// Copyright 2014 The Closure Library Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS-IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. /** * @fileoverview Base class for the 64-bit SHA-2 cryptographic hashes. * * Variable names follow the notation in FIPS PUB 180-3: * http://csrc.nist.gov/publications/fips/fips180-3/fips180-3_final.pdf. * * This code borrows heavily from the 32-bit SHA2 implementation written by * Yue Zhang (zysxqn@). * * @author fy@google.com (Frank Yellin) */ goog.provide('goog.crypt.Sha2_64bit'); goog.require('goog.array'); goog.require('goog.asserts'); goog.require('goog.crypt.Hash'); goog.require('goog.math.Long'); /** * Constructs a SHA-2 64-bit cryptographic hash. * This class should not be used. Rather, one should use one of its * subclasses. * @constructor * @param {number} numHashBlocks The size of the output in 16-byte blocks * @param {!Array} initHashBlocks The hash-specific initialization * vector, as a sequence of sixteen 32-bit numbers. * @extends {goog.crypt.Hash} * @struct */ goog.crypt.Sha2_64bit = function(numHashBlocks, initHashBlocks) { goog.crypt.Sha2_64bit.base(this, 'constructor'); /** * The number of bytes that are digested in each pass of this hasher. * @const {number} */ this.blockSize = goog.crypt.Sha2_64bit.BLOCK_SIZE_; /** * A chunk holding the currently processed message bytes. Once the chunk has * {@code this.blocksize} bytes, we feed it into [@code computeChunk_}. * @private {!Uint8Array|!Array} */ this.chunk_ = goog.global['Uint8Array'] ? new Uint8Array(this.blockSize) : new Array(this.blockSize); /** * Current number of bytes in {@code this.chunk_}. * @private {number} */ this.chunkBytes_ = 0; /** * Total number of bytes in currently processed message. * @private {number} */ this.total_ = 0; /** * Holds the previous values of accumulated hash a-h in the * {@code computeChunk_} function. * @private {!Array} */ this.hash_ = []; /** * The number of blocks of output produced by this hash function, where each * block is eight bytes long. * @private {number} */ this.numHashBlocks_ = numHashBlocks; /** * Temporary array used in chunk computation. Allocate here as a * member rather than as a local within computeChunk_() as a * performance optimization to reduce the number of allocations and * reduce garbage collection. * @type {!Array} * @private */ this.w_ = []; /** * The value to which {@code this.hash_} should be reset when this * Hasher is reset. * @private @const {!Array} */ this.initHashBlocks_ = goog.crypt.Sha2_64bit.toLongArray_(initHashBlocks); /** * If true, we have taken the digest from this hasher, but we have not * yet reset it. * * @private {boolean} */ this.needsReset_ = false; this.reset(); }; goog.inherits(goog.crypt.Sha2_64bit, goog.crypt.Hash); /** * The number of bytes that are digested in each pass of this hasher. * @private @const {number} */ goog.crypt.Sha2_64bit.BLOCK_SIZE_ = 1024 / 8; /** * Contains data needed to pad messages less than {@code blocksize} bytes. * @private {!Array} */ goog.crypt.Sha2_64bit.PADDING_ = goog.array.concat( [0x80], goog.array.repeat(0, goog.crypt.Sha2_64bit.BLOCK_SIZE_ - 1)); /** * Resets this hash function. * @override */ goog.crypt.Sha2_64bit.prototype.reset = function() { this.chunkBytes_ = 0; this.total_ = 0; this.hash_ = goog.array.clone(this.initHashBlocks_); this.needsReset_ = false; }; /** @override */ goog.crypt.Sha2_64bit.prototype.update = function(message, opt_length) { var length = goog.isDef(opt_length) ? opt_length : message.length; // Make sure this hasher is usable. if (this.needsReset_) { throw Error('this hasher needs to be reset'); } // Process the message from left to right up to |length| bytes. // When we get a 512-bit chunk, compute the hash of it and reset // this.chunk_. The message might not be multiple of 512 bits so we // might end up with a chunk that is less than 512 bits. We store // such partial chunk in chunk_ and it will be filled up later // in digest(). var chunkBytes = this.chunkBytes_; // The input message could be either byte array or string. if (goog.isString(message)) { for (var i = 0; i < length; i++) { var b = message.charCodeAt(i); if (b > 255) { throw Error('Characters must be in range [0,255]'); } this.chunk_[chunkBytes++] = b; if (chunkBytes == this.blockSize) { this.computeChunk_(); chunkBytes = 0; } } } else if (goog.isArrayLike(message)) { for (var i = 0; i < length; i++) { var b = message[i]; // Hack: b|0 coerces b to an integer, so the last part confirms that // b has no fractional part. if (!goog.isNumber(b) || b < 0 || b > 255 || b != (b | 0)) { throw Error('message must be a byte array'); } this.chunk_[chunkBytes++] = b; if (chunkBytes == this.blockSize) { this.computeChunk_(); chunkBytes = 0; } } } else { throw Error('message must be string or array'); } // Record the current bytes in chunk to support partial update. this.chunkBytes_ = chunkBytes; // Record total message bytes we have processed so far. this.total_ += length; }; /** @override */ goog.crypt.Sha2_64bit.prototype.digest = function() { if (this.needsReset_) { throw Error('this hasher needs to be reset'); } var totalBits = this.total_ * 8; // Append pad 0x80 0x00* until this.chunkBytes_ == 112 if (this.chunkBytes_ < 112) { this.update(goog.crypt.Sha2_64bit.PADDING_, 112 - this.chunkBytes_); } else { // the rest of this block, plus 112 bytes of next block this.update( goog.crypt.Sha2_64bit.PADDING_, this.blockSize - this.chunkBytes_ + 112); } // Append # bits in the 64-bit big-endian format. for (var i = 127; i >= 112; i--) { this.chunk_[i] = totalBits & 255; totalBits /= 256; // Don't use bit-shifting here! } this.computeChunk_(); // Finally, output the result digest. var n = 0; var digest = new Array(8 * this.numHashBlocks_); for (var i = 0; i < this.numHashBlocks_; i++) { var block = this.hash_[i]; var high = block.getHighBits(); var low = block.getLowBits(); for (var j = 24; j >= 0; j -= 8) { digest[n++] = ((high >> j) & 255); } for (var j = 24; j >= 0; j -= 8) { digest[n++] = ((low >> j) & 255); } } // The next call to this hasher must be a reset this.needsReset_ = true; return digest; }; /** * Updates this hash by processing the 1024-bit message chunk in this.chunk_. * @private */ goog.crypt.Sha2_64bit.prototype.computeChunk_ = function() { var chunk = this.chunk_; var K_ = goog.crypt.Sha2_64bit.K_; // Divide the chunk into 16 64-bit-words. var w = this.w_; for (var i = 0; i < 16; i++) { var offset = i * 8; w[i] = new goog.math.Long( (chunk[offset + 4] << 24) | (chunk[offset + 5] << 16) | (chunk[offset + 6] << 8) | (chunk[offset + 7]), (chunk[offset] << 24) | (chunk[offset + 1] << 16) | (chunk[offset + 2] << 8) | (chunk[offset + 3])); } // Extend the w[] array to be the number of rounds. for (var i = 16; i < 80; i++) { var s0 = this.sigma0_(w[i - 15]); var s1 = this.sigma1_(w[i - 2]); w[i] = this.sum_(w[i - 16], w[i - 7], s0, s1); } var a = this.hash_[0]; var b = this.hash_[1]; var c = this.hash_[2]; var d = this.hash_[3]; var e = this.hash_[4]; var f = this.hash_[5]; var g = this.hash_[6]; var h = this.hash_[7]; for (var i = 0; i < 80; i++) { var S0 = this.Sigma0_(a); var maj = this.majority_(a, b, c); var t2 = S0.add(maj); var S1 = this.Sigma1_(e); var ch = this.choose_(e, f, g); var t1 = this.sum_(h, S1, ch, K_[i], w[i]); h = g; g = f; f = e; e = d.add(t1); d = c; c = b; b = a; a = t1.add(t2); } this.hash_[0] = this.hash_[0].add(a); this.hash_[1] = this.hash_[1].add(b); this.hash_[2] = this.hash_[2].add(c); this.hash_[3] = this.hash_[3].add(d); this.hash_[4] = this.hash_[4].add(e); this.hash_[5] = this.hash_[5].add(f); this.hash_[6] = this.hash_[6].add(g); this.hash_[7] = this.hash_[7].add(h); }; /** * Calculates the SHA2 64-bit sigma0 function. * rotateRight(value, 1) ^ rotateRight(value, 8) ^ (value >>> 7) * * @private * @param {!goog.math.Long} value * @return {!goog.math.Long} */ goog.crypt.Sha2_64bit.prototype.sigma0_ = function(value) { var valueLow = value.getLowBits(); var valueHigh = value.getHighBits(); // Implementation note: We purposely do not use the shift operations defined // in goog.math.Long. Inlining the code for specific values of shifting and // not generating the intermediate results doubles the speed of this code. var low = (valueLow >>> 1) ^ (valueHigh << 31) ^ (valueLow >>> 8) ^ (valueHigh << 24) ^ (valueLow >>> 7) ^ (valueHigh << 25); var high = (valueHigh >>> 1) ^ (valueLow << 31) ^ (valueHigh >>> 8) ^ (valueLow << 24) ^ (valueHigh >>> 7); return new goog.math.Long(low, high); }; /** * Calculates the SHA2 64-bit sigma1 function. * rotateRight(value, 19) ^ rotateRight(value, 61) ^ (value >>> 6) * * @private * @param {!goog.math.Long} value * @return {!goog.math.Long} */ goog.crypt.Sha2_64bit.prototype.sigma1_ = function(value) { var valueLow = value.getLowBits(); var valueHigh = value.getHighBits(); // Implementation note: See _sigma0() above var low = (valueLow >>> 19) ^ (valueHigh << 13) ^ (valueHigh >>> 29) ^ (valueLow << 3) ^ (valueLow >>> 6) ^ (valueHigh << 26); var high = (valueHigh >>> 19) ^ (valueLow << 13) ^ (valueLow >>> 29) ^ (valueHigh << 3) ^ (valueHigh >>> 6); return new goog.math.Long(low, high); }; /** * Calculates the SHA2 64-bit Sigma0 function. * rotateRight(value, 28) ^ rotateRight(value, 34) ^ rotateRight(value, 39) * * @private * @param {!goog.math.Long} value * @return {!goog.math.Long} */ goog.crypt.Sha2_64bit.prototype.Sigma0_ = function(value) { var valueLow = value.getLowBits(); var valueHigh = value.getHighBits(); // Implementation note: See _sigma0() above var low = (valueLow >>> 28) ^ (valueHigh << 4) ^ (valueHigh >>> 2) ^ (valueLow << 30) ^ (valueHigh >>> 7) ^ (valueLow << 25); var high = (valueHigh >>> 28) ^ (valueLow << 4) ^ (valueLow >>> 2) ^ (valueHigh << 30) ^ (valueLow >>> 7) ^ (valueHigh << 25); return new goog.math.Long(low, high); }; /** * Calculates the SHA2 64-bit Sigma1 function. * rotateRight(value, 14) ^ rotateRight(value, 18) ^ rotateRight(value, 41) * * @private * @param {!goog.math.Long} value * @return {!goog.math.Long} */ goog.crypt.Sha2_64bit.prototype.Sigma1_ = function(value) { var valueLow = value.getLowBits(); var valueHigh = value.getHighBits(); // Implementation note: See _sigma0() above var low = (valueLow >>> 14) ^ (valueHigh << 18) ^ (valueLow >>> 18) ^ (valueHigh << 14) ^ (valueHigh >>> 9) ^ (valueLow << 23); var high = (valueHigh >>> 14) ^ (valueLow << 18) ^ (valueHigh >>> 18) ^ (valueLow << 14) ^ (valueLow >>> 9) ^ (valueHigh << 23); return new goog.math.Long(low, high); }; /** * Calculates the SHA-2 64-bit choose function. * * This function uses {@code value} as a mask to choose bits from either * {@code one} if the bit is set or {@code two} if the bit is not set. * * @private * @param {!goog.math.Long} value * @param {!goog.math.Long} one * @param {!goog.math.Long} two * @return {!goog.math.Long} */ goog.crypt.Sha2_64bit.prototype.choose_ = function(value, one, two) { var valueLow = value.getLowBits(); var valueHigh = value.getHighBits(); return new goog.math.Long( (valueLow & one.getLowBits()) | (~valueLow & two.getLowBits()), (valueHigh & one.getHighBits()) | (~valueHigh & two.getHighBits())); }; /** * Calculates the SHA-2 64-bit majority function. * This function returns, for each bit position, the bit held by the majority * of its three arguments. * * @private * @param {!goog.math.Long} one * @param {!goog.math.Long} two * @param {!goog.math.Long} three * @return {!goog.math.Long} */ goog.crypt.Sha2_64bit.prototype.majority_ = function(one, two, three) { return new goog.math.Long( (one.getLowBits() & two.getLowBits()) | (two.getLowBits() & three.getLowBits()) | (one.getLowBits() & three.getLowBits()), (one.getHighBits() & two.getHighBits()) | (two.getHighBits() & three.getHighBits()) | (one.getHighBits() & three.getHighBits())); }; /** * Adds two or more goog.math.Long values. * * @private * @param {!goog.math.Long} one first summand * @param {!goog.math.Long} two second summand * @param {...goog.math.Long} var_args more arguments to sum * @return {!goog.math.Long} The resulting sum. */ goog.crypt.Sha2_64bit.prototype.sum_ = function(one, two, var_args) { // The low bits may be signed, but they represent a 32-bit unsigned quantity. // We must be careful to normalize them. // This doesn't matter for the high bits. // Implementation note: Performance testing shows that this method runs // fastest when the first two arguments are pulled out of the loop. var low = (one.getLowBits() ^ 0x80000000) + (two.getLowBits() ^ 0x80000000); var high = one.getHighBits() + two.getHighBits(); for (var i = arguments.length - 1; i >= 2; --i) { low += arguments[i].getLowBits() ^ 0x80000000; high += arguments[i].getHighBits(); } // Because of the ^0x80000000, each value we added is 0x80000000 too small. // Add arguments.length * 0x80000000 to the current sum. We can