123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680 |
- // Copyright 2007 The Closure Library Authors. All Rights Reserved.
- //
- // Licensed under the Apache License, Version 2.0 (the "License");
- // you may not use this file except in compliance with the License.
- // You may obtain a copy of the License at
- //
- // http://www.apache.org/licenses/LICENSE-2.0
- //
- // Unless required by applicable law or agreed to in writing, software
- // distributed under the License is distributed on an "AS-IS" BASIS,
- // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- // See the License for the specific language governing permissions and
- // limitations under the License.
- /**
- * @fileoverview Class for representing matrices and static helper functions.
- */
- goog.provide('goog.math.Matrix');
- goog.require('goog.array');
- goog.require('goog.asserts');
- goog.require('goog.math');
- goog.require('goog.math.Size');
- goog.require('goog.string');
- /**
- * Class for representing and manipulating matrices.
- *
- * The entry that lies in the i-th row and the j-th column of a matrix is
- * typically referred to as the i,j entry of the matrix.
- *
- * The m-by-n matrix A would have its entries referred to as:
- * [ a0,0 a0,1 a0,2 ... a0,j ... a0,n ]
- * [ a1,0 a1,1 a1,2 ... a1,j ... a1,n ]
- * [ a2,0 a2,1 a2,2 ... a2,j ... a2,n ]
- * [ . . . . . ]
- * [ . . . . . ]
- * [ . . . . . ]
- * [ ai,0 ai,1 ai,2 ... ai,j ... ai,n ]
- * [ . . . . . ]
- * [ . . . . . ]
- * [ . . . . . ]
- * [ am,0 am,1 am,2 ... am,j ... am,n ]
- *
- * @param {!goog.math.Matrix|!Array<!Array<number>>|!goog.math.Size|number} m
- * A matrix to copy, a 2D-array to take as a template, a size object for
- * dimensions, or the number of rows.
- * @param {number=} opt_n Number of columns of the matrix (only applicable if
- * the first argument is also numeric).
- * @struct
- * @constructor
- * @final
- */
- goog.math.Matrix = function(m, opt_n) {
- if (m instanceof goog.math.Matrix) {
- this.array_ = m.toArray();
- } else if (
- goog.isArrayLike(m) &&
- goog.math.Matrix.isValidArray(
- /** @type {!Array<!Array<number>>} */ (m))) {
- this.array_ = goog.array.clone(/** @type {!Array<!Array<number>>} */ (m));
- } else if (m instanceof goog.math.Size) {
- this.array_ = goog.math.Matrix.createZeroPaddedArray_(m.height, m.width);
- } else if (goog.isNumber(m) && goog.isNumber(opt_n) && m > 0 && opt_n > 0) {
- this.array_ = goog.math.Matrix.createZeroPaddedArray_(
- /** @type {number} */ (m), opt_n);
- } else {
- throw Error('Invalid argument(s) for Matrix contructor');
- }
- this.size_ = new goog.math.Size(this.array_[0].length, this.array_.length);
- };
- /**
- * Creates a square identity matrix. i.e. for n = 3:
- * <pre>
- * [ 1 0 0 ]
- * [ 0 1 0 ]
- * [ 0 0 1 ]
- * </pre>
- * @param {number} n The size of the square identity matrix.
- * @return {!goog.math.Matrix} Identity matrix of width and height {@code n}.
- */
- goog.math.Matrix.createIdentityMatrix = function(n) {
- var rv = [];
- for (var i = 0; i < n; i++) {
- rv[i] = [];
- for (var j = 0; j < n; j++) {
- rv[i][j] = i == j ? 1 : 0;
- }
- }
- return new goog.math.Matrix(rv);
- };
- /**
- * Calls a function for each cell in a matrix.
- * @param {goog.math.Matrix} matrix The matrix to iterate over.
- * @param {function(this:T, number, number, number, !goog.math.Matrix)} fn
- * The function to call for every element. This function
- * takes 4 arguments (value, i, j, and the matrix)
- * and the return value is irrelevant.
- * @param {T=} opt_obj The object to be used as the value of 'this'
- * within {@code fn}.
- * @template T
- */
- goog.math.Matrix.forEach = function(matrix, fn, opt_obj) {
- for (var i = 0; i < matrix.getSize().height; i++) {
- for (var j = 0; j < matrix.getSize().width; j++) {
- fn.call(opt_obj, matrix.array_[i][j], i, j, matrix);
- }
- }
- };
- /**
- * Tests whether an array is a valid matrix. A valid array is an array of
- * arrays where all arrays are of the same length and all elements are numbers.
