123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216 |
- """
- HR (High-Resolution) evaluation. We found using numpy is very slow for high resolution, so we moved it to PyTorch using CUDA.
- Note, the script only does evaluation. You will need to first inference yourself and save the results to disk
- Expected directory format for both prediction and ground-truth is:
- videomatte_1920x1080
- ├── videomatte_motion
- ├── pha
- ├── 0000
- ├── 0000.png
- ├── fgr
- ├── 0000
- ├── 0000.png
- ├── videomatte_static
- ├── pha
- ├── 0000
- ├── 0000.png
- ├── fgr
- ├── 0000
- ├── 0000.png
- Prediction must have the exact file structure and file name as the ground-truth,
- meaning that if the ground-truth is png/jpg, prediction should be png/jpg.
- Example usage:
- python evaluate.py \
- --pred-dir pred/videomatte_1920x1080 \
- --true-dir true/videomatte_1920x1080
-
- An excel sheet with evaluation results will be written to "pred/videomatte_1920x1080/videomatte_1920x1080.xlsx"
- """
- import argparse
- import os
- import cv2
- import kornia
- import numpy as np
- import xlsxwriter
- import torch
- from concurrent.futures import ThreadPoolExecutor
- from tqdm import tqdm
- class Evaluator:
- def __init__(self):
- self.parse_args()
- self.init_metrics()
- self.evaluate()
- self.write_excel()
-
- def parse_args(self):
- parser = argparse.ArgumentParser()
- parser.add_argument('--pred-dir', type=str, required=True)
- parser.add_argument('--true-dir', type=str, required=True)
- parser.add_argument('--num-workers', type=int, default=48)
- parser.add_argument('--metrics', type=str, nargs='+', default=[
- 'pha_mad', 'pha_mse', 'pha_grad', 'pha_dtssd', 'fgr_mse'])
- self.args = parser.parse_args()
-
- def init_metrics(self):
- self.mad = MetricMAD()
- self.mse = MetricMSE()
- self.grad = MetricGRAD()
- self.dtssd = MetricDTSSD()
-
- def evaluate(self):
- tasks = []
- position = 0
-
- with ThreadPoolExecutor(max_workers=self.args.num_workers) as executor:
- for dataset in sorted(os.listdir(self.args.pred_dir)):
- if os.path.isdir(os.path.join(self.args.pred_dir, dataset)):
- for clip in sorted(os.listdir(os.path.join(self.args.pred_dir, dataset))):
- future = executor.submit(self.evaluate_worker, dataset, clip, position)
- tasks.append((dataset, clip, future))
- position += 1
-
- self.results = [(dataset, clip, future.result()) for dataset, clip, future in tasks]
-
- def write_excel(self):
- workbook = xlsxwriter.Workbook(os.path.join(self.args.pred_dir, f'{os.path.basename(self.args.pred_dir)}.xlsx'))
- summarysheet = workbook.add_worksheet('summary')
- metricsheets = [workbook.add_worksheet(metric) for metric in self.results[0][2].keys()]
-
- for i, metric in enumerate(self.results[0][2].keys()):
- summarysheet.write(i, 0, metric)
- summarysheet.write(i, 1, f'={metric}!B2')
-
- for row, (dataset, clip, metrics) in enumerate(self.results):
- for metricsheet, metric in zip(metricsheets, metrics.values()):
- # Write the header
- if row == 0:
- metricsheet.write(1, 0, 'Average')
- metricsheet.write(1, 1, f'=AVERAGE(C2:ZZ2)')
- for col in range(len(metric)):
- metricsheet.write(0, col + 2, col)
- colname = xlsxwriter.utility.xl_col_to_name(col + 2)
- metricsheet.write(1, col + 2, f'=AVERAGE({colname}3:{colname}9999)')
-
- metricsheet.write(row + 2, 0, dataset)
- metricsheet.write(row + 2, 1, clip)
- metricsheet.write_row(row + 2, 2, metric)
-
- workbook.close()
- def evaluate_worker(self, dataset, clip, position):
- framenames = sorted(os.listdir(os.path.join(self.args.pred_dir, dataset, clip, 'pha')))
- metrics = {metric_name : [] for metric_name in self.args.metrics}
-
