs        def _get_imagematte(self, idx):        with Image.open(os.path.join(self.imagematte_dir, 'fgr', self.imagematte_files[idx % len(self.imagematte_files)])) as fgr, \             Image.open(os.path.join(self.imagematte_dir, 'pha', self.imagematte_files[idx % len(self.imagematte_files)])) as pha:            fgr = self._downsample_if_needed(fgr.convert('RGB'))            pha = self._downsample_if_needed(pha.convert('L'))        fgrs = [fgr] * self.seq_length        phas = [pha] * self.seq_length        return fgrs, phas        def _get_random_image_background(self):        with Image.open(os.path.join(self.background_image_dir, self.background_image_files[random.choice(range(len(self.background_image_files)))])) as bgr:            bgr = self._downsample_if_needed(bgr.convert('RGB'))        bgrs = [bgr] * self.seq_length        return bgrs    def _get_random_video_background(self):        clip_idx = random.choice(range(len(self.background_video_clips)))        frame_count = len(self.background_video_frames[clip_idx])        frame_idx = random.choice(range(max(1, frame_count - self.seq_length)))        clip = self.background_video_clips[clip_idx]        bgrs = []        for i in self.seq_sampler(self.seq_length):            frame_idx_t = frame_idx + i            frame = self.background_video_frames[clip_idx][frame_idx_t % frame_count]            with Image.open(os.path.join(self.background_video_dir, clip, frame)) as bgr:                bgr = self._downsample_if_needed(bgr.convert('RGB'))            bgrs.append(bgr)        return bgrs        def _downsample_if_needed(self, img):        w, h = img.size        if min(w, h) > self.size:            scale = self.size / min(w, h)            w = int(scale * w)            h = int(scale * h)            img = img.resize((w, h))        return imgclass ImageMatteAugmentation(MotionAugmentation):    def __init__(self, size):        super().__init__(            size=size,            prob_fgr_affine=0.95,            prob_bgr_affine=0.3,            prob_noise=0.05,            prob_color_jitter=0.3,            prob_grayscale=0.03,            prob_sharpness=0.05,            prob_blur=0.02,            prob_hflip=0.5,            prob_pause=0.03,        )
 |