- * @param {!Array<!Array<number>>} arr An array to test.
- * @return {boolean} Whether the array is a valid matrix.
- */
- goog.math.Matrix.isValidArray = function(arr) {
- var len = 0;
- for (var i = 0; i < arr.length; i++) {
- if (!goog.isArrayLike(arr[i]) || len > 0 && arr[i].length != len) {
- return false;
- }
- for (var j = 0; j < arr[i].length; j++) {
- if (!goog.isNumber(arr[i][j])) {
- return false;
- }
- }
- if (len == 0) {
- len = arr[i].length;
- }
- }
- return len != 0;
- };
- /**
- * Calls a function for every cell in a matrix and inserts the result into a
- * new matrix of equal dimensions.
- * @param {!goog.math.Matrix} matrix The matrix to iterate over.
- * @param {function(this:T, number, number, number, !goog.math.Matrix): number}
- * fn The function to call for every element. This function
- * takes 4 arguments (value, i, j and the matrix)
- * and should return a number, which will be inserted into a new matrix.
- * @param {T=} opt_obj The object to be used as the value of 'this'
- * within {@code fn}.
- * @return {!goog.math.Matrix} A new matrix with the results from {@code fn}.
- * @template T
- */
- goog.math.Matrix.map = function(matrix, fn, opt_obj) {
- var m = new goog.math.Matrix(matrix.getSize());
- goog.math.Matrix.forEach(matrix, function(value, i, j) {
- m.array_[i][j] = fn.call(opt_obj, value, i, j, matrix);
- });
- return m;
- };
- /**
- * Creates a new zero padded matix.
- * @param {number} m Height of matrix.
- * @param {number} n Width of matrix.
- * @return {!Array<!Array<number>>} The new zero padded matrix.
- * @private
- */
- goog.math.Matrix.createZeroPaddedArray_ = function(m, n) {
- var rv = [];
- for (var i = 0; i < m; i++) {
- rv[i] = [];
- for (var j = 0; j < n; j++) {
- rv[i][j] = 0;
- }
- }
- return rv;
- };
- /**
- * Internal array representing the matrix.
- * @type {!Array<!Array<number>>}
- * @private
- */
- goog.math.Matrix.prototype.array_;
- /**
- * After construction the Matrix's size is constant and stored in this object.
- * @type {!goog.math.Size}
- * @private
- */
- goog.math.Matrix.prototype.size_;
- /**
- * Returns a new matrix that is the sum of this and the provided matrix.
- * @param {goog.math.Matrix} m The matrix to add to this one.
- * @return {!goog.math.Matrix} Resultant sum.
- */
- goog.math.Matrix.prototype.add = function(m) {
- if (!goog.math.Size.equals(this.size_, m.getSize())) {
- throw Error('Matrix summation is only supported on arrays of equal size');
- }
- return goog.math.Matrix.map(
- this, function(val, i, j) { return val + m.array_[i][j]; });
- };
- /**
- * Appends the given matrix to the right side of this matrix.
- * @param {goog.math.Matrix} m The matrix to augment this matrix with.
- * @return {!goog.math.Matrix} A new matrix with additional columns on the
- * right.
- */
- goog.math.Matrix.prototype.appendColumns = function(m) {
- if (this.size_.height != m.getSize().height) {
- throw Error(
- 'The given matrix has height ' + m.size_.height + ', but ' +
- ' needs to have height ' + this.size_.height + '.');
- }
- var result =
- new goog.math.Matrix(this.size_.height, this.size_.width + m.size_.width);
- goog.math.Matrix.forEach(
- this, function(value, i, j) { result.array_[i][j] = value; });
- goog.math.Matrix.forEach(m, function(value, i, j) {
- result.array_[i][this.size_.width + j] = value;
- }, this);
- return result;
- };
- /**
- * Appends the given matrix to the bottom of this matrix.
- * @param {goog.math.Matrix} m The matrix to augment this matrix with.
- * @return {!goog.math.Matrix} A new matrix with added columns on the bottom.
- */
- goog.math.Matrix.prototype.appendRows = function(m) {
- if (this.size_.width != m.getSize().width) {
- throw Error(
- 'The given matrix has width ' + m.size_.width + ', but ' +
- ' needs to have width ' + this.size_.width + '.');
- }
- var result = new goog.math.Matrix(
- this.size_.height + m.size_.height, this.size_.width);
- goog.math.Matrix.forEach(
- this, function(value, i, j) { result.array_[i][j] = value; });
- goog.math.Matrix.forEach(m, function(value, i, j) {
- result.array_[this.size_.height + i][j] = value;
- }, this);
- return result;
- };
- /**
- * Returns whether the given matrix equals this matrix.
