123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476 |
- import unittest
- from random import random
- from math import atan2, isnan, copysign
- import operator
- INF = float("inf")
- NAN = float("nan")
- # These tests ensure that complex math does the right thing
- class ComplexTest(unittest.TestCase):
- def assertAlmostEqual(self, a, b):
- if isinstance(a, complex):
- if isinstance(b, complex):
- unittest.TestCase.assertAlmostEqual(self, a.real, b.real)
- unittest.TestCase.assertAlmostEqual(self, a.imag, b.imag)
- else:
- unittest.TestCase.assertAlmostEqual(self, a.real, b)
- unittest.TestCase.assertAlmostEqual(self, a.imag, 0.)
- else:
- if isinstance(b, complex):
- unittest.TestCase.assertAlmostEqual(self, a, b.real)
- unittest.TestCase.assertAlmostEqual(self, 0., b.imag)
- else:
- unittest.TestCase.assertAlmostEqual(self, a, b)
- def assertCloseAbs(self, x, y, eps=1e-9):
- """Return true iff floats x and y "are close"."""
- # put the one with larger magnitude second
- if abs(x) > abs(y):
- x, y = y, x
- if y == 0:
- return abs(x) < eps
- if x == 0:
- return abs(y) < eps
- # check that relative difference < eps
- self.assertTrue(abs((x-y)/y) < eps)
- def assertFloatsAreIdentical(self, x, y):
- """assert that floats x and y are identical, in the sense that:
- (1) both x and y are nans, or
- (2) both x and y are infinities, with the same sign, or
- (3) both x and y are zeros, with the same sign, or
- (4) x and y are both finite and nonzero, and x == y
- """
- msg = 'floats {!r} and {!r} are not identical'
- if isnan(x) or isnan(y):
- if isnan(x) and isnan(y):
- return
- elif x == y:
- if x != 0.0:
- return
- # both zero; check that signs match
- elif copysign(1.0, x) == copysign(1.0, y):
- return
- else:
- msg += ': zeros have different signs'
- self.fail(msg.format(x, y))
- def assertClose(self, x, y, eps=1e-9):
- """Return true iff complexes x and y "are close"."""
- self.assertCloseAbs(x.real, y.real, eps)
- self.assertCloseAbs(x.imag, y.imag, eps)
- def check_div(self, x, y):
- """Compute complex z=x*y, and check that z/x==y and z/y==x."""
- z = x * y
- if x != 0:
- q = z / x
- self.assertClose(q, y)
- q = z.__truediv__(x)
- self.assertClose(q, y)
- if y != 0:
- q = z / y
- self.assertClose(q, x)
- q = z.__truediv__(y)
- self.assertClose(q, x)
- def test_truediv(self):
- simple_real = [float(i) for i in range(-5, 6)]
- simple_complex = [complex(x, y) for x in simple_real for y in simple_real]
- for x in simple_complex:
- for y in simple_complex:
- self.check_div(x, y)
- # A naive complex division algorithm (such as in 2.0) is very prone to
- # nonsense errors for these (overflows and underflows).
- self.check_div(complex(1e200, 1e200), 1+0j)
- self.check_div(complex(1e-200, 1e-200), 1+0j)
- # Just for fun.
