123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199 |
- <!DOCTYPE html>
- <html lang="en">
- <meta charset="utf-8" />
- <head>
- <script src="./model/jszip.min.js"></script>
- <script src="./model/tf.min.js"></script>
- <script>
- async function main() {
- const video = document.querySelector('video');
- const canvas = document.querySelector('canvas');
- const select = document.querySelector('select');
- const startRecordingBtn = document.getElementById("startRecording")
- const load = document.getElementById("load")
- let show = false
- const setTime = setInterval(()=>{
- if(show){
- startRecordingBtn.classList.remove("disabled")
- startRecordingBtn.disabled = false
- load.classList.remove('loading')
- clearInterval(setTime)
- }
- },500)
- video.width = 700;
- video.height = 700;
- const webcam = await tf.data.webcam(video);
- const model = await tf.loadGraphModel('/model/model.json');
-
- // Set initial recurrent state
- let [r1i, r2i, r3i, r4i] = [tf.tensor(0.), tf.tensor(0.), tf.tensor(0.), tf.tensor(0.)];
- // Set downsample ratio
- const downsample_ratio = tf.tensor(0.5);
- // Inference loop
- while (true) {
- await tf.nextFrame();
- const img = await webcam.capture();
- const src = tf.tidy(() => img.expandDims(0).div(255)); // normalize input
- const [fgr, pha, r1o, r2o, r3o, r4o] = await model.executeAsync(
- {src, r1i, r2i, r3i, r4i, downsample_ratio}, // provide inputs
- ['fgr', 'pha', 'r1o', 'r2o', 'r3o', 'r4o'] // select outputs
- );
- show = true
- // Draw the result based on selected view
- const viewOption = "white";
- if (viewOption === 'recurrent1') {
- drawHidden(r1o, canvas);
- } else if (viewOption === 'recurrent2') {
- drawHidden(r2o, canvas);
- } else if (viewOption === 'recurrent3') {
- drawHidden(r3o, canvas);
- } else if (viewOption === 'recurrent4') {
- drawHidden(r4o, canvas);
- } else if (viewOption === 'white') {
- drawMatte(fgr.clone(), pha.clone(), canvas);
- canvas.style.background = 'rgb(255, 255, 255)';
- } else if (viewOption === 'green') {
- drawMatte(fgr.clone(), pha.clone(), canvas);
- canvas.style.background = 'rgb(120, 255, 155)';
- } else if (viewOption === 'alpha') {
- drawMatte(null, pha.clone(), canvas);
- canvas.style.background = 'rgb(0, 0, 0)';
- } else if (viewOption === 'foreground') {
- drawMatte(fgr.clone(), null, canvas);
- }
- // Dispose old tensors.
- tf.dispose([img, src, fgr, pha, r1i, r2i, r3i, r4i]);
- // Update recurrent states.
- [r1i, r2i, r3i, r4i] = [r1o, r2o, r3o, r4o];
- }
- }
- async function drawMatte(fgr, pha, canvas){
- const rgba = tf.tidy(() => {
- const rgb = (fgr !== null) ?
- fgr.squeeze(0).mul(255).cast('int32') :
- tf.fill([pha.shape[1], pha.shape[2], 3], 255, 'int32');
- const a = (pha !== null) ?
- pha.squeeze(0).mul(255).cast('int32') :
- tf.fill([fgr.shape[1], fgr.shape[2], 1], 255, 'int32');
- return tf.concat([rgb, a], -1);
- });
- fgr && fgr.dispose();
- pha && pha.dispose();
- const [height, width] = rgba.shape.slice(0, 2);
- const pixelData = new Uint8ClampedArray(await rgba.data());
- const imageData = new ImageData(pixelData, width, height);
- canvas.width = width;
- canvas.height = height;
- canvas.getContext('2d').putImageData(imageData, 0, 0);
- rgba.dispose();
- }
- async function drawHidden(r, canvas) {
- const rgba = tf.tidy(() => {
- r = r.unstack(-1)
- r = tf.concat(r, 1)
- r = r.split(4, 1)
- r = tf.concat(r, 2)
- r = r.squeeze(0)
- r = r.expandDims(-1)
- r = r.add(1).mul(127.5).cast('int32')
- r = r.tile([1, 1, 3])
- r = tf.concat([r, tf.fill([r.shape[0], r.shape[1], 1], 255, 'int32')], -1)
- return r;
- });
- const [height, width] = rgba.shape.slice(0, 2);
- const pixelData = new Uint8ClampedArray(await rgba.data());
- const imageData = new ImageData(pixelData, width, height);
- canvas.width = width;
- canvas.height = height;
- canvas.getContext('2d').putImageData(imageData, 0, 0);
- rgba.dispose();
- }
-
- window.addEventListener('load', main);
- </script>
- <title>脊柱识别</title>
- <style>
- body{
- height: 100vh;
- margin: 0;
- padding: 0;
- position: relative;
- }
- #myCanvas{
- width: 700px;
- height: 700px;
- border: 2px slategray solid;
- border-radius: 8px;
- }
- button{
- padding: 10px 15px;
- border: none;
- border-radius: 8px;
- cursor: pointer;
- }
- .leftCanvasLine{
- position: absolute;
- height: 99%;
- top: 50%;
- left: 58%;
- transform: translate(0,-50%);
- border: 2px dashed #fc5531;
- }
- .rightCanvasLine{
- position: absolute;
- height: 99%;
- top: 50%;
- left: 42%;
- transform: translate(0,-50%);
- border: 2px dashed #fc5531;
- }
- .loading{
- display: block !important;
- position: fixed;
- width: 100vw;
- height: 100vh;
- background-color: rgba(255, 255, 255, 0.9);
- top: 0;
- }
- .loading div{
- text-align: center;
- position: absolute;
- top: 50%;
- left: 50%;
- transform: translate(-50%,-50%);
-
- }
- .loading div img{
- width: 100px;
- }
- </style>
- </head>
- <body>
- <div style="text-align: center;height: 100%;">
- <h3 style="padding: 10px 0;margin: 0;opacity: 0.7;">这是一个基于tensorflow处理的检测脊柱是否弯曲的一个平台,在一段时间内,一个人从直立到弯腰的过程,通过AI算法来判断这个人的脊柱是否有问题</h3>
- <h1 style="opacity: 0.7;">请进入灰色框里面,并站在虚线中间的位置</h1>
- <button id="startRecording" disabled>开始识别</button>
- <div style="position: relative;margin-top: 15px;">
- <video id="preview" style="display: none;"></video>
- <canvas id="myCanvas"></canvas>
- <div class="leftCanvasLine"></div>
- <div class="rightCanvasLine"></div>
- </div>
- </div>
- <div class="loading" id="load" style="display: none;">
- <div>
- <img src="./loading.gif" alt="">
- <h3>加载中...</h3>
- </div>
- </div>
- </body>
- </html>
- <script src="./index.js"></script>
|