- * @param {goog.math.Matrix} m The matrix to compare to this one.
- * @param {number=} opt_tolerance The tolerance when comparing array entries.
- * @return {boolean} Whether the given matrix equals this matrix.
- */
- goog.math.Matrix.prototype.equals = function(m, opt_tolerance) {
- if (this.size_.width != m.size_.width) {
- return false;
- }
- if (this.size_.height != m.size_.height) {
- return false;
- }
- var tolerance = opt_tolerance || 0;
- for (var i = 0; i < this.size_.height; i++) {
- for (var j = 0; j < this.size_.width; j++) {
- if (!goog.math.nearlyEquals(
- this.array_[i][j], m.array_[i][j], tolerance)) {
- return false;
- }
- }
- }
- return true;
- };
- /**
- * Returns the determinant of this matrix. The determinant of a matrix A is
- * often denoted as |A| and can only be applied to a square matrix.
- * @return {number} The determinant of this matrix.
- */
- goog.math.Matrix.prototype.getDeterminant = function() {
- if (!this.isSquare()) {
- throw Error('A determinant can only be take on a square matrix');
- }
- return this.getDeterminant_();
- };
- /**
- * Returns the inverse of this matrix if it exists or null if the matrix is
- * not invertible.
- * @return {goog.math.Matrix} A new matrix which is the inverse of this matrix.
- */
- goog.math.Matrix.prototype.getInverse = function() {
- if (!this.isSquare()) {
- throw Error('An inverse can only be taken on a square matrix.');
- }
- if (this.getSize().width == 1) {
- var a = this.getValueAt(0, 0);
- return a == 0 ? null : new goog.math.Matrix([[1 / Number(a)]]);
- }
- var identity = goog.math.Matrix.createIdentityMatrix(this.size_.height);
- var mi = this.appendColumns(identity).getReducedRowEchelonForm();
- var i = mi.getSubmatrixByCoordinates_(
- 0, 0, identity.size_.width - 1, identity.size_.height - 1);
- if (!i.equals(identity)) {
- return null; // This matrix was not invertible
- }
- return mi.getSubmatrixByCoordinates_(0, identity.size_.width);
- };
- /**
- * Transforms this matrix into reduced row echelon form.
- * @return {!goog.math.Matrix} A new matrix reduced row echelon form.
- */
- goog.math.Matrix.prototype.getReducedRowEchelonForm = function() {
- var result = new goog.math.Matrix(this);
- var col = 0;
- // Each iteration puts one row in reduced row echelon form
- for (var row = 0; row < result.size_.height; row++) {
- if (col >= result.size_.width) {
- return result;
- }
- // Scan each column starting from this row on down for a non-zero value
- var i = row;
- while (result.array_[i][col] == 0) {
- i++;
- if (i == result.size_.height) {
- i = row;
- col++;
- if (col == result.size_.width) {
- return result;
- }
- }
- }
- // Make the row we found the current row with a leading 1
- this.swapRows_(i, row);
- var divisor = result.array_[row][col];
- for (var j = col; j < result.size_.width; j++) {
- result.array_[row][j] = result.array_[row][j] / divisor;
- }
- // Subtract a multiple of this row from each other row
- // so that all the other entries in this column are 0
- for (i = 0; i < result.size_.height; i++) {
- if (i != row) {
- var multiple = result.array_[i][col];
- for (var j = col; j < result.size_.width; j++) {
- result.array_[i][j] -= multiple * result.array_[row][j];
- }
- }
- }
- // Move on to the next column
- col++;
- }
- return result;
- };
- /**
- * @return {!goog.math.Size} The dimensions of the matrix.
- */
- goog.math.Matrix.prototype.getSize = function() {
- return this.size_;
- };
- /**
- * Return the transpose of this matrix. For an m-by-n matrix, the transpose
- * is the n-by-m matrix which results from turning rows into columns and columns
- * into rows
- * @return {!goog.math.Matrix} A new matrix A^T.
- */
- goog.math.Matrix.prototype.getTranspose = function() {
- var m = new goog.math.Matrix(this.size_.width, this.size_.height);
- goog.math.Matrix.forEach(
- this, function(value, i, j) { m.array_[j][i] = value; });
- return m;
- };
- /**
- * Retrieves the value of a particular coordinate in the matrix or null if the
- * requested coordinates are out of range.
- * @param {number} i The i index of the coordinate.
- * @param {number} j The j index of the coordinate.
- * @return {?number} The value at the specified coordinate.