do this // quickly by adding 0x80000000 to low when the number of arguments is // odd, and adding (number of arguments) >> 1 to high. if (arguments.length & 1) { low += 0x80000000; } high += arguments.length >> 1; // If low is outside the range [0, 0xFFFFFFFF], its overflow or underflow // should be added to high. We don't actually need to modify low or // normalize high because the goog.math.Long constructor already does that. high += Math.floor(low / 0x100000000); return new goog.math.Long(low, high); }; /** * Converts an array of 32-bit integers into an array of goog.math.Long * elements. * * @private * @param {!Array} values An array of 32-bit numbers. Its length * must be even. Each pair of numbers represents a 64-bit integer * in big-endian order * @return {!Array} */ goog.crypt.Sha2_64bit.toLongArray_ = function(values) { goog.asserts.assert(values.length % 2 == 0); var result = []; for (var i = 0; i < values.length; i += 2) { result.push(new goog.math.Long(values[i + 1], values[i])); } return result; }; /** * Fixed constants used in SHA-512 variants. * * These values are from Section 4.2.3 of * http://csrc.nist.gov/publications/fips/fips180-4/fips-180-4.pdf * @const * @private {!Array} */ goog.crypt.Sha2_64bit.K_ = goog.crypt.Sha2_64bit.toLongArray_([ 0x428a2f98, 0xd728ae22, 0x71374491, 0x23ef65cd, 0xb5c0fbcf, 0xec4d3b2f, 0xe9b5dba5, 0x8189dbbc, 0x3956c25b, 0xf348b538, 0x59f111f1, 0xb605d019, 0x923f82a4, 0xaf194f9b, 0xab1c5ed5, 0xda6d8118, 0xd807aa98, 0xa3030242, 0x12835b01, 0x45706fbe, 0x243185be, 0x4ee4b28c, 0x550c7dc3, 0xd5ffb4e2, 0x72be5d74, 0xf27b896f, 0x80deb1fe, 0x3b1696b1, 0x9bdc06a7, 0x25c71235, 0xc19bf174, 0xcf692694, 0xe49b69c1, 0x9ef14ad2, 0xefbe4786, 0x384f25e3, 0x0fc19dc6, 0x8b8cd5b5, 0x240ca1cc, 0x77ac9c65, 0x2de92c6f, 0x592b0275, 0x4a7484aa, 0x6ea6e483, 0x5cb0a9dc, 0xbd41fbd4, 0x76f988da, 0x831153b5, 0x983e5152, 0xee66dfab, 0xa831c66d, 0x2db43210, 0xb00327c8, 0x98fb213f, 0xbf597fc7, 0xbeef0ee4, 0xc6e00bf3, 0x3da88fc2, 0xd5a79147, 0x930aa725, 0x06ca6351, 0xe003826f, 0x14292967, 0x0a0e6e70, 0x27b70a85, 0x46d22ffc, 0x2e1b2138, 0x5c26c926, 0x4d2c6dfc, 0x5ac42aed, 0x53380d13, 0x9d95b3df, 0x650a7354, 0x8baf63de, 0x766a0abb, 0x3c77b2a8, 0x81c2c92e, 0x47edaee6, 0x92722c85, 0x1482353b, 0xa2bfe8a1, 0x4cf10364, 0xa81a664b, 0xbc423001, 0xc24b8b70, 0xd0f89791, 0xc76c51a3, 0x0654be30, 0xd192e819, 0xd6ef5218, 0xd6990624, 0x5565a910, 0xf40e3585, 0x5771202a, 0x106aa070, 0x32bbd1b8, 0x19a4c116, 0xb8d2d0c8, 0x1e376c08, 0x5141ab53, 0x2748774c, 0xdf8eeb99, 0x34b0bcb5, 0xe19b48a8, 0x391c0cb3, 0xc5c95a63, 0x4ed8aa4a, 0xe3418acb, 0x5b9cca4f, 0x7763e373, 0x682e6ff3, 0xd6b2b8a3, 0x748f82ee, 0x5defb2fc, 0x78a5636f, 0x43172f60, 0x84c87814, 0xa1f0ab72, 0x8cc70208, 0x1a6439ec, 0x90befffa, 0x23631e28, 0xa4506ceb, 0xde82bde9, 0xbef9a3f7, 0xb2c67915, 0xc67178f2, 0xe372532b, 0xca273ece, 0xea26619c, 0xd186b8c7, 0x21c0c207, 0xeada7dd6, 0xcde0eb1e, 0xf57d4f7f, 0xee6ed178, 0x06f067aa, 0x72176fba, 0x0a637dc5, 0xa2c898a6, 0x113f9804, 0xbef90dae, 0x1b710b35, 0x131c471b, 0x28db77f5, 0x23047d84, 0x32caab7b, 0x40c72493, 0x3c9ebe0a, 0x15c9bebc, 0x431d67c4, 0x9c100d4c, 0x4cc5d4be, 0xcb3e42b6, 0x597f299c, 0xfc657e2a, 0x5fcb6fab, 0x3ad6faec, 0x6c44198c, 0x4a475817 ]);