123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207 |
- """
- python inference.py \
- --variant mobilenetv3 \
- --checkpoint "CHECKPOINT" \
- --device cuda \
- --input-source "input.mp4" \
- --output-type video \
- --output-composition "composition.mp4" \
- --output-alpha "alpha.mp4" \
- --output-foreground "foreground.mp4" \
- --output-video-mbps 4 \
- --seq-chunk 1
- """
- import torch
- import os
- from torch.utils.data import DataLoader
- from torchvision import transforms
- from typing import Optional, Tuple
- from tqdm.auto import tqdm
- from inference_utils import VideoReader, VideoWriter, ImageSequenceReader, ImageSequenceWriter
- def convert_video(model,
- input_source: str,
- input_resize: Optional[Tuple[int, int]] = None,
- downsample_ratio: Optional[float] = None,
- output_type: str = 'video',
- output_composition: Optional[str] = None,
- output_alpha: Optional[str] = None,
- output_foreground: Optional[str] = None,
- output_video_mbps: Optional[float] = None,
- seq_chunk: int = 1,
- num_workers: int = 0,
- progress: bool = True,
- device: Optional[str] = None,
- dtype: Optional[torch.dtype] = None):
-
- """
- Args:
- input_source:A video file, or an image sequence directory. Images must be sorted in accending order, support png and jpg.
- input_resize: If provided, the input are first resized to (w, h).
- downsample_ratio: The model's downsample_ratio hyperparameter. If not provided, model automatically set one.
- output_type: Options: ["video", "png_sequence"].
- output_composition:
- The composition output path. File path if output_type == 'video'. Directory path if output_type == 'png_sequence'.
- If output_type == 'video', the composition has green screen background.
- If output_type == 'png_sequence'. the composition is RGBA png images.
- output_alpha: The alpha output from the model.
- output_foreground: The foreground output from the model.
- seq_chunk: Number of frames to process at once. Increase it for better parallelism.
- num_workers: PyTorch's DataLoader workers. Only use >0 for image input.
- progress: Show progress bar.
- device: Only need to manually provide if model is a TorchScript freezed model.
- dtype: Only need to manually provide if model is a TorchScript freezed model.
- """
-
- assert downsample_ratio is None or (downsample_ratio > 0 and downsample_ratio <= 1), 'Downsample ratio must be between 0 (exclusive) and 1 (inclusive).'
- assert any([output_composition, output_alpha, output_foreground]), 'Must provide at least one output.'
- assert output_type in ['video', 'png_sequence'], 'Only support "video" and "png_sequence" output modes.'
- assert seq_chunk >= 1, 'Sequence chunk must be >= 1'
- assert num_workers >= 0, 'Number of workers must be >= 0'
-
- # Initialize transform
- if input_resize is not None:
- transform = transforms.Compose([
- transforms.Resize(input_resize[::-1]),
- transforms.ToTensor()
- ])
- else:
- transform = transforms.ToTensor()
- # Initialize reader
- if os.path.isfile(input_source):
- source = VideoReader(input_source, transform)
- else:
- source = ImageSequenceReader(input_source, transform)
- reader = DataLoader(source, batch_size=seq_chunk, pin_memory=True, num_workers=num_workers)
-
- # Initialize writers
- if output_type == 'video':
- frame_rate = source.frame_rate if isinstance(source, VideoReader) else 30
- output_video_mbps = 1 if output_video_mbps is None else output_video_mbps
- if output_composition is not None:
- writer_com = VideoWriter(
- path=output_composition,
- frame_rate=frame_rate,
- bit_rate=int(output_video_mbps * 1000000))
- if output_alpha is not None:
- writer_pha = VideoWriter(
- path=output_alpha,
- frame_rate=frame_rate,
- bit_rate=int(output_video_mbps * 1000000))
- if output_foreground is not None:
- writer_fgr = VideoWriter(
- path=output_foreground,