- */
- goog.math.Matrix.prototype.getValueAt = function(i, j) {
- if (!this.isInBounds_(i, j)) {
- return null;
- }
- return this.array_[i][j];
- };
- /**
- * @return {boolean} Whether the horizontal and vertical dimensions of this
- * matrix are the same.
- */
- goog.math.Matrix.prototype.isSquare = function() {
- return this.size_.width == this.size_.height;
- };
- /**
- * Sets the value at a particular coordinate (if the coordinate is within the
- * bounds of the matrix).
- * @param {number} i The i index of the coordinate.
- * @param {number} j The j index of the coordinate.
- * @param {number} value The new value for the coordinate.
- */
- goog.math.Matrix.prototype.setValueAt = function(i, j, value) {
- if (!this.isInBounds_(i, j)) {
- throw Error(
- 'Index out of bounds when setting matrix value, (' + i + ',' + j +
- ') in size (' + this.size_.height + ',' + this.size_.width + ')');
- }
- this.array_[i][j] = value;
- };
- /**
- * Performs matrix or scalar multiplication on a matrix and returns the
- * resultant matrix.
- *
- * Matrix multiplication is defined between two matrices only if the number of
- * columns of the first matrix is the same as the number of rows of the second
- * matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their
- * product AB is an m-by-p matrix
- *
- * Scalar multiplication returns a matrix of the same size as the original,
- * each value multiplied by the given value.
- *
- * @param {goog.math.Matrix|number} m Matrix/number to multiply the matrix by.
- * @return {!goog.math.Matrix} Resultant product.
- */
- goog.math.Matrix.prototype.multiply = function(m) {
- if (m instanceof goog.math.Matrix) {
- if (this.size_.width != m.getSize().height) {
- throw Error(
- 'Invalid matrices for multiplication. Second matrix ' +
- 'should have the same number of rows as the first has columns.');
- }
- return this.matrixMultiply_(/** @type {!goog.math.Matrix} */ (m));
- } else if (goog.isNumber(m)) {
- return this.scalarMultiply_(/** @type {number} */ (m));
- } else {
- throw Error(
- 'A matrix can only be multiplied by' +
- ' a number or another matrix.');
- }
- };
- /**
- * Returns a new matrix that is the difference of this and the provided matrix.
- * @param {goog.math.Matrix} m The matrix to subtract from this one.
- * @return {!goog.math.Matrix} Resultant difference.
- */
- goog.math.Matrix.prototype.subtract = function(m) {
- if (!goog.math.Size.equals(this.size_, m.getSize())) {
- throw Error(
- 'Matrix subtraction is only supported on arrays of equal size.');
- }
- return goog.math.Matrix.map(
- this, function(val, i, j) { return val - m.array_[i][j]; });
- };
- /**
- * @return {!Array<!Array<number>>} A 2D internal array representing this
- * matrix. Not a clone.
- */
- goog.math.Matrix.prototype.toArray = function() {
- return this.array_;
- };
- if (goog.DEBUG) {
- /**
- * Returns a string representation of the matrix. e.g.
- * <pre>
- * [ 12 5 9 1 ]
- * [ 4 16 0 17 ]
- * [ 12 5 1 23 ]
- * </pre>
- *
- * @return {string} A string representation of this matrix.
- * @override
- */
- goog.math.Matrix.prototype.toString = function() {
- // Calculate correct padding for optimum display of matrix
- var maxLen = 0;
- goog.math.Matrix.forEach(this, function(val) {
- var len = String(val).length;
- if (len > maxLen) {
- maxLen = len;
- }
- });
- // Build the string
- var sb = [];
- goog.array.forEach(this.array_, function(row, x) {
- sb.push('[ ');
- goog.array.forEach(row, function(val, y) {
- var strval = String(val);
- sb.push(goog.string.repeat(' ', maxLen - strval.length) + strval + ' ');
- });
- sb.push(']\n');
- });
- return sb.join('');
- };
- }
- /**
- * Returns the signed minor.
- * @param {number} i The row index.
- * @param {number} j The column index.
- * @return {number} The cofactor C[i,j] of this matrix.
- * @private
- */
- goog.math.Matrix.prototype.getCofactor_ = function(i, j) {
- return (i + j % 2 == 0 ? 1 : -1) * this.getMinor_(i, j);
- };
- /**
- * Returns the determinant of this matrix. The determinant of a matrix A is
- * often denoted as |A| and can only be applied to a square matrix. Same as
- * public method but without validation. Implemented using Laplace's formula.
- * @return {number} The determinant of this matrix.