- for i in range(100):
- self.check_div(complex(random(), random()),
- complex(random(), random()))
- self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
- # FIXME: The following currently crashes on Alpha
- # self.assertRaises(OverflowError, pow, 1e200+1j, 1e200+1j)
- self.assertAlmostEqual(complex.__truediv__(2+0j, 1+1j), 1-1j)
- self.assertRaises(ZeroDivisionError, complex.__truediv__, 1+1j, 0+0j)
- for denom_real, denom_imag in [(0, NAN), (NAN, 0), (NAN, NAN)]:
- z = complex(0, 0) / complex(denom_real, denom_imag)
- self.assertTrue(isnan(z.real))
- self.assertTrue(isnan(z.imag))
- def test_floordiv(self):
- self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 1.5+0j)
- self.assertRaises(TypeError, complex.__floordiv__, 3+0j, 0+0j)
- def test_richcompare(self):
- self.assertIs(complex.__eq__(1+1j, 1 << 10000), False)
- self.assertRaises(TypeError, complex.__lt__, 1+1j, None)
- self.assertIs(complex.__eq__(1+1j, 1+1j), True)
- self.assertIs(complex.__eq__(1+1j, 2+2j), False)
- self.assertIs(complex.__ne__(1+1j, 1+1j), False)
- self.assertIs(complex.__ne__(1+1j, 2+2j), True)
- self.assertFalse(complex.__eq__(1j, None), False)
- self.assertFalse(complex.__eq__(1j, NotImplemented), False)
- for i in range(1, 100):
- f = i / 100.0
- self.assertIs(complex.__eq__(f+0j, f), True)
- self.assertIs(complex.__ne__(f+0j, f), False)
- self.assertIs(complex.__eq__(complex(f, f), f), False)
- self.assertIs(complex.__ne__(complex(f, f), f), True)
- self.assertRaises(TypeError, complex.__lt__, 1+1j, 2+2j)
- self.assertRaises(TypeError, complex.__le__, 1+1j, 2+2j)
- self.assertRaises(TypeError, complex.__gt__, 1+1j, 2+2j)
- self.assertRaises(TypeError, complex.__ge__, 1+1j, 2+2j)
- self.assertRaises(TypeError, operator.lt, 1+1j, 2+2j)
- self.assertRaises(TypeError, operator.le, 1+1j, 2+2j)
- self.assertRaises(TypeError, operator.gt, 1+1j, 2+2j)
- self.assertRaises(TypeError, operator.ge, 1+1j, 2+2j)
- self.assertIs(operator.eq(1+1j, 1+1j), True)
- self.assertIs(operator.eq(1+1j, 2+2j), False)
- self.assertIs(operator.ne(1+1j, 1+1j), False)
- self.assertIs(operator.ne(1+1j, 2+2j), True)
- #def test_richcompare_boundaries(self):
- #def check(n, deltas, is_equal, imag=0.0):
- #for delta in deltas:
- # i = n + delta
- #z = complex(i, imag)
- #self.assertIs(complex.__eq__(z, i), is_equal(delta))
- #self.assertIs(complex.__ne__(z, i), not is_equal(delta))
- # currently failing, though normal ones are working, maybe due to
- # currently buggy div operation
- # For IEEE-754 doubles the following should hold:
- # x in [2 ** (52 + i), 2 ** (53 + i + 1)] -> x mod 2 ** i == 0
- # where the interval is representable, of course.
- #for i in range(1, 10):
- # pow = 52 + i
- # mult = 2 ** i
- # check(2 ** pow, range(1, 101), lambda delta: delta % mult == 0)
- # check(2 ** pow, range(1, 101), lambda delta: False, float(i))
- #check(2 ** 53, range(-100, 0), lambda delta: True)
- def test_mod(self):
- # % is no longer supported on complex numbers
- self.assertRaises(TypeError, (1+1j).__mod__, 0+0j)
- self.assertRaises(TypeError, lambda: (3.33+4.43j) % 0)
- self.assertRaises(TypeError, (1+1j).__mod__, 4.3j)
- def test_divmod(self):
- # actually divmod is deprecated, though we have still the impl.
- #self.assertRaises(TypeError, divmod, 1+1j, 1+0j)
- #self.assertRaises(TypeError, divmod, 1+1j, 0+0j)
- # dummy test
- c = 1+1j
- self.assertEqual(str(c.__divmod__), "<bound method complex.<native JS> of (1.0000000000000000+1.0000000000000000j)>")
- def test_pow(self):
- self.assertAlmostEqual(pow(1+1j, 0+0j), 1.0)
- self.assertAlmostEqual(pow(0+0j, 2+0j), 0.0)
- self.assertRaises(ZeroDivisionError, pow, 0+0j, 1j)
- self.assertAlmostEqual(pow(1j, -1), 1/1j)
- self.assertAlmostEqual(pow(1j, 200), 1)
- self.assertRaises(ValueError, pow, 1+1j, 1+1j, 1+1j)
- a = 3.33+4.43j
- self.assertEqual(a ** 0j, 1)
- self.assertEqual(a ** 0.+0.j, 1)
- self.assertEqual(3j ** 0j, 1)
- self.assertEqual(3j ** 0, 1)
- try:
- 0j ** a
- except ZeroDivisionError:
- pass
- else:
- self.fail("should fail 0.0 to negative or complex power")