- frame_rate=frame_rate,
- bit_rate=int(output_video_mbps * 1000000))
- else:
- if output_composition is not None:
- writer_com = ImageSequenceWriter(output_composition, 'png')
- if output_alpha is not None:
- writer_pha = ImageSequenceWriter(output_alpha, 'png')
- if output_foreground is not None:
- writer_fgr = ImageSequenceWriter(output_foreground, 'png')
- # Inference
- model = model.eval()
- if device is None or dtype is None:
- param = next(model.parameters())
- dtype = param.dtype
- device = param.device
-
- if (output_composition is not None) and (output_type == 'video'):
- bgr = torch.tensor([120, 255, 155], device=device, dtype=dtype).div(255).view(1, 1, 3, 1, 1)
-
- try:
- with torch.no_grad():
- bar = tqdm(total=len(source), disable=not progress, dynamic_ncols=True)
- rec = [None] * 4
- for src in reader:
- if downsample_ratio is None:
- downsample_ratio = auto_downsample_ratio(*src.shape[2:])
- src = src.to(device, dtype, non_blocking=True).unsqueeze(0) # [B, T, C, H, W]
- fgr, pha, *rec = model(src, *rec, downsample_ratio)
- if output_foreground is not None:
- writer_fgr.write(fgr[0])
- if output_alpha is not None:
- writer_pha.write(pha[0])
- if output_composition is not None:
- if output_type == 'video':
- com = fgr * pha + bgr * (1 - pha)
- else:
- fgr = fgr * pha.gt(0)
- com = torch.cat([fgr, pha], dim=-3)
- writer_com.write(com[0])
-
- bar.update(src.size(1))
- finally:
- # Clean up
- if output_composition is not None:
- writer_com.close()
- if output_alpha is not None:
- writer_pha.close()
- if output_foreground is not None:
- writer_fgr.close()
- def auto_downsample_ratio(h, w):
- """
- Automatically find a downsample ratio so that the largest side of the resolution be 512px.
- """
- return min(512 / max(h, w), 1)
- class Converter:
- def __init__(self, variant: str, checkpoint: str, device: str):
- self.model = MattingNetwork(variant).eval().to(device)
- self.model.load_state_dict(torch.load(checkpoint, map_location=device))
- self.model = torch.jit.script(self.model)
- self.model = torch.jit.freeze(self.model)
- self.device = device
-
- def convert(self, *args, **kwargs):
- convert_video(self.model, device=self.device, dtype=torch.float32, *args, **kwargs)
-
- if __name__ == '__main__':
- import argparse
- from model import MattingNetwork
-
- parser = argparse.ArgumentParser()
- parser.add_argument('--variant', type=str, required=True, choices=['mobilenetv3', 'resnet50'])
- parser.add_argument('--checkpoint', type=str, required=True)
- parser.add_argument('--device', type=str, required=True)
- parser.add_argument('--input-source', type=str, required=True)
- parser.add_argument('--input-resize', type=int, default=None, nargs=2)
- parser.add_argument('--downsample-ratio', type=float)
- parser.add_argument('--output-composition', type=str)
- parser.add_argument('--output-alpha', type=str)
- parser.add_argument('--output-foreground', type=str)
- parser.add_argument('--output-type', type=str, required=True, choices=['video', 'png_sequence'])
- parser.add_argument('--output-video-mbps', type=int, default=1)
- parser.add_argument('--seq-chunk', type=int, default=1)
- parser.add_argument('--num-workers', type=int, default=0)
- parser.add_argument('--disable-progress', action='store_true')
- args = parser.parse_args()
-
- converter = Converter(args.variant, args.checkpoint, args.device)
- converter.convert(
- input_source=args.input_source,
- input_resize=args.input_resize,
- downsample_ratio=args.downsample_ratio,
- output_type=args.output_type,
- output_composition=args.output_composition,
- output_alpha=args.output_alpha,
- output_foreground=args.output_foreground,
- output_video_mbps=args.output_video_mbps,
- seq_chunk=args.seq_chunk,
- num_workers=args.num_workers,
- progress=not args.disable_progress
- )
-
-
|