- * @private
- */
- goog.math.Matrix.prototype.getDeterminant_ = function() {
- if (this.getSize().area() == 1) {
- return this.array_[0][0];
- }
- // We might want to use matrix decomposition to improve running time
- // For now we'll do a Laplace expansion along the first row
- var determinant = 0;
- for (var j = 0; j < this.size_.width; j++) {
- determinant += (this.array_[0][j] * this.getCofactor_(0, j));
- }
- return determinant;
- };
- /**
- * Returns the determinant of the submatrix resulting from the deletion of row i
- * and column j.
- * @param {number} i The row to delete.
- * @param {number} j The column to delete.
- * @return {number} The first minor M[i,j] of this matrix.
- * @private
- */
- goog.math.Matrix.prototype.getMinor_ = function(i, j) {
- return this.getSubmatrixByDeletion_(i, j).getDeterminant_();
- };
- /**
- * Returns a submatrix contained within this matrix.
- * @param {number} i1 The upper row index.
- * @param {number} j1 The left column index.
- * @param {number=} opt_i2 The lower row index.
- * @param {number=} opt_j2 The right column index.
- * @return {!goog.math.Matrix} The submatrix contained within the given bounds.
- * @private
- */
- goog.math.Matrix.prototype.getSubmatrixByCoordinates_ = function(
- i1, j1, opt_i2, opt_j2) {
- var i2 = opt_i2 ? opt_i2 : this.size_.height - 1;
- var j2 = opt_j2 ? opt_j2 : this.size_.width - 1;
- var result = new goog.math.Matrix(i2 - i1 + 1, j2 - j1 + 1);
- goog.math.Matrix.forEach(result, function(value, i, j) {
- result.array_[i][j] = this.array_[i1 + i][j1 + j];
- }, this);
- return result;
- };
- /**
- * Returns a new matrix equal to this one, but with row i and column j deleted.
- * @param {number} i The row index of the coordinate.
- * @param {number} j The column index of the coordinate.
- * @return {!goog.math.Matrix} The value at the specified coordinate.
- * @private
- */
- goog.math.Matrix.prototype.getSubmatrixByDeletion_ = function(i, j) {
- var m = new goog.math.Matrix(this.size_.width - 1, this.size_.height - 1);
- goog.math.Matrix.forEach(m, function(value, x, y) {
- m.setValueAt(x, y, this.array_[x >= i ? x + 1 : x][y >= j ? y + 1 : y]);
- }, this);
- return m;
- };
- /**
- * Returns whether the given coordinates are contained within the bounds of the
- * matrix.
- * @param {number} i The i index of the coordinate.
- * @param {number} j The j index of the coordinate.
- * @return {boolean} The value at the specified coordinate.
- * @private
- */
- goog.math.Matrix.prototype.isInBounds_ = function(i, j) {
- return i >= 0 && i < this.size_.height && j >= 0 && j < this.size_.width;
- };
- /**
- * Matrix multiplication is defined between two matrices only if the number of
- * columns of the first matrix is the same as the number of rows of the second
- * matrix. If A is an m-by-n matrix and B is an n-by-p matrix, then their
- * product AB is an m-by-p matrix
- *
- * @param {goog.math.Matrix} m Matrix to multiply the matrix by.
- * @return {!goog.math.Matrix} Resultant product.
- * @private
- */
- goog.math.Matrix.prototype.matrixMultiply_ = function(m) {
- var resultMatrix = new goog.math.Matrix(this.size_.height, m.getSize().width);
- goog.math.Matrix.forEach(resultMatrix, function(val, x, y) {
- var newVal = 0;
- for (var i = 0; i < this.size_.width; i++) {
- newVal += goog.asserts.assertNumber(this.getValueAt(x, i)) *
- goog.asserts.assertNumber(m.getValueAt(i, y));
- }
- resultMatrix.setValueAt(x, y, newVal);
- }, this);
- return resultMatrix;
- };
- /**
- * Scalar multiplication returns a matrix of the same size as the original,
- * each value multiplied by the given value.
- *
- * @param {number} m number to multiply the matrix by.
- * @return {!goog.math.Matrix} Resultant product.
- * @private
- */
- goog.math.Matrix.prototype.scalarMultiply_ = function(m) {
- return goog.math.Matrix.map(this, function(val, x, y) { return val * m; });
- };
- /**
- * Swaps two rows.
- * @param {number} i1 The index of the first row to swap.
- * @param {number} i2 The index of the second row to swap.
- * @private
- */
- goog.math.Matrix.prototype.swapRows_ = function(i1, i2) {
- var tmp = this.array_[i1];
- this.array_[i1] = this.array_[i2];
- this.array_[i2] = tmp;
- };
|