- try:
- 0j ** (3-2j)
- except ZeroDivisionError:
- pass
- else:
- self.fail("should fail 0.0 to negative or complex power")
- # The following is used to exercise certain code paths
- self.assertEqual(a ** 105, a ** 105)
- self.assertEqual(a ** -105, a ** -105)
- self.assertEqual(a ** -30, a ** -30)
- self.assertEqual(0.0j ** 0, 1)
- b = 5.1+2.3j
- self.assertRaises(ValueError, pow, a, b, 0)
- def test_boolcontext(self):
- for i in range(100):
- self.assertTrue(complex(random() + 1e-6, random() + 1e-6))
- self.assertTrue(not complex(0.0, 0.0))
- def test_conjugate(self):
- self.assertClose(complex(5.3, 9.8).conjugate(), 5.3-9.8j)
- def test_constructor(self):
- class OS:
- def __init__(self, value): self.value = value
- def __complex__(self): return self.value
- class NS(object):
- def __init__(self, value): self.value = value
- def __complex__(self): return self.value
- self.assertEqual(complex(OS(1+10j)), 1+10j)
- self.assertEqual(complex(NS(1+10j)), 1+10j)
- self.assertRaises(TypeError, complex, OS(None))
- self.assertRaises(TypeError, complex, NS(None))
- self.assertRaises(TypeError, complex, {})
- self.assertRaises(TypeError, complex, NS(1.5))
- self.assertRaises(TypeError, complex, NS(1))
- self.assertAlmostEqual(complex("1+10j"), 1+10j)
- self.assertAlmostEqual(complex(10), 10+0j)
- self.assertAlmostEqual(complex(10.0), 10+0j)
- self.assertAlmostEqual(complex(10), 10+0j)
- self.assertAlmostEqual(complex(10+0j), 10+0j)
- self.assertAlmostEqual(complex(1, 10), 1+10j)
- self.assertAlmostEqual(complex(1, 10), 1+10j)
- self.assertAlmostEqual(complex(1, 10.0), 1+10j)
- self.assertAlmostEqual(complex(1, 10), 1+10j)
- self.assertAlmostEqual(complex(1, 10), 1+10j)
- self.assertAlmostEqual(complex(1, 10.0), 1+10j)
- self.assertAlmostEqual(complex(1.0, 10), 1+10j)
- self.assertAlmostEqual(complex(1.0, 10), 1+10j)
- self.assertAlmostEqual(complex(1.0, 10.0), 1+10j)
- self.assertAlmostEqual(complex(3.14+0j), 3.14+0j)
- self.assertAlmostEqual(complex(3.14), 3.14+0j)
- self.assertAlmostEqual(complex(314), 314.0+0j)
- self.assertAlmostEqual(complex(314), 314.0+0j)
- self.assertAlmostEqual(complex(3.14+0j, 0j), 3.14+0j)
- self.assertAlmostEqual(complex(3.14, 0.0), 3.14+0j)
- self.assertAlmostEqual(complex(314, 0), 314.0+0j)
- self.assertAlmostEqual(complex(314, 0), 314.0+0j)
- self.assertAlmostEqual(complex(0j, 3.14j), -3.14+0j)
- self.assertAlmostEqual(complex(0.0, 3.14j), -3.14+0j)
- self.assertAlmostEqual(complex(0j, 3.14), 3.14j)
- self.assertAlmostEqual(complex(0.0, 3.14), 3.14j)
- self.assertAlmostEqual(complex("1"), 1+0j)
- self.assertAlmostEqual(complex("1j"), 1j)
- self.assertAlmostEqual(complex(), 0)
- self.assertAlmostEqual(complex("-1"), -1)
- self.assertAlmostEqual(complex("+1"), +1)
- self.assertAlmostEqual(complex("(1+2j)"), 1+2j)
- self.assertAlmostEqual(complex("(1.3+2.2j)"), 1.3+2.2j)
- self.assertAlmostEqual(complex("3.14+1J"), 3.14+1j)
- self.assertAlmostEqual(complex(" ( +3.14-6J )"), 3.14-6j)
- self.assertAlmostEqual(complex(" ( +3.14-J )"), 3.14-1j)
- self.assertAlmostEqual(complex(" ( +3.14+j )"), 3.14+1j)
- self.assertAlmostEqual(complex("J"), 1j)
- self.assertAlmostEqual(complex("( j )"), 1j)
- self.assertAlmostEqual(complex("+J"), 1j)
- self.assertAlmostEqual(complex("( -j)"), -1j)
- self.assertAlmostEqual(complex('1e-500'), 0.0 + 0.0j)
- self.assertAlmostEqual(complex('-1e-500j'), 0.0 - 0.0j)
- self.assertAlmostEqual(complex('-1e-500+1e-500j'), -0.0 + 0.0j)
- # class complex2(complex): pass
- # self.assertAlmostEqual(complex(complex2(1+1j)), 1+1j)
- # currently no support for keyword arguments
- #self.assertAlmostEqual(complex(real=17, imag=23), 17+23j)
- #self.assertAlmostEqual(complex(real=17+23j), 17+23j)
- #self.assertAlmostEqual(complex(real=17+23j, imag=23), 17+46j)
- #self.assertAlmostEqual(complex(real=1+2j, imag=3+4j), -3+5j)
- # check that the sign of a zero in the real or imaginary part
- # is preserved when constructing from two floats. (These checks
- # are harmless on systems without support for signed zeros.)
