| 1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950 | """python inference_speed_test.py \    --model-variant mobilenetv3 \    --resolution 1920 1080 \    --downsample-ratio 0.25 \    --precision float32"""import argparseimport torchfrom tqdm import tqdmfrom model.model import MattingNetworktorch.backends.cudnn.benchmark = Trueclass InferenceSpeedTest:    def __init__(self):        self.parse_args()        self.init_model()        self.loop()            def parse_args(self):        parser = argparse.ArgumentParser()        parser.add_argument('--model-variant', type=str, required=True)        parser.add_argument('--resolution', type=int, required=True, nargs=2)        parser.add_argument('--downsample-ratio', type=float, required=True)        parser.add_argument('--precision', type=str, default='float32')        parser.add_argument('--disable-refiner', action='store_true')        self.args = parser.parse_args()            def init_model(self):        self.device = 'cuda'        self.precision = {'float32': torch.float32, 'float16': torch.float16}[self.args.precision]        self.model = MattingNetwork(self.args.model_variant)        self.model = self.model.to(device=self.device, dtype=self.precision).eval()        self.model = torch.jit.script(self.model)        self.model = torch.jit.freeze(self.model)        def loop(self):        w, h = self.args.resolution        src = torch.randn((1, 3, h, w), device=self.device, dtype=self.precision)        with torch.no_grad():            rec = None, None, None, None            for _ in tqdm(range(1000)):                fgr, pha, *rec = self.model(src, *rec, self.args.downsample_ratio)                torch.cuda.synchronize()if __name__ == '__main__':    InferenceSpeedTest()
 |