- pred_pha_tm1 = None
- true_pha_tm1 = None
-
- for i, framename in enumerate(tqdm(framenames, desc=f'{dataset} {clip}', position=position, dynamic_ncols=True)):
- true_pha = cv2.imread(os.path.join(self.args.true_dir, dataset, clip, 'pha', framename), cv2.IMREAD_GRAYSCALE)
- pred_pha = cv2.imread(os.path.join(self.args.pred_dir, dataset, clip, 'pha', framename), cv2.IMREAD_GRAYSCALE)
-
- true_pha = torch.from_numpy(true_pha).cuda(non_blocking=True).float().div_(255)
- pred_pha = torch.from_numpy(pred_pha).cuda(non_blocking=True).float().div_(255)
-
- if 'pha_mad' in self.args.metrics:
- metrics['pha_mad'].append(self.mad(pred_pha, true_pha))
- if 'pha_mse' in self.args.metrics:
- metrics['pha_mse'].append(self.mse(pred_pha, true_pha))
- if 'pha_grad' in self.args.metrics:
- metrics['pha_grad'].append(self.grad(pred_pha, true_pha))
- if 'pha_conn' in self.args.metrics:
- metrics['pha_conn'].append(self.conn(pred_pha, true_pha))
- if 'pha_dtssd' in self.args.metrics:
- if i == 0:
- metrics['pha_dtssd'].append(0)
- else:
- metrics['pha_dtssd'].append(self.dtssd(pred_pha, pred_pha_tm1, true_pha, true_pha_tm1))
-
- pred_pha_tm1 = pred_pha
- true_pha_tm1 = true_pha
-
- if 'fgr_mse' in self.args.metrics:
- true_fgr = cv2.imread(os.path.join(self.args.true_dir, dataset, clip, 'fgr', framename), cv2.IMREAD_COLOR)
- pred_fgr = cv2.imread(os.path.join(self.args.pred_dir, dataset, clip, 'fgr', framename), cv2.IMREAD_COLOR)
-
- true_fgr = torch.from_numpy(true_fgr).float().div_(255)
- pred_fgr = torch.from_numpy(pred_fgr).float().div_(255)
-
- true_msk = true_pha > 0
- metrics['fgr_mse'].append(self.mse(pred_fgr[true_msk], true_fgr[true_msk]))
- return metrics
- class MetricMAD:
- def __call__(self, pred, true):
- return (pred - true).abs_().mean() * 1e3
- class MetricMSE:
- def __call__(self, pred, true):
- return ((pred - true) ** 2).mean() * 1e3
- class MetricGRAD:
- def __init__(self, sigma=1.4):
- self.filter_x, self.filter_y = self.gauss_filter(sigma)
- self.filter_x = torch.from_numpy(self.filter_x).unsqueeze(0).cuda()
- self.filter_y = torch.from_numpy(self.filter_y).unsqueeze(0).cuda()
-
- def __call__(self, pred, true):
- true_grad = self.gauss_gradient(true)
- pred_grad = self.gauss_gradient(pred)
- return ((true_grad - pred_grad) ** 2).sum() / 1000
-
- def gauss_gradient(self, img):
- img_filtered_x = kornia.filters.filter2D(img[None, None, :, :], self.filter_x, border_type='replicate')[0, 0]
- img_filtered_y = kornia.filters.filter2D(img[None, None, :, :], self.filter_y, border_type='replicate')[0, 0]
- return (img_filtered_x**2 + img_filtered_y**2).sqrt()
-
- @staticmethod
- def gauss_filter(sigma, epsilon=1e-2):
- half_size = np.ceil(sigma * np.sqrt(-2 * np.log(np.sqrt(2 * np.pi) * sigma * epsilon)))
- size = np.int(2 * half_size + 1)
- # create filter in x axis
- filter_x = np.zeros((size, size))
- for i in range(size):
- for j in range(size):
- filter_x[i, j] = MetricGRAD.gaussian(i - half_size, sigma) * MetricGRAD.dgaussian(
- j - half_size, sigma)
- # normalize filter
- norm = np.sqrt((filter_x**2).sum())
- filter_x = filter_x / norm
- filter_y = np.transpose(filter_x)
- return filter_x, filter_y
-
- @staticmethod
- def gaussian(x, sigma):
- return np.exp(-x**2 / (2 * sigma**2)) / (sigma * np.sqrt(2 * np.pi))
-
- @staticmethod
- def dgaussian(x, sigma):
- return -x * MetricGRAD.gaussian(x, sigma) / sigma**2
- class MetricDTSSD:
- def __call__(self, pred_t, pred_tm1, true_t, true_tm1):
- dtSSD = ((pred_t - pred_tm1) - (true_t - true_tm1)) ** 2
- dtSSD = dtSSD.sum() / true_t.numel()
- dtSSD = dtSSD.sqrt()
- return dtSSD * 1e2
- if __name__ == '__main__':
- Evaluator()
|