- def split_zeros(x):
- """Function that produces different results for 0. and -0."""
- return atan2(x, -1.)
- self.assertEqual(split_zeros(complex(1., 0.).imag), split_zeros(0.))
- self.assertEqual(split_zeros(complex(1., -0.).imag), split_zeros(-0.))
- self.assertEqual(split_zeros(complex(0., 1.).real), split_zeros(0.))
- self.assertEqual(split_zeros(complex(-0., 1.).real), split_zeros(-0.))
- c = 3.14 + 1j
- self.assertTrue(complex(c) is c)
- del c
- self.assertRaises(TypeError, complex, "1", "1")
- self.assertRaises(TypeError, complex, 1, "1")
- # SF bug 543840: complex(string) accepts strings with \0
- # Fixed in 2.3.
- self.assertRaises(ValueError, complex, '1+1j\0j')
- self.assertRaises(TypeError, int, 5+3j)
- self.assertRaises(TypeError, int, 5+3j)
- self.assertRaises(TypeError, float, 5+3j)
- self.assertRaises(ValueError, complex, "")
- self.assertRaises(TypeError, complex, None)
- #self.assertRaisesRegex(TypeError, "not 'NoneType'", complex, None)
- self.assertRaises(ValueError, complex, "\0")
- self.assertRaises(ValueError, complex, "3\09")
- self.assertRaises(TypeError, complex, "1", "2")
- self.assertRaises(TypeError, complex, "1", 42)
- self.assertRaises(TypeError, complex, 1, "2")
- self.assertRaises(ValueError, complex, "1+")
- self.assertRaises(ValueError, complex, "1+1j+1j")
- self.assertRaises(ValueError, complex, "--")
- self.assertRaises(ValueError, complex, "(1+2j")
- self.assertRaises(ValueError, complex, "1+2j)")
- self.assertRaises(ValueError, complex, "1+(2j)")
- self.assertRaises(ValueError, complex, "(1+2j)123")
- self.assertRaises(ValueError, complex, "x")
- self.assertRaises(ValueError, complex, "1j+2")
- self.assertRaises(ValueError, complex, "1e1ej")
- self.assertRaises(ValueError, complex, "1e++1ej")
- self.assertRaises(ValueError, complex, ")1+2j(")
- # the following three are accepted by Python 2.6
- self.assertRaises(ValueError, complex, "1..1j")
- self.assertRaises(ValueError, complex, "1.11.1j")
- self.assertRaises(ValueError, complex, "1e1.1j")
- # check that complex accepts long unicode strings
- self.assertEqual(type(complex("1"*500)), complex)
- # check whitespace processing
- # self.assertEqual(complex('\N{EM SPACE}(\N{EN SPACE}1+1j ) '), 1+1j)
- # FIXME: subclassing exceptions is not really working!
- #class EvilExc(Exception):
- # pass
- #
- #class evilcomplex:
- # def __complex__(self):
- # raise EvilExc
- #self.assertRaises(EvilExc, complex, evilcomplex())
- class float2:
- def __init__(self, value):
- self.value = value
- def __float__(self):
- return self.value
- # FIXME: currently complex does not call internal __float__ method
- # FIXME: complex does not support keyword args
- self.assertAlmostEqual(complex(float2(42.)), 42)
- #self.assertAlmostEqual(complex(real=float2(17.), imag=float2(23.)), 17+23j)
- #self.assertRaises(TypeError, complex, float2(None))
- #class complex0(complex):
- # """Test usage of __complex__() when inheriting from 'complex'"""
- # def __complex__(self):
- # return 42j
- #class complex1(complex):
- # """Test usage of __complex__() with a __new__() method"""
- # def __new__(self, value=0j):
- # return complex.__new__(self, 2*value)
- # def __complex__(self):
- # return self
- #class complex2(complex):
- # """Make sure that __complex__() calls fail if anything other than a
- # complex is returned"""
- # def __complex__(self):
- # return None
- #self.assertAlmostEqual(complex(complex0(1j)), 42j)
- #self.assertAlmostEqual(complex(complex1(1j)), 2j)
- #self.assertRaises(TypeError, complex, complex2(1j))
- def test_hash(self):
- for x in range(-30, 30):
- self.assertEqual(hash(x), hash(complex(x, 0)))
- x /= 3.0 # now check against floating point
- self.assertEqual(hash(x), hash(complex(x, 0.)))
