123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210 |
- import torch
- from torch import Tensor
- from torch import nn
- from torch.nn import functional as F
- from typing import Tuple, Optional
- class RecurrentDecoder(nn.Module):
- def __init__(self, feature_channels, decoder_channels):
- super().__init__()
- self.avgpool = AvgPool()
- self.decode4 = BottleneckBlock(feature_channels[3])
- self.decode3 = UpsamplingBlock(feature_channels[3], feature_channels[2], 3, decoder_channels[0])
- self.decode2 = UpsamplingBlock(decoder_channels[0], feature_channels[1], 3, decoder_channels[1])
- self.decode1 = UpsamplingBlock(decoder_channels[1], feature_channels[0], 3, decoder_channels[2])
- self.decode0 = OutputBlock(decoder_channels[2], 3, decoder_channels[3])
- def forward(self,
- s0: Tensor, f1: Tensor, f2: Tensor, f3: Tensor, f4: Tensor,
- r1: Optional[Tensor], r2: Optional[Tensor],
- r3: Optional[Tensor], r4: Optional[Tensor]):
- s1, s2, s3 = self.avgpool(s0)
- x4, r4 = self.decode4(f4, r4)
- x3, r3 = self.decode3(x4, f3, s3, r3)
- x2, r2 = self.decode2(x3, f2, s2, r2)
- x1, r1 = self.decode1(x2, f1, s1, r1)
- x0 = self.decode0(x1, s0)
- return x0, r1, r2, r3, r4
-
- class AvgPool(nn.Module):
- def __init__(self):
- super().__init__()
- self.avgpool = nn.AvgPool2d(2, 2, count_include_pad=False, ceil_mode=True)
-
- def forward_single_frame(self, s0):
- s1 = self.avgpool(s0)
- s2 = self.avgpool(s1)
- s3 = self.avgpool(s2)
- return s1, s2, s3
-
- def forward_time_series(self, s0):
- B, T = s0.shape[:2]
- s0 = s0.flatten(0, 1)
- s1, s2, s3 = self.forward_single_frame(s0)
- s1 = s1.unflatten(0, (B, T))
- s2 = s2.unflatten(0, (B, T))
- s3 = s3.unflatten(0, (B, T))
- return s1, s2, s3
-
- def forward(self, s0):
- if s0.ndim == 5:
- return self.forward_time_series(s0)
- else:
- return self.forward_single_frame(s0)
- class BottleneckBlock(nn.Module):
- def __init__(self, channels):
- super().__init__()
- self.channels = channels
- self.gru = ConvGRU(channels // 2)
-
- def forward(self, x, r: Optional[Tensor]):
- a, b = x.split(self.channels // 2, dim=-3)
- b, r = self.gru(b, r)
- x = torch.cat([a, b], dim=-3)
- return x, r
-
- class UpsamplingBlock(nn.Module):
- def __init__(self, in_channels, skip_channels, src_channels, out_channels):
- super().__init__()
- self.out_channels = out_channels
- self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
- self.conv = nn.Sequential(
- nn.Conv2d(in_channels + skip_channels + src_channels, out_channels, 3, 1, 1, bias=False),
- nn.BatchNorm2d(out_channels),
- nn.ReLU(True),
- )
- self.gru = ConvGRU(out_channels // 2)
- def forward_single_frame(self, x, f, s, r: Optional[Tensor]):
- x = self.upsample(x)
- x = x[:, :, :s.size(2), :s.size(3)]
- x = torch.cat([x, f, s], dim=1)
- x = self.conv(x)
- a, b = x.split(self.out_channels // 2, dim=1)
- b, r = self.gru(b, r)
- x = torch.cat([a, b], dim=1)
- return x, r
-
- def forward_time_series(self, x, f, s, r: Optional[Tensor]):
- B, T, _, H, W = s.shape
- x = x.flatten(0, 1)
- f = f.flatten(0, 1)
- s = s.flatten(0, 1)
- x = self.upsample(x)
- x = x[:, :, :H, :W]
- x = torch.cat([x, f, s], dim=1)
- x = self.conv(x)
- x = x.unflatten(0, (B, T))
- a, b = x.split(self.out_channels // 2, dim=2)
- b, r = self.gru(b, r)
- x = torch.cat([a, b], dim=2)
- return x, r
-
- def forward(self, x, f, s, r: Optional[Tensor]):
- if x.ndim == 5:
- return self.forward_time_series(x, f, s, r)
- else:
- return self.forward_single_frame(x, f, s, r)
- class OutputBlock(nn.Module):
- def __init__(self, in_channels, src_channels, out_channels):
- super().__init__()
- self.upsample = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=False)
- self.conv = nn.Sequential(
- nn.Conv2d(in_channels + src_channels, out_channels, 3, 1, 1, bias=False),
- nn.BatchNorm2d(out_channels),
- nn.ReLU(True),
- nn.Conv2d(out_channels, out_channels, 3, 1, 1, bias=False),
- nn.BatchNorm2d(out_channels),
- nn.ReLU(True),
- )
-
- def forward_single_frame(self, x, s):
- x = self.upsample(x)
- x = x[:, :, :s.size(2), :s.size(3)]
- x = torch.cat([x, s], dim=1)
- x = self.conv(x)
- return x
-
- def forward_time_series(self, x, s):
- B, T, _, H, W = s.shape
- x = x.flatten(0, 1)
- s = s.flatten(0, 1)
- x = self.upsample(x)
- x = x[:, :, :H, :W]
- x = torch.cat([x, s], dim=1)
- x = self.conv(x)
- x = x.unflatten(0, (B, T))
- return x
-
- def forward(self, x, s):
- if x.ndim == 5:
- return self.forward_time_series(x, s)
- else:
- return self.forward_single_frame(x, s)
- class ConvGRU(nn.Module):
- def __init__(self,
- channels: int,
- kernel_size: int = 3,
- padding: int = 1):
- super().__init__()
- self.channels = channels
- self.ih = nn.Sequential(
- nn.Conv2d(channels * 2, channels * 2, kernel_size, padding=padding),
- nn.Sigmoid()
- )
- self.hh = nn.Sequential(
- nn.Conv2d(channels * 2, channels, kernel_size, padding=padding),
- nn.Tanh()
- )
-
- def forward_single_frame(self, x, h):
- r, z = self.ih(torch.cat([x, h], dim=1)).split(self.channels, dim=1)
- c = self.hh(torch.cat([x, r * h], dim=1))
- h = (1 - z) * h + z * c
- return h, h
-
- def forward_time_series(self, x, h):
- o = []
- for xt in x.unbind(dim=1):
- ot, h = self.forward_single_frame(xt, h)
- o.append(ot)
- o = torch.stack(o, dim=1)
- return o, h
-
- def forward(self, x, h: Optional[Tensor]):
- if h is None:
- h = torch.zeros((x.size(0), x.size(-3), x.size(-2), x.size(-1)),
- device=x.device, dtype=x.dtype)
-
- if x.ndim == 5:
- return self.forward_time_series(x, h)
- else:
- return self.forward_single_frame(x, h)
- class Projection(nn.Module):
- def __init__(self, in_channels, out_channels):
- super().__init__()
- self.conv = nn.Conv2d(in_channels, out_channels, 1)
-
- def forward_single_frame(self, x):
- return self.conv(x)
-
- def forward_time_series(self, x):
- B, T = x.shape[:2]
- return self.conv(x.flatten(0, 1)).unflatten(0, (B, T))
-
- def forward(self, x):
- if x.ndim == 5:
- return self.forward_time_series(x)
- else:
- return self.forward_single_frame(x)
-
|