- def test_abs(self):
- nums = [complex(x/3., y/7.) for x in range(-9, 9) for y in range(-9, 9)]
- for num in nums:
- self.assertAlmostEqual((num.real**2 + num.imag**2) ** 0.5, abs(num))
- def test_repr_str(self):
- # this test case is actually working but failing nevertheless o.O?
- #self.assertNotEqual(len(str(-(1+0j))), len('(-1+-0j)'))
- self.assertEqual(str(complex(1., INF)), "(1+infj)")
- self.assertEqual(str(complex(1., -INF)), "(1-infj)")
- self.assertEqual(str(complex(INF, 1)), "(inf+1j)")
- self.assertEqual(str(complex(-INF, INF)), "(-inf+infj)")
- self.assertEqual(str(complex(NAN, 1)), "(nan+1j)")
- self.assertEqual(str(complex(1, NAN)), "(1+nanj)")
- self.assertEqual(str(complex(NAN, NAN)), "(nan+nanj)")
- self.assertEqual(str(complex(0, INF)), "infj")
- self.assertEqual(str(complex(0, -INF)), "-infj")
- self.assertEqual(str(complex(0, NAN)), "nanj")
- def test_neg(self):
- self.assertEqual(-(1+6j), -1-6j)
- def test_getnewargs(self):
- self.assertEqual((1+2j).__getnewargs__(), (1.0, 2.0))
- self.assertEqual((1-2j).__getnewargs__(), (1.0, -2.0))
- self.assertEqual((2j).__getnewargs__(), (0.0, 2.0))
- self.assertEqual((-0j).__getnewargs__(), (0.0, -0.0))
- self.assertEqual(complex(0, INF).__getnewargs__(), (0.0, INF))
- self.assertEqual(complex(INF, 0).__getnewargs__(), (INF, 0.0))
- def test_plus_minus_0j(self):
- # test that -0j and 0j literals are not identified
- z1, z2 = 0j, -0j
- self.assertEqual(atan2(z1.imag, -1.), atan2(0., -1.))
- self.assertEqual(atan2(z2.imag, -1.), atan2(-0., -1.))
- def test_negated_imaginary_literal(self):
- z0 = -0j
- z1 = -7j
- z2 = -1e1000j
- # Note: In versions of Python < 3.2, a negated imaginary literal
- # accidentally ended up with real part 0.0 instead of -0.0, thanks to a
- # modification during CST -> AST translation (see issue #9011). That's
- # fixed in Python 3.2.
- self.assertFloatsAreIdentical(z0.real, -0.0)
- self.assertFloatsAreIdentical(z0.imag, -0.0)
- self.assertFloatsAreIdentical(z1.real, -0.0)
- self.assertFloatsAreIdentical(z1.imag, -7.0)
- self.assertFloatsAreIdentical(z2.real, -0.0)
- self.assertFloatsAreIdentical(z2.imag, -INF)
- def test_overflow(self):
- self.assertEqual(complex("1e500"), complex(INF, 0.0))
- self.assertEqual(complex("-1e500j"), complex(0.0, -INF))
- self.assertEqual(complex("-1e500+1.8e308j"), complex(-INF, INF))
- def test_repr_roundtrip(self):
- vals = [0.0, 1e-500, 1e-315, 1e-200, 0.0123, 3.1415, 1e50, INF, NAN]
- vals += [-v for v in vals]
- # complex(repr(z)) should recover z exactly, even for complex
- # numbers involving an infinity, nan, or negative zero
- for x in vals:
- for y in vals:
- z = complex(x, y)
- roundtrip = complex(repr(z))
- self.assertFloatsAreIdentical(z.real, roundtrip.real)
- self.assertFloatsAreIdentical(z.imag, roundtrip.imag)
- # Removed some tests that require eval()
- def test_main():
- unittest.main()
- if __name__ == "__main__":
